xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision b830f94f)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41 
42 #include "i915_drv.h"
43 #include "gvt.h"
44 
45 #define RING_CTX_OFF(x) \
46 	offsetof(struct execlist_ring_context, x)
47 
48 static void set_context_pdp_root_pointer(
49 		struct execlist_ring_context *ring_context,
50 		u32 pdp[8])
51 {
52 	int i;
53 
54 	for (i = 0; i < 8; i++)
55 		ring_context->pdps[i].val = pdp[7 - i];
56 }
57 
58 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59 {
60 	struct drm_i915_gem_object *ctx_obj =
61 		workload->req->hw_context->state->obj;
62 	struct execlist_ring_context *shadow_ring_context;
63 	struct page *page;
64 
65 	if (WARN_ON(!workload->shadow_mm))
66 		return;
67 
68 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69 		return;
70 
71 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72 	shadow_ring_context = kmap(page);
73 	set_context_pdp_root_pointer(shadow_ring_context,
74 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 	kunmap(page);
76 }
77 
78 /*
79  * when populating shadow ctx from guest, we should not overrride oa related
80  * registers, so that they will not be overlapped by guest oa configs. Thus
81  * made it possible to capture oa data from host for both host and guests.
82  */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84 		u32 *reg_state, bool save)
85 {
86 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
88 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
89 	int i = 0;
90 	u32 flex_mmio[] = {
91 		i915_mmio_reg_offset(EU_PERF_CNTL0),
92 		i915_mmio_reg_offset(EU_PERF_CNTL1),
93 		i915_mmio_reg_offset(EU_PERF_CNTL2),
94 		i915_mmio_reg_offset(EU_PERF_CNTL3),
95 		i915_mmio_reg_offset(EU_PERF_CNTL4),
96 		i915_mmio_reg_offset(EU_PERF_CNTL5),
97 		i915_mmio_reg_offset(EU_PERF_CNTL6),
98 	};
99 
100 	if (workload->ring_id != RCS0)
101 		return;
102 
103 	if (save) {
104 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105 
106 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107 			u32 state_offset = ctx_flexeu0 + i * 2;
108 
109 			workload->flex_mmio[i] = reg_state[state_offset + 1];
110 		}
111 	} else {
112 		reg_state[ctx_oactxctrl] =
113 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115 
116 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117 			u32 state_offset = ctx_flexeu0 + i * 2;
118 			u32 mmio = flex_mmio[i];
119 
120 			reg_state[state_offset] = mmio;
121 			reg_state[state_offset + 1] = workload->flex_mmio[i];
122 		}
123 	}
124 }
125 
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128 	struct intel_vgpu *vgpu = workload->vgpu;
129 	struct intel_gvt *gvt = vgpu->gvt;
130 	int ring_id = workload->ring_id;
131 	struct drm_i915_gem_object *ctx_obj =
132 		workload->req->hw_context->state->obj;
133 	struct execlist_ring_context *shadow_ring_context;
134 	struct page *page;
135 	void *dst;
136 	unsigned long context_gpa, context_page_num;
137 	int i;
138 
139 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140 	shadow_ring_context = kmap(page);
141 
142 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 					      + RING_CTX_OFF(name.val),\
149 					      &shadow_ring_context->name.val, 4);\
150 		shadow_ring_context->name.val |= 0xffff << 16;\
151 	}
152 
153 	COPY_REG_MASKED(ctx_ctrl);
154 	COPY_REG(ctx_timestamp);
155 
156 	if (ring_id == RCS0) {
157 		COPY_REG(bb_per_ctx_ptr);
158 		COPY_REG(rcs_indirect_ctx);
159 		COPY_REG(rcs_indirect_ctx_offset);
160 	}
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163 
164 	intel_gvt_hypervisor_read_gpa(vgpu,
165 			workload->ring_context_gpa +
166 			sizeof(*shadow_ring_context),
167 			(void *)shadow_ring_context +
168 			sizeof(*shadow_ring_context),
169 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170 
171 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172 	kunmap(page);
173 
174 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175 		return 0;
176 
177 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178 			workload->ctx_desc.lrca);
179 
180 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181 
182 	context_page_num = context_page_num >> PAGE_SHIFT;
183 
184 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185 		context_page_num = 19;
186 
187 	i = 2;
188 	while (i < context_page_num) {
189 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190 				(u32)((workload->ctx_desc.lrca + i) <<
191 				I915_GTT_PAGE_SHIFT));
