xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision d8bcaabe)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
49 	int i;
50 
51 	for (i = 0; i < 8; i++)
52 		pdp_pair[i].val = pdp[7 - i];
53 }
54 
55 static int populate_shadow_context(struct intel_vgpu_workload *workload)
56 {
57 	struct intel_vgpu *vgpu = workload->vgpu;
58 	struct intel_gvt *gvt = vgpu->gvt;
59 	int ring_id = workload->ring_id;
60 	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
61 	struct drm_i915_gem_object *ctx_obj =
62 		shadow_ctx->engine[ring_id].state->obj;
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct page *page;
65 	void *dst;
66 	unsigned long context_gpa, context_page_num;
67 	int i;
68 
69 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
70 			workload->ctx_desc.lrca);
71 
72 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
73 
74 	context_page_num = context_page_num >> PAGE_SHIFT;
75 
76 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
77 		context_page_num = 19;
78 
79 	i = 2;
80 
81 	while (i < context_page_num) {
82 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
83 				(u32)((workload->ctx_desc.lrca + i) <<
84 				GTT_PAGE_SHIFT));
85 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
86 			gvt_vgpu_err("Invalid guest context descriptor\n");
87 			return -EINVAL;
88 		}
89 
90 		page = i915_gem_object_get_page(ctx_obj, LRC_PPHWSP_PN + i);
91 		dst = kmap(page);
92 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
93 				GTT_PAGE_SIZE);
94 		kunmap(page);
95 		i++;
96 	}
97 
98 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
99 	shadow_ring_context = kmap(page);
100 
101 #define COPY_REG(name) \
102 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
103 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
104 
105 	COPY_REG(ctx_ctrl);
106 	COPY_REG(ctx_timestamp);
107 
108 	if (ring_id == RCS) {
109 		COPY_REG(bb_per_ctx_ptr);
110 		COPY_REG(rcs_indirect_ctx);
111 		COPY_REG(rcs_indirect_ctx_offset);
112 	}
113 #undef COPY_REG
114 
115 	set_context_pdp_root_pointer(shadow_ring_context,
116 				     workload->shadow_mm->shadow_page_table);
117 
118 	intel_gvt_hypervisor_read_gpa(vgpu,
119 			workload->ring_context_gpa +
120 			sizeof(*shadow_ring_context),
121 			(void *)shadow_ring_context +
122 			sizeof(*shadow_ring_context),
123 			GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
124 
125 	kunmap(page);
126 	return 0;
127 }
128 
129 static inline bool is_gvt_request(struct drm_i915_gem_request *req)
130 {
131 	return i915_gem_context_force_single_submission(req->ctx);
132 }
133 
134 static int shadow_context_status_change(struct notifier_block *nb,
135 		unsigned long action, void *data)
136 {
137 	struct drm_i915_gem_request *req = (struct drm_i915_gem_request *)data;
138 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
139 				shadow_ctx_notifier_block[req->engine->id]);
140 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
141 	enum intel_engine_id ring_id = req->engine->id;
142 	struct intel_vgpu_workload *workload;
143 
144 	if (!is_gvt_request(req)) {
145 		spin_lock_bh(&scheduler->mmio_context_lock);
146 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
147 		    scheduler->engine_owner[ring_id]) {
148 			/* Switch ring from vGPU to host. */
149 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
150 					      NULL, ring_id);
151 			scheduler->engine_owner[ring_id] = NULL;
152 		}
153 		spin_unlock_bh(&scheduler->mmio_context_lock);
154 
155 		return NOTIFY_OK;
156 	}
157 
158 	workload = scheduler->current_workload[ring_id];
159 	if (unlikely(!workload))
160 		return NOTIFY_OK;
161 
162 	switch (action) {
163 	case INTEL_CONTEXT_SCHEDULE_IN:
164 		spin_lock_bh(&scheduler->mmio_context_lock);
165 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
166 			/* Switch ring from host to vGPU or vGPU to vGPU. */
167 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
168 					      workload->vgpu, ring_id);
169 			scheduler->engine_owner[ring_id] = workload->vgpu;
