1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_context.h" 39 #include "gem/i915_gem_pm.h" 40 #include "gt/intel_context.h" 41 #include "gt/intel_ring.h" 42 43 #include "i915_drv.h" 44 #include "gvt.h" 45 46 #define RING_CTX_OFF(x) \ 47 offsetof(struct execlist_ring_context, x) 48 49 static void set_context_pdp_root_pointer( 50 struct execlist_ring_context *ring_context, 51 u32 pdp[8]) 52 { 53 int i; 54 55 for (i = 0; i < 8; i++) 56 ring_context->pdps[i].val = pdp[7 - i]; 57 } 58 59 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 60 { 61 struct drm_i915_gem_object *ctx_obj = 62 workload->req->hw_context->state->obj; 63 struct execlist_ring_context *shadow_ring_context; 64 struct page *page; 65 66 if (WARN_ON(!workload->shadow_mm)) 67 return; 68 69 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 70 return; 71 72 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 73 shadow_ring_context = kmap(page); 74 set_context_pdp_root_pointer(shadow_ring_context, 75 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 76 kunmap(page); 77 } 78 79 /* 80 * when populating shadow ctx from guest, we should not overrride oa related 81 * registers, so that they will not be overlapped by guest oa configs. Thus 82 * made it possible to capture oa data from host for both host and guests. 83 */ 84 static void sr_oa_regs(struct intel_vgpu_workload *workload, 85 u32 *reg_state, bool save) 86 { 87 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 88 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 89 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 90 int i = 0; 91 u32 flex_mmio[] = { 92 i915_mmio_reg_offset(EU_PERF_CNTL0), 93 i915_mmio_reg_offset(EU_PERF_CNTL1), 94 i915_mmio_reg_offset(EU_PERF_CNTL2), 95 i915_mmio_reg_offset(EU_PERF_CNTL3), 96 i915_mmio_reg_offset(EU_PERF_CNTL4), 97 i915_mmio_reg_offset(EU_PERF_CNTL5), 98 i915_mmio_reg_offset(EU_PERF_CNTL6), 99 }; 100 101 if (workload->ring_id != RCS0) 102 return; 103 104 if (save) { 105 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 106 107 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 108 u32 state_offset = ctx_flexeu0 + i * 2; 109 110 workload->flex_mmio[i] = reg_state[state_offset + 1]; 111 } 112 } else { 113 reg_state[ctx_oactxctrl] = 114 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 115 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 116 117 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 118 u32 state_offset = ctx_flexeu0 + i * 2; 119 u32 mmio = flex_mmio[i]; 120 121 reg_state[state_offset] = mmio; 122 reg_state[state_offset + 1] = workload->flex_mmio[i]; 123 } 124 } 125 } 126 127 static int populate_shadow_context(struct intel_vgpu_workload *workload) 128 { 129 struct intel_vgpu *vgpu = workload->vgpu; 130 struct intel_gvt *gvt = vgpu->gvt; 131 int ring_id = workload->ring_id; 132 struct drm_i915_gem_object *ctx_obj = 133 workload->req->hw_context->state->obj; 134 struct execlist_ring_context *shadow_ring_context; 135 struct page *page; 136 void *dst; 137 unsigned long context_gpa, context_page_num; 138 int i; 139 140 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 141 shadow_ring_context = kmap(page); 142 143 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 144 #define COPY_REG(name) \ 145 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 146 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 147 #define COPY_REG_MASKED(name) {\ 148 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 149 + RING_CTX_OFF(name.val),\ 150 &shadow_ring_context->name.val, 4);\ 151 shadow_ring_context->name.val |= 0xffff << 16;\ 152 } 153 154 COPY_REG_MASKED(ctx_ctrl); 155 COPY_REG(ctx_timestamp); 156 157 if (ring_id == RCS0) { 158 COPY_REG(bb_per_ctx_ptr); 159 COPY_REG(rcs_indirect_ctx); 160 COPY_REG(rcs_indirect_ctx_offset); 161 } 162 #undef COPY_REG 163 #undef COPY_REG_MASKED 164 165 intel_gvt_hypervisor_read_gpa(vgpu, 166 workload->ring_context_gpa + 167 sizeof(*shadow_ring_context), 168 (void *)shadow_ring_context + 169 sizeof(*shadow_ring_context), 170 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 171 172 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 173 kunmap(page); 174 175 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 176 return 0; 177 178 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 179 workload->ctx_desc.lrca); 180 181 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 182 183 context_page_num = context_page_num >> PAGE_SHIFT; 184 185 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0) 186 context_page_num = 19; 187 188 i = 2; 189 while (i < context_page_num) { 190 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 191 (u32)((workload->ctx_desc.lrca + i) << 192 I915_GTT_PAGE_SHIFT)); 193 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 194 gvt_vgpu_err("Invalid guest context descriptor\n"); 195 return -EFAULT; 196 } 197 198 page = i915_gem_object_get_page(ctx_obj, i); 199 dst = kmap(page); 200 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 201 I915_GTT_PAGE_SIZE); 202 kunmap(page); 203 i++; 204 } 205 return 0; 206 } 207 208 static inline bool is_gvt_request(struct i915_request *req) 209 { 210 return i915_gem_context_force_single_submission(req->gem_context); 211 } 212 213 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 214 { 215 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 216 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 217 i915_reg_t reg; 218 219 reg = RING_INSTDONE(ring_base); 220 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 221 reg = RING_ACTHD(ring_base); 222 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 223 reg = RING_ACTHD_UDW(ring_base); 224 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 225 } 226 227 static int shadow_context_status_change(struct notifier_block *nb, 228 unsigned long action, void *data) 229 { 230 struct i915_request *req = data; 231 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 232 shadow_ctx_notifier_block[req->engine->id]); 233 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 234 enum intel_engine_id ring_id = req->engine->id; 235 struct intel_vgpu_workload *workload; 236 unsigned long flags; 237 238 if (!is_gvt_request(req)) { 239 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 240 if (action == INTEL_CONTEXT_SCHEDULE_IN && 241 scheduler->engine_owner[ring_id]) { 242 /* Switch ring from vGPU to host. */ 243 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 244 NULL, ring_id); 245 scheduler->engine_owner[ring_id] = NULL; 246 } 247 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 248 249 return NOTIFY_OK; 250 } 251 252 workload = scheduler->current_workload[ring_id]; 253 if (unlikely(!workload)) 254 return NOTIFY_OK; 255 256 switch (action) { 257 case INTEL_CONTEXT_SCHEDULE_IN: 258 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 259 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 260 /* Switch ring from host to vGPU or vGPU to vGPU. */ 261 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 262 workload->vgpu, ring_id); 263 scheduler->engine_owner[ring_id] = workload->vgpu; 264 } else 265 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 266 ring_id, workload->vgpu->id); 267 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 268 atomic_set(&workload->shadow_ctx_active, 1); 269 break; 270 case INTEL_CONTEXT_SCHEDULE_OUT: 271 save_ring_hw_state(workload->vgpu, ring_id); 272 atomic_set(&workload->shadow_ctx_active, 0); 273 break; 274 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 275 save_ring_hw_state(workload->vgpu, ring_id); 276 break; 277 default: 278 WARN_ON(1); 279 return NOTIFY_OK; 280 } 281 wake_up(&workload->shadow_ctx_status_wq); 282 return NOTIFY_OK; 283 } 284 285 static void 286 shadow_context_descriptor_update(struct intel_context *ce, 287 struct intel_vgpu_workload *workload) 288 { 289 u64 desc = ce->lrc_desc; 290 291 /* 292 * Update bits 0-11 of the context descriptor which includes flags 293 * like GEN8_CTX_* cached in desc_template 294 */ 295 desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 296 desc |= workload->ctx_desc.addressing_mode << 297 GEN8_CTX_ADDRESSING_MODE_SHIFT; 298 299 ce->lrc_desc = desc; 300 } 301 302 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 303 { 304 struct intel_vgpu *vgpu = workload->vgpu; 305 struct i915_request *req = workload->req; 306 void *shadow_ring_buffer_va; 307 u32 *cs; 308 int err; 309 310 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context)) 311 intel_vgpu_restore_inhibit_context(vgpu, req); 312 313 /* 314 * To track whether a request has started on HW, we can emit a 315 * breadcrumb at the beginning of the request and check its 316 * timeline's HWSP to see if the breadcrumb has advanced past the 317 * start of this request. Actually, the request must have the 318 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 319 * scheduler might get a wrong state of it during reset. Since the 320 * requests from gvt always set the has_init_breadcrumb flag, here 321 * need to do the emit_init_breadcrumb for all the requests. 322 */ 323 if (req->engine->emit_init_breadcrumb) { 324 err = req->engine->emit_init_breadcrumb(req); 325 if (err) { 326 gvt_vgpu_err("fail to emit init breadcrumb\n"); 327 return err; 328 } 329 } 330 331 /* allocate shadow ring buffer */ 332 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 333 if (IS_ERR(cs)) { 334 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 335 workload->rb_len); 336 return PTR_ERR(cs); 337 } 338 339 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 340 341 /* get shadow ring buffer va */ 342 workload->shadow_ring_buffer_va = cs; 343 344 memcpy(cs, shadow_ring_buffer_va, 345 workload->rb_len); 346 347 cs += workload->rb_len / sizeof(u32); 348 intel_ring_advance(workload->req, cs); 349 350 return 0; 351 } 352 353 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 354 { 355 if (!wa_ctx->indirect_ctx.obj) 356 return; 357 358 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 359 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 360 361 wa_ctx->indirect_ctx.obj = NULL; 362 wa_ctx->indirect_ctx.shadow_va = NULL; 363 } 364 365 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 366 struct i915_gem_context *ctx) 367 { 368 struct intel_vgpu_mm *mm = workload->shadow_mm; 369 struct i915_ppgtt *ppgtt = 370 i915_vm_to_ppgtt(i915_gem_context_get_vm_rcu(ctx)); 371 int i = 0; 372 373 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 374 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0]; 375 } else { 376 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 377 struct i915_page_directory * const pd = 378 i915_pd_entry(ppgtt->pd, i); 379 380 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i]; 381 } 382 } 383 384 i915_vm_put(&ppgtt->vm); 385 } 386 387 static int 388 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 389 { 390 struct intel_vgpu *vgpu = workload->vgpu; 391 struct intel_vgpu_submission *s = &vgpu->submission; 392 struct i915_request *rq; 393 394 if (workload->req) 395 return 0; 396 397 rq = i915_request_create(s->shadow[workload->ring_id]); 398 if (IS_ERR(rq)) { 399 gvt_vgpu_err("fail to allocate gem request\n"); 400 return PTR_ERR(rq); 401 } 402 403 workload->req = i915_request_get(rq); 404 return 0; 405 } 406 407 /** 408 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 409 * shadow it as well, include ringbuffer,wa_ctx and ctx. 410 * @workload: an abstract entity for each execlist submission. 411 * 412 * This function is called before the workload submitting to i915, to make 413 * sure the content of the workload is valid. 