192 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193 			gvt_vgpu_err("Invalid guest context descriptor\n");
194 			return -EFAULT;
195 		}
196 
197 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198 		dst = kmap(page);
199 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200 				I915_GTT_PAGE_SIZE);
201 		kunmap(page);
202 		i++;
203 	}
204 	return 0;
205 }
206 
207 static inline bool is_gvt_request(struct i915_request *req)
208 {
209 	return i915_gem_context_force_single_submission(req->gem_context);
210 }
211 
212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213 {
214 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216 	i915_reg_t reg;
217 
218 	reg = RING_INSTDONE(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 	reg = RING_ACTHD(ring_base);
221 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222 	reg = RING_ACTHD_UDW(ring_base);
223 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224 }
225 
226 static int shadow_context_status_change(struct notifier_block *nb,
227 		unsigned long action, void *data)
228 {
229 	struct i915_request *req = data;
230 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231 				shadow_ctx_notifier_block[req->engine->id]);
232 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233 	enum intel_engine_id ring_id = req->engine->id;
234 	struct intel_vgpu_workload *workload;
235 	unsigned long flags;
236 
237 	if (!is_gvt_request(req)) {
238 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240 		    scheduler->engine_owner[ring_id]) {
241 			/* Switch ring from vGPU to host. */
242 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243 					      NULL, ring_id);
244 			scheduler->engine_owner[ring_id] = NULL;
245 		}
246 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247 
248 		return NOTIFY_OK;
249 	}
250 
251 	workload = scheduler->current_workload[ring_id];
252 	if (unlikely(!workload))
253 		return NOTIFY_OK;
254 
255 	switch (action) {
256 	case INTEL_CONTEXT_SCHEDULE_IN:
257 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259 			/* Switch ring from host to vGPU or vGPU to vGPU. */
260 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261 					      workload->vgpu, ring_id);
262 			scheduler->engine_owner[ring_id] = workload->vgpu;
263 		} else
264 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265 				      ring_id, workload->vgpu->id);
266 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267 		atomic_set(&workload->shadow_ctx_active, 1);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_OUT:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		atomic_set(&workload->shadow_ctx_active, 0);
272 		break;
273 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274 		save_ring_hw_state(workload->vgpu, ring_id);
275 		break;
276 	default:
277 		WARN_ON(1);
278 		return NOTIFY_OK;
279 	}
280 	wake_up(&workload->shadow_ctx_status_wq);
281 	return NOTIFY_OK;
282 }
283 
284 static void
285 shadow_context_descriptor_update(struct intel_context *ce,
286 				 struct intel_vgpu_workload *workload)
287 {
288 	u64 desc = ce->lrc_desc;
289 
290 	/*
291 	 * Update bits 0-11 of the context descriptor which includes flags
292 	 * like GEN8_CTX_* cached in desc_template
293 	 */
294 	desc &= U64_MAX << 12;
295 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
296 
297 	desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
298 	desc |= workload->ctx_desc.addressing_mode <<
299 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
300 
301 	ce->lrc_desc = desc;
302 }
303 
304 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
305 {
306 	struct intel_vgpu *vgpu = workload->vgpu;
307 	struct i915_request *req = workload->req;
308 	void *shadow_ring_buffer_va;
309 	u32 *cs;
310 	int err;
311 
312 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
313 		intel_vgpu_restore_inhibit_context(vgpu, req);
314 
315 	/*
316 	 * To track whether a request has started on HW, we can emit a
317 	 * breadcrumb at the beginning of the request and check its
318 	 * timeline's HWSP to see if the breadcrumb has advanced past the
319 	 * start of this request. Actually, the request must have the
320 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
321 	 * scheduler might get a wrong state of it during reset. Since the
322 	 * requests from gvt always set the has_init_breadcrumb flag, here
323 	 * need to do the emit_init_breadcrumb for all the requests.
