xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision ba61bb17)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
136 			workload->ctx_desc.lrca);
137 
138 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
139 
140 	context_page_num = context_page_num >> PAGE_SHIFT;
141 
142 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
143 		context_page_num = 19;
144 
145 	i = 2;
146 
147 	while (i < context_page_num) {
148 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
149 				(u32)((workload->ctx_desc.lrca + i) <<
150 				I915_GTT_PAGE_SHIFT));
151 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
152 			gvt_vgpu_err("Invalid guest context descriptor\n");
153 			return -EFAULT;
154 		}
155 
156 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
157 		dst = kmap(page);
158 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
159 				I915_GTT_PAGE_SIZE);
160 		kunmap(page);
161 		i++;
162 	}
163 
164 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
165 	shadow_ring_context = kmap(page);
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
168 #define COPY_REG(name) \
169 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
170 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
171 #define COPY_REG_MASKED(name) {\
172 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
173 					      + RING_CTX_OFF(name.val),\
174 					      &shadow_ring_context->name.val, 4);\
175 		shadow_ring_context->name.val |= 0xffff << 16;\
176 	}
177 
178 	COPY_REG_MASKED(ctx_ctrl);
179 	COPY_REG(ctx_timestamp);
180 
181 	if (ring_id == RCS) {
182 		COPY_REG(bb_per_ctx_ptr);
183 		COPY_REG(rcs_indirect_ctx);
184 		COPY_REG(rcs_indirect_ctx_offset);
185 	}
186 #undef COPY_REG
187 #undef COPY_REG_MASKED
188 
189 	intel_gvt_hypervisor_read_gpa(vgpu,
190 			workload->ring_context_gpa +
191 			sizeof(*shadow_ring_context),
192 			(void *)shadow_ring_context +
193 			sizeof(*shadow_ring_context),
194 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
195 
196 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
197 	kunmap(page);
198 	return 0;
199 }
200 
201 static inline bool is_gvt_request(struct i915_request *req)
202 {
203 	return i915_gem_context_force_single_submission(req->gem_context);
204 }
205 
206 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
207 {
208 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
209 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
210 	i915_reg_t reg;
211 
212 	reg = RING_INSTDONE(ring_base);
213 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
214 	reg = RING_ACTHD(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD_UDW(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 }
219 
220 static int shadow_context_status_change(struct notifier_block *nb,
221 		unsigned long action, void *data)
222 {
223 	struct i915_request *req = data;
224 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
225 				shadow_ctx_notifier_block[req->engine->id]);
226 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
227 	enum intel_engine_id ring_id = req->engine->id;
228 	struct intel_vgpu_workload *workload;
229 	unsigned long flags;
230 
231 	if (!is_gvt_request(req)) {
232 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
233 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
234 		    scheduler->engine_owner[ring_id]) {
235 			/* Switch ring from vGPU to host. */
236 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
237 					      NULL, ring_id);
238 			scheduler->engine_owner[ring_id] = NULL;
239 		}
240 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
241 
242 		return NOTIFY_OK;
243 	}
244 
245 	workload = scheduler->current_workload[ring_id];
246 	if (unlikely(!workload))
247 		return NOTIFY_OK;
248 
249 	switch (action) {
250 	case INTEL_CONTEXT_SCHEDULE_IN:
251 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
252 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
253 			/* Switch ring from host to vGPU or vGPU to vGPU. */
254 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
255 					      workload->vgpu, ring_id);
256 			scheduler->engine_owner[ring_id] = workload->vgpu;
257 		} else
258 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
259 				      ring_id, workload->vgpu->id);
260 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
261 		atomic_set(&workload->shadow_ctx_active, 1);
262 		break;
263 	case INTEL_CONTEXT_SCHEDULE_OUT:
264 		save_ring_hw_state(workload->vgpu, ring_id);
265 		atomic_set(&workload->shadow_ctx_active, 0);
266 		break;
267 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
268 		save_ring_hw_state(workload->vgpu, ring_id);
269 		break;
270 	default:
271 		WARN_ON(1);
272 		return NOTIFY_OK;
273 	}
274 	wake_up(&workload->shadow_ctx_status_wq);
275 	return NOTIFY_OK;
276 }
277 
278 static void shadow_context_descriptor_update(struct intel_context *ce)
279 {
280 	u64 desc = 0;
281 
282 	desc = ce->lrc_desc;
283 
284 	/* Update bits 0-11 of the context descriptor which includes flags
285 	 * like GEN8_CTX_* cached in desc_template
286 	 */
287 	desc &= U64_MAX << 12;
288 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
289 
290 	ce->lrc_desc = desc;
291 }
292 
293 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
294 {
295 	struct intel_vgpu *vgpu = workload->vgpu;
296 	struct i915_request *req = workload->req;
297 	void *shadow_ring_buffer_va;
298 	u32 *cs;
299 
300 	if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915))
301 		&& is_inhibit_context(req->hw_context))
302 		intel_vgpu_restore_inhibit_context(vgpu, req);
303 
304 	/* allocate shadow ring buffer */
305 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
306 	if (IS_ERR(cs)) {
307 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
308 			workload->rb_len);
309 		return PTR_ERR(cs);
310 	}
311 
312 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
313 
314 	/* get shadow ring buffer va */
315 	workload->shadow_ring_buffer_va = cs;
316 
317 	memcpy(cs, shadow_ring_buffer_va,
318 			workload->rb_len);
319 
320 	cs += workload->rb_len / sizeof(u32);
321 	intel_ring_advance(workload->req, cs);
322 
323 	return 0;
324 }
325 
326 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
327 {
328 	if (!wa_ctx->indirect_ctx.obj)
329 		return;
330 
331 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
332 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
333 }
334 
335 /**
336  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
337  * shadow it as well, include ringbuffer,wa_ctx and ctx.
