1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "i915_drv.h" 39 #include "gvt.h" 40 41 #define RING_CTX_OFF(x) \ 42 offsetof(struct execlist_ring_context, x) 43 44 static void set_context_pdp_root_pointer( 45 struct execlist_ring_context *ring_context, 46 u32 pdp[8]) 47 { 48 int i; 49 50 for (i = 0; i < 8; i++) 51 ring_context->pdps[i].val = pdp[7 - i]; 52 } 53 54 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 55 { 56 struct drm_i915_gem_object *ctx_obj = 57 workload->req->hw_context->state->obj; 58 struct execlist_ring_context *shadow_ring_context; 59 struct page *page; 60 61 if (WARN_ON(!workload->shadow_mm)) 62 return; 63 64 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 65 return; 66 67 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 68 shadow_ring_context = kmap(page); 69 set_context_pdp_root_pointer(shadow_ring_context, 70 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 71 kunmap(page); 72 } 73 74 /* 75 * when populating shadow ctx from guest, we should not overrride oa related 76 * registers, so that they will not be overlapped by guest oa configs. Thus 77 * made it possible to capture oa data from host for both host and guests. 78 */ 79 static void sr_oa_regs(struct intel_vgpu_workload *workload, 80 u32 *reg_state, bool save) 81 { 82 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 83 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 84 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 85 int i = 0; 86 u32 flex_mmio[] = { 87 i915_mmio_reg_offset(EU_PERF_CNTL0), 88 i915_mmio_reg_offset(EU_PERF_CNTL1), 89 i915_mmio_reg_offset(EU_PERF_CNTL2), 90 i915_mmio_reg_offset(EU_PERF_CNTL3), 91 i915_mmio_reg_offset(EU_PERF_CNTL4), 92 i915_mmio_reg_offset(EU_PERF_CNTL5), 93 i915_mmio_reg_offset(EU_PERF_CNTL6), 94 }; 95 96 if (workload->ring_id != RCS) 97 return; 98 99 if (save) { 100 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 101 102 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 103 u32 state_offset = ctx_flexeu0 + i * 2; 104 105 workload->flex_mmio[i] = reg_state[state_offset + 1]; 106 } 107 } else { 108 reg_state[ctx_oactxctrl] = 109 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 110 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 111 112 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 113 u32 state_offset = ctx_flexeu0 + i * 2; 114 u32 mmio = flex_mmio[i]; 115 116 reg_state[state_offset] = mmio; 117 reg_state[state_offset + 1] = workload->flex_mmio[i]; 118 } 119 } 120 } 121 122 static int populate_shadow_context(struct intel_vgpu_workload *workload) 123 { 124 struct intel_vgpu *vgpu = workload->vgpu; 125 struct intel_gvt *gvt = vgpu->gvt; 126 int ring_id = workload->ring_id; 127 struct drm_i915_gem_object *ctx_obj = 128 workload->req->hw_context->state->obj; 129 struct execlist_ring_context *shadow_ring_context; 130 struct page *page; 131 void *dst; 132 unsigned long context_gpa, context_page_num; 133 int i; 134 135 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 136 shadow_ring_context = kmap(page); 137 138 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 139 #define COPY_REG(name) \ 140 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 141 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 142 #define COPY_REG_MASKED(name) {\ 143 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 144 + RING_CTX_OFF(name.val),\ 145 &shadow_ring_context->name.val, 4);\ 146 shadow_ring_context->name.val |= 0xffff << 16;\ 147 } 148 149 COPY_REG_MASKED(ctx_ctrl); 150 COPY_REG(ctx_timestamp); 151 152 if (ring_id == RCS) { 153 COPY_REG(bb_per_ctx_ptr); 154 COPY_REG(rcs_indirect_ctx); 155 COPY_REG(rcs_indirect_ctx_offset); 156 } 157 #undef COPY_REG 158 #undef COPY_REG_MASKED 159 160 intel_gvt_hypervisor_read_gpa(vgpu, 161 workload->ring_context_gpa + 162 sizeof(*shadow_ring_context), 163 (void *)shadow_ring_context + 164 sizeof(*shadow_ring_context), 165 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 166 167 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 168 kunmap(page); 169 170 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 171 return 0; 172 173 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 174 workload->ctx_desc.lrca); 175 176 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 177 178 context_page_num = context_page_num >> PAGE_SHIFT; 179 180 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS) 181 context_page_num = 19; 182 183 i = 2; 184 while (i < context_page_num) { 185 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 186 (u32)((workload->ctx_desc.lrca + i) << 187 I915_GTT_PAGE_SHIFT)); 188 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 189 gvt_vgpu_err("Invalid guest context descriptor\n"); 190 return -EFAULT; 191 } 192 193 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 194 dst = kmap(page); 195 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 196 I915_GTT_PAGE_SIZE); 197 kunmap(page); 198 i++; 199 } 200 return 0; 201 } 202 203 static inline bool is_gvt_request(struct i915_request *req) 204 { 205 return i915_gem_context_force_single_submission(req->gem_context); 206 } 207 208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 209 { 210 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 211 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 212 i915_reg_t reg; 213 214 reg = RING_INSTDONE(ring_base); 215 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 216 reg = RING_ACTHD(ring_base); 217 