xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision b8d312aa)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41 
42 #include "i915_drv.h"
43 #include "gvt.h"
44 
45 #define RING_CTX_OFF(x) \
46 	offsetof(struct execlist_ring_context, x)
47 
48 static void set_context_pdp_root_pointer(
49 		struct execlist_ring_context *ring_context,
50 		u32 pdp[8])
51 {
52 	int i;
53 
54 	for (i = 0; i < 8; i++)
55 		ring_context->pdps[i].val = pdp[7 - i];
56 }
57 
58 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59 {
60 	struct drm_i915_gem_object *ctx_obj =
61 		workload->req->hw_context->state->obj;
62 	struct execlist_ring_context *shadow_ring_context;
63 	struct page *page;
64 
65 	if (WARN_ON(!workload->shadow_mm))
66 		return;
67 
68 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69 		return;
70 
71 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72 	shadow_ring_context = kmap(page);
73 	set_context_pdp_root_pointer(shadow_ring_context,
74 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 	kunmap(page);
76 }
77 
78 /*
79  * when populating shadow ctx from guest, we should not overrride oa related
80  * registers, so that they will not be overlapped by guest oa configs. Thus
81  * made it possible to capture oa data from host for both host and guests.
82  */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84 		u32 *reg_state, bool save)
85 {
86 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
88 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
89 	int i = 0;
90 	u32 flex_mmio[] = {
91 		i915_mmio_reg_offset(EU_PERF_CNTL0),
92 		i915_mmio_reg_offset(EU_PERF_CNTL1),
93 		i915_mmio_reg_offset(EU_PERF_CNTL2),
94 		i915_mmio_reg_offset(EU_PERF_CNTL3),
95 		i915_mmio_reg_offset(EU_PERF_CNTL4),
96 		i915_mmio_reg_offset(EU_PERF_CNTL5),
97 		i915_mmio_reg_offset(EU_PERF_CNTL6),
98 	};
99 
100 	if (workload->ring_id != RCS0)
101 		return;
102 
103 	if (save) {
104 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105 
106 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107 			u32 state_offset = ctx_flexeu0 + i * 2;
108 
109 			workload->flex_mmio[i] = reg_state[state_offset + 1];
110 		}
111 	} else {
112 		reg_state[ctx_oactxctrl] =
113 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115 
116 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117 			u32 state_offset = ctx_flexeu0 + i * 2;
118 			u32 mmio = flex_mmio[i];
119 
120 			reg_state[state_offset] = mmio;
121 			reg_state[state_offset + 1] = workload->flex_mmio[i];
122 		}
123 	}
124 }
125 
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128 	struct intel_vgpu *vgpu = workload->vgpu;
129 	struct intel_gvt *gvt = vgpu->gvt;
130 	int ring_id = workload->ring_id;
131 	struct drm_i915_gem_object *ctx_obj =
132 		workload->req->hw_context->state->obj;
133 	struct execlist_ring_context *shadow_ring_context;
134 	struct page *page;
135 	void *dst;
136 	unsigned long context_gpa, context_page_num;
137 	int i;
138 
139 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140 	shadow_ring_context = kmap(page);
141 
142 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 					      + RING_CTX_OFF(name.val),\
149 					      &shadow_ring_context->name.val, 4);\
150 		shadow_ring_context->name.val |= 0xffff << 16;\
151 	}
152 
153 	COPY_REG_MASKED(ctx_ctrl);
154 	COPY_REG(ctx_timestamp);
155 
156 	if (ring_id == RCS0) {
157 		COPY_REG(bb_per_ctx_ptr);
158 		COPY_REG(rcs_indirect_ctx);
159 		COPY_REG(rcs_indirect_ctx_offset);
160 	}
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163 
164 	intel_gvt_hypervisor_read_gpa(vgpu,
165 			workload->ring_context_gpa +
166 			sizeof(*shadow_ring_context),
167 			(void *)shadow_ring_context +
168 			sizeof(*shadow_ring_context),
169 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170 
171 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172 	kunmap(page);
173 
174 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175 		return 0;
176 
177 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178 			workload->ctx_desc.lrca);
179 
180 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181 
182 	context_page_num = context_page_num >> PAGE_SHIFT;
183 
184 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185 		context_page_num = 19;
186 
187 	i = 2;
188 	while (i < context_page_num) {
189 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190 				(u32)((workload->ctx_desc.lrca + i) <<
191 				I915_GTT_PAGE_SHIFT));
192 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193 			gvt_vgpu_err("Invalid guest context descriptor\n");
194 			return -EFAULT;
195 		}
196 
197 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198 		dst = kmap(page);
199 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200 				I915_GTT_PAGE_SIZE);
201 		kunmap(page);
202 		i++;
203 	}
204 	return 0;
205 }
206 
207 static inline bool is_gvt_request(struct i915_request *req)
208 {
209 	return i915_gem_context_force_single_submission(req->gem_context);
210 }
211 
212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213 {
214 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216 	i915_reg_t reg;
217 
218 	reg = RING_INSTDONE(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 	reg = RING_ACTHD(ring_base);
221 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222 	reg = RING_ACTHD_UDW(ring_base);
223 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224 }
225 
226 static int shadow_context_status_change(struct notifier_block *nb,
227 		unsigned long action, void *data)
228 {
229 	struct i915_request *req = data;
230 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231 				shadow_ctx_notifier_block[req->engine->id]);
232 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233 	enum intel_engine_id ring_id = req->engine->id;
234 	struct intel_vgpu_workload *workload;
235 	unsigned long flags;
236 
237 	if (!is_gvt_request(req)) {
238 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240 		    scheduler->engine_owner[ring_id]) {
241 			/* Switch ring from vGPU to host. */
242 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243 					      NULL, ring_id);
244 			scheduler->engine_owner[ring_id] = NULL;
245 		}
246 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247 
248 		return NOTIFY_OK;
249 	}
250 
251 	workload = scheduler->current_workload[ring_id];
252 	if (unlikely(!workload))
253 		return NOTIFY_OK;
254 
255 	switch (action) {
256 	case INTEL_CONTEXT_SCHEDULE_IN:
257 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259 			/* Switch ring from host to vGPU or vGPU to vGPU. */