338  * @workload: an abstract entity for each execlist submission.
339  *
340  * This function is called before the workload submitting to i915, to make
341  * sure the content of the workload is valid.
342  */
343 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
344 {
345 	struct intel_vgpu *vgpu = workload->vgpu;
346 	struct intel_vgpu_submission *s = &vgpu->submission;
347 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
348 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
349 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
350 	struct intel_context *ce;
351 	struct i915_request *rq;
352 	int ret;
353 
354 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
355 
356 	if (workload->req)
357 		return 0;
358 
359 	/* pin shadow context by gvt even the shadow context will be pinned
360 	 * when i915 alloc request. That is because gvt will update the guest
361 	 * context from shadow context when workload is completed, and at that
362 	 * moment, i915 may already unpined the shadow context to make the
363 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
364 	 * the guest context, gvt can unpin the shadow_ctx safely.
365 	 */
366 	ce = intel_context_pin(shadow_ctx, engine);
367 	if (IS_ERR(ce)) {
368 		gvt_vgpu_err("fail to pin shadow context\n");
369 		return PTR_ERR(ce);
370 	}
371 
372 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
373 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
374 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
375 
376 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
377 		shadow_context_descriptor_update(ce);
378 
379 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
380 	if (ret)
381 		goto err_unpin;
382 
383 	if ((workload->ring_id == RCS) &&
384 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
385 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
386 		if (ret)
387 			goto err_shadow;
388 	}
389 
390 	rq = i915_request_alloc(engine, shadow_ctx);
391 	if (IS_ERR(rq)) {
392 		gvt_vgpu_err("fail to allocate gem request\n");
393 		ret = PTR_ERR(rq);
394 		goto err_shadow;
395 	}
396 	workload->req = i915_request_get(rq);
397 
398 	ret = populate_shadow_context(workload);
399 	if (ret)
400 		goto err_req;
401 
402 	return 0;
403 err_req:
404 	rq = fetch_and_zero(&workload->req);
405 	i915_request_put(rq);
406 err_shadow:
407 	release_shadow_wa_ctx(&workload->wa_ctx);
408 err_unpin:
409 	intel_context_unpin(ce);
410 	return ret;
411 }
412 
413 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
414 
415 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
416 {
417 	struct intel_gvt *gvt = workload->vgpu->gvt;
418 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
419 	struct intel_vgpu_shadow_bb *bb;
420 	int ret;
421 
422 	list_for_each_entry(bb, &workload->shadow_bb, list) {
423 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
424 		 * is only updated into ring_scan_buffer, not real ring address
425 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
426 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
427 		 * in copy_workload_to_ring_buffer.