414 */ 415 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 416 { 417 struct intel_vgpu *vgpu = workload->vgpu; 418 struct intel_vgpu_submission *s = &vgpu->submission; 419 int ret; 420 421 lockdep_assert_held(&vgpu->vgpu_lock); 422 423 if (workload->shadow) 424 return 0; 425 426 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 427 shadow_context_descriptor_update(s->shadow[workload->ring_id], 428 workload); 429 430 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 431 if (ret) 432 return ret; 433 434 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) { 435 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 436 if (ret) 437 goto err_shadow; 438 } 439 440 workload->shadow = true; 441 return 0; 442 err_shadow: 443 release_shadow_wa_ctx(&workload->wa_ctx); 444 return ret; 445 } 446 447 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 448 449 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 450 { 451 struct intel_gvt *gvt = workload->vgpu->gvt; 452 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 453 struct intel_vgpu_shadow_bb *bb; 454 int ret; 455 456 list_for_each_entry(bb, &workload->shadow_bb, list) { 457 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 458 * is only updated into ring_scan_buffer, not real ring address 459 * allocated in later copy_workload_to_ring_buffer. pls be noted 460 * shadow_ring_buffer_va is now pointed to real ring buffer va 461 * in copy_workload_to_ring_buffer. 462 */ 463 464 if (bb->bb_offset) 465 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 466 + bb->bb_offset; 467 468 if (bb->ppgtt) { 469 /* for non-priv bb, scan&shadow is only for 470 * debugging purpose, so the content of shadow bb 471 * is the same as original bb. Therefore, 472 * here, rather than switch to shadow bb's gma 473 * address, we directly use original batch buffer's 474 * gma address, and send original bb to hardware 475 * directly 476 */ 477 if (bb->clflush & CLFLUSH_AFTER) { 478 drm_clflush_virt_range(bb->va, 479 bb->obj->base.size); 480 bb->clflush &= ~CLFLUSH_AFTER; 481 } 482 i915_gem_object_finish_access(bb->obj); 483 bb->accessing = false; 484 485 } else { 486 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 487 NULL, 0, 0, 0); 488 if (IS_ERR(bb->vma)) { 489 ret = PTR_ERR(bb->vma); 490 goto err; 491 } 492 493 /* relocate shadow batch buffer */ 494 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 495 if (gmadr_bytes == 8) 496 bb->bb_start_cmd_va[2] = 0; 497 498 /* No one is going to touch shadow bb from now on. */ 499 if (bb->clflush & CLFLUSH_AFTER) { 500 drm_clflush_virt_range(bb->va, 501 bb->obj->base.size); 502 bb->clflush &= ~CLFLUSH_AFTER; 503 } 504 505 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 506 false); 507 if (ret) 508 goto err; 509 510 ret = i915_vma_move_to_active(bb->vma, 511 workload->req, 512 0); 513 if (ret) 514 goto err; 515 516 i915_gem_object_finish_access(bb->obj); 517 bb->accessing = false; 518 } 519 } 520 return 0; 521 err: 522 release_shadow_batch_buffer(workload); 523 return ret; 524 } 525 526 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 527 { 528 struct intel_vgpu_workload *workload = 529 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 530 struct i915_request *rq = workload->req; 531 struct execlist_ring_context *shadow_ring_context = 532 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 533 534 shadow_ring_context->bb_per_ctx_ptr.val = 535 (shadow_ring_context->bb_per_ctx_ptr.val & 536 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 537 shadow_ring_context->rcs_indirect_ctx.val = 538 (shadow_ring_context->rcs_indirect_ctx.val & 539 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 540 } 541 542 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 543 { 544 struct i915_vma *vma; 545 unsigned char *per_ctx_va = 546 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 547 wa_ctx->indirect_ctx.size; 548 549 if (wa_ctx->indirect_ctx.size == 0) 550 return 0; 551 552 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 553 0, CACHELINE_BYTES, 0); 554 if (IS_ERR(vma)) 555 return PTR_ERR(vma); 556 557 /* FIXME: we are not tracking our pinned VMA leaving it 558 * up to the core to fix up the stray pin_count upon 559 * free. 560 */ 561 562 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 563 564 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 565 memset(per_ctx_va, 0, CACHELINE_BYTES); 566 567 update_wa_ctx_2_shadow_ctx(wa_ctx); 568 return 0; 569 } 570 571 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 572 { 573 struct intel_vgpu *vgpu = workload->vgpu; 574 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 575 u32 ring_base; 576 577 ring_base = dev_priv->engine[workload->ring_id]->mmio_base; 578 vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start; 579 } 580 581 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 582 { 583 struct intel_vgpu_shadow_bb *bb, *pos; 584 585 if (list_empty(&workload->shadow_bb)) 586 return; 587 588 bb = list_first_entry(&workload->shadow_bb, 589 struct intel_vgpu_shadow_bb, list); 590 591 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 592 if (bb->obj) { 593 if (bb->accessing) 594 i915_gem_object_finish_access(bb->obj); 595 596 if (bb->va && !IS_ERR(bb->va)) 597 i915_gem_object_unpin_map(bb->obj); 598 599 if (bb->vma && !IS_ERR(bb->vma)) { 600 i915_vma_unpin(bb->vma); 601 i915_vma_close(bb->vma); 602 } 603 i915_gem_object_put(bb->obj); 604 } 605 list_del(&bb->list); 606 kfree(bb); 607 } 608 } 609 610 static int prepare_workload(struct intel_vgpu_workload *workload) 611 { 612 struct intel_vgpu *vgpu = workload->vgpu; 613 struct intel_vgpu_submission *s = &vgpu->submission; 614 int ring = workload->ring_id; 615 int ret = 0; 616 617 ret = intel_vgpu_pin_mm(workload->shadow_mm); 618 if (ret) { 619 gvt_vgpu_err("fail to vgpu pin mm\n"); 620 return ret; 621 } 622 623 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 