324 	 */
325 	if (req->engine->emit_init_breadcrumb) {
326 		err = req->engine->emit_init_breadcrumb(req);
327 		if (err) {
328 			gvt_vgpu_err("fail to emit init breadcrumb\n");
329 			return err;
330 		}
331 	}
332 
333 	/* allocate shadow ring buffer */
334 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
335 	if (IS_ERR(cs)) {
336 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
337 			workload->rb_len);
338 		return PTR_ERR(cs);
339 	}
340 
341 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
342 
343 	/* get shadow ring buffer va */
344 	workload->shadow_ring_buffer_va = cs;
345 
346 	memcpy(cs, shadow_ring_buffer_va,
347 			workload->rb_len);
348 
349 	cs += workload->rb_len / sizeof(u32);
350 	intel_ring_advance(workload->req, cs);
351 
352 	return 0;
353 }
354 
355 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
356 {
357 	if (!wa_ctx->indirect_ctx.obj)
358 		return;
359 
360 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
361 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
362 
363 	wa_ctx->indirect_ctx.obj = NULL;
364 	wa_ctx->indirect_ctx.shadow_va = NULL;
365 }
366 
367 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
368 					 struct i915_gem_context *ctx)
369 {
370 	struct intel_vgpu_mm *mm = workload->shadow_mm;
371 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
372 	int i = 0;
373 
374 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
375 		return -EINVAL;
376 
377 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
378 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
379 	} else {
380 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
381 			struct i915_page_directory * const pd =
382 				i915_pd_entry(ppgtt->pd, i);
383 
384 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
385 		}
386 	}
387 
388 	return 0;
389 }
390 
391 static int
392 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
393 {
394 	struct intel_vgpu *vgpu = workload->vgpu;
395 	struct intel_vgpu_submission *s = &vgpu->submission;
396 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
397 	struct i915_request *rq;
398 
399 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
400 
401 	if (workload->req)
402 		return 0;
403 
404 	rq = i915_request_create(s->shadow[workload->ring_id]);
405 	if (IS_ERR(rq)) {
406 		gvt_vgpu_err("fail to allocate gem request\n");
407 		return PTR_ERR(rq);
408 	}
409 
410 	workload->req = i915_request_get(rq);
411 	return 0;
412 }
413 
414 /**
415  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
416  * shadow it as well, include ringbuffer,wa_ctx and ctx.
417  * @workload: an abstract entity for each execlist submission.
418  *
419  * This function is called before the workload submitting to i915, to make
420  * sure the content of the workload is valid.
421  */
422 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
423 {
424 	struct intel_vgpu *vgpu = workload->vgpu;
425 	struct intel_vgpu_submission *s = &vgpu->submission;
426 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
427 	int ret;
428 
429 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
430 
431 	if (workload->shadow)
432 		return 0;
433 
434 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
435 		shadow_context_descriptor_update(s->shadow[workload->ring_id],
436 						 workload);
437 
438 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
439 	if (ret)
440 		return ret;
441 
442 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
443 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
444 		if (ret)
445 			goto err_shadow;
446 	}
447 
448 	workload->shadow = true;
449 	return 0;
450 err_shadow:
451 	release_shadow_wa_ctx(&workload->wa_ctx);
452 	return ret;
453 }
454 
455 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
456 
457 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
458 {
459 	struct intel_gvt *gvt = workload->vgpu->gvt;
460 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
461 	struct intel_vgpu_shadow_bb *bb;
462 	int ret;
463 
464 	list_for_each_entry(bb, &workload->shadow_bb, list) {
465 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
466 		 * is only updated into ring_scan_buffer, not real ring address
467 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
468 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
469 		 * in copy_workload_to_ring_buffer.