428 		 */
429 
430 		if (bb->bb_offset)
431 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
432 				+ bb->bb_offset;
433 
434 		if (bb->ppgtt) {
435 			/* for non-priv bb, scan&shadow is only for
436 			 * debugging purpose, so the content of shadow bb
437 			 * is the same as original bb. Therefore,
438 			 * here, rather than switch to shadow bb's gma
439 			 * address, we directly use original batch buffer's
440 			 * gma address, and send original bb to hardware
441 			 * directly
442 			 */
443 			if (bb->clflush & CLFLUSH_AFTER) {
444 				drm_clflush_virt_range(bb->va,
445 						bb->obj->base.size);
446 				bb->clflush &= ~CLFLUSH_AFTER;
447 			}
448 			i915_gem_obj_finish_shmem_access(bb->obj);
449 			bb->accessing = false;
450 
451 		} else {
452 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
453 					NULL, 0, 0, 0);
454 			if (IS_ERR(bb->vma)) {
455 				ret = PTR_ERR(bb->vma);
456 				goto err;
457 			}
458 
459 			/* relocate shadow batch buffer */
460 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
461 			if (gmadr_bytes == 8)
462 				bb->bb_start_cmd_va[2] = 0;
463 
464 			/* No one is going to touch shadow bb from now on. */
465 			if (bb->clflush & CLFLUSH_AFTER) {
466 				drm_clflush_virt_range(bb->va,
467 						bb->obj->base.size);
468 				bb->clflush &= ~CLFLUSH_AFTER;
469 			}
470 
471 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
472 					false);
473 			if (ret)
474 				goto err;
475 
476 			i915_gem_obj_finish_shmem_access(bb->obj);
477 			bb->accessing = false;
478 
479 			i915_vma_move_to_active(bb->vma, workload->req, 0);
480 		}
481 	}
482 	return 0;
483 err:
484 	release_shadow_batch_buffer(workload);
485 	return ret;
486 }
487 
488 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
489 {
490 	struct intel_vgpu_workload *workload =
491 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
492 	struct i915_request *rq = workload->req;
493 	struct execlist_ring_context *shadow_ring_context =
494 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
495 
496 	shadow_ring_context->bb_per_ctx_ptr.val =
497 		(shadow_ring_context->bb_per_ctx_ptr.val &
498 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
499 	shadow_ring_context->rcs_indirect_ctx.val =
500 		(shadow_ring_context->rcs_indirect_ctx.val &
501 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
502 }
503 
504 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
505 {
506 	struct i915_vma *vma;
507 	unsigned char *per_ctx_va =
508 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
509 		wa_ctx->indirect_ctx.size;
510 
511 	if (wa_ctx->indirect_ctx.size == 0)
512 		return 0;
513 
514 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
515 				       0, CACHELINE_BYTES, 0);
516 	if (IS_ERR(vma))
517 		return PTR_ERR(vma);
518 
519 	/* FIXME: we are not tracking our pinned VMA leaving it
520 	 * up to the core to fix up the stray pin_count upon
521 	 * free.
522 	 */
523 
524 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
525 
526 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
527 	memset(per_ctx_va, 0, CACHELINE_BYTES);
528 
529 	update_wa_ctx_2_shadow_ctx(wa_ctx);
530 	return 0;
531 }
532 
533 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
534 {
535 	struct intel_vgpu *vgpu = workload->vgpu;
536 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
537 	struct intel_vgpu_shadow_bb *bb, *pos;
538 
539 	if (list_empty(&workload->shadow_bb))
540 		return;
541 
542 	bb = list_first_entry(&workload->shadow_bb,
543 			struct intel_vgpu_shadow_bb, list);
544 
545 	mutex_lock(&dev_priv->drm.struct_mutex);
546 
547 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
548 		if (bb->obj) {
549 			if (bb->accessing)
550 				i915_gem_obj_finish_shmem_access(bb->obj);
551 
552 			if (bb->va && !IS_ERR(bb->va))
553 				i915_gem_object_unpin_map(bb->obj);
554 
555 			if (bb->vma && !IS_ERR(bb->vma)) {
556 				i915_vma_unpin(bb->vma);
557 				i915_vma_close(bb->vma);
558 			}
559 			__i915_gem_object_release_unless_active(bb->obj);
560 		}
561 		list_del(&bb->list);
562 		kfree(bb);
563 	}
564 
565 	mutex_unlock(&dev_priv->drm.struct_mutex);
566 }
567 
568 static int prepare_workload(struct intel_vgpu_workload *workload)
569 {
570 	struct intel_vgpu *vgpu = workload->vgpu;
571 	int ret = 0;
572 
573 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
574 	if (ret) {
575 		gvt_vgpu_err("fail to vgpu pin mm\n");
576 		return ret;
577 	}
578 
579 	update_shadow_pdps(workload);
580 
581 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
582 	if (ret) {
583 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
584 		goto err_unpin_mm;
585 	}
586 
587 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
588 	if (ret) {
589 		gvt_vgpu_err("fail to flush post shadow\n");
590 		goto err_unpin_mm;
591 	}
592 
593 	ret = copy_workload_to_ring_buffer(workload);
594 	if (ret) {
595 		gvt_vgpu_err("fail to generate request\n");
596 		goto err_unpin_mm;
597 	}
598 
599 	ret = prepare_shadow_batch_buffer(workload);
600 	if (ret) {
601 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
602 		goto err_unpin_mm;
603 	}
604 
605 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
606 	if (ret) {
607 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
608 		goto err_shadow_batch;
609 	}
610 
611 	if (workload->prepare) {
612 		ret = workload->prepare(workload);
613 		if (ret)
614 			goto err_shadow_wa_ctx;
615 	}
616 
617 	return 0;
618 err_shadow_wa_ctx:
619 	release_shadow_wa_ctx(&workload->wa_ctx);
620 err_shadow_batch:
621 	release_shadow_batch_buffer(workload);
622 err_unpin_mm:
623 	intel_vgpu_unpin_mm(workload->shadow_mm);
624 	return ret;
625 }
626 
627 static int dispatch_workload(struct intel_vgpu_workload *workload)
628 {
629 	struct intel_vgpu *vgpu = workload->vgpu;