260 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261 					      workload->vgpu, ring_id);
262 			scheduler->engine_owner[ring_id] = workload->vgpu;
263 		} else
264 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265 				      ring_id, workload->vgpu->id);
266 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267 		atomic_set(&workload->shadow_ctx_active, 1);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_OUT:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		atomic_set(&workload->shadow_ctx_active, 0);
272 		break;
273 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274 		save_ring_hw_state(workload->vgpu, ring_id);
275 		break;
276 	default:
277 		WARN_ON(1);
278 		return NOTIFY_OK;
279 	}
280 	wake_up(&workload->shadow_ctx_status_wq);
281 	return NOTIFY_OK;
282 }
283 
284 static void
285 shadow_context_descriptor_update(struct intel_context *ce,
286 				 struct intel_vgpu_workload *workload)
287 {
288 	u64 desc = ce->lrc_desc;
289 
290 	/*
291 	 * Update bits 0-11 of the context descriptor which includes flags
292 	 * like GEN8_CTX_* cached in desc_template
293 	 */
294 	desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
295 	desc |= workload->ctx_desc.addressing_mode <<
296 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
297 
298 	ce->lrc_desc = desc;
299 }
300 
301 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
302 {
303 	struct intel_vgpu *vgpu = workload->vgpu;
304 	struct i915_request *req = workload->req;
305 	void *shadow_ring_buffer_va;
306 	u32 *cs;
307 	int err;
308 
309 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
310 		intel_vgpu_restore_inhibit_context(vgpu, req);
311 
312 	/*
313 	 * To track whether a request has started on HW, we can emit a
314 	 * breadcrumb at the beginning of the request and check its
315 	 * timeline's HWSP to see if the breadcrumb has advanced past the
316 	 * start of this request. Actually, the request must have the
317 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
318 	 * scheduler might get a wrong state of it during reset. Since the
319 	 * requests from gvt always set the has_init_breadcrumb flag, here
320 	 * need to do the emit_init_breadcrumb for all the requests.
321 	 */
322 	if (req->engine->emit_init_breadcrumb) {
323 		err = req->engine->emit_init_breadcrumb(req);
324 		if (err) {
325 			gvt_vgpu_err("fail to emit init breadcrumb\n");
326 			return err;
327 		}
328 	}
329 
330 	/* allocate shadow ring buffer */
331 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
332 	if (IS_ERR(cs)) {
333 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
334 			workload->rb_len);
335 		return PTR_ERR(cs);
336 	}
337 
338 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
339 
340 	/* get shadow ring buffer va */
341 	workload->shadow_ring_buffer_va = cs;
342 
343 	memcpy(cs, shadow_ring_buffer_va,
344 			workload->rb_len);
345 
346 	cs += workload->rb_len / sizeof(u32);
347 	intel_ring_advance(workload->req, cs);
348 
349 	return 0;
350 }
351 
352 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
353 {
354 	if (!wa_ctx->indirect_ctx.obj)
355 		return;
356 
357 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
358 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
359 
360 	wa_ctx->indirect_ctx.obj = NULL;
361 	wa_ctx->indirect_ctx.shadow_va = NULL;
362 }
363 
364 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
365 					  struct i915_gem_context *ctx)
366 {
367 	struct intel_vgpu_mm *mm = workload->shadow_mm;
368 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
369 	int i = 0;
370 
371 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
372 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
373 	} else {
374 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
375 			struct i915_page_directory * const pd =
376 				i915_pd_entry(ppgtt->pd, i);
377 
378 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
379 		}
380 	}
381 }
382 
383 static int
384 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
385 {
386 	struct intel_vgpu *vgpu = workload->vgpu;
387 	struct intel_vgpu_submission *s = &vgpu->submission;
388 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
389 	struct i915_request *rq;
390 
391 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
392 
393 	if (workload->req)
394 		return 0;
395 
396 	rq = i915_request_create(s->shadow[workload->ring_id]);
397 	if (IS_ERR(rq)) {
398 		gvt_vgpu_err("fail to allocate gem request\n");
399 		return PTR_ERR(rq);
400 	}
401 
402 	workload->req = i915_request_get(rq);
403 	return 0;
404 }
405 
406 /**
407  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
408  * shadow it as well, include ringbuffer,wa_ctx and ctx.
409  * @workload: an abstract entity for each execlist submission.
410  *
411  * This function is called before the workload submitting to i915, to make
412  * sure the content of the workload is valid.
413  */
414 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
415 {
416 	struct intel_vgpu *vgpu = workload->vgpu;
417 	struct intel_vgpu_submission *s = &vgpu->submission;
418 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
419 	int ret;
420 
421 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
422 
423 	if (workload->shadow)
424 		return 0;
425 
426 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
427 		shadow_context_descriptor_update(s->shadow[workload->ring_id],
428 						 workload);
429 
430 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
431 	if (ret)
432 		return ret;
433 
434 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
435 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
436 		if (ret)
437 			goto err_shadow;
438 	}
439 
440 	workload->shadow = true;
441 	return 0;
442 err_shadow:
443 	release_shadow_wa_ctx(&workload->wa_ctx);
444 	return ret;
445 }
446 
447 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
448 
449 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
450 {
451 	struct intel_gvt *gvt = workload->vgpu->gvt;
452 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
453 	struct intel_vgpu_shadow_bb *bb;
454 	int ret;
455 
456 	list_for_each_entry(bb, &workload->shadow_bb, list) {
457 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
458 		 * is only updated into ring_scan_buffer, not real ring address
459 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
460 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
461 		 * in copy_workload_to_ring_buffer.