470 		 */
471 
472 		if (bb->bb_offset)
473 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
474 				+ bb->bb_offset;
475 
476 		if (bb->ppgtt) {
477 			/* for non-priv bb, scan&shadow is only for
478 			 * debugging purpose, so the content of shadow bb
479 			 * is the same as original bb. Therefore,
480 			 * here, rather than switch to shadow bb's gma
481 			 * address, we directly use original batch buffer's
482 			 * gma address, and send original bb to hardware
483 			 * directly
484 			 */
485 			if (bb->clflush & CLFLUSH_AFTER) {
486 				drm_clflush_virt_range(bb->va,
487 						bb->obj->base.size);
488 				bb->clflush &= ~CLFLUSH_AFTER;
489 			}
490 			i915_gem_object_finish_access(bb->obj);
491 			bb->accessing = false;
492 
493 		} else {
494 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
495 					NULL, 0, 0, 0);
496 			if (IS_ERR(bb->vma)) {
497 				ret = PTR_ERR(bb->vma);
498 				goto err;
499 			}
500 
501 			/* relocate shadow batch buffer */
502 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
503 			if (gmadr_bytes == 8)
504 				bb->bb_start_cmd_va[2] = 0;
505 
506 			/* No one is going to touch shadow bb from now on. */
507 			if (bb->clflush & CLFLUSH_AFTER) {
508 				drm_clflush_virt_range(bb->va,
509 						bb->obj->base.size);
510 				bb->clflush &= ~CLFLUSH_AFTER;
511 			}
512 
513 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
514 								false);
515 			if (ret)
516 				goto err;
517 
518 			ret = i915_vma_move_to_active(bb->vma,
519 						      workload->req,
520 						      0);
521 			if (ret)
522 				goto err;
523 
524 			i915_gem_object_finish_access(bb->obj);
525 			bb->accessing = false;
526 		}
527 	}
528 	return 0;
529 err:
530 	release_shadow_batch_buffer(workload);
531 	return ret;
532 }
533 
534 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
535 {
536 	struct intel_vgpu_workload *workload =
537 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
538 	struct i915_request *rq = workload->req;
539 	struct execlist_ring_context *shadow_ring_context =
540 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
541 
542 	shadow_ring_context->bb_per_ctx_ptr.val =
543 		(shadow_ring_context->bb_per_ctx_ptr.val &
544 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
545 	shadow_ring_context->rcs_indirect_ctx.val =
546 		(shadow_ring_context->rcs_indirect_ctx.val &
547 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
548 }
549 
550 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
551 {
552 	struct i915_vma *vma;
553 	unsigned char *per_ctx_va =
554 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
555 		wa_ctx->indirect_ctx.size;
556 
557 	if (wa_ctx->indirect_ctx.size == 0)
558 		return 0;
559 
560 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
561 				       0, CACHELINE_BYTES, 0);
562 	if (IS_ERR(vma))
563 		return PTR_ERR(vma);
564 
565 	/* FIXME: we are not tracking our pinned VMA leaving it
566 	 * up to the core to fix up the stray pin_count upon
567 	 * free.
568 	 */
569 
570 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
571 
572 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
573 	memset(per_ctx_va, 0, CACHELINE_BYTES);
574 
575 	update_wa_ctx_2_shadow_ctx(wa_ctx);
576 	return 0;
577 }
578 
579 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
580 {
581 	struct intel_vgpu *vgpu = workload->vgpu;
582 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
583 	struct intel_vgpu_shadow_bb *bb, *pos;
584 
585 	if (list_empty(&workload->shadow_bb))
586 		return;
587 
588 	bb = list_first_entry(&workload->shadow_bb,
589 			struct intel_vgpu_shadow_bb, list);
590 
591 	mutex_lock(&dev_priv->drm.struct_mutex);
592 
593 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
594 		if (bb->obj) {
595 			if (bb->accessing)
596 				i915_gem_object_finish_access(bb->obj);
597 
598 			if (bb->va && !IS_ERR(bb->va))
599 				i915_gem_object_unpin_map(bb->obj);
600 
601 			if (bb->vma && !IS_ERR(bb->vma)) {
602 				i915_vma_unpin(bb->vma);
603 				i915_vma_close(bb->vma);
604 			}
605 			i915_gem_object_put(bb->obj);
606 		}
607 		list_del(&bb->list);
608 		kfree(bb);