624 !workload->shadow_mm->ppgtt_mm.shadowed) { 625 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 626 return -EINVAL; 627 } 628 629 update_shadow_pdps(workload); 630 631 set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context); 632 633 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 634 if (ret) { 635 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 636 goto err_unpin_mm; 637 } 638 639 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 640 if (ret) { 641 gvt_vgpu_err("fail to flush post shadow\n"); 642 goto err_unpin_mm; 643 } 644 645 ret = copy_workload_to_ring_buffer(workload); 646 if (ret) { 647 gvt_vgpu_err("fail to generate request\n"); 648 goto err_unpin_mm; 649 } 650 651 ret = prepare_shadow_batch_buffer(workload); 652 if (ret) { 653 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 654 goto err_unpin_mm; 655 } 656 657 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 658 if (ret) { 659 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 660 goto err_shadow_batch; 661 } 662 663 if (workload->prepare) { 664 ret = workload->prepare(workload); 665 if (ret) 666 goto err_shadow_wa_ctx; 667 } 668 669 return 0; 670 err_shadow_wa_ctx: 671 release_shadow_wa_ctx(&workload->wa_ctx); 672 err_shadow_batch: 673 release_shadow_batch_buffer(workload); 674 err_unpin_mm: 675 intel_vgpu_unpin_mm(workload->shadow_mm); 676 return ret; 677 } 678 679 static int dispatch_workload(struct intel_vgpu_workload *workload) 680 { 681 struct intel_vgpu *vgpu = workload->vgpu; 682 struct i915_request *rq; 683 int ring_id = workload->ring_id; 684 int ret; 685 686 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 687 ring_id, workload); 688 689 mutex_lock(&vgpu->vgpu_lock); 690 691 ret = intel_gvt_workload_req_alloc(workload); 692 if (ret) 693 goto err_req; 694 695 ret = intel_gvt_scan_and_shadow_workload(workload); 696 if (ret) 697 goto out; 698 699 ret = populate_shadow_context(workload); 700 if (ret) { 701 release_shadow_wa_ctx(&workload->wa_ctx); 702 goto out; 703 } 704 705 ret = prepare_workload(workload); 706 out: 707 if (ret) { 708 /* We might still need to add request with 709 * clean ctx to retire it properly.. 710 */ 711 rq = fetch_and_zero(&workload->req); 712 i915_request_put(rq); 713 } 714 715 if (!IS_ERR_OR_NULL(workload->req)) { 716 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 717 ring_id, workload->req); 718 i915_request_add(workload->req); 719 workload->dispatched = true; 720 } 721 err_req: 722 if (ret) 723 workload->status = ret; 724 mutex_unlock(&vgpu->vgpu_lock); 725 return ret; 726 } 727 728 static struct intel_vgpu_workload *pick_next_workload( 729 struct intel_gvt *gvt, int ring_id) 730 { 731 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 732 struct intel_vgpu_workload *workload = NULL; 733 734 mutex_lock(&gvt->sched_lock); 735 736 /* 737 * no current vgpu / will be scheduled out / no workload 738 * bail out 739 */ 740 if (!scheduler->current_vgpu) { 741 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 742 goto out; 743 } 744 745 if (scheduler->need_reschedule) { 746 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 747 goto out; 748 } 749 750 if (!scheduler->current_vgpu->active || 751 list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 752 goto out; 753 754 /* 755 * still have current workload, maybe the workload disptacher 756 * fail to submit it for some reason, resubmit it. 757 */ 758 if (scheduler->current_workload[ring_id]) { 759 workload = scheduler->current_workload[ring_id]; 760 gvt_dbg_sched("ring id %d still have current workload %p\n", 761 ring_id, workload); 762 goto out; 763 } 764 765 /* 766 * pick a workload as current workload 767 * once current workload is set, schedule policy routines 768 * will wait the current workload is finished when trying to 769 * schedule out a vgpu. 770 */ 771 scheduler->current_workload[ring_id] = container_of( 772 workload_q_head(scheduler->current_vgpu, ring_id)->next, 773 struct intel_vgpu_workload, list); 774 775 workload = scheduler->current_workload[ring_id]; 776 777 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 778 779 atomic_inc(&workload->vgpu->submission.running_workload_num); 780 out: 781 mutex_unlock(&gvt->sched_lock); 782 return workload; 783 } 784 785 static void update_guest_context(struct intel_vgpu_workload *workload) 786 { 787 struct i915_request *rq = workload->req; 788 struct intel_vgpu *vgpu = workload->vgpu; 789 struct intel_gvt *gvt = vgpu->gvt; 790 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 791 struct execlist_ring_context *shadow_ring_context; 792 struct page *page; 793 void *src; 794 unsigned long context_gpa, context_page_num; 795 int i; 796 struct drm_i915_private *dev_priv = gvt->dev_priv; 797 u32 ring_base; 798 u32 head, tail; 799 u16 wrap_count; 800 801 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 802 workload->ctx_desc.lrca); 803 804 head = workload->rb_head; 805 tail = workload->rb_tail; 806 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 807 808 if (tail < head) { 809 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 810 wrap_count = 0; 811 else 812 wrap_count += 1; 813 } 814 815 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 816 817 ring_base = dev_priv->engine[workload->ring_id]->mmio_base; 818 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 819 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 820 821 context_page_num = rq->engine->context_size; 822 context_page_num = context_page_num >> PAGE_SHIFT; 823 824 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0) 825 context_page_num = 19; 826 827 i = 2; 828 829 while (i < context_page_num) { 830 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 831 (u32)((workload->ctx_desc.lrca + i) << 832 I915_GTT_PAGE_SHIFT)); 833 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 