462 		 */
463 
464 		if (bb->bb_offset)
465 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
466 				+ bb->bb_offset;
467 
468 		if (bb->ppgtt) {
469 			/* for non-priv bb, scan&shadow is only for
470 			 * debugging purpose, so the content of shadow bb
471 			 * is the same as original bb. Therefore,
472 			 * here, rather than switch to shadow bb's gma
473 			 * address, we directly use original batch buffer's
474 			 * gma address, and send original bb to hardware
475 			 * directly
476 			 */
477 			if (bb->clflush & CLFLUSH_AFTER) {
478 				drm_clflush_virt_range(bb->va,
479 						bb->obj->base.size);
480 				bb->clflush &= ~CLFLUSH_AFTER;
481 			}
482 			i915_gem_object_finish_access(bb->obj);
483 			bb->accessing = false;
484 
485 		} else {
486 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
487 					NULL, 0, 0, 0);
488 			if (IS_ERR(bb->vma)) {
489 				ret = PTR_ERR(bb->vma);
490 				goto err;
491 			}
492 
493 			/* relocate shadow batch buffer */
494 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
495 			if (gmadr_bytes == 8)
496 				bb->bb_start_cmd_va[2] = 0;
497 
498 			/* No one is going to touch shadow bb from now on. */
499 			if (bb->clflush & CLFLUSH_AFTER) {
500 				drm_clflush_virt_range(bb->va,
501 						bb->obj->base.size);
502 				bb->clflush &= ~CLFLUSH_AFTER;
503 			}
504 
505 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
506 								false);
507 			if (ret)
508 				goto err;
509 
510 			ret = i915_vma_move_to_active(bb->vma,
511 						      workload->req,
512 						      0);
513 			if (ret)
514 				goto err;
515 
516 			i915_gem_object_finish_access(bb->obj);
517 			bb->accessing = false;
518 		}
519 	}
520 	return 0;
521 err:
522 	release_shadow_batch_buffer(workload);
523 	return ret;
524 }
525 
526 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
527 {
528 	struct intel_vgpu_workload *workload =
529 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
530 	struct i915_request *rq = workload->req;
531 	struct execlist_ring_context *shadow_ring_context =
532 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
533 
534 	shadow_ring_context->bb_per_ctx_ptr.val =
535 		(shadow_ring_context->bb_per_ctx_ptr.val &
536 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
537 	shadow_ring_context->rcs_indirect_ctx.val =
538 		(shadow_ring_context->rcs_indirect_ctx.val &
539 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
540 }
541 
542 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
543 {
544 	struct i915_vma *vma;
545 	unsigned char *per_ctx_va =
546 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
547 		wa_ctx->indirect_ctx.size;
548 
549 	if (wa_ctx->indirect_ctx.size == 0)
550 		return 0;
551 
552 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
553 				       0, CACHELINE_BYTES, 0);
554 	if (IS_ERR(vma))
555 		return PTR_ERR(vma);
556 
557 	/* FIXME: we are not tracking our pinned VMA leaving it
558 	 * up to the core to fix up the stray pin_count upon
559 	 * free.
560 	 */
561 
562 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
563 
564 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
565 	memset(per_ctx_va, 0, CACHELINE_BYTES);
566 
567 	update_wa_ctx_2_shadow_ctx(wa_ctx);
568 	return 0;
569 }
570 
571 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
572 {
573 	struct intel_vgpu *vgpu = workload->vgpu;
574 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
575 	struct intel_vgpu_shadow_bb *bb, *pos;
576 
577 	if (list_empty(&workload->shadow_bb))
578 		return;
579 
580 	bb = list_first_entry(&workload->shadow_bb,
581 			struct intel_vgpu_shadow_bb, list);
582 
583 	mutex_lock(&dev_priv->drm.struct_mutex);
584 
585 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
586 		if (bb->obj) {
587 			if (bb->accessing)
588 				i915_gem_object_finish_access(bb->obj);
589 
590 			if (bb->va && !IS_ERR(bb->va))
591 				i915_gem_object_unpin_map(bb->obj);
592 
593 			if (bb->vma && !IS_ERR(bb->vma)) {
594 				i915_vma_unpin(bb->vma);
595 				i915_vma_close(bb->vma);
596 			}
597 			i915_gem_object_put(bb->obj);
598 		}
599 		list_del(&bb->list);
600 		kfree(bb);
601 	}
602 
603 	mutex_unlock(&dev_priv->drm.struct_mutex);
604 }
605 
606 static int prepare_workload(struct intel_vgpu_workload *workload)
607 {
608 	struct intel_vgpu *vgpu = workload->vgpu;
609 	struct intel_vgpu_submission *s = &vgpu->submission;
610 	int ring = workload->ring_id;
611 	int ret = 0;
612 
613 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
614 	if (ret) {
615 		gvt_vgpu_err("fail to vgpu pin mm\n");
616 		return ret;
617 	}
618 
619 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
620 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
621 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
622 		return -EINVAL;
623 	}
624 
625 	update_shadow_pdps(workload);
626 
627 	set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context);
628 
629 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
630 	if (ret) {
631 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
632 		goto err_unpin_mm;
633 	}
634 
635 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
636 	if (ret) {
637 		gvt_vgpu_err("fail to flush post shadow\n");
638 		goto err_unpin_mm;
639 	}
640 
641 	ret = copy_workload_to_ring_buffer(workload);
642 	if (ret) {
643 		gvt_vgpu_err("fail to generate request\n");
644 		goto err_unpin_mm;
645 	}
646 
647 	ret = prepare_shadow_batch_buffer(workload);
648 	if (ret) {
649 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
650 		goto err_unpin_mm;
651 	}
652 
653 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
654 	if (ret) {
655 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
656 		goto err_shadow_batch;
657 	}
658 
659 	if (workload->prepare) {
660 		ret = workload->prepare(workload);
661 		if (ret)
662 			goto err_shadow_wa_ctx;
663 	}
664 
665 	return 0;
666 err_shadow_wa_ctx:
667 	release_shadow_wa_ctx(&workload->wa_ctx);
668 err_shadow_batch:
669 	release_shadow_batch_buffer(workload);
670 err_unpin_mm:
671 	intel_vgpu_unpin_mm(workload->shadow_mm);
672 	return ret;
673 }
674 
675 static int dispatch_workload(struct intel_vgpu_workload *workload)
676 {
677 	struct intel_vgpu *vgpu = workload->vgpu;
678 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
679 	struct i915_request *rq;
680 	int ring_id = workload->ring_id;
681 	int ret;
682 
683 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
684 		ring_id, workload);
685 
686 	mutex_lock(&vgpu->vgpu_lock);
687 	mutex_lock(&dev_priv->drm.struct_mutex);
688 
689 	ret = intel_gvt_workload_req_alloc(workload);