170 		} else
171 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
172 				      ring_id, workload->vgpu->id);
173 		spin_unlock_bh(&scheduler->mmio_context_lock);
174 		atomic_set(&workload->shadow_ctx_active, 1);
175 		break;
176 	case INTEL_CONTEXT_SCHEDULE_OUT:
177 		atomic_set(&workload->shadow_ctx_active, 0);
178 		break;
179 	default:
180 		WARN_ON(1);
181 		return NOTIFY_OK;
182 	}
183 	wake_up(&workload->shadow_ctx_status_wq);
184 	return NOTIFY_OK;
185 }
186 
187 static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
188 		struct intel_engine_cs *engine)
189 {
190 	struct intel_context *ce = &ctx->engine[engine->id];
191 	u64 desc = 0;
192 
193 	desc = ce->lrc_desc;
194 
195 	/* Update bits 0-11 of the context descriptor which includes flags
196 	 * like GEN8_CTX_* cached in desc_template
197 	 */
198 	desc &= U64_MAX << 12;
199 	desc |= ctx->desc_template & ((1ULL << 12) - 1);
200 
201 	ce->lrc_desc = desc;
202 }
203 
204 /**
205  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
206  * shadow it as well, include ringbuffer,wa_ctx and ctx.
207  * @workload: an abstract entity for each execlist submission.
208  *
209  * This function is called before the workload submitting to i915, to make
210  * sure the content of the workload is valid.
211  */
212 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
213 {
214 	int ring_id = workload->ring_id;
215 	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
216 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
217 	struct drm_i915_gem_request *rq;
218 	struct intel_vgpu *vgpu = workload->vgpu;
219 	int ret;
220 
221 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
222 
223 	if (workload->shadowed)
224 		return 0;
225 
226 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
227 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
228 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
229 
230 	if (!test_and_set_bit(ring_id, vgpu->shadow_ctx_desc_updated))
231 		shadow_context_descriptor_update(shadow_ctx,
232 					dev_priv->engine[ring_id]);
233 
234 	rq = i915_gem_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
235 	if (IS_ERR(rq)) {
236 		gvt_vgpu_err("fail to allocate gem request\n");
237 		ret = PTR_ERR(rq);
238 		goto out;
239 	}
240 
241 	gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
242 
243 	workload->req = i915_gem_request_get(rq);
244 
245 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
246 	if (ret)
247 		goto out;
248 
249 	if ((workload->ring_id == RCS) &&
250 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
251 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
252 		if (ret)
253 			goto out;
254 	}
255 
256 	ret = populate_shadow_context(workload);
257 	if (ret)
258 		goto out;
259 
260 	workload->shadowed = true;
261 
262 out:
263 	return ret;
264 }
265 
266 static int dispatch_workload(struct intel_vgpu_workload *workload)
267 {
268 	int ring_id = workload->ring_id;
269 	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
270 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
271 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
272 	struct intel_vgpu *vgpu = workload->vgpu;
273 	struct intel_ring *ring;
274 	int ret = 0;
275 
276 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
277 		ring_id, workload);
278 
279 	mutex_lock(&dev_priv->drm.struct_mutex);
280 
281 	ret = intel_gvt_scan_and_shadow_workload(workload);
282 	if (ret)
283 		goto out;
284 
285 	if (workload->prepare) {
286 		ret = workload->prepare(workload);
287 		if (ret)
288 			goto out;
289 	}
290 
291 	/* pin shadow context by gvt even the shadow context will be pinned
292 	 * when i915 alloc request. That is because gvt will update the guest
293 	 * context from shadow context when workload is completed, and at that
294 	 * moment, i915 may already unpined the shadow context to make the
295 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
296 	 * the guest context, gvt can unpin the shadow_ctx safely.