834 gvt_vgpu_err("invalid guest context descriptor\n"); 835 return; 836 } 837 838 page = i915_gem_object_get_page(ctx_obj, i); 839 src = kmap(page); 840 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 841 I915_GTT_PAGE_SIZE); 842 kunmap(page); 843 i++; 844 } 845 846 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 847 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 848 849 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 850 shadow_ring_context = kmap(page); 851 852 #define COPY_REG(name) \ 853 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 854 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 855 856 COPY_REG(ctx_ctrl); 857 COPY_REG(ctx_timestamp); 858 859 #undef COPY_REG 860 861 intel_gvt_hypervisor_write_gpa(vgpu, 862 workload->ring_context_gpa + 863 sizeof(*shadow_ring_context), 864 (void *)shadow_ring_context + 865 sizeof(*shadow_ring_context), 866 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 867 868 kunmap(page); 869 } 870 871 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 872 intel_engine_mask_t engine_mask) 873 { 874 struct intel_vgpu_submission *s = &vgpu->submission; 875 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 876 struct intel_engine_cs *engine; 877 struct intel_vgpu_workload *pos, *n; 878 intel_engine_mask_t tmp; 879 880 /* free the unsubmited workloads in the queues. */ 881 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) { 882 list_for_each_entry_safe(pos, n, 883 &s->workload_q_head[engine->id], list) { 884 list_del_init(&pos->list); 885 intel_vgpu_destroy_workload(pos); 886 } 887 clear_bit(engine->id, s->shadow_ctx_desc_updated); 888 } 889 } 890 891 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 892 { 893 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 894 struct intel_vgpu_workload *workload = 895 scheduler->current_workload[ring_id]; 896 struct intel_vgpu *vgpu = workload->vgpu; 897 struct intel_vgpu_submission *s = &vgpu->submission; 898 struct i915_request *rq = workload->req; 899 int event; 900 901 mutex_lock(&vgpu->vgpu_lock); 902 mutex_lock(&gvt->sched_lock); 903 904 /* For the workload w/ request, needs to wait for the context 905 * switch to make sure request is completed. 906 * For the workload w/o request, directly complete the workload. 907 */ 908 if (rq) { 909 wait_event(workload->shadow_ctx_status_wq, 910 !atomic_read(&workload->shadow_ctx_active)); 911 912 /* If this request caused GPU hang, req->fence.error will 913 * be set to -EIO. Use -EIO to set workload status so 914 * that when this request caused GPU hang, didn't trigger 915 * context switch interrupt to guest. 916 */ 917 if (likely(workload->status == -EINPROGRESS)) { 918 if (workload->req->fence.error == -EIO) 919 workload->status = -EIO; 920 else 921 workload->status = 0; 922 } 923 924 if (!workload->status && 925 !(vgpu->resetting_eng & BIT(ring_id))) { 926 update_guest_context(workload); 927 928 for_each_set_bit(event, workload->pending_events, 929 INTEL_GVT_EVENT_MAX) 930 intel_vgpu_trigger_virtual_event(vgpu, event); 931 } 932 933 i915_request_put(fetch_and_zero(&workload->req)); 934 } 935 936 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 937 ring_id, workload, workload->status); 938 939 scheduler->current_workload[ring_id] = NULL; 940 941 list_del_init(&workload->list); 942 943 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 944 /* if workload->status is not successful means HW GPU 945 * has occurred GPU hang or something wrong with i915/GVT, 946 * and GVT won't inject context switch interrupt to guest. 947 * So this error is a vGPU hang actually to the guest. 948 * According to this we should emunlate a vGPU hang. If 949 * there are pending workloads which are already submitted 950 * from guest, we should clean them up like HW GPU does. 951 * 952 * if it is in middle of engine resetting, the pending 953 * workloads won't be submitted to HW GPU and will be 954 * cleaned up during the resetting process later, so doing 955 * the workload clean up here doesn't have any impact. 956 **/ 957 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 958 } 959 960 workload->complete(workload); 961 962 atomic_dec(&s->running_workload_num); 963 wake_up(&scheduler->workload_complete_wq); 964 965 if (gvt->scheduler.need_reschedule) 966 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 967 968 mutex_unlock(&gvt->sched_lock); 969 mutex_unlock(&vgpu->vgpu_lock); 970 } 971 972 struct workload_thread_param { 973 struct intel_gvt *gvt; 974 int ring_id; 975 }; 976 977 static int workload_thread(void *priv) 978 { 979 struct workload_thread_param *p = (struct workload_thread_param *)priv; 980 struct intel_gvt *gvt = p->gvt; 981 int ring_id = p->ring_id; 982 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 983 struct intel_vgpu_workload *workload = NULL; 984 struct intel_vgpu *vgpu = NULL; 985 int ret; 986 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9); 987 DEFINE_WAIT_FUNC(wait, woken_wake_function); 988 struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm; 989 990 kfree(p); 991 992 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 993 994 while (!kthread_should_stop()) { 995 add_wait_queue(&scheduler->waitq[ring_id], &wait); 996 do { 997 workload = pick_next_workload(gvt, ring_id); 998 if (workload) 999 break; 1000 wait_woken(&wait, TASK_INTERRUPTIBLE, 1001 MAX_SCHEDULE_TIMEOUT); 1002 } while (!kthread_should_stop()); 1003 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 1004 1005 if (!workload) 1006 break; 1007 1008 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 1009 workload->ring_id, workload, 1010 workload->vgpu->id); 1011 1012 intel_runtime_pm_get(rpm); 1013 1014 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 1015 workload->ring_id, workload); 1016 1017 if (need_force_wake) 1018 intel_uncore_forcewake_get(&gvt->dev_priv->uncore, 1019 FORCEWAKE_ALL); 1020 /* 1021 * Update the vReg of the vGPU which submitted this 1022 * workload. The vGPU may use these registers for checking 1023 * the context state. The value comes from GPU commands 1024 * in this workload. 