690 	if (ret)
691 		goto err_req;
692 
693 	ret = intel_gvt_scan_and_shadow_workload(workload);
694 	if (ret)
695 		goto out;
696 
697 	ret = populate_shadow_context(workload);
698 	if (ret) {
699 		release_shadow_wa_ctx(&workload->wa_ctx);
700 		goto out;
701 	}
702 
703 	ret = prepare_workload(workload);
704 out:
705 	if (ret) {
706 		/* We might still need to add request with
707 		 * clean ctx to retire it properly..
708 		 */
709 		rq = fetch_and_zero(&workload->req);
710 		i915_request_put(rq);
711 	}
712 
713 	if (!IS_ERR_OR_NULL(workload->req)) {
714 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
715 				ring_id, workload->req);
716 		i915_request_add(workload->req);
717 		workload->dispatched = true;
718 	}
719 err_req:
720 	if (ret)
721 		workload->status = ret;
722 	mutex_unlock(&dev_priv->drm.struct_mutex);
723 	mutex_unlock(&vgpu->vgpu_lock);
724 	return ret;
725 }
726 
727 static struct intel_vgpu_workload *pick_next_workload(
728 		struct intel_gvt *gvt, int ring_id)
729 {
730 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
731 	struct intel_vgpu_workload *workload = NULL;
732 
733 	mutex_lock(&gvt->sched_lock);
734 
735 	/*
736 	 * no current vgpu / will be scheduled out / no workload
737 	 * bail out
738 	 */
739 	if (!scheduler->current_vgpu) {
740 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
741 		goto out;
742 	}
743 
744 	if (scheduler->need_reschedule) {
745 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
746 		goto out;
747 	}
748 
749 	if (!scheduler->current_vgpu->active ||
750 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
751 		goto out;
752 
753 	/*
754 	 * still have current workload, maybe the workload disptacher
755 	 * fail to submit it for some reason, resubmit it.
756 	 */
757 	if (scheduler->current_workload[ring_id]) {
758 		workload = scheduler->current_workload[ring_id];
759 		gvt_dbg_sched("ring id %d still have current workload %p\n",
760 				ring_id, workload);
761 		goto out;
762 	}
763 
764 	/*
765 	 * pick a workload as current workload
766 	 * once current workload is set, schedule policy routines
767 	 * will wait the current workload is finished when trying to
768 	 * schedule out a vgpu.
769 	 */
770 	scheduler->current_workload[ring_id] = container_of(
771 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
772 			struct intel_vgpu_workload, list);
773 
774 	workload = scheduler->current_workload[ring_id];
775 
776 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
777 
778 	atomic_inc(&workload->vgpu->submission.running_workload_num);
779 out:
780 	mutex_unlock(&gvt->sched_lock);
781 	return workload;
782 }
783 
784 static void update_guest_context(struct intel_vgpu_workload *workload)
785 {
786 	struct i915_request *rq = workload->req;
787 	struct intel_vgpu *vgpu = workload->vgpu;
788 	struct intel_gvt *gvt = vgpu->gvt;
789 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
790 	struct execlist_ring_context *shadow_ring_context;
791 	struct page *page;
792 	void *src;
793 	unsigned long context_gpa, context_page_num;
794 	int i;
795 	struct drm_i915_private *dev_priv = gvt->dev_priv;
796 	u32 ring_base;
797 	u32 head, tail;
798 	u16 wrap_count;
799 
800 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
801 		      workload->ctx_desc.lrca);
802 
803 	head = workload->rb_head;
804 	tail = workload->rb_tail;
805 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
806 
807 	if (tail < head) {
808 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
809 			wrap_count = 0;
810 		else
811 			wrap_count += 1;
812 	}
813 
814 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
815 
816 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
817 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
818 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
819 
820 	context_page_num = rq->engine->context_size;
821 	context_page_num = context_page_num >> PAGE_SHIFT;
822 
823 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
824 		context_page_num = 19;
825 
826 	i = 2;
827 
828 	while (i < context_page_num) {
829 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
830 				(u32)((workload->ctx_desc.lrca + i) <<
831 					I915_GTT_PAGE_SHIFT));
832 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
833 			gvt_vgpu_err("invalid guest context descriptor\n");
834 			return;
835 		}
836 
837 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
838 		src = kmap(page);
839 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
840 				I915_GTT_PAGE_SIZE);
841 		kunmap(page);
842 		i++;
843 	}
844 
845 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
846 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
847 
848 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
849 	shadow_ring_context = kmap(page);
850 
851 #define COPY_REG(name) \
852 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
853 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
854 
855 	COPY_REG(ctx_ctrl);
856 	COPY_REG(ctx_timestamp);
857 
858 #undef COPY_REG
859 
860 	intel_gvt_hypervisor_write_gpa(vgpu,
861 			workload->ring_context_gpa +
862 			sizeof(*shadow_ring_context),
863 			(void *)shadow_ring_context +
864 			sizeof(*shadow_ring_context),
865 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
866 
867 	kunmap(page);
868 }
869 
870 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
871 				intel_engine_mask_t engine_mask)
872 {
873 	struct intel_vgpu_submission *s = &vgpu->submission;
874 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
875 	struct intel_engine_cs *engine;
876 	struct intel_vgpu_workload *pos, *n;
877 	intel_engine_mask_t tmp;
878 
879 	/* free the unsubmited workloads in the queues. */
880 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
881 		list_for_each_entry_safe(pos, n,
882 			&s->workload_q_head[engine->id], list) {
883 			list_del_init(&pos->list);
884 			intel_vgpu_destroy_workload(pos);
885 		}
886 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
887 	}
888 }
889 
890 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
891 {
892 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
893 	struct intel_vgpu_workload *workload =
894 		scheduler->current_workload[ring_id];
895 	struct intel_vgpu *vgpu = workload->vgpu;
896 	struct intel_vgpu_submission *s = &vgpu->submission;
897 	struct i915_request *rq = workload->req;
898 	int event;
899 
900 	mutex_lock(&vgpu->vgpu_lock);
901 	mutex_lock(&gvt->sched_lock);
902 
903 	/* For the workload w/ request, needs to wait for the context
904 	 * switch to make sure request is completed.