609 	}
610 
611 	mutex_unlock(&dev_priv->drm.struct_mutex);
612 }
613 
614 static int prepare_workload(struct intel_vgpu_workload *workload)
615 {
616 	struct intel_vgpu *vgpu = workload->vgpu;
617 	int ret = 0;
618 
619 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
620 	if (ret) {
621 		gvt_vgpu_err("fail to vgpu pin mm\n");
622 		return ret;
623 	}
624 
625 	update_shadow_pdps(workload);
626 
627 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
628 	if (ret) {
629 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
630 		goto err_unpin_mm;
631 	}
632 
633 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
634 	if (ret) {
635 		gvt_vgpu_err("fail to flush post shadow\n");
636 		goto err_unpin_mm;
637 	}
638 
639 	ret = copy_workload_to_ring_buffer(workload);
640 	if (ret) {
641 		gvt_vgpu_err("fail to generate request\n");
642 		goto err_unpin_mm;
643 	}
644 
645 	ret = prepare_shadow_batch_buffer(workload);
646 	if (ret) {
647 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
648 		goto err_unpin_mm;
649 	}
650 
651 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
652 	if (ret) {
653 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
654 		goto err_shadow_batch;
655 	}
656 
657 	if (workload->prepare) {
658 		ret = workload->prepare(workload);
659 		if (ret)
660 			goto err_shadow_wa_ctx;
661 	}
662 
663 	return 0;
664 err_shadow_wa_ctx:
665 	release_shadow_wa_ctx(&workload->wa_ctx);
666 err_shadow_batch:
667 	release_shadow_batch_buffer(workload);
668 err_unpin_mm:
669 	intel_vgpu_unpin_mm(workload->shadow_mm);
670 	return ret;
671 }
672 
673 static int dispatch_workload(struct intel_vgpu_workload *workload)
674 {
675 	struct intel_vgpu *vgpu = workload->vgpu;
676 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
677 	struct intel_vgpu_submission *s = &vgpu->submission;
678 	struct i915_request *rq;
679 	int ring_id = workload->ring_id;
680 	int ret;
681 
682 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
683 		ring_id, workload);
684 
685 	mutex_lock(&vgpu->vgpu_lock);
686 	mutex_lock(&dev_priv->drm.struct_mutex);
687 
688 	ret = set_context_ppgtt_from_shadow(workload,
689 					    s->shadow[ring_id]->gem_context);
690 	if (ret < 0) {
691 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
692 		goto err_req;
693 	}
694 
695 	ret = intel_gvt_workload_req_alloc(workload);
696 	if (ret)
697 		goto err_req;
698 
699 	ret = intel_gvt_scan_and_shadow_workload(workload);
700 	if (ret)
701 		goto out;
702 
703 	ret = populate_shadow_context(workload);
704 	if (ret) {
705 		release_shadow_wa_ctx(&workload->wa_ctx);
706 		goto out;
707 	}
708 
709 	ret = prepare_workload(workload);
710 out:
711 	if (ret) {
712 		/* We might still need to add request with
713 		 * clean ctx to retire it properly..
714 		 */
715 		rq = fetch_and_zero(&workload->req);
716 		i915_request_put(rq);
717 	}
718 
719 	if (!IS_ERR_OR_NULL(workload->req)) {
720 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
721 				ring_id, workload->req);
722 		i915_request_add(workload->req);
723 		workload->dispatched = true;
724 	}
725 err_req:
726 	if (ret)
727 		workload->status = ret;
728 	mutex_unlock(&dev_priv->drm.struct_mutex);
729 	mutex_unlock(&vgpu->vgpu_lock);
730 	return ret;
731 }
732 
733 static struct intel_vgpu_workload *pick_next_workload(
734 		struct intel_gvt *gvt, int ring_id)
735 {
736 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
737 	struct intel_vgpu_workload *workload = NULL;
738 
739 	mutex_lock(&gvt->sched_lock);
740 
741 	/*
742 	 * no current vgpu / will be scheduled out / no workload
743 	 * bail out
744 	 */
745 	if (!scheduler->current_vgpu) {
746 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
747 		goto out;
748 	}
749 
750 	if (scheduler->need_reschedule) {
751 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
752 		goto out;
753 	}
754 
755 	if (!scheduler->current_vgpu->active ||
756 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
757 		goto out;
758 
759 	/*
760 	 * still have current workload, maybe the workload disptacher
761 	 * fail to submit it for some reason, resubmit it.