630 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
631 	int ring_id = workload->ring_id;
632 	int ret;
633 
634 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
635 		ring_id, workload);
636 
637 	mutex_lock(&vgpu->vgpu_lock);
638 	mutex_lock(&dev_priv->drm.struct_mutex);
639 
640 	ret = intel_gvt_scan_and_shadow_workload(workload);
641 	if (ret)
642 		goto out;
643 
644 	ret = prepare_workload(workload);
645 
646 out:
647 	if (ret)
648 		workload->status = ret;
649 
650 	if (!IS_ERR_OR_NULL(workload->req)) {
651 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
652 				ring_id, workload->req);
653 		i915_request_add(workload->req);
654 		workload->dispatched = true;
655 	}
656 
657 	mutex_unlock(&dev_priv->drm.struct_mutex);
658 	mutex_unlock(&vgpu->vgpu_lock);
659 	return ret;
660 }
661 
662 static struct intel_vgpu_workload *pick_next_workload(
663 		struct intel_gvt *gvt, int ring_id)
664 {
665 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
666 	struct intel_vgpu_workload *workload = NULL;
667 
668 	mutex_lock(&gvt->sched_lock);
669 
670 	/*
671 	 * no current vgpu / will be scheduled out / no workload
672 	 * bail out
673 	 */
674 	if (!scheduler->current_vgpu) {
675 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
676 		goto out;
677 	}
678 
679 	if (scheduler->need_reschedule) {
680 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
681 		goto out;
682 	}
683 
684 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
685 		goto out;
686 
687 	/*
688 	 * still have current workload, maybe the workload disptacher
689 	 * fail to submit it for some reason, resubmit it.
690 	 */
691 	if (scheduler->current_workload[ring_id]) {
692 		workload = scheduler->current_workload[ring_id];
693 		gvt_dbg_sched("ring id %d still have current workload %p\n",
694 				ring_id, workload);
695 		goto out;
696 	}
697 
698 	/*
699 	 * pick a workload as current workload
700 	 * once current workload is set, schedule policy routines
701 	 * will wait the current workload is finished when trying to
702 	 * schedule out a vgpu.
703 	 */
704 	scheduler->current_workload[ring_id] = container_of(
705 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
706 			struct intel_vgpu_workload, list);
707 
708 	workload = scheduler->current_workload[ring_id];
709 
710 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
711 
712 	atomic_inc(&workload->vgpu->submission.running_workload_num);
713 out:
714 	mutex_unlock(&gvt->sched_lock);
715 	return workload;
716 }
717 
718 static void update_guest_context(struct intel_vgpu_workload *workload)
719 {
720 	struct i915_request *rq = workload->req;
721 	struct intel_vgpu *vgpu = workload->vgpu;
722 	struct intel_gvt *gvt = vgpu->gvt;
723 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
724 	struct execlist_ring_context *shadow_ring_context;
725 	struct page *page;
726 	void *src;
727 	unsigned long context_gpa, context_page_num;
728 	int i;
729 
730 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
731 		      workload->ctx_desc.lrca);
732 
733 	context_page_num = rq->engine->context_size;
734 	context_page_num = context_page_num >> PAGE_SHIFT;
735 
736 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS)
737 		context_page_num = 19;
738 
739 	i = 2;
740 
741 	while (i < context_page_num) {
742 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
743 				(u32)((workload->ctx_desc.lrca + i) <<
744 					I915_GTT_PAGE_SHIFT));
745 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
746 			gvt_vgpu_err("invalid guest context descriptor\n");
747 			return;
748 		}
749 
750 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
751 		src = kmap(page);
752 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
753 				I915_GTT_PAGE_SIZE);
754 		kunmap(page);
755 		i++;
756 	}
757 
758 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
759 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
760 
761 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
762 	shadow_ring_context = kmap(page);
763 
764 #define COPY_REG(name) \
765 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
766 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
767 
768 	COPY_REG(ctx_ctrl);
769 	COPY_REG(ctx_timestamp);
770 
771 #undef COPY_REG
772 
773 	intel_gvt_hypervisor_write_gpa(vgpu,
774 			workload->ring_context_gpa +
775 			sizeof(*shadow_ring_context),
776 			(void *)shadow_ring_context +
777 			sizeof(*shadow_ring_context),
778 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
779 
780 	kunmap(page);
781 }
782 
783 static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
784 {
785 	struct intel_vgpu_submission *s = &vgpu->submission;
786 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
787 	struct intel_engine_cs *engine;
788 	struct intel_vgpu_workload *pos, *n;
789 	unsigned int tmp;
790 
791 	/* free the unsubmited workloads in the queues. */
792 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
793 		list_for_each_entry_safe(pos, n,
794 			&s->workload_q_head[engine->id], list) {
795 			list_del_init(&pos->list);
796 			intel_vgpu_destroy_workload(pos);
797 		}
798 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
799 	}
800 }
801 
802 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
803 {
804 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
805 	struct intel_vgpu_workload *workload =
806 		scheduler->current_workload[ring_id];
807 	struct intel_vgpu *vgpu = workload->vgpu;
808 	struct intel_vgpu_submission *s = &vgpu->submission;
809 	struct i915_request *rq = workload->req;
810 	int event;
811 
812 	mutex_lock(&vgpu->vgpu_lock);
813 	mutex_lock(&gvt->sched_lock);
814 
815 	/* For the workload w/ request, needs to wait for the context
816 	 * switch to make sure request is completed.