905 	 * For the workload w/o request, directly complete the workload.
906 	 */
907 	if (rq) {
908 		wait_event(workload->shadow_ctx_status_wq,
909 			   !atomic_read(&workload->shadow_ctx_active));
910 
911 		/* If this request caused GPU hang, req->fence.error will
912 		 * be set to -EIO. Use -EIO to set workload status so
913 		 * that when this request caused GPU hang, didn't trigger
914 		 * context switch interrupt to guest.
915 		 */
916 		if (likely(workload->status == -EINPROGRESS)) {
917 			if (workload->req->fence.error == -EIO)
918 				workload->status = -EIO;
919 			else
920 				workload->status = 0;
921 		}
922 
923 		if (!workload->status &&
924 		    !(vgpu->resetting_eng & BIT(ring_id))) {
925 			update_guest_context(workload);
926 
927 			for_each_set_bit(event, workload->pending_events,
928 					 INTEL_GVT_EVENT_MAX)
929 				intel_vgpu_trigger_virtual_event(vgpu, event);
930 		}
931 
932 		i915_request_put(fetch_and_zero(&workload->req));
933 	}
934 
935 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
936 			ring_id, workload, workload->status);
937 
938 	scheduler->current_workload[ring_id] = NULL;
939 
940 	list_del_init(&workload->list);
941 
942 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
943 		/* if workload->status is not successful means HW GPU
944 		 * has occurred GPU hang or something wrong with i915/GVT,
945 		 * and GVT won't inject context switch interrupt to guest.
946 		 * So this error is a vGPU hang actually to the guest.
947 		 * According to this we should emunlate a vGPU hang. If
948 		 * there are pending workloads which are already submitted
949 		 * from guest, we should clean them up like HW GPU does.
950 		 *
951 		 * if it is in middle of engine resetting, the pending
952 		 * workloads won't be submitted to HW GPU and will be
953 		 * cleaned up during the resetting process later, so doing
954 		 * the workload clean up here doesn't have any impact.
955 		 **/
956 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
957 	}
958 
959 	workload->complete(workload);
960 
961 	atomic_dec(&s->running_workload_num);
962 	wake_up(&scheduler->workload_complete_wq);
963 
964 	if (gvt->scheduler.need_reschedule)
965 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
966 
967 	mutex_unlock(&gvt->sched_lock);
968 	mutex_unlock(&vgpu->vgpu_lock);
969 }
970 
971 struct workload_thread_param {
972 	struct intel_gvt *gvt;
973 	int ring_id;
974 };
975 
976 static int workload_thread(void *priv)
977 {
978 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
979 	struct intel_gvt *gvt = p->gvt;
980 	int ring_id = p->ring_id;
981 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
982 	struct intel_vgpu_workload *workload = NULL;
983 	struct intel_vgpu *vgpu = NULL;
984 	int ret;
985 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
986 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
987 	struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
988 
989 	kfree(p);
990 
991 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
992 
993 	while (!kthread_should_stop()) {
994 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
995 		do {
996 			workload = pick_next_workload(gvt, ring_id);
997 			if (workload)
998 				break;
999 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1000 				   MAX_SCHEDULE_TIMEOUT);
1001 		} while (!kthread_should_stop());
1002 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1003 
1004 		if (!workload)
1005 			break;
1006 
1007 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1008 				workload->ring_id, workload,
1009 				workload->vgpu->id);
1010 
1011 		intel_runtime_pm_get(rpm);
1012 
1013 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1014 				workload->ring_id, workload);
1015 
1016 		if (need_force_wake)
1017 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1018 					FORCEWAKE_ALL);
1019 
1020 		ret = dispatch_workload(workload);
1021 
1022 		if (ret) {
1023 			vgpu = workload->vgpu;
1024 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1025 			goto complete;
1026 		}
1027 
1028 		gvt_dbg_sched("ring id %d wait workload %p\n",
1029 				workload->ring_id, workload);
1030 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1031 
1032 complete:
1033 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1034 				workload, workload->status);
1035 
1036 		complete_current_workload(gvt, ring_id);
1037 
1038 		if (need_force_wake)
1039 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1040 					FORCEWAKE_ALL);
1041 
1042 		intel_runtime_pm_put_unchecked(rpm);
1043 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1044 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1045 	}
1046 	return 0;
1047 }
1048 