297 	 */
298 	ring = engine->context_pin(engine, shadow_ctx);
299 	if (IS_ERR(ring)) {
300 		ret = PTR_ERR(ring);
301 		gvt_vgpu_err("fail to pin shadow context\n");
302 		goto out;
303 	}
304 
305 out:
306 	if (ret)
307 		workload->status = ret;
308 
309 	if (!IS_ERR_OR_NULL(workload->req)) {
310 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
311 				ring_id, workload->req);
312 		i915_add_request(workload->req);
313 		workload->dispatched = true;
314 	}
315 
316 	mutex_unlock(&dev_priv->drm.struct_mutex);
317 	return ret;
318 }
319 
320 static struct intel_vgpu_workload *pick_next_workload(
321 		struct intel_gvt *gvt, int ring_id)
322 {
323 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
324 	struct intel_vgpu_workload *workload = NULL;
325 
326 	mutex_lock(&gvt->lock);
327 
328 	/*
329 	 * no current vgpu / will be scheduled out / no workload
330 	 * bail out
331 	 */
332 	if (!scheduler->current_vgpu) {
333 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
334 		goto out;
335 	}
336 
337 	if (scheduler->need_reschedule) {
338 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
339 		goto out;
340 	}
341 
342 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
343 		goto out;
344 
345 	/*
346 	 * still have current workload, maybe the workload disptacher
347 	 * fail to submit it for some reason, resubmit it.
348 	 */
349 	if (scheduler->current_workload[ring_id]) {
350 		workload = scheduler->current_workload[ring_id];
351 		gvt_dbg_sched("ring id %d still have current workload %p\n",
352 				ring_id, workload);
353 		goto out;
354 	}
355 
356 	/*
357 	 * pick a workload as current workload
358 	 * once current workload is set, schedule policy routines
359 	 * will wait the current workload is finished when trying to
360 	 * schedule out a vgpu.
361 	 */
362 	scheduler->current_workload[ring_id] = container_of(
363 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
364 			struct intel_vgpu_workload, list);
365 
366 	workload = scheduler->current_workload[ring_id];
367 
368 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
369 
370 	atomic_inc(&workload->vgpu->running_workload_num);
371 out:
372 	mutex_unlock(&gvt->lock);
373 	return workload;
374 }
375 
376 static void update_guest_context(struct intel_vgpu_workload *workload)
377 {
378 	struct intel_vgpu *vgpu = workload->vgpu;
379 	struct intel_gvt *gvt = vgpu->gvt;
380 	int ring_id = workload->ring_id;
381 	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
382 	struct drm_i915_gem_object *ctx_obj =
383 		shadow_ctx->engine[ring_id].state->obj;
384 	struct execlist_ring_context *shadow_ring_context;
385 	struct page *page;
386 	void *src;
387 	unsigned long context_gpa, context_page_num;
388 	int i;
389 
390 	gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
391 			workload->ctx_desc.lrca);
392 
393 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
394 
395 	context_page_num = context_page_num >> PAGE_SHIFT;
396 
397 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
398 		context_page_num = 19;
399 
400 	i = 2;
401 
402 	while (i < context_page_num) {
403 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
404 				(u32)((workload->ctx_desc.lrca + i) <<
405 					GTT_PAGE_SHIFT));
406 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
407 			gvt_vgpu_err("invalid guest context descriptor\n");
408 			return;
409 		}
410 
411 		page = i915_gem_object_get_page(ctx_obj, LRC_PPHWSP_PN + i);
412 		src = kmap(page);
413 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
414 				GTT_PAGE_SIZE);
415 		kunmap(page);
416 		i++;
417 	}
418 
419 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
420 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
421 
422 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
423 	shadow_ring_context = kmap(page);
424 
425 #define COPY_REG(name) \
426 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
427 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
428 
429 	COPY_REG(ctx_ctrl);
430 	COPY_REG(ctx_timestamp);
431 
432 #undef COPY_REG
433 
434 	intel_gvt_hypervisor_write_gpa(vgpu,
435 			workload->ring_context_gpa +
436 			sizeof(*shadow_ring_context),
437 			(void *)shadow_ring_context +
438 			sizeof(*shadow_ring_context),
439 			GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
440 
441 	kunmap(page);
442 }
443 
444 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
445 {
446 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
447 	struct intel_vgpu_workload *workload;
448 	struct intel_vgpu *vgpu;
449 	int event;
450 
451 	mutex_lock(&gvt->lock);
452 
453 	workload = scheduler->current_workload[ring_id];
454 	vgpu = workload->vgpu;
455 
456 	/* For the workload w/ request, needs to wait for the context
457 	 * switch to make sure request is completed.