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 218 reg = RING_ACTHD_UDW(ring_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 220 } 221 222 static int shadow_context_status_change(struct notifier_block *nb, 223 unsigned long action, void *data) 224 { 225 struct i915_request *req = data; 226 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 227 shadow_ctx_notifier_block[req->engine->id]); 228 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 229 enum intel_engine_id ring_id = req->engine->id; 230 struct intel_vgpu_workload *workload; 231 unsigned long flags; 232 233 if (!is_gvt_request(req)) { 234 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 235 if (action == INTEL_CONTEXT_SCHEDULE_IN && 236 scheduler->engine_owner[ring_id]) { 237 /* Switch ring from vGPU to host. */ 238 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 239 NULL, ring_id); 240 scheduler->engine_owner[ring_id] = NULL; 241 } 242 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 243 244 return NOTIFY_OK; 245 } 246 247 workload = scheduler->current_workload[ring_id]; 248 if (unlikely(!workload)) 249 return NOTIFY_OK; 250 251 switch (action) { 252 case INTEL_CONTEXT_SCHEDULE_IN: 253 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 254 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 255 /* Switch ring from host to vGPU or vGPU to vGPU. */ 256 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 257 workload->vgpu, ring_id); 258 scheduler->engine_owner[ring_id] = workload->vgpu; 259 } else 260 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 261 ring_id, workload->vgpu->id); 262 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 263 atomic_set(&workload->shadow_ctx_active, 1); 264 break; 265 case INTEL_CONTEXT_SCHEDULE_OUT: 266 save_ring_hw_state(workload->vgpu, ring_id); 267 atomic_set(&workload->shadow_ctx_active, 0); 268 break; 269 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 270 save_ring_hw_state(workload->vgpu, ring_id); 271 break; 272 default: 273 WARN_ON(1); 274 return NOTIFY_OK; 275 } 276 wake_up(&workload->shadow_ctx_status_wq); 277 return NOTIFY_OK; 278 } 279 280 static void shadow_context_descriptor_update(struct intel_context *ce) 281 { 282 u64 desc = 0; 283 284 desc = ce->lrc_desc; 285 286 /* Update bits 0-11 of the context descriptor which includes flags 287 * like GEN8_CTX_* cached in desc_template 288 */ 289 desc &= U64_MAX << 12; 290 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1); 291 292 ce->lrc_desc = desc; 293 } 294 295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 296 { 297 struct intel_vgpu *vgpu = workload->vgpu; 298 struct i915_request *req = workload->req; 299 void *shadow_ring_buffer_va; 300 u32 *cs; 301 302 if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)) 303 && is_inhibit_context(req->hw_context)) 304 intel_vgpu_restore_inhibit_context(vgpu, req); 305 306 /* allocate shadow ring buffer */ 307 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 308 if (IS_ERR(cs)) { 309 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 310 workload->rb_len); 311 return PTR_ERR(cs); 312 } 313 314 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 315 316 /* get shadow ring buffer va */ 317 workload->shadow_ring_buffer_va = cs; 318 319 memcpy(cs, shadow_ring_buffer_va, 320 workload->rb_len); 321 322 cs += workload->rb_len / sizeof(u32); 323 intel_ring_advance(workload->req, cs); 324 325 return 0; 326 } 327 328 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 329 { 330 if (!wa_ctx->indirect_ctx.obj) 331 return; 332 333 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 334 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 335 336 wa_ctx->indirect_ctx.obj = NULL; 337 wa_ctx->indirect_ctx.shadow_va = NULL; 338 } 339 340 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 341 struct i915_gem_context *ctx) 342 { 343 struct intel_vgpu_mm *mm = workload->shadow_mm; 344 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; 345 int i = 0; 346 347 if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed) 348 return -1; 349 350 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 351 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0]; 352 } else { 353 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 354 px_dma(ppgtt->pdp.page_directory[i]) = 355 mm->ppgtt_mm.shadow_pdps[i]; 356 } 357 } 358 359 return 0; 360 } 361 362 static int 363 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 364 { 365 struct intel_vgpu *vgpu = workload->vgpu; 366 struct intel_vgpu_submission *s = &vgpu->submission; 367 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 368 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 369 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 370 struct i915_request *rq; 371 int ret = 0; 372 373 lockdep_assert_held(&dev_priv->drm.struct_mutex); 374 375 if (workload->req) 376 goto out; 377 378 rq = i915_request_alloc(engine, shadow_ctx); 379 if (IS_ERR(rq)) { 380 gvt_vgpu_err("fail to allocate gem request\n"); 381 ret = PTR_ERR(rq); 382 goto out; 383 } 384 workload->req = i915_request_get(rq); 385 out: 386 return ret; 387 } 388 389 /** 390 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 391 * shadow it as well, include ringbuffer,wa_ctx and ctx. 392 * @workload: an abstract entity for each execlist submission. 393 * 394 * This function is called before the workload submitting to i915, to make 395 * sure the content of the workload is valid. 