1049 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1050 {
1051 	struct intel_vgpu_submission *s = &vgpu->submission;
1052 	struct intel_gvt *gvt = vgpu->gvt;
1053 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1054 
1055 	if (atomic_read(&s->running_workload_num)) {
1056 		gvt_dbg_sched("wait vgpu idle\n");
1057 
1058 		wait_event(scheduler->workload_complete_wq,
1059 				!atomic_read(&s->running_workload_num));
1060 	}
1061 }
1062 
1063 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1064 {
1065 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1066 	struct intel_engine_cs *engine;
1067 	enum intel_engine_id i;
1068 
1069 	gvt_dbg_core("clean workload scheduler\n");
1070 
1071 	for_each_engine(engine, gvt->dev_priv, i) {
1072 		atomic_notifier_chain_unregister(
1073 					&engine->context_status_notifier,
1074 					&gvt->shadow_ctx_notifier_block[i]);
1075 		kthread_stop(scheduler->thread[i]);
1076 	}
1077 }
1078 
1079 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1080 {
1081 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1082 	struct workload_thread_param *param = NULL;
1083 	struct intel_engine_cs *engine;
1084 	enum intel_engine_id i;
1085 	int ret;
1086 
1087 	gvt_dbg_core("init workload scheduler\n");
1088 
1089 	init_waitqueue_head(&scheduler->workload_complete_wq);
1090 
1091 	for_each_engine(engine, gvt->dev_priv, i) {
1092 		init_waitqueue_head(&scheduler->waitq[i]);
1093 
1094 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1095 		if (!param) {
1096 			ret = -ENOMEM;
1097 			goto err;
1098 		}
1099 
1100 		param->gvt = gvt;
1101 		param->ring_id = i;
1102 
1103 		scheduler->thread[i] = kthread_run(workload_thread, param,
1104 			"gvt workload %d", i);
1105 		if (IS_ERR(scheduler->thread[i])) {
1106 			gvt_err("fail to create workload thread\n");
1107 			ret = PTR_ERR(scheduler->thread[i]);
1108 			goto err;
1109 		}
1110 
1111 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1112 					shadow_context_status_change;
1113 		atomic_notifier_chain_register(&engine->context_status_notifier,
1114 					&gvt->shadow_ctx_notifier_block[i]);
1115 	}
1116 	return 0;
1117 err:
1118 	intel_gvt_clean_workload_scheduler(gvt);
1119 	kfree(param);
1120 	param = NULL;
1121 	return ret;
1122 }
1123 
1124 static void
1125 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1126 				struct i915_ppgtt *ppgtt)
1127 {
1128 	int i;
1129 
1130 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1131 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1132 	} else {
1133 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1134 			struct i915_page_directory * const pd =
1135 				i915_pd_entry(ppgtt->pd, i);
1136 
1137 			px_dma(pd) = s->i915_context_pdps[i];
1138 		}
1139 	}
1140 }
1141 
1142 /**
1143  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1144  * @vgpu: a vGPU
1145  *
1146  * This function is called when a vGPU is being destroyed.
1147  *
1148  */
1149 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1150 {
1151 	struct intel_vgpu_submission *s = &vgpu->submission;
1152 	struct intel_engine_cs *engine;
1153 	enum intel_engine_id id;
1154 
1155 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1156 
1157 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1158 	for_each_engine(engine, vgpu->gvt->dev_priv, id)
1159 		intel_context_unpin(s->shadow[id]);
1160 
1161 	kmem_cache_destroy(s->workloads);
1162 }
1163 
1164 
1165 /**
1166  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1167  * @vgpu: a vGPU
1168  * @engine_mask: engines expected to be reset
1169  *
1170  * This function is called when a vGPU is being destroyed.
1171  *
1172  */
1173 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1174 				 intel_engine_mask_t engine_mask)
1175 {
1176 	struct intel_vgpu_submission *s = &vgpu->submission;
1177 
1178 	if (!s->active)
1179 		return;
1180 
1181 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1182 	s->ops->reset(vgpu, engine_mask);
1183 }
1184 
1185 static void
1186 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1187 			     struct i915_ppgtt *ppgtt)
1188 {
1189 	int i;
1190 
1191 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1192 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1193 	} else {
1194 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1195 			struct i915_page_directory * const pd =
1196 				i915_pd_entry(ppgtt->pd, i);
1197 
1198 			s->i915_context_pdps[i] = px_dma(pd);
1199 		}
1200 	}
1201 }
1202 
1203 /**
1204  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1205  * @vgpu: a vGPU
1206  *
1207  * This function is called when a vGPU is being created.
1208  *
1209  * Returns:
1210  * Zero on success, negative error code if failed.