1025 */ 1026 update_vreg_in_ctx(workload); 1027 1028 ret = dispatch_workload(workload); 1029 1030 if (ret) { 1031 vgpu = workload->vgpu; 1032 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1033 goto complete; 1034 } 1035 1036 gvt_dbg_sched("ring id %d wait workload %p\n", 1037 workload->ring_id, workload); 1038 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1039 1040 complete: 1041 gvt_dbg_sched("will complete workload %p, status: %d\n", 1042 workload, workload->status); 1043 1044 complete_current_workload(gvt, ring_id); 1045 1046 if (need_force_wake) 1047 intel_uncore_forcewake_put(&gvt->dev_priv->uncore, 1048 FORCEWAKE_ALL); 1049 1050 intel_runtime_pm_put_unchecked(rpm); 1051 if (ret && (vgpu_is_vm_unhealthy(ret))) 1052 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1053 } 1054 return 0; 1055 } 1056 1057 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1058 { 1059 struct intel_vgpu_submission *s = &vgpu->submission; 1060 struct intel_gvt *gvt = vgpu->gvt; 1061 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1062 1063 if (atomic_read(&s->running_workload_num)) { 1064 gvt_dbg_sched("wait vgpu idle\n"); 1065 1066 wait_event(scheduler->workload_complete_wq, 1067 !atomic_read(&s->running_workload_num)); 1068 } 1069 } 1070 1071 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1072 { 1073 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1074 struct intel_engine_cs *engine; 1075 enum intel_engine_id i; 1076 1077 gvt_dbg_core("clean workload scheduler\n"); 1078 1079 for_each_engine(engine, gvt->dev_priv, i) { 1080 atomic_notifier_chain_unregister( 1081 &engine->context_status_notifier, 1082 &gvt->shadow_ctx_notifier_block[i]); 1083 kthread_stop(scheduler->thread[i]); 1084 } 1085 } 1086 1087 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1088 { 1089 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1090 struct workload_thread_param *param = NULL; 1091 struct intel_engine_cs *engine; 1092 enum intel_engine_id i; 1093 int ret; 1094 1095 gvt_dbg_core("init workload scheduler\n"); 1096 1097 init_waitqueue_head(&scheduler->workload_complete_wq); 1098 1099 for_each_engine(engine, gvt->dev_priv, i) { 1100 init_waitqueue_head(&scheduler->waitq[i]); 1101 1102 param = kzalloc(sizeof(*param), GFP_KERNEL); 1103 if (!param) { 1104 ret = -ENOMEM; 1105 goto err; 1106 } 1107 1108 param->gvt = gvt; 1109 param->ring_id = i; 1110 1111 scheduler->thread[i] = kthread_run(workload_thread, param, 1112 "gvt workload %d", i); 1113 if (IS_ERR(scheduler->thread[i])) { 1114 gvt_err("fail to create workload thread\n"); 1115 ret = PTR_ERR(scheduler->thread[i]); 1116 goto err; 1117 } 1118 1119 gvt->shadow_ctx_notifier_block[i].notifier_call = 1120 shadow_context_status_change; 1121 atomic_notifier_chain_register(&engine->context_status_notifier, 1122 &gvt->shadow_ctx_notifier_block[i]); 1123 } 1124 return 0; 1125 err: 1126 intel_gvt_clean_workload_scheduler(gvt); 1127 kfree(param); 1128 param = NULL; 1129 return ret; 1130 } 1131 1132 static void 1133 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1134 struct i915_ppgtt *ppgtt) 1135 { 1136 int i; 1137 1138 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1139 px_dma(ppgtt->pd) = s->i915_context_pml4; 1140 } else { 1141 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1142 struct i915_page_directory * const pd = 1143 i915_pd_entry(ppgtt->pd, i); 1144 1145 px_dma(pd) = s->i915_context_pdps[i]; 1146 } 1147 } 1148 } 1149 1150 /** 1151 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1152 * @vgpu: a vGPU 1153 * 1154 * This function is called when a vGPU is being destroyed. 1155 * 1156 */ 1157 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1158 { 1159 struct intel_vgpu_submission *s = &vgpu->submission; 1160 struct intel_engine_cs *engine; 1161 enum intel_engine_id id; 1162 1163 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1164 1165 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1166 for_each_engine(engine, vgpu->gvt->dev_priv, id) 1167 intel_context_unpin(s->shadow[id]); 1168 1169 kmem_cache_destroy(s->workloads); 1170 } 1171 1172 1173 /** 1174 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1175 * @vgpu: a vGPU 1176 * @engine_mask: engines expected to be reset 1177 * 1178 * This function is called when a vGPU is being destroyed. 1179 * 1180 */ 1181 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1182 intel_engine_mask_t engine_mask) 1183 { 1184 struct intel_vgpu_submission *s = &vgpu->submission; 1185 1186 if (!s->active) 1187 return; 1188 1189 intel_vgpu_clean_workloads(vgpu, engine_mask); 1190 s->ops->reset(vgpu, engine_mask); 1191 } 1192 1193 static void 1194 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1195 struct i915_ppgtt *ppgtt) 1196 { 1197 int i; 1198 1199 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1200 s->i915_context_pml4 = px_dma(ppgtt->pd); 1201 } else { 1202 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1203 struct i915_page_directory * const pd = 1204 i915_pd_entry(ppgtt->pd, i); 1205 1206 s->i915_context_pdps[i] = px_dma(pd); 1207 } 1208 } 1209 } 1210 1211 /** 1212 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1213 * @vgpu: a vGPU 1214 * 1215 * This function is called when a vGPU is being created. 1216 * 1217 * Returns: 1218 * Zero on success, negative error code if failed. 