762 	 */
763 	if (scheduler->current_workload[ring_id]) {
764 		workload = scheduler->current_workload[ring_id];
765 		gvt_dbg_sched("ring id %d still have current workload %p\n",
766 				ring_id, workload);
767 		goto out;
768 	}
769 
770 	/*
771 	 * pick a workload as current workload
772 	 * once current workload is set, schedule policy routines
773 	 * will wait the current workload is finished when trying to
774 	 * schedule out a vgpu.
775 	 */
776 	scheduler->current_workload[ring_id] = container_of(
777 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
778 			struct intel_vgpu_workload, list);
779 
780 	workload = scheduler->current_workload[ring_id];
781 
782 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
783 
784 	atomic_inc(&workload->vgpu->submission.running_workload_num);
785 out:
786 	mutex_unlock(&gvt->sched_lock);
787 	return workload;
788 }
789 
790 static void update_guest_context(struct intel_vgpu_workload *workload)
791 {
792 	struct i915_request *rq = workload->req;
793 	struct intel_vgpu *vgpu = workload->vgpu;
794 	struct intel_gvt *gvt = vgpu->gvt;
795 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
796 	struct execlist_ring_context *shadow_ring_context;
797 	struct page *page;
798 	void *src;
799 	unsigned long context_gpa, context_page_num;
800 	int i;
801 	struct drm_i915_private *dev_priv = gvt->dev_priv;
802 	u32 ring_base;
803 	u32 head, tail;
804 	u16 wrap_count;
805 
806 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
807 		      workload->ctx_desc.lrca);
808 
809 	head = workload->rb_head;
810 	tail = workload->rb_tail;
811 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
812 
813 	if (tail < head) {
814 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
815 			wrap_count = 0;
816 		else
817 			wrap_count += 1;
818 	}
819 
820 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
821 
822 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
823 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
824 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
825 
826 	context_page_num = rq->engine->context_size;
827 	context_page_num = context_page_num >> PAGE_SHIFT;
828 
829 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
830 		context_page_num = 19;
831 
832 	i = 2;
833 
834 	while (i < context_page_num) {
835 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
836 				(u32)((workload->ctx_desc.lrca + i) <<
837 					I915_GTT_PAGE_SHIFT));
838 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
839 			gvt_vgpu_err("invalid guest context descriptor\n");
840 			return;
841 		}
842 
843 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
844 		src = kmap(page);
845 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
846 				I915_GTT_PAGE_SIZE);
847 		kunmap(page);
848 		i++;
849 	}
850 
851 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
852 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
853 
854 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
855 	shadow_ring_context = kmap(page);
856 
857 #define COPY_REG(name) \
858 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
859 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
860 
861 	COPY_REG(ctx_ctrl);
862 	COPY_REG(ctx_timestamp);
863 
864 #undef COPY_REG
865 
866 	intel_gvt_hypervisor_write_gpa(vgpu,
867 			workload->ring_context_gpa +
868 			sizeof(*shadow_ring_context),
869 			(void *)shadow_ring_context +
870 			sizeof(*shadow_ring_context),
871 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
872 
873 	kunmap(page);
874 }
875 
876 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
877 				intel_engine_mask_t engine_mask)
878 {
879 	struct intel_vgpu_submission *s = &vgpu->submission;
880 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
881 	struct intel_engine_cs *engine;
882 	struct intel_vgpu_workload *pos, *n;
883 	intel_engine_mask_t tmp;
884 
885 	/* free the unsubmited workloads in the queues. */
886 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
887 		list_for_each_entry_safe(pos, n,
888 			&s->workload_q_head[engine->id], list) {
889 			list_del_init(&pos->list);
890 			intel_vgpu_destroy_workload(pos);
891 		}
892 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
893 	}
894 }
895 
896 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
897 {
898 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
899 	struct intel_vgpu_workload *workload =
900 		scheduler->current_workload[ring_id];
901 	struct intel_vgpu *vgpu = workload->vgpu;
902 	struct intel_vgpu_submission *s = &vgpu->submission;
903 	struct i915_request *rq = workload->req;
904 	int event;
905 
906 	mutex_lock(&vgpu->vgpu_lock);
907 	mutex_lock(&gvt->sched_lock);
908 
909 	/* For the workload w/ request, needs to wait for the context
910 	 * switch to make sure request is completed.
911 	 * For the workload w/o request, directly complete the workload.