1211  *
1212  */
1213 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1214 {
1215 	struct drm_i915_private *i915 = vgpu->gvt->dev_priv;
1216 	struct intel_vgpu_submission *s = &vgpu->submission;
1217 	struct intel_engine_cs *engine;
1218 	struct i915_gem_context *ctx;
1219 	enum intel_engine_id i;
1220 	int ret;
1221 
1222 	mutex_lock(&i915->drm.struct_mutex);
1223 
1224 	ctx = i915_gem_context_create_kernel(i915, I915_PRIORITY_MAX);
1225 	if (IS_ERR(ctx)) {
1226 		ret = PTR_ERR(ctx);
1227 		goto out_unlock;
1228 	}
1229 
1230 	i915_gem_context_set_force_single_submission(ctx);
1231 
1232 	i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1233 
1234 	for_each_engine(engine, i915, i) {
1235 		struct intel_context *ce;
1236 
1237 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1238 		s->shadow[i] = ERR_PTR(-EINVAL);
1239 
1240 		ce = intel_context_create(ctx, engine);
1241 		if (IS_ERR(ce)) {
1242 			ret = PTR_ERR(ce);
1243 			goto out_shadow_ctx;
1244 		}
1245 
1246 		if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1247 			const unsigned int ring_size = 512 * SZ_4K;
1248 
1249 			ce->ring = __intel_context_ring_size(ring_size);
1250 		}
1251 
1252 		ret = intel_context_pin(ce);
1253 		intel_context_put(ce);
1254 		if (ret)
1255 			goto out_shadow_ctx;
1256 
1257 		s->shadow[i] = ce;
1258 	}
1259 
1260 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1261 
1262 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1263 						  sizeof(struct intel_vgpu_workload), 0,
1264 						  SLAB_HWCACHE_ALIGN,
1265 						  offsetof(struct intel_vgpu_workload, rb_tail),
1266 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1267 						  NULL);
1268 
1269 	if (!s->workloads) {
1270 		ret = -ENOMEM;
1271 		goto out_shadow_ctx;
1272 	}
1273 
1274 	atomic_set(&s->running_workload_num, 0);
1275 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1276 
1277 	i915_gem_context_put(ctx);
1278 	mutex_unlock(&i915->drm.struct_mutex);
1279 	return 0;
1280 
1281 out_shadow_ctx:
1282 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1283 	for_each_engine(engine, i915, i) {
1284 		if (IS_ERR(s->shadow[i]))
1285 			break;
1286 
1287 		intel_context_unpin(s->shadow[i]);
1288 		intel_context_put(s->shadow[i]);
1289 	}
1290 	i915_gem_context_put(ctx);
1291 out_unlock:
1292 	mutex_unlock(&i915->drm.struct_mutex);
1293 	return ret;
1294 }
1295 
1296 /**
1297  * intel_vgpu_select_submission_ops - select virtual submission interface
1298  * @vgpu: a vGPU
1299  * @engine_mask: either ALL_ENGINES or target engine mask
1300  * @interface: expected vGPU virtual submission interface
1301  *
1302  * This function is called when guest configures submission interface.
1303  *
1304  * Returns:
1305  * Zero on success, negative error code if failed.
1306  *
1307  */
1308 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1309 				     intel_engine_mask_t engine_mask,
1310 				     unsigned int interface)
1311 {
1312 	struct intel_vgpu_submission *s = &vgpu->submission;
1313 	const struct intel_vgpu_submission_ops *ops[] = {
1314 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1315 			&intel_vgpu_execlist_submission_ops,
1316 	};
1317 	int ret;
1318 
1319 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1320 		return -EINVAL;
1321 
1322 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1323 		return -EINVAL;
1324 
1325 	if (s->active)
1326 		s->ops->clean(vgpu, engine_mask);
1327 
1328 	if (interface == 0) {
1329 		s->ops = NULL;
1330 		s->virtual_submission_interface = 0;
1331 		s->active = false;
1332 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1333 		return 0;
1334 	}
1335 
1336 	ret = ops[interface]->init(vgpu, engine_mask);
1337 	if (ret)
1338 		return ret;
1339 
1340 	s->ops = ops[interface];
1341 	s->virtual_submission_interface = interface;
1342 	s->active = true;
1343 
1344 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1345 			vgpu->id, s->ops->name);
1346 
1347 	return 0;
1348 }
1349 
1350 /**
1351  * intel_vgpu_destroy_workload - destroy a vGPU workload
1352  * @workload: workload to destroy
1353  *
1354  * This function is called when destroy a vGPU workload.
1355  *
1356  */
1357 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1358 {
1359 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1360 
1361 	release_shadow_batch_buffer(workload);
1362 	release_shadow_wa_ctx(&workload->wa_ctx);
1363 
1364 	if (workload->shadow_mm)
1365 		intel_vgpu_mm_put(workload->shadow_mm);
1366 
1367 	kmem_cache_free(s->workloads, workload);
1368 }
1369 
1370 static struct intel_vgpu_workload *
1371 alloc_workload(struct intel_vgpu *vgpu)
1372 {
1373 	struct intel_vgpu_submission *s = &vgpu->submission;
1374 	struct intel_vgpu_workload *workload;
1375 
1376 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1377 	if (!workload)
1378 		return ERR_PTR(-ENOMEM);
1379 
1380 	INIT_LIST_HEAD(&workload->list);
1381 	INIT_LIST_HEAD(&workload->shadow_bb);
1382 
1383 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1384 	atomic_set(&workload->shadow_ctx_active, 0);
1385 
1386 	workload->status = -EINPROGRESS;
1387 	workload->vgpu = vgpu;
1388 
1389 	return workload;
1390 }
1391 
1392 #define RING_CTX_OFF(x) \
1393 	offsetof(struct execlist_ring_context, x)
1394 
1395 static void read_guest_pdps(struct intel_vgpu *vgpu,
1396 		u64 ring_context_gpa, u32 pdp[8])
1397 {
1398 	u64 gpa;
1399 	int i;
1400 
1401 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1402 
1403 	for (i = 0; i < 8; i++)
1404 		intel_gvt_hypervisor_read_gpa(vgpu,
1405 				gpa + i * 8, &pdp[7 - i], 4);
1406 }
1407 
1408 static int prepare_mm(struct intel_vgpu_workload *workload)
1409 {
1410 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1411 	struct intel_vgpu_mm *mm;
1412 	struct intel_vgpu *vgpu = workload->vgpu;
1413 	enum intel_gvt_gtt_type root_entry_type;
1414 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1415 
1416 	switch (desc->addressing_mode) {
1417 	case 1: /* legacy 32-bit */
1418 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1419 		break;
1420 	case 3: /* legacy 64-bit */
1421 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1422 		break;
1423 	default:
1424 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1425 		return -EINVAL;
1426 	}
1427 
1428 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1429 
1430 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1431 	if (IS_ERR(mm))
1432 		return PTR_ERR(mm);
1433 
1434 	workload->shadow_mm = mm;
1435 	return 0;
1436 }
1437 
1438 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1439 		((a)->lrca == (b)->lrca))
1440 
1441 #define get_last_workload(q) \
1442 	(list_empty(q) ? NULL : container_of(q->prev, \
1443 	struct intel_vgpu_workload, list))
1444 /**
1445  * intel_vgpu_create_workload - create a vGPU workload
1446  * @vgpu: a vGPU
1447  * @ring_id: ring index
1448  * @desc: a guest context descriptor
1449  *
1450  * This function is called when creating a vGPU workload.