396 */ 397 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 398 { 399 struct intel_vgpu *vgpu = workload->vgpu; 400 struct intel_vgpu_submission *s = &vgpu->submission; 401 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 402 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 403 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 404 struct intel_context *ce; 405 int ret; 406 407 lockdep_assert_held(&dev_priv->drm.struct_mutex); 408 409 if (workload->shadow) 410 return 0; 411 412 ret = set_context_ppgtt_from_shadow(workload, shadow_ctx); 413 if (ret < 0) { 414 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 415 return ret; 416 } 417 418 /* pin shadow context by gvt even the shadow context will be pinned 419 * when i915 alloc request. That is because gvt will update the guest 420 * context from shadow context when workload is completed, and at that 421 * moment, i915 may already unpined the shadow context to make the 422 * shadow_ctx pages invalid. So gvt need to pin itself. After update 423 * the guest context, gvt can unpin the shadow_ctx safely. 424 */ 425 ce = intel_context_pin(shadow_ctx, engine); 426 if (IS_ERR(ce)) { 427 gvt_vgpu_err("fail to pin shadow context\n"); 428 return PTR_ERR(ce); 429 } 430 431 shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 432 shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode << 433 GEN8_CTX_ADDRESSING_MODE_SHIFT; 434 435 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 436 shadow_context_descriptor_update(ce); 437 438 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 439 if (ret) 440 goto err_unpin; 441 442 if ((workload->ring_id == RCS) && 443 (workload->wa_ctx.indirect_ctx.size != 0)) { 444 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 445 if (ret) 446 goto err_shadow; 447 } 448 449 workload->shadow = true; 450 return 0; 451 err_shadow: 452 release_shadow_wa_ctx(&workload->wa_ctx); 453 err_unpin: 454 intel_context_unpin(ce); 455 return ret; 456 } 457 458 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 459 460 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 461 { 462 struct intel_gvt *gvt = workload->vgpu->gvt; 463 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 464 struct intel_vgpu_shadow_bb *bb; 465 int ret; 466 467 list_for_each_entry(bb, &workload->shadow_bb, list) { 468 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 469 * is only updated into ring_scan_buffer, not real ring address 470 * allocated in later copy_workload_to_ring_buffer. pls be noted 471 * shadow_ring_buffer_va is now pointed to real ring buffer va 472 * in copy_workload_to_ring_buffer. 473 */ 474 475 if (bb->bb_offset) 476 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 477 + bb->bb_offset; 478 479 if (bb->ppgtt) { 480 /* for non-priv bb, scan&shadow is only for 481 * debugging purpose, so the content of shadow bb 482 * is the same as original bb. Therefore, 483 * here, rather than switch to shadow bb's gma 484 * address, we directly use original batch buffer's 485 * gma address, and send original bb to hardware 486 * directly 487 */ 488 if (bb->clflush & CLFLUSH_AFTER) { 489 drm_clflush_virt_range(bb->va, 490 bb->obj->base.size); 491 bb->clflush &= ~CLFLUSH_AFTER; 492 } 493 i915_gem_obj_finish_shmem_access(bb->obj); 494 bb->accessing = false; 495 496 } else { 497 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 498 NULL, 0, 0, 0); 499 if (IS_ERR(bb->vma)) { 500 ret = PTR_ERR(bb->vma); 501 goto err; 502 } 503 504 /* relocate shadow batch buffer */ 505 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 506 if (gmadr_bytes == 8) 507 bb->bb_start_cmd_va[2] = 0; 508 509 /* No one is going to touch shadow bb from now on. */ 510 if (bb->clflush & CLFLUSH_AFTER) { 511 drm_clflush_virt_range(bb->va, 512 bb->obj->base.size); 513 bb->clflush &= ~CLFLUSH_AFTER; 514 } 515 516 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 517 false); 518 if (ret) 519 goto err; 520 521 i915_gem_obj_finish_shmem_access(bb->obj); 522 bb->accessing = false; 523 524 ret = i915_vma_move_to_active(bb->vma, 525 workload->req, 526 0); 527 if (ret) 528 goto err; 529 } 530 } 531 return 0; 532 err: 533 release_shadow_batch_buffer(workload); 534 return ret; 535 } 536 537 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 538 { 539 struct intel_vgpu_workload *workload = 540 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 541 struct i915_request *rq = workload->req; 542 struct execlist_ring_context *shadow_ring_context = 543 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 544 545 shadow_ring_context->bb_per_ctx_ptr.val = 546 (shadow_ring_context->bb_per_ctx_ptr.val & 547 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 548 shadow_ring_context->rcs_indirect_ctx.val = 549 (shadow_ring_context->rcs_indirect_ctx.val & 550 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 551 } 552 553 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 554 { 555 struct i915_vma *vma; 556 unsigned char *per_ctx_va = 557 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 558 wa_ctx->indirect_ctx.size; 559 560 if (wa_ctx->indirect_ctx.size == 0) 561 return 0; 562 563 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 564 0, CACHELINE_BYTES, 0); 565 if (IS_ERR(vma)) 566 return PTR_ERR(vma); 567 568 /* FIXME: we are not tracking our pinned VMA leaving it 569 * up to the core to fix up the stray pin_count upon 570 * free. 571 */ 572 573 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 574 575 