458 	 * For the workload w/o request, directly complete the workload.
459 	 */
460 	if (workload->req) {
461 		struct drm_i915_private *dev_priv =
462 			workload->vgpu->gvt->dev_priv;
463 		struct intel_engine_cs *engine =
464 			dev_priv->engine[workload->ring_id];
465 		wait_event(workload->shadow_ctx_status_wq,
466 			   !atomic_read(&workload->shadow_ctx_active));
467 
468 		/* If this request caused GPU hang, req->fence.error will
469 		 * be set to -EIO. Use -EIO to set workload status so
470 		 * that when this request caused GPU hang, didn't trigger
471 		 * context switch interrupt to guest.
472 		 */
473 		if (likely(workload->status == -EINPROGRESS)) {
474 			if (workload->req->fence.error == -EIO)
475 				workload->status = -EIO;
476 			else
477 				workload->status = 0;
478 		}
479 
480 		i915_gem_request_put(fetch_and_zero(&workload->req));
481 
482 		if (!workload->status && !(vgpu->resetting_eng &
483 					   ENGINE_MASK(ring_id))) {
484 			update_guest_context(workload);
485 
486 			for_each_set_bit(event, workload->pending_events,
487 					 INTEL_GVT_EVENT_MAX)
488 				intel_vgpu_trigger_virtual_event(vgpu, event);
489 		}
490 		mutex_lock(&dev_priv->drm.struct_mutex);
491 		/* unpin shadow ctx as the shadow_ctx update is done */
492 		engine->context_unpin(engine, workload->vgpu->shadow_ctx);
493 		mutex_unlock(&dev_priv->drm.struct_mutex);
494 	}
495 
496 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
497 			ring_id, workload, workload->status);
498 
499 	scheduler->current_workload[ring_id] = NULL;
500 
501 	list_del_init(&workload->list);
502 	workload->complete(workload);
503 
504 	atomic_dec(&vgpu->running_workload_num);
505 	wake_up(&scheduler->workload_complete_wq);
506 
507 	if (gvt->scheduler.need_reschedule)
508 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
509 
510 	mutex_unlock(&gvt->lock);
511 }
512 
513 struct workload_thread_param {
514 	struct intel_gvt *gvt;
515 	int ring_id;
516 };
517 
518 static int workload_thread(void *priv)
519 {
520 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
521 	struct intel_gvt *gvt = p->gvt;
522 	int ring_id = p->ring_id;
523 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
524 	struct intel_vgpu_workload *workload = NULL;
525 	struct intel_vgpu *vgpu = NULL;
526 	int ret;
527 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
528 			|| IS_KABYLAKE(gvt->dev_priv);
529 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
530 
531 	kfree(p);
532 
533 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
534 
535 	while (!kthread_should_stop()) {
536 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
537 		do {
538 			workload = pick_next_workload(gvt, ring_id);
539 			if (workload)
540 				break;
541 			wait_woken(&wait, TASK_INTERRUPTIBLE,
542 				   MAX_SCHEDULE_TIMEOUT);
543 		} while (!kthread_should_stop());
544 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
545 
546 		if (!workload)
547 			break;
548 
549 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
550 				workload->ring_id, workload,
551 				workload->vgpu->id);
552 
553 		intel_runtime_pm_get(gvt->dev_priv);
554 
555 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
556 				workload->ring_id, workload);
557 
558 		if (need_force_wake)
559 			intel_uncore_forcewake_get(gvt->dev_priv,
560 					FORCEWAKE_ALL);
561 
562 		mutex_lock(&gvt->lock);
563 		ret = dispatch_workload(workload);