912 	 */
913 	if (rq) {
914 		wait_event(workload->shadow_ctx_status_wq,
915 			   !atomic_read(&workload->shadow_ctx_active));
916 
917 		/* If this request caused GPU hang, req->fence.error will
918 		 * be set to -EIO. Use -EIO to set workload status so
919 		 * that when this request caused GPU hang, didn't trigger
920 		 * context switch interrupt to guest.
921 		 */
922 		if (likely(workload->status == -EINPROGRESS)) {
923 			if (workload->req->fence.error == -EIO)
924 				workload->status = -EIO;
925 			else
926 				workload->status = 0;
927 		}
928 
929 		if (!workload->status &&
930 		    !(vgpu->resetting_eng & BIT(ring_id))) {
931 			update_guest_context(workload);
932 
933 			for_each_set_bit(event, workload->pending_events,
934 					 INTEL_GVT_EVENT_MAX)
935 				intel_vgpu_trigger_virtual_event(vgpu, event);
936 		}
937 
938 		i915_request_put(fetch_and_zero(&workload->req));
939 	}
940 
941 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
942 			ring_id, workload, workload->status);
943 
944 	scheduler->current_workload[ring_id] = NULL;
945 
946 	list_del_init(&workload->list);
947 
948 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
949 		/* if workload->status is not successful means HW GPU
950 		 * has occurred GPU hang or something wrong with i915/GVT,
951 		 * and GVT won't inject context switch interrupt to guest.
952 		 * So this error is a vGPU hang actually to the guest.
953 		 * According to this we should emunlate a vGPU hang. If
954 		 * there are pending workloads which are already submitted
955 		 * from guest, we should clean them up like HW GPU does.
956 		 *
957 		 * if it is in middle of engine resetting, the pending
958 		 * workloads won't be submitted to HW GPU and will be
959 		 * cleaned up during the resetting process later, so doing
960 		 * the workload clean up here doesn't have any impact.
961 		 **/
962 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
963 	}
964 
965 	workload->complete(workload);
966 
967 	atomic_dec(&s->running_workload_num);
968 	wake_up(&scheduler->workload_complete_wq);
969 
970 	if (gvt->scheduler.need_reschedule)
971 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
972 
973 	mutex_unlock(&gvt->sched_lock);
974 	mutex_unlock(&vgpu->vgpu_lock);
975 }
976 
977 struct workload_thread_param {
978 	struct intel_gvt *gvt;
979 	int ring_id;
980 };
981 
982 static int workload_thread(void *priv)
983 {
984 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
985 	struct intel_gvt *gvt = p->gvt;
986 	int ring_id = p->ring_id;
987 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
988 	struct intel_vgpu_workload *workload = NULL;
989 	struct intel_vgpu *vgpu = NULL;
990 	int ret;
991 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
992 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
993 
994 	kfree(p);
995 
996 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
997 
998 	while (!kthread_should_stop()) {
999 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
1000 		do {
1001 			workload = pick_next_workload(gvt, ring_id);
1002 			if (workload)
1003 				break;
1004 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1005 				   MAX_SCHEDULE_TIMEOUT);
1006 		} while (!kthread_should_stop());
1007 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1008 
1009 		if (!workload)
1010 			break;
1011 
1012 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1013 				workload->ring_id, workload,
1014 				workload->vgpu->id);
1015 
1016 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1017 				workload->ring_id, workload);
1018 
1019 		if (need_force_wake)
1020 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1021 					FORCEWAKE_ALL);
1022 
1023 		ret = dispatch_workload(workload);
1024 
1025 		if (ret) {
1026 			vgpu = workload->vgpu;
1027 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1028 			goto complete;
1029 		}
1030 
1031 		gvt_dbg_sched("ring id %d wait workload %p\n",
1032 				workload->ring_id, workload);
1033 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1034 
1035 complete:
1036 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1037 				workload, workload->status);
1038 
1039 		complete_current_workload(gvt, ring_id);
1040 
1041 		if (need_force_wake)
1042 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1043 					FORCEWAKE_ALL);
1044 
1045 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1046 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1047 	}