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 576 memset(per_ctx_va, 0, CACHELINE_BYTES); 577 578 update_wa_ctx_2_shadow_ctx(wa_ctx); 579 return 0; 580 } 581 582 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 583 { 584 struct intel_vgpu *vgpu = workload->vgpu; 585 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 586 struct intel_vgpu_shadow_bb *bb, *pos; 587 588 if (list_empty(&workload->shadow_bb)) 589 return; 590 591 bb = list_first_entry(&workload->shadow_bb, 592 struct intel_vgpu_shadow_bb, list); 593 594 mutex_lock(&dev_priv->drm.struct_mutex); 595 596 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 597 if (bb->obj) { 598 if (bb->accessing) 599 i915_gem_obj_finish_shmem_access(bb->obj); 600 601 if (bb->va && !IS_ERR(bb->va)) 602 i915_gem_object_unpin_map(bb->obj); 603 604 if (bb->vma && !IS_ERR(bb->vma)) { 605 i915_vma_unpin(bb->vma); 606 i915_vma_close(bb->vma); 607 } 608 __i915_gem_object_release_unless_active(bb->obj); 609 } 610 list_del(&bb->list); 611 kfree(bb); 612 } 613 614 mutex_unlock(&dev_priv->drm.struct_mutex); 615 } 616 617 static int prepare_workload(struct intel_vgpu_workload *workload) 618 { 619 struct intel_vgpu *vgpu = workload->vgpu; 620 int ret = 0; 621 622 ret = intel_vgpu_pin_mm(workload->shadow_mm); 623 if (ret) { 624 gvt_vgpu_err("fail to vgpu pin mm\n"); 625 return ret; 626 } 627 628 update_shadow_pdps(workload); 629 630 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 631 if (ret) { 632 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 633 goto err_unpin_mm; 634 } 635 636 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 637 if (ret) { 638 gvt_vgpu_err("fail to flush post shadow\n"); 639 goto err_unpin_mm; 640 } 641 642 ret = copy_workload_to_ring_buffer(workload); 643 if (ret) { 644 gvt_vgpu_err("fail to generate request\n"); 645 goto err_unpin_mm; 646 } 647 648 ret = prepare_shadow_batch_buffer(workload); 649 if (ret) { 650 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 651 goto err_unpin_mm; 652 } 653 654 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 655 if (ret) { 656 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 657 goto err_shadow_batch; 658 } 659 660 if (workload->prepare) { 661 ret = workload->prepare(workload); 662 if (ret) 663 goto err_shadow_wa_ctx; 664 } 665 666 return 0; 667 err_shadow_wa_ctx: 668 release_shadow_wa_ctx(&workload->wa_ctx); 669 err_shadow_batch: 670 release_shadow_batch_buffer(workload); 671 err_unpin_mm: 672 intel_vgpu_unpin_mm(workload->shadow_mm); 673 return ret; 674 } 675 676 static int dispatch_workload(struct intel_vgpu_workload *workload) 677 { 678 struct intel_vgpu *vgpu = workload->vgpu; 679 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 680 int ring_id = workload->ring_id; 681 int ret; 682 683 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 684 ring_id, workload); 685 686 mutex_lock(&vgpu->vgpu_lock); 687 mutex_lock(&dev_priv->drm.struct_mutex); 688 689 ret = intel_gvt_workload_req_alloc(workload); 690 if (ret) 691 goto err_req; 692 693 ret = intel_gvt_scan_and_shadow_workload(workload); 694 if (ret) 695 goto out; 696 697 ret = populate_shadow_context(workload); 698 if (ret) { 699 release_shadow_wa_ctx(&workload->wa_ctx); 700 goto out; 701 } 702 703 ret = prepare_workload(workload); 704 out: 705 if (!IS_ERR_OR_NULL(workload->req)) { 706 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 707 ring_id, workload->req); 708 i915_request_add(workload->req); 709 workload->dispatched = true; 710 } 711 err_req: 712 if (ret) 713 workload->status = ret; 714 mutex_unlock(&dev_priv->drm.struct_mutex); 715 mutex_unlock(&vgpu->vgpu_lock); 716 return ret; 717 } 718 719 static struct intel_vgpu_workload *pick_next_workload( 720 struct intel_gvt *gvt, int ring_id) 721 { 722 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 723 struct intel_vgpu_workload *workload = NULL; 724 725 mutex_lock(&gvt->sched_lock); 726 727 /* 728 * no current vgpu / will be scheduled out / no workload 729 * bail out 730 */ 731 if (!scheduler->current_vgpu) { 732 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 733 goto out; 734 } 735 736 if (scheduler->need_reschedule) { 737 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 738 goto out; 739 } 740 741 if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 742 goto out; 743 744 /* 745 * still have current workload, maybe the workload disptacher 746 * fail to submit it for some reason, resubmit it. 747 */ 748 if (scheduler->current_workload[ring_id]) { 749 workload = scheduler->current_workload[ring_id]; 750 gvt_dbg_sched("ring id %d still have current workload %p\n", 751 ring_id, workload); 752 goto out; 753 } 754 755 /* 756 * pick a workload as current workload 757 * once current workload is set, schedule policy routines 758 * will wait the current workload is finished when trying to 759 * schedule out a vgpu. 760 */ 761 scheduler->current_workload[ring_id] = container_of( 762 workload_q_head(scheduler->current_vgpu, ring_id)->next, 763 struct intel_vgpu_workload, list); 764 765 workload = scheduler->current_workload[ring_id]; 766 767 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 768 769 atomic_inc(&workload->vgpu->submission.running_workload_num); 770 out: 771 mutex_unlock(&gvt->sched_lock); 772 return workload; 773 } 774 775 static void update_guest_context(struct intel_vgpu_workload *workload) 776 { 777 struct i915_request *rq = workload->req; 778 struct intel_vgpu *vgpu = workload->vgpu; 779 struct intel_gvt *gvt = vgpu->gvt; 780 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 781 struct execlist_ring_context *shadow_ring_context; 782 struct page *page; 783 void *src; 784 unsigned long context_gpa, context_page_num; 785 int i; 786 787 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 788 workload->ctx_desc.lrca); 789 790 context_page_num = rq->engine->context_size; 791 context_page_num = context_page_num >> PAGE_SHIFT; 792 793 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS) 794 context_page_num = 19; 795 796 i = 2; 797 798 while (i < context_page_num) { 799 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 800 (u32)((workload->ctx_desc.lrca + i) << 801 I915_GTT_PAGE_SHIFT)); 802 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 803 gvt_vgpu_err("invalid guest context descriptor\n"); 804 return; 805 } 806 807 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 808 src = kmap(page); 809 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 810 I915_GTT_PAGE_SIZE); 811 kunmap(page); 812 i++; 813 } 814 815 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 816 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 817 818 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 819 shadow_ring_context = kmap(page); 820 821 #define COPY_REG(name) \ 822 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 823 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 824 825 COPY_REG(ctx_ctrl); 826 COPY_REG(ctx_timestamp); 827 828 #undef COPY_REG 829 830 intel_gvt_hypervisor_write_gpa(vgpu, 831 workload->ring_context_gpa + 832 sizeof(*shadow_ring_context), 833 (void *)shadow_ring_context + 834 sizeof(*shadow_ring_context), 835 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 836 837 kunmap(page); 838 } 839 840 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 841 unsigned long engine_mask) 842 { 843 struct intel_vgpu_submission *s = &vgpu->submission; 844 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 845 struct intel_engine_cs *engine; 846 struct intel_vgpu_workload *pos, *n; 847 unsigned int tmp; 848 849 /* free the unsubmited workloads in the queues. */ 850 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 851 list_for_each_entry_safe(pos, n, 852 &s->workload_q_head[engine->id], list) { 853 list_del_init(&pos->list); 854 intel_vgpu_destroy_workload(pos); 855 } 856 clear_bit(engine->id, s->shadow_ctx_desc_updated); 857 } 858 } 859 860 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 861 { 862 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 863 struct intel_vgpu_workload *workload = 864 scheduler->current_workload[ring_id]; 865 struct intel_vgpu *vgpu = workload->vgpu; 866 struct intel_vgpu_submission *s = &vgpu->submission; 867 struct i915_request *rq = workload->req; 868 int event; 869 870 mutex_lock(&vgpu->vgpu_lock); 871 mutex_lock(&gvt->sched_lock); 872 873 /* For the workload w/ request, needs to wait for the context 874 * switch to make sure request is completed. 875 * For the workload w/o request, directly complete the workload. 876 */ 877 if (rq) { 878 wait_event(workload->shadow_ctx_status_wq, 879 !atomic_read(&workload->shadow_ctx_active)); 880 881 /* If this request caused GPU hang, req->fence.error will 882 * be set to -EIO. Use -EIO to set workload status so 883 * that when this request caused GPU hang, didn't trigger 884 * context switch interrupt to guest. 885 */ 886 if (likely(workload->status == -EINPROGRESS)) { 887 if (workload->req->fence.error == -EIO) 888 workload->status = -EIO; 889 else 890 workload->status = 0; 891 } 892 893 if (!workload->status && !(vgpu->resetting_eng & 894 ENGINE_MASK(ring_id))) { 895 update_guest_context(workload); 896 897 for_each_set_bit(event, workload->pending_events, 898 INTEL_GVT_EVENT_MAX) 899 intel_vgpu_trigger_virtual_event(vgpu, event); 900 } 901 902 /* unpin shadow ctx as the shadow_ctx update is done */ 903 mutex_lock(&rq->i915->drm.struct_mutex); 904 intel_context_unpin(rq->hw_context); 905 mutex_unlock(&rq->i915->drm.struct_mutex); 906 907 i915_request_put(fetch_and_zero(&workload->req)); 908 } 909 910 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 911 ring_id, workload, workload->status); 912 913 scheduler->current_workload[ring_id] = NULL; 914 915 list_del_init(&workload->list); 916 917 if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) { 918 /* if workload->status is not successful means HW GPU 919 * has occurred GPU hang or something wrong with i915/GVT, 920 * and GVT won't inject context switch interrupt to guest. 921 * So this error is a vGPU hang actually to the guest. 922 * According to this we should emunlate a vGPU hang. If 923 * there are pending workloads which are already submitted 924 * from guest, we should clean them up like HW GPU does. 925 * 926 * if it is in middle of engine resetting, the pending 927 * workloads won't be submitted to HW GPU and will be 928 * cleaned up during the resetting process later, so doing 929 * the workload clean up here doesn't have any impact. 