1451  *
1452  * Returns:
1453  * struct intel_vgpu_workload * on success, negative error code in
1454  * pointer if failed.
1455  *
1456  */
1457 struct intel_vgpu_workload *
1458 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1459 			   struct execlist_ctx_descriptor_format *desc)
1460 {
1461 	struct intel_vgpu_submission *s = &vgpu->submission;
1462 	struct list_head *q = workload_q_head(vgpu, ring_id);
1463 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1464 	struct intel_vgpu_workload *workload = NULL;
1465 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1466 	u64 ring_context_gpa;
1467 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1468 	u32 guest_head;
1469 	int ret;
1470 
1471 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1472 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1473 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1474 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1475 		return ERR_PTR(-EINVAL);
1476 	}
1477 
1478 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1479 			RING_CTX_OFF(ring_header.val), &head, 4);
1480 
1481 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1482 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1483 
1484 	guest_head = head;
1485 
1486 	head &= RB_HEAD_OFF_MASK;
1487 	tail &= RB_TAIL_OFF_MASK;
1488 
1489 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1490 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1491 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1492 				last_workload->rb_tail);
1493 		/*
1494 		 * cannot use guest context head pointer here,
1495 		 * as it might not be updated at this time
1496 		 */
1497 		head = last_workload->rb_tail;
1498 	}
1499 
1500 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1501 
1502 	/* record some ring buffer register values for scan and shadow */
1503 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1504 			RING_CTX_OFF(rb_start.val), &start, 4);
1505 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1506 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1507 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1508 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1509 
1510 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1511 				_RING_CTL_BUF_SIZE(ctl))) {
1512 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1513 		return ERR_PTR(-EINVAL);
1514 	}
1515 
1516 	workload = alloc_workload(vgpu);
1517 	if (IS_ERR(workload))
1518 		return workload;
1519 
1520 	workload->ring_id = ring_id;
1521 	workload->ctx_desc = *desc;
1522 	workload->ring_context_gpa = ring_context_gpa;
1523 	workload->rb_head = head;
1524 	workload->guest_rb_head = guest_head;
1525 	workload->rb_tail = tail;
1526 	workload->rb_start = start;
1527 	workload->rb_ctl = ctl;
1528 
1529 	if (ring_id == RCS0) {
1530 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1531 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1532 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1533 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1534 
1535 		workload->wa_ctx.indirect_ctx.guest_gma =
1536 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1537 		workload->wa_ctx.indirect_ctx.size =
1538 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1539 			CACHELINE_BYTES;
1540 
1541 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1542 			if (!intel_gvt_ggtt_validate_range(vgpu,
1543 				workload->wa_ctx.indirect_ctx.guest_gma,
1544 				workload->wa_ctx.indirect_ctx.size)) {
1545 				kmem_cache_free(s->workloads, workload);
1546 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1547 				    workload->wa_ctx.indirect_ctx.guest_gma);
1548 				return ERR_PTR(-EINVAL);
1549 			}
1550 		}
1551 
1552 		workload->wa_ctx.per_ctx.guest_gma =
1553 			per_ctx & PER_CTX_ADDR_MASK;
1554 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1555 		if (workload->wa_ctx.per_ctx.valid) {
1556 			if (!intel_gvt_ggtt_validate_range(vgpu,
1557 				workload->wa_ctx.per_ctx.guest_gma,
1558 				CACHELINE_BYTES)) {
1559 				kmem_cache_free(s->workloads, workload);
1560 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1561 					workload->wa_ctx.per_ctx.guest_gma);
1562 				return ERR_PTR(-EINVAL);
1563 			}
1564 		}
1565 	}
1566 
1567 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1568 			workload, ring_id, head, tail, start, ctl);
1569 
1570 	ret = prepare_mm(workload);
1571 	if (ret) {
1572 		kmem_cache_free(s->workloads, workload);
1573 		return ERR_PTR(ret);
1574 	}
1575 
1576 	/* Only scan and shadow the first workload in the queue
1577 	 * as there is only one pre-allocated buf-obj for shadow.
1578 	 */
1579 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1580 		intel_runtime_pm_get(&dev_priv->runtime_pm);
1581 		mutex_lock(&dev_priv->drm.struct_mutex);
1582 		ret = intel_gvt_scan_and_shadow_workload(workload);
1583 		mutex_unlock(&dev_priv->drm.struct_mutex);
1584 		intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1585 	}
1586 
1587 	if (ret) {
1588 		if (vgpu_is_vm_unhealthy(ret))
1589 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1590 		intel_vgpu_destroy_workload(workload);
1591 		return ERR_PTR(ret);
1592 	}
1593 
1594 	return workload;
1595 }
1596 
1597 /**
1598  * intel_vgpu_queue_workload - Qeue a vGPU workload
1599  * @workload: the workload to queue in
1600  */
1601 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1602 {
1603 	list_add_tail(&workload->list,
1604 		workload_q_head(workload->vgpu, workload->ring_id));
1605 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1606 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1607 }
1608