1219 * 1220 */ 1221 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1222 { 1223 struct drm_i915_private *i915 = vgpu->gvt->dev_priv; 1224 struct intel_vgpu_submission *s = &vgpu->submission; 1225 struct intel_engine_cs *engine; 1226 struct i915_gem_context *ctx; 1227 struct i915_ppgtt *ppgtt; 1228 enum intel_engine_id i; 1229 int ret; 1230 1231 ctx = i915_gem_context_create_kernel(i915, I915_PRIORITY_MAX); 1232 if (IS_ERR(ctx)) 1233 return PTR_ERR(ctx); 1234 1235 i915_gem_context_set_force_single_submission(ctx); 1236 1237 ppgtt = i915_vm_to_ppgtt(i915_gem_context_get_vm_rcu(ctx)); 1238 i915_context_ppgtt_root_save(s, ppgtt); 1239 1240 for_each_engine(engine, i915, i) { 1241 struct intel_context *ce; 1242 1243 INIT_LIST_HEAD(&s->workload_q_head[i]); 1244 s->shadow[i] = ERR_PTR(-EINVAL); 1245 1246 ce = intel_context_create(ctx, engine); 1247 if (IS_ERR(ce)) { 1248 ret = PTR_ERR(ce); 1249 goto out_shadow_ctx; 1250 } 1251 1252 if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */ 1253 const unsigned int ring_size = 512 * SZ_4K; 1254 1255 ce->ring = __intel_context_ring_size(ring_size); 1256 } 1257 1258 ret = intel_context_pin(ce); 1259 intel_context_put(ce); 1260 if (ret) 1261 goto out_shadow_ctx; 1262 1263 s->shadow[i] = ce; 1264 } 1265 1266 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1267 1268 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1269 sizeof(struct intel_vgpu_workload), 0, 1270 SLAB_HWCACHE_ALIGN, 1271 offsetof(struct intel_vgpu_workload, rb_tail), 1272 sizeof_field(struct intel_vgpu_workload, rb_tail), 1273 NULL); 1274 1275 if (!s->workloads) { 1276 ret = -ENOMEM; 1277 goto out_shadow_ctx; 1278 } 1279 1280 atomic_set(&s->running_workload_num, 0); 1281 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1282 1283 i915_vm_put(&ppgtt->vm); 1284 i915_gem_context_put(ctx); 1285 return 0; 1286 1287 out_shadow_ctx: 1288 i915_context_ppgtt_root_restore(s, ppgtt); 1289 for_each_engine(engine, i915, i) { 1290 if (IS_ERR(s->shadow[i])) 1291 break; 1292 1293 intel_context_unpin(s->shadow[i]); 1294 intel_context_put(s->shadow[i]); 1295 } 1296 i915_vm_put(&ppgtt->vm); 1297 i915_gem_context_put(ctx); 1298 return ret; 1299 } 1300 1301 /** 1302 * intel_vgpu_select_submission_ops - select virtual submission interface 1303 * @vgpu: a vGPU 1304 * @engine_mask: either ALL_ENGINES or target engine mask 1305 * @interface: expected vGPU virtual submission interface 1306 * 1307 * This function is called when guest configures submission interface. 1308 * 1309 * Returns: 1310 * Zero on success, negative error code if failed. 1311 * 1312 */ 1313 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1314 intel_engine_mask_t engine_mask, 1315 unsigned int interface) 1316 { 1317 struct intel_vgpu_submission *s = &vgpu->submission; 1318 const struct intel_vgpu_submission_ops *ops[] = { 1319 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1320 &intel_vgpu_execlist_submission_ops, 1321 }; 1322 int ret; 1323 1324 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1325 return -EINVAL; 1326 1327 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1328 return -EINVAL; 1329 1330 if (s->active) 1331 s->ops->clean(vgpu, engine_mask); 1332 1333 if (interface == 0) { 1334 s->ops = NULL; 1335 s->virtual_submission_interface = 0; 1336 s->active = false; 1337 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1338 return 0; 1339 } 1340 1341 ret = ops[interface]->init(vgpu, engine_mask); 1342 if (ret) 1343 return ret; 1344 1345 s->ops = ops[interface]; 1346 s->virtual_submission_interface = interface; 1347 s->active = true; 1348 1349 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1350 vgpu->id, s->ops->name); 1351 1352 return 0; 1353 } 1354 1355 /** 1356 * intel_vgpu_destroy_workload - destroy a vGPU workload 1357 * @workload: workload to destroy 1358 * 1359 * This function is called when destroy a vGPU workload. 1360 * 1361 */ 1362 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1363 { 1364 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1365 1366 release_shadow_batch_buffer(workload); 1367 release_shadow_wa_ctx(&workload->wa_ctx); 1368 1369 if (workload->shadow_mm) 1370 intel_vgpu_mm_put(workload->shadow_mm); 1371 1372 kmem_cache_free(s->workloads, workload); 1373 } 1374 1375 static struct intel_vgpu_workload * 1376 alloc_workload(struct intel_vgpu *vgpu) 1377 { 1378 struct intel_vgpu_submission *s = &vgpu->submission; 1379 struct intel_vgpu_workload *workload; 1380 1381 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1382 if (!workload) 1383 return ERR_PTR(-ENOMEM); 1384 1385 INIT_LIST_HEAD(&workload->list); 1386 INIT_LIST_HEAD(&workload->shadow_bb); 1387 1388 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1389 atomic_set(&workload->shadow_ctx_active, 0); 1390 1391 workload->status = -EINPROGRESS; 1392 workload->vgpu = vgpu; 1393 1394 return workload; 1395 } 1396 1397 #define RING_CTX_OFF(x) \ 1398 offsetof(struct execlist_ring_context, x) 1399 1400 static void read_guest_pdps(struct intel_vgpu *vgpu, 1401 u64 ring_context_gpa, u32 pdp[8]) 1402 { 1403 u64 gpa; 1404 int i; 1405 1406 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1407 1408 for (i = 0; i < 8; i++) 1409 intel_gvt_hypervisor_read_gpa(vgpu, 1410 gpa + i * 8, &pdp[7 - i], 4); 1411 } 1412 1413 static int prepare_mm(struct intel_vgpu_workload *workload) 1414 { 1415 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1416 struct intel_vgpu_mm *mm; 1417 struct intel_vgpu *vgpu = workload->vgpu; 1418 enum intel_gvt_gtt_type root_entry_type; 1419 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1420 1421 switch (desc->addressing_mode) { 1422 case 1: /* legacy 32-bit */ 1423 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1424 break; 1425 case 3: /* legacy 64-bit */ 1426 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1427 break; 1428 default: 1429 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1430 return -EINVAL; 1431 } 1432 1433 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1434 1435 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1436 if (IS_ERR(mm)) 1437 return PTR_ERR(mm); 1438 1439 workload->shadow_mm = mm; 1440 return 0; 1441 } 1442 1443 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1444 ((a)->lrca == (b)->lrca)) 1445 1446 /** 1447 * intel_vgpu_create_workload - create a vGPU workload 1448 * @vgpu: a vGPU 1449 * @ring_id: ring index 1450 * @desc: a guest context descriptor 1451 * 1452 * This function is called when creating a vGPU workload. 