930 **/ 931 intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id)); 932 } 933 934 workload->complete(workload); 935 936 atomic_dec(&s->running_workload_num); 937 wake_up(&scheduler->workload_complete_wq); 938 939 if (gvt->scheduler.need_reschedule) 940 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 941 942 mutex_unlock(&gvt->sched_lock); 943 mutex_unlock(&vgpu->vgpu_lock); 944 } 945 946 struct workload_thread_param { 947 struct intel_gvt *gvt; 948 int ring_id; 949 }; 950 951 static int workload_thread(void *priv) 952 { 953 struct workload_thread_param *p = (struct workload_thread_param *)priv; 954 struct intel_gvt *gvt = p->gvt; 955 int ring_id = p->ring_id; 956 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 957 struct intel_vgpu_workload *workload = NULL; 958 struct intel_vgpu *vgpu = NULL; 959 int ret; 960 bool need_force_wake = IS_SKYLAKE(gvt->dev_priv) 961 || IS_KABYLAKE(gvt->dev_priv) 962 || IS_BROXTON(gvt->dev_priv); 963 DEFINE_WAIT_FUNC(wait, woken_wake_function); 964 965 kfree(p); 966 967 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 968 969 while (!kthread_should_stop()) { 970 add_wait_queue(&scheduler->waitq[ring_id], &wait); 971 do { 972 workload = pick_next_workload(gvt, ring_id); 973 if (workload) 974 break; 975 wait_woken(&wait, TASK_INTERRUPTIBLE, 976 MAX_SCHEDULE_TIMEOUT); 977 } while (!kthread_should_stop()); 978 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 979 980 if (!workload) 981 break; 982 983 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 984 workload->ring_id, workload, 985 workload->vgpu->id); 986 987 intel_runtime_pm_get(gvt->dev_priv); 988 989 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 990 workload->ring_id, workload); 991 992 if (need_force_wake) 993 intel_uncore_forcewake_get(gvt->dev_priv, 994 FORCEWAKE_ALL); 995 996 ret = dispatch_workload(workload); 997 998 if (ret) { 999 vgpu = workload->vgpu; 1000 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1001 goto complete; 1002 } 1003 1004 gvt_dbg_sched("ring id %d wait workload %p\n", 1005 workload->ring_id, workload); 1006 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1007 1008 complete: 1009 gvt_dbg_sched("will complete workload %p, status: %d\n", 1010 workload, workload->status); 1011 1012 complete_current_workload(gvt, ring_id); 1013 1014 if (need_force_wake) 1015 intel_uncore_forcewake_put(gvt->dev_priv, 1016 FORCEWAKE_ALL); 1017 1018 intel_runtime_pm_put(gvt->dev_priv); 1019 if (ret && (vgpu_is_vm_unhealthy(ret))) 1020 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1021 } 1022 return 0; 1023 } 1024 1025 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1026 { 1027 struct intel_vgpu_submission *s = &vgpu->submission; 1028 struct intel_gvt *gvt = vgpu->gvt; 1029 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1030 1031 if (atomic_read(&s->running_workload_num)) { 1032 gvt_dbg_sched("wait vgpu idle\n"); 1033 1034 wait_event(scheduler->workload_complete_wq, 1035 !atomic_read(&s->running_workload_num)); 1036 } 1037 } 1038 1039 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1040 { 1041 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1042 struct intel_engine_cs *engine; 1043 enum intel_engine_id i; 1044 1045 gvt_dbg_core("clean workload scheduler\n"); 1046 1047 for_each_engine(engine, gvt->dev_priv, i) { 1048 atomic_notifier_chain_unregister( 1049 &engine->context_status_notifier, 1050 &gvt->shadow_ctx_notifier_block[i]); 1051 kthread_stop(scheduler->thread[i]); 1052 } 1053 } 1054 1055 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1056 { 1057 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1058 struct workload_thread_param *param = NULL; 1059 struct intel_engine_cs *engine; 1060 enum intel_engine_id i; 1061 int ret; 1062 1063 gvt_dbg_core("init workload scheduler\n"); 1064 1065 init_waitqueue_head(&scheduler->workload_complete_wq); 1066 1067 for_each_engine(engine, gvt->dev_priv, i) { 1068 init_waitqueue_head(&scheduler->waitq[i]); 1069 1070 param = kzalloc(sizeof(*param), GFP_KERNEL); 1071 if (!param) { 1072 ret = -ENOMEM; 1073 goto err; 1074 } 1075 1076 param->gvt = gvt; 1077 param->ring_id = i; 1078 1079 scheduler->thread[i] = kthread_run(workload_thread, param, 1080 "gvt workload %d", i); 1081 if (IS_ERR(scheduler->thread[i])) { 1082 gvt_err("fail to create workload thread\n"); 1083 ret = PTR_ERR(scheduler->thread[i]); 1084 goto err; 1085 } 1086 1087 gvt->shadow_ctx_notifier_block[i].notifier_call = 1088 shadow_context_status_change; 1089 atomic_notifier_chain_register(&engine->context_status_notifier, 1090 &gvt->shadow_ctx_notifier_block[i]); 1091 } 1092 return 0; 1093 err: 1094 intel_gvt_clean_workload_scheduler(gvt); 1095 kfree(param); 1096 param = NULL; 1097 return ret; 1098 } 1099 1100 static void 1101 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s) 1102 { 1103 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1104 int i; 1105 1106 if (i915_vm_is_48bit(&i915_ppgtt->vm)) 1107 px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4; 1108 else { 1109 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1110 px_dma(i915_ppgtt->pdp.page_directory[i]) = 1111 s->i915_context_pdps[i]; 1112 } 1113 } 1114 1115 /** 1116 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1117 * @vgpu: a vGPU 1118 * 1119 * This function is called when a vGPU is being destroyed. 1120 * 1121 */ 1122 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1123 { 1124 struct intel_vgpu_submission *s = &vgpu->submission; 1125 1126 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1127 i915_context_ppgtt_root_restore(s); 1128 i915_gem_context_put(s->shadow_ctx); 1129 kmem_cache_destroy(s->workloads); 1130 } 1131 1132 1133 /** 1134 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1135 * @vgpu: a vGPU 1136 * @engine_mask: engines expected to be reset 1137 * 1138 * This function is called when a vGPU is being destroyed. 