817 	 * For the workload w/o request, directly complete the workload.
818 	 */
819 	if (rq) {
820 		wait_event(workload->shadow_ctx_status_wq,
821 			   !atomic_read(&workload->shadow_ctx_active));
822 
823 		/* If this request caused GPU hang, req->fence.error will
824 		 * be set to -EIO. Use -EIO to set workload status so
825 		 * that when this request caused GPU hang, didn't trigger
826 		 * context switch interrupt to guest.
827 		 */
828 		if (likely(workload->status == -EINPROGRESS)) {
829 			if (workload->req->fence.error == -EIO)
830 				workload->status = -EIO;
831 			else
832 				workload->status = 0;
833 		}
834 
835 		if (!workload->status && !(vgpu->resetting_eng &
836 					   ENGINE_MASK(ring_id))) {
837 			update_guest_context(workload);
838 
839 			for_each_set_bit(event, workload->pending_events,
840 					 INTEL_GVT_EVENT_MAX)
841 				intel_vgpu_trigger_virtual_event(vgpu, event);
842 		}
843 
844 		/* unpin shadow ctx as the shadow_ctx update is done */
845 		mutex_lock(&rq->i915->drm.struct_mutex);
846 		intel_context_unpin(rq->hw_context);
847 		mutex_unlock(&rq->i915->drm.struct_mutex);
848 
849 		i915_request_put(fetch_and_zero(&workload->req));
850 	}
851 
852 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
853 			ring_id, workload, workload->status);
854 
855 	scheduler->current_workload[ring_id] = NULL;
856 
857 	list_del_init(&workload->list);
858 
859 	if (!workload->status) {
860 		release_shadow_batch_buffer(workload);
861 		release_shadow_wa_ctx(&workload->wa_ctx);
862 	}
863 
864 	if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
865 		/* if workload->status is not successful means HW GPU
866 		 * has occurred GPU hang or something wrong with i915/GVT,
867 		 * and GVT won't inject context switch interrupt to guest.
868 		 * So this error is a vGPU hang actually to the guest.
869 		 * According to this we should emunlate a vGPU hang. If
870 		 * there are pending workloads which are already submitted
871 		 * from guest, we should clean them up like HW GPU does.
872 		 *
873 		 * if it is in middle of engine resetting, the pending
874 		 * workloads won't be submitted to HW GPU and will be
875 		 * cleaned up during the resetting process later, so doing
876 		 * the workload clean up here doesn't have any impact.
877 		 **/
878 		clean_workloads(vgpu, ENGINE_MASK(ring_id));
879 	}
880 
881 	workload->complete(workload);
882 
883 	atomic_dec(&s->running_workload_num);
884 	wake_up(&scheduler->workload_complete_wq);
885 
886 	if (gvt->scheduler.need_reschedule)
887 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
888 
889 	mutex_unlock(&gvt->sched_lock);
890 	mutex_unlock(&vgpu->vgpu_lock);
891 }
892 
893 struct workload_thread_param {
894 	struct intel_gvt *gvt;
895 	int ring_id;
896 };
897 
898 static int workload_thread(void *priv)
899 {
900 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
901 	struct intel_gvt *gvt = p->gvt;
902 	int ring_id = p->ring_id;
903 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
904 	struct intel_vgpu_workload *workload = NULL;
905 	struct intel_vgpu *vgpu = NULL;
906 	int ret;
907 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
908 			|| IS_KABYLAKE(gvt->dev_priv)
909 			|| IS_BROXTON(gvt->dev_priv);
910 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
911 
912 	kfree(p);
913 
914 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
915 
916 	while (!kthread_should_stop()) {
917 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
918 		do {
919 			workload = pick_next_workload(gvt, ring_id);
920 			if (workload)
921 				break;
922 			wait_woken(&wait, TASK_INTERRUPTIBLE,
923 				   MAX_SCHEDULE_TIMEOUT);
924 		} while (!kthread_should_stop());
925 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
926 
927 		if (!workload)
928 			break;
929 
930 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
931 				workload->ring_id, workload,
932 				workload->vgpu->id);
933 
934 		intel_runtime_pm_get(gvt->dev_priv);
935 
936 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
937 				workload->ring_id, workload);
938 
939 		if (need_force_wake)
940 			intel_uncore_forcewake_get(gvt->dev_priv,
941 					FORCEWAKE_ALL);
942 