564 		mutex_unlock(&gvt->lock);
565 
566 		if (ret) {
567 			vgpu = workload->vgpu;
568 			gvt_vgpu_err("fail to dispatch workload, skip\n");
569 			goto complete;
570 		}
571 
572 		gvt_dbg_sched("ring id %d wait workload %p\n",
573 				workload->ring_id, workload);
574 		i915_wait_request(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
575 
576 complete:
577 		gvt_dbg_sched("will complete workload %p, status: %d\n",
578 				workload, workload->status);
579 
580 		complete_current_workload(gvt, ring_id);
581 
582 		if (need_force_wake)
583 			intel_uncore_forcewake_put(gvt->dev_priv,
584 					FORCEWAKE_ALL);
585 
586 		intel_runtime_pm_put(gvt->dev_priv);
587 	}
588 	return 0;
589 }
590 
591 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
592 {
593 	struct intel_gvt *gvt = vgpu->gvt;
594 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
595 
596 	if (atomic_read(&vgpu->running_workload_num)) {
597 		gvt_dbg_sched("wait vgpu idle\n");
598 
599 		wait_event(scheduler->workload_complete_wq,
600 				!atomic_read(&vgpu->running_workload_num));
601 	}
602 }
603 
604 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
605 {
606 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
607 	struct intel_engine_cs *engine;
608 	enum intel_engine_id i;
609 
610 	gvt_dbg_core("clean workload scheduler\n");
611 
612 	for_each_engine(engine, gvt->dev_priv, i) {
613 		atomic_notifier_chain_unregister(
614 					&engine->context_status_notifier,
615 					&gvt->shadow_ctx_notifier_block[i]);
616 		kthread_stop(scheduler->thread[i]);
617 	}
618 }
619 
620 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
621 {
622 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
623 	struct workload_thread_param *param = NULL;
624 	struct intel_engine_cs *engine;
625 	enum intel_engine_id i;
626 	int ret;
627 
628 	gvt_dbg_core("init workload scheduler\n");
629 
630 	init_waitqueue_head(&scheduler->workload_complete_wq);
631 
632 	for_each_engine(engine, gvt->dev_priv, i) {
633 		init_waitqueue_head(&scheduler->waitq[i]);
634 
635 		param = kzalloc(sizeof(*param), GFP_KERNEL);
636 		if (!param) {
637 			ret = -ENOMEM;
638 			goto err;
639 		}
640 
641 		param->gvt = gvt;
642 		param->ring_id = i;
643 
644 		scheduler->thread[i] = kthread_run(workload_thread, param,
645 			"gvt workload %d", i);
646 		if (IS_ERR(scheduler->thread[i])) {
647 			gvt_err("fail to create workload thread\n");
648 			ret = PTR_ERR(scheduler->thread[i]);
649 			goto err;
650 		}
651 
652 		gvt->shadow_ctx_notifier_block[i].notifier_call =
653 					shadow_context_status_change;
654 		atomic_notifier_chain_register(&engine->context_status_notifier,
655 					&gvt->shadow_ctx_notifier_block[i]);
656 	}
657 	return 0;
658 err:
659 	intel_gvt_clean_workload_scheduler(gvt);
660 	kfree(param);
661 	param = NULL;
662 	return ret;
663 }
664 
665 void intel_vgpu_clean_gvt_context(struct intel_vgpu *vgpu)
666 {
667 	i915_gem_context_put(vgpu->shadow_ctx);
668 }
669 
670 int intel_vgpu_init_gvt_context(struct intel_vgpu *vgpu)
671 {
672 	atomic_set(&vgpu->running_workload_num, 0);
673 
674 	vgpu->shadow_ctx = i915_gem_context_create_gvt(
675 			&vgpu->gvt->dev_priv->drm);
676 	if (IS_ERR(vgpu->shadow_ctx))
677 		return PTR_ERR(vgpu->shadow_ctx);
678 
679 	vgpu->shadow_ctx->engine[RCS].initialised = true;
680 
681 	bitmap_zero(vgpu->shadow_ctx_desc_updated, I915_NUM_ENGINES);
682 
683 	return 0;
684 }
685