1139 * 1140 */ 1141 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1142 unsigned long engine_mask) 1143 { 1144 struct intel_vgpu_submission *s = &vgpu->submission; 1145 1146 if (!s->active) 1147 return; 1148 1149 intel_vgpu_clean_workloads(vgpu, engine_mask); 1150 s->ops->reset(vgpu, engine_mask); 1151 } 1152 1153 static void 1154 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s) 1155 { 1156 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1157 int i; 1158 1159 if (i915_vm_is_48bit(&i915_ppgtt->vm)) 1160 s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4); 1161 else { 1162 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1163 s->i915_context_pdps[i] = 1164 px_dma(i915_ppgtt->pdp.page_directory[i]); 1165 } 1166 } 1167 1168 /** 1169 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1170 * @vgpu: a vGPU 1171 * 1172 * This function is called when a vGPU is being created. 1173 * 1174 * Returns: 1175 * Zero on success, negative error code if failed. 1176 * 1177 */ 1178 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1179 { 1180 struct intel_vgpu_submission *s = &vgpu->submission; 1181 enum intel_engine_id i; 1182 struct intel_engine_cs *engine; 1183 int ret; 1184 1185 s->shadow_ctx = i915_gem_context_create_gvt( 1186 &vgpu->gvt->dev_priv->drm); 1187 if (IS_ERR(s->shadow_ctx)) 1188 return PTR_ERR(s->shadow_ctx); 1189 1190 i915_context_ppgtt_root_save(s); 1191 1192 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1193 1194 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1195 sizeof(struct intel_vgpu_workload), 0, 1196 SLAB_HWCACHE_ALIGN, 1197 offsetof(struct intel_vgpu_workload, rb_tail), 1198 sizeof_field(struct intel_vgpu_workload, rb_tail), 1199 NULL); 1200 1201 if (!s->workloads) { 1202 ret = -ENOMEM; 1203 goto out_shadow_ctx; 1204 } 1205 1206 for_each_engine(engine, vgpu->gvt->dev_priv, i) 1207 INIT_LIST_HEAD(&s->workload_q_head[i]); 1208 1209 atomic_set(&s->running_workload_num, 0); 1210 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1211 1212 return 0; 1213 1214 out_shadow_ctx: 1215 i915_gem_context_put(s->shadow_ctx); 1216 return ret; 1217 } 1218 1219 /** 1220 * intel_vgpu_select_submission_ops - select virtual submission interface 1221 * @vgpu: a vGPU 1222 * @engine_mask: either ALL_ENGINES or target engine mask 1223 * @interface: expected vGPU virtual submission interface 1224 * 1225 * This function is called when guest configures submission interface. 1226 * 1227 * Returns: 1228 * Zero on success, negative error code if failed. 1229 * 1230 */ 1231 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1232 unsigned long engine_mask, 1233 unsigned int interface) 1234 { 1235 struct intel_vgpu_submission *s = &vgpu->submission; 1236 const struct intel_vgpu_submission_ops *ops[] = { 1237 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1238 &intel_vgpu_execlist_submission_ops, 1239 }; 1240 int ret; 1241 1242 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1243 return -EINVAL; 1244 1245 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1246 return -EINVAL; 1247 1248 if (s->active) 1249 s->ops->clean(vgpu, engine_mask); 1250 1251 if (interface == 0) { 1252 s->ops = NULL; 1253 s->virtual_submission_interface = 0; 1254 s->active = false; 1255 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1256 return 0; 1257 } 1258 1259 ret = ops[interface]->init(vgpu, engine_mask); 1260 if (ret) 1261 return ret; 1262 1263 s->ops = ops[interface]; 1264 s->virtual_submission_interface = interface; 1265 s->active = true; 1266 1267 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1268 vgpu->id, s->ops->name); 1269 1270 return 0; 1271 } 1272 1273 /** 1274 * intel_vgpu_destroy_workload - destroy a vGPU workload 1275 * @workload: workload to destroy 1276 * 1277 * This function is called when destroy a vGPU workload. 1278 * 1279 */ 1280 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1281 { 1282 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1283 1284 release_shadow_batch_buffer(workload); 1285 release_shadow_wa_ctx(&workload->wa_ctx); 1286 1287 if (workload->shadow_mm) 1288 intel_vgpu_mm_put(workload->shadow_mm); 1289 1290 kmem_cache_free(s->workloads, workload); 1291 } 1292 1293 static struct intel_vgpu_workload * 1294 alloc_workload(struct intel_vgpu *vgpu) 1295 { 1296 struct intel_vgpu_submission *s = &vgpu->submission; 1297 struct intel_vgpu_workload *workload; 1298 1299 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1300 if (!workload) 1301 return ERR_PTR(-ENOMEM); 1302 1303 INIT_LIST_HEAD(&workload->list); 1304 INIT_LIST_HEAD(&workload->shadow_bb); 1305 1306 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1307 atomic_set(&workload->shadow_ctx_active, 0); 1308 1309 workload->status = -EINPROGRESS; 1310 workload->vgpu = vgpu; 1311 1312 return workload; 1313 } 1314 1315 #define RING_CTX_OFF(x) \ 1316 offsetof(struct execlist_ring_context, x) 1317 1318 static void read_guest_pdps(struct intel_vgpu *vgpu, 1319 u64 ring_context_gpa, u32 pdp[8]) 1320 { 1321 u64 gpa; 1322 int i; 1323 1324 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1325 1326 for (i = 0; i < 8; i++) 1327 intel_gvt_hypervisor_read_gpa(vgpu, 1328 gpa + i * 8, &pdp[7 - i], 4); 1329 } 1330 1331 static int prepare_mm(struct intel_vgpu_workload *workload) 1332 { 1333 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1334 struct intel_vgpu_mm *mm; 1335 struct intel_vgpu *vgpu = workload->vgpu; 1336 