943 		ret = dispatch_workload(workload);
944 
945 		if (ret) {
946 			vgpu = workload->vgpu;
947 			gvt_vgpu_err("fail to dispatch workload, skip\n");
948 			goto complete;
949 		}
950 
951 		gvt_dbg_sched("ring id %d wait workload %p\n",
952 				workload->ring_id, workload);
953 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
954 
955 complete:
956 		gvt_dbg_sched("will complete workload %p, status: %d\n",
957 				workload, workload->status);
958 
959 		complete_current_workload(gvt, ring_id);
960 
961 		if (need_force_wake)
962 			intel_uncore_forcewake_put(gvt->dev_priv,
963 					FORCEWAKE_ALL);
964 
965 		intel_runtime_pm_put(gvt->dev_priv);
966 		if (ret && (vgpu_is_vm_unhealthy(ret)))
967 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
968 	}
969 	return 0;
970 }
971 
972 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
973 {
974 	struct intel_vgpu_submission *s = &vgpu->submission;
975 	struct intel_gvt *gvt = vgpu->gvt;
976 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
977 
978 	if (atomic_read(&s->running_workload_num)) {
979 		gvt_dbg_sched("wait vgpu idle\n");
980 
981 		wait_event(scheduler->workload_complete_wq,
982 				!atomic_read(&s->running_workload_num));
983 	}
984 }
985 
986 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
987 {
988 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
989 	struct intel_engine_cs *engine;
990 	enum intel_engine_id i;
991 
992 	gvt_dbg_core("clean workload scheduler\n");
993 
994 	for_each_engine(engine, gvt->dev_priv, i) {
995 		atomic_notifier_chain_unregister(
996 					&engine->context_status_notifier,
997 					&gvt->shadow_ctx_notifier_block[i]);
998 		kthread_stop(scheduler->thread[i]);
999 	}
1000 }
1001 
1002 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1003 {
1004 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1005 	struct workload_thread_param *param = NULL;
1006 	struct intel_engine_cs *engine;
1007 	enum intel_engine_id i;
1008 	int ret;
1009 
1010 	gvt_dbg_core("init workload scheduler\n");
1011 
1012 	init_waitqueue_head(&scheduler->workload_complete_wq);
1013 
1014 	for_each_engine(engine, gvt->dev_priv, i) {
1015 		init_waitqueue_head(&scheduler->waitq[i]);
1016 
1017 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1018 		if (!param) {
1019 			ret = -ENOMEM;
1020 			goto err;
1021 		}
1022 
1023 		param->gvt = gvt;
1024 		param->ring_id = i;
1025 
1026 		scheduler->thread[i] = kthread_run(workload_thread, param,
1027 			"gvt workload %d", i);
1028 		if (IS_ERR(scheduler->thread[i])) {
1029 			gvt_err("fail to create workload thread\n");
1030 			ret = PTR_ERR(scheduler->thread[i]);
1031 			goto err;
1032 		}
1033 
1034 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1035 					shadow_context_status_change;
1036 		atomic_notifier_chain_register(&engine->context_status_notifier,
1037 					&gvt->shadow_ctx_notifier_block[i]);
1038 	}
1039 	return 0;
1040 err:
1041 	intel_gvt_clean_workload_scheduler(gvt);
1042 	kfree(param);
1043 	param = NULL;
1044 	return ret;
1045 }
1046 
1047 /**
1048  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1049  * @vgpu: a vGPU
1050  *
1051  * This function is called when a vGPU is being destroyed.
1052  *
1053  */
1054 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1055 {
1056 	struct intel_vgpu_submission *s = &vgpu->submission;
1057 
1058 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1059 	i915_gem_context_put(s->shadow_ctx);
1060 	kmem_cache_destroy(s->workloads);
1061 }
1062 
1063 
1064 /**
1065  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1066  * @vgpu: a vGPU
1067  * @engine_mask: engines expected to be reset
1068  *
1069  * This function is called when a vGPU is being destroyed.
1070  *
1071  */
1072 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1073 		unsigned long engine_mask)
1074 {
1075 	struct intel_vgpu_submission *s = &vgpu->submission;
1076 
1077 	if (!s->active)
1078 		return;
1079 
1080 	clean_workloads(vgpu, engine_mask);
1081 	s->ops->reset(vgpu, engine_mask);
1082 }
1083 
1084 /**
1085  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1086  * @vgpu: a vGPU
1087  *
1088  * This function is called when a vGPU is being created.