1453 * 1454 * Returns: 1455 * struct intel_vgpu_workload * on success, negative error code in 1456 * pointer if failed. 1457 * 1458 */ 1459 struct intel_vgpu_workload * 1460 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1461 struct execlist_ctx_descriptor_format *desc) 1462 { 1463 struct intel_vgpu_submission *s = &vgpu->submission; 1464 struct list_head *q = workload_q_head(vgpu, ring_id); 1465 struct intel_vgpu_workload *last_workload = NULL; 1466 struct intel_vgpu_workload *workload = NULL; 1467 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1468 u64 ring_context_gpa; 1469 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1470 u32 guest_head; 1471 int ret; 1472 1473 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1474 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1475 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1476 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1477 return ERR_PTR(-EINVAL); 1478 } 1479 1480 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1481 RING_CTX_OFF(ring_header.val), &head, 4); 1482 1483 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1484 RING_CTX_OFF(ring_tail.val), &tail, 4); 1485 1486 guest_head = head; 1487 1488 head &= RB_HEAD_OFF_MASK; 1489 tail &= RB_TAIL_OFF_MASK; 1490 1491 list_for_each_entry_reverse(last_workload, q, list) { 1492 1493 if (same_context(&last_workload->ctx_desc, desc)) { 1494 gvt_dbg_el("ring id %d cur workload == last\n", 1495 ring_id); 1496 gvt_dbg_el("ctx head %x real head %lx\n", head, 1497 last_workload->rb_tail); 1498 /* 1499 * cannot use guest context head pointer here, 1500 * as it might not be updated at this time 1501 */ 1502 head = last_workload->rb_tail; 1503 break; 1504 } 1505 } 1506 1507 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1508 1509 /* record some ring buffer register values for scan and shadow */ 1510 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1511 RING_CTX_OFF(rb_start.val), &start, 4); 1512 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1513 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1514 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1515 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1516 1517 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1518 _RING_CTL_BUF_SIZE(ctl))) { 1519 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1520 return ERR_PTR(-EINVAL); 1521 } 1522 1523 workload = alloc_workload(vgpu); 1524 if (IS_ERR(workload)) 1525 return workload; 1526 1527 workload->ring_id = ring_id; 1528 workload->ctx_desc = *desc; 1529 workload->ring_context_gpa = ring_context_gpa; 1530 workload->rb_head = head; 1531 workload->guest_rb_head = guest_head; 1532 workload->rb_tail = tail; 1533 workload->rb_start = start; 1534 workload->rb_ctl = ctl; 1535 1536 if (ring_id == RCS0) { 1537 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1538 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1539 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1540 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1541 1542 workload->wa_ctx.indirect_ctx.guest_gma = 1543 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1544 workload->wa_ctx.indirect_ctx.size = 1545 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1546 CACHELINE_BYTES; 1547 1548 if (workload->wa_ctx.indirect_ctx.size != 0) { 1549 if (!intel_gvt_ggtt_validate_range(vgpu, 1550 workload->wa_ctx.indirect_ctx.guest_gma, 1551 workload->wa_ctx.indirect_ctx.size)) { 1552 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1553 workload->wa_ctx.indirect_ctx.guest_gma); 1554 kmem_cache_free(s->workloads, workload); 1555 return ERR_PTR(-EINVAL); 1556 } 1557 } 1558 1559 workload->wa_ctx.per_ctx.guest_gma = 1560 per_ctx & PER_CTX_ADDR_MASK; 1561 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1562 if (workload->wa_ctx.per_ctx.valid) { 1563 if (!intel_gvt_ggtt_validate_range(vgpu, 1564 workload->wa_ctx.per_ctx.guest_gma, 1565 CACHELINE_BYTES)) { 1566 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1567 workload->wa_ctx.per_ctx.guest_gma); 1568 kmem_cache_free(s->workloads, workload); 1569 return ERR_PTR(-EINVAL); 1570 } 1571 } 1572 } 1573 1574 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1575 workload, ring_id, head, tail, start, ctl); 1576 1577 ret = prepare_mm(workload); 1578 if (ret) { 1579 kmem_cache_free(s->workloads, workload); 1580 return ERR_PTR(ret); 1581 } 1582 1583 /* Only scan and shadow the first workload in the queue 1584 * as there is only one pre-allocated buf-obj for shadow. 1585 */ 1586 if (list_empty(workload_q_head(vgpu, ring_id))) { 1587 intel_runtime_pm_get(&dev_priv->runtime_pm); 1588 ret = intel_gvt_scan_and_shadow_workload(workload); 1589 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm); 1590 } 1591 1592 if (ret) { 1593 if (vgpu_is_vm_unhealthy(ret)) 1594 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1595 intel_vgpu_destroy_workload(workload); 1596 return ERR_PTR(ret); 1597 } 1598 1599 return workload; 1600 } 1601 1602 /** 1603 * intel_vgpu_queue_workload - Qeue a vGPU workload 1604 * @workload: the workload to queue in 1605 */ 1606 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1607 { 1608 list_add_tail(&workload->list, 1609 workload_q_head(workload->vgpu, workload->ring_id)); 1610 intel_gvt_kick_schedule(workload->vgpu->gvt); 1611 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1612 } 1613