intel_gvt_gtt_type_t root_entry_type; 1337 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1338 1339 switch (desc->addressing_mode) { 1340 case 1: /* legacy 32-bit */ 1341 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1342 break; 1343 case 3: /* legacy 64-bit */ 1344 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1345 break; 1346 default: 1347 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1348 return -EINVAL; 1349 } 1350 1351 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1352 1353 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1354 if (IS_ERR(mm)) 1355 return PTR_ERR(mm); 1356 1357 workload->shadow_mm = mm; 1358 return 0; 1359 } 1360 1361 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1362 ((a)->lrca == (b)->lrca)) 1363 1364 #define get_last_workload(q) \ 1365 (list_empty(q) ? NULL : container_of(q->prev, \ 1366 struct intel_vgpu_workload, list)) 1367 /** 1368 * intel_vgpu_create_workload - create a vGPU workload 1369 * @vgpu: a vGPU 1370 * @ring_id: ring index 1371 * @desc: a guest context descriptor 1372 * 1373 * This function is called when creating a vGPU workload. 1374 * 1375 * Returns: 1376 * struct intel_vgpu_workload * on success, negative error code in 1377 * pointer if failed. 1378 * 1379 */ 1380 struct intel_vgpu_workload * 1381 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1382 struct execlist_ctx_descriptor_format *desc) 1383 { 1384 struct intel_vgpu_submission *s = &vgpu->submission; 1385 struct list_head *q = workload_q_head(vgpu, ring_id); 1386 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1387 struct intel_vgpu_workload *workload = NULL; 1388 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1389 u64 ring_context_gpa; 1390 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1391 int ret; 1392 1393 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1394 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1395 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1396 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1397 return ERR_PTR(-EINVAL); 1398 } 1399 1400 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1401 RING_CTX_OFF(ring_header.val), &head, 4); 1402 1403 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1404 RING_CTX_OFF(ring_tail.val), &tail, 4); 1405 1406 head &= RB_HEAD_OFF_MASK; 1407 tail &= RB_TAIL_OFF_MASK; 1408 1409 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1410 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1411 gvt_dbg_el("ctx head %x real head %lx\n", head, 1412 last_workload->rb_tail); 1413 /* 1414 * cannot use guest context head pointer here, 1415 * as it might not be updated at this time 1416 */ 1417 head = last_workload->rb_tail; 1418 } 1419 1420 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1421 1422 /* record some ring buffer register values for scan and shadow */ 1423 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1424 RING_CTX_OFF(rb_start.val), &start, 4); 1425 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1426 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1427 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1428 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1429 1430 workload = alloc_workload(vgpu); 1431 if (IS_ERR(workload)) 1432 return workload; 1433 1434 workload->ring_id = ring_id; 1435 workload->ctx_desc = *desc; 1436 workload->ring_context_gpa = ring_context_gpa; 1437 workload->rb_head = head; 1438 workload->rb_tail = tail; 1439 workload->rb_start = start; 1440 workload->rb_ctl = ctl; 1441 1442 if (ring_id == RCS) { 1443 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1444 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1445 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1446 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1447 1448 workload->wa_ctx.indirect_ctx.guest_gma = 1449 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1450 workload->wa_ctx.indirect_ctx.size = 1451 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1452 CACHELINE_BYTES; 1453 workload->wa_ctx.per_ctx.guest_gma = 1454 per_ctx & PER_CTX_ADDR_MASK; 1455 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1456 } 1457 1458 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1459 workload, ring_id, head, tail, start, ctl); 1460 1461 ret = prepare_mm(workload); 1462 if (ret) { 1463 kmem_cache_free(s->workloads, workload); 1464 return ERR_PTR(ret); 1465 } 1466 1467 /* Only scan and shadow the first workload in the queue 1468 * as there is only one pre-allocated buf-obj for shadow. 1469 */ 1470 if (list_empty(workload_q_head(vgpu, ring_id))) { 1471 intel_runtime_pm_get(dev_priv); 1472 mutex_lock(&dev_priv->drm.struct_mutex); 1473 ret = intel_gvt_scan_and_shadow_workload(workload); 1474 mutex_unlock(&dev_priv->drm.struct_mutex); 1475 intel_runtime_pm_put(dev_priv); 1476 } 1477 1478 if (ret && (vgpu_is_vm_unhealthy(ret))) { 1479 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1480 intel_vgpu_destroy_workload(workload); 1481 return ERR_PTR(ret); 1482 } 1483 1484 return workload; 1485 } 1486 1487 /** 1488 * intel_vgpu_queue_workload - Qeue a vGPU workload 1489 * @workload: the workload to queue in 1490 */ 1491 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1492 { 1493 list_add_tail(&workload->list, 1494 workload_q_head(workload->vgpu, workload->ring_id)); 1495 intel_gvt_kick_schedule(workload->vgpu->gvt); 1496 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1497 } 1498