1089  *
1090  * Returns:
1091  * Zero on success, negative error code if failed.
1092  *
1093  */
1094 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1095 {
1096 	struct intel_vgpu_submission *s = &vgpu->submission;
1097 	enum intel_engine_id i;
1098 	struct intel_engine_cs *engine;
1099 	int ret;
1100 
1101 	s->shadow_ctx = i915_gem_context_create_gvt(
1102 			&vgpu->gvt->dev_priv->drm);
1103 	if (IS_ERR(s->shadow_ctx))
1104 		return PTR_ERR(s->shadow_ctx);
1105 
1106 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1107 
1108 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1109 						  sizeof(struct intel_vgpu_workload), 0,
1110 						  SLAB_HWCACHE_ALIGN,
1111 						  offsetof(struct intel_vgpu_workload, rb_tail),
1112 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1113 						  NULL);
1114 
1115 	if (!s->workloads) {
1116 		ret = -ENOMEM;
1117 		goto out_shadow_ctx;
1118 	}
1119 
1120 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1121 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1122 
1123 	atomic_set(&s->running_workload_num, 0);
1124 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1125 
1126 	return 0;
1127 
1128 out_shadow_ctx:
1129 	i915_gem_context_put(s->shadow_ctx);
1130 	return ret;
1131 }
1132 
1133 /**
1134  * intel_vgpu_select_submission_ops - select virtual submission interface
1135  * @vgpu: a vGPU
1136  * @interface: expected vGPU virtual submission interface
1137  *
1138  * This function is called when guest configures submission interface.
1139  *
1140  * Returns:
1141  * Zero on success, negative error code if failed.
1142  *
1143  */
1144 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1145 				     unsigned long engine_mask,
1146 				     unsigned int interface)
1147 {
1148 	struct intel_vgpu_submission *s = &vgpu->submission;
1149 	const struct intel_vgpu_submission_ops *ops[] = {
1150 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1151 			&intel_vgpu_execlist_submission_ops,
1152 	};
1153 	int ret;
1154 
1155 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1156 		return -EINVAL;
1157 
1158 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1159 		return -EINVAL;
1160 
1161 	if (s->active)
1162 		s->ops->clean(vgpu, engine_mask);
1163 
1164 	if (interface == 0) {
1165 		s->ops = NULL;
1166 		s->virtual_submission_interface = 0;
1167 		s->active = false;
1168 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1169 		return 0;
1170 	}
1171 
1172 	ret = ops[interface]->init(vgpu, engine_mask);
1173 	if (ret)
1174 		return ret;
1175 
1176 	s->ops = ops[interface];
1177 	s->virtual_submission_interface = interface;
1178 	s->active = true;
1179 
1180 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1181 			vgpu->id, s->ops->name);
1182 
1183 	return 0;
1184 }
1185 
1186 /**
1187  * intel_vgpu_destroy_workload - destroy a vGPU workload
1188  * @vgpu: a vGPU
1189  *
1190  * This function is called when destroy a vGPU workload.
1191  *
1192  */
1193 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1194 {
1195 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1196 
1197 	if (workload->shadow_mm)
1198 		intel_vgpu_mm_put(workload->shadow_mm);
1199 
1200 	kmem_cache_free(s->workloads, workload);
1201 }
1202 
1203 static struct intel_vgpu_workload *
1204 alloc_workload(struct intel_vgpu *vgpu)
1205 {
1206 	struct intel_vgpu_submission *s = &vgpu->submission;
1207 	struct intel_vgpu_workload *workload;
1208 
1209 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1210 	if (!workload)
1211 		return ERR_PTR(-ENOMEM);
1212 
1213 	INIT_LIST_HEAD(&workload->list);
1214 	INIT_LIST_HEAD(&workload->shadow_bb);
1215 
1216 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1217 	atomic_set(&workload->shadow_ctx_active, 0);
1218 
1219 	workload->status = -EINPROGRESS;
1220 	workload->vgpu = vgpu;
1221 
1222 	return workload;
1223 }
1224 
1225 #define RING_CTX_OFF(x) \
1226 	offsetof(struct execlist_ring_context, x)
1227 
1228 static void read_guest_pdps(struct intel_vgpu *vgpu,
1229 		u64 ring_context_gpa, u32 pdp[8])
1230 {
1231 	u64 gpa;
1232 	int i;
1233 
1234 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1235 
1236 	for (i = 0; i < 8; i++)
1237 		intel_gvt_hypervisor_read_gpa(vgpu,
1238 				gpa + i * 8, &pdp[7 - i], 4);
1239 }
1240 
1241 static int prepare_mm(struct intel_vgpu_workload *workload)
1242 {
1243 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1244 	struct intel_vgpu_mm *mm;
1245 	struct intel_vgpu *vgpu = workload->vgpu;
1246 	intel_gvt_gtt_type_t root_entry_type;
1247 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1248 
1249 	switch (desc->addressing_mode) {
1250 	case 1: /* legacy 32-bit */
1251 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1252 		break;
1253 	case 3: /* legacy 64-bit */
1254 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1255 		break;
1256 	default:
1257 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1258 		return -EINVAL;
1259 	}
1260 
1261 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1262 
1263 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1264 	if (IS_ERR(mm))
1265 		return PTR_ERR(mm);
1266 
1267 	workload->shadow_mm = mm;
1268 	return 0;
1269 }
1270 
1271 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1272 		((a)->lrca == (b)->lrca))
1273 
1274 #define get_last_workload(q) \
1275 	(list_empty(q) ? NULL : container_of(q->prev, \
1276 	struct intel_vgpu_workload, list))
1277 /**
1278  * intel_vgpu_create_workload - create a vGPU workload
1279  * @vgpu: a vGPU
1280  * @desc: a guest context descriptor
1281  *
1282  * This function is called when creating a vGPU workload.
1283  *
1284  * Returns:
1285  * struct intel_vgpu_workload * on success, negative error code in
1286  * pointer if failed.
1287  *
1288  */
1289 struct intel_vgpu_workload *
1290 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1291 			   struct execlist_ctx_descriptor_format *desc)
1292 {
1293 	struct intel_vgpu_submission *s = &vgpu->submission;
1294 	struct list_head *q = workload_q_head(vgpu, ring_id);
1295 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1296 	struct intel_vgpu_workload *workload = NULL;
1297 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1298 	u64 ring_context_gpa;
1299 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1300 	int ret;
1301 
1302 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1303 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1304 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1305 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1306 		return ERR_PTR(-EINVAL);
1307 	}
1308 
1309 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1310 			RING_CTX_OFF(ring_header.val), &head, 4);
1311 
1312 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1313 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1314 
1315 	head &= RB_HEAD_OFF_MASK;
1316 	tail &= RB_TAIL_OFF_MASK;
1317 
1318 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1319 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1320 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1321 				last_workload->rb_tail);
1322 		/*
1323 		 * cannot use guest context head pointer here,
1324 		 * as it might not be updated at this time
1325 		 */
1326 		head = last_workload->rb_tail;
1327 	}
1328 
1329 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1330 
1331 	/* record some ring buffer register values for scan and shadow */
1332 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1333 			RING_CTX_OFF(rb_start.val), &start, 4);
1334 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1335 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1336 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1337 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1338 
1339 	workload = alloc_workload(vgpu);
1340 	if (IS_ERR(workload))
1341 		return workload;
1342 
1343 	workload->ring_id = ring_id;
1344 	workload->ctx_desc = *desc;
1345 	workload->ring_context_gpa = ring_context_gpa;
1346 	workload->rb_head = head;
1347 	workload->rb_tail = tail;
1348 	workload->rb_start = start;
1349 	workload->rb_ctl = ctl;
1350 
1351 	if (ring_id == RCS) {
1352 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1353 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1354 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1355 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1356 
1357 		workload->wa_ctx.indirect_ctx.guest_gma =
1358 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1359 		workload->wa_ctx.indirect_ctx.size =
1360 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1361 			CACHELINE_BYTES;
1362 		workload->wa_ctx.per_ctx.guest_gma =
1363 			per_ctx & PER_CTX_ADDR_MASK;
1364 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1365 	}
1366 
1367 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1368 			workload, ring_id, head, tail, start, ctl);
1369 
1370 	ret = prepare_mm(workload);
1371 	if (ret) {
1372 		kmem_cache_free(s->workloads, workload);
1373 		return ERR_PTR(ret);
1374 	}
1375 
1376 	/* Only scan and shadow the first workload in the queue
1377 	 * as there is only one pre-allocated buf-obj for shadow.
1378 	 */
1379 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1380 		intel_runtime_pm_get(dev_priv);
1381 		mutex_lock(&dev_priv->drm.struct_mutex);
1382 		ret = intel_gvt_scan_and_shadow_workload(workload);
1383 		mutex_unlock(&dev_priv->drm.struct_mutex);
1384 		intel_runtime_pm_put(dev_priv);
1385 	}
1386 
1387 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1388 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1389 		intel_vgpu_destroy_workload(workload);
1390 		return ERR_PTR(ret);
1391 	}
1392 
1393 	return workload;
1394 }
1395 
1396 /**
1397  * intel_vgpu_queue_workload - Qeue a vGPU workload
1398  * @workload: the workload to queue in
1399  */
1400 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1401 {
1402 	list_add_tail(&workload->list,
1403 		workload_q_head(workload->vgpu, workload->ring_id));
1404 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1405 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1406 }
1407