1048 	return 0;
1049 }
1050 
1051 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1052 {
1053 	struct intel_vgpu_submission *s = &vgpu->submission;
1054 	struct intel_gvt *gvt = vgpu->gvt;
1055 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1056 
1057 	if (atomic_read(&s->running_workload_num)) {
1058 		gvt_dbg_sched("wait vgpu idle\n");
1059 
1060 		wait_event(scheduler->workload_complete_wq,
1061 				!atomic_read(&s->running_workload_num));
1062 	}
1063 }
1064 
1065 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1066 {
1067 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1068 	struct intel_engine_cs *engine;
1069 	enum intel_engine_id i;
1070 
1071 	gvt_dbg_core("clean workload scheduler\n");
1072 
1073 	for_each_engine(engine, gvt->dev_priv, i) {
1074 		atomic_notifier_chain_unregister(
1075 					&engine->context_status_notifier,
1076 					&gvt->shadow_ctx_notifier_block[i]);
1077 		kthread_stop(scheduler->thread[i]);
1078 	}
1079 }
1080 
1081 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1082 {
1083 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1084 	struct workload_thread_param *param = NULL;
1085 	struct intel_engine_cs *engine;
1086 	enum intel_engine_id i;
1087 	int ret;
1088 
1089 	gvt_dbg_core("init workload scheduler\n");
1090 
1091 	init_waitqueue_head(&scheduler->workload_complete_wq);
1092 
1093 	for_each_engine(engine, gvt->dev_priv, i) {
1094 		init_waitqueue_head(&scheduler->waitq[i]);
1095 
1096 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1097 		if (!param) {
1098 			ret = -ENOMEM;
1099 			goto err;
1100 		}
1101 
1102 		param->gvt = gvt;
1103 		param->ring_id = i;
1104 
1105 		scheduler->thread[i] = kthread_run(workload_thread, param,
1106 			"gvt workload %d", i);
1107 		if (IS_ERR(scheduler->thread[i])) {
1108 			gvt_err("fail to create workload thread\n");
1109 			ret = PTR_ERR(scheduler->thread[i]);
1110 			goto err;
1111 		}
1112 
1113 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1114 					shadow_context_status_change;
1115 		atomic_notifier_chain_register(&engine->context_status_notifier,
1116 					&gvt->shadow_ctx_notifier_block[i]);
1117 	}
1118 	return 0;
1119 err:
1120 	intel_gvt_clean_workload_scheduler(gvt);
1121 	kfree(param);
1122 	param = NULL;
1123 	return ret;
1124 }
1125 
1126 static void
1127 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1128 				struct i915_ppgtt *ppgtt)
1129 {
1130 	int i;
1131 
1132 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1133 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1134 	} else {
1135 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1136 			struct i915_page_directory * const pd =
1137 				i915_pd_entry(ppgtt->pd, i);
1138 
1139 			px_dma(pd) = s->i915_context_pdps[i];
1140 		}
1141 	}
1142 }
1143 
1144 /**
1145  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1146  * @vgpu: a vGPU
1147  *
1148  * This function is called when a vGPU is being destroyed.
1149  *
1150  */
1151 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1152 {
1153 	struct intel_vgpu_submission *s = &vgpu->submission;
1154 	struct intel_engine_cs *engine;
1155 	enum intel_engine_id id;
1156 
1157 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1158 
1159 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->gem_context->vm));
1160 	for_each_engine(engine, vgpu->gvt->dev_priv, id)
1161 		intel_context_unpin(s->shadow[id]);
1162 
1163 	kmem_cache_destroy(s->workloads);
1164 }
1165 
1166 
1167 /**
1168  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1169  * @vgpu: a vGPU
1170  * @engine_mask: engines expected to be reset
1171  *
1172  * This function is called when a vGPU is being destroyed.
1173  *
1174  */
1175 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1176 				 intel_engine_mask_t engine_mask)
1177 {
1178 	struct intel_vgpu_submission *s = &vgpu->submission;
1179 
1180 	if (!s->active)
1181 		return;
1182 
1183 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1184 	s->ops->reset(vgpu, engine_mask);
1185 }
1186 
1187 static void
1188 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1189 			     struct i915_ppgtt *ppgtt)
1190 {
1191 	int i;
1192 
1193 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1194 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1195 	} else {
1196 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1197 			struct i915_page_directory * const pd =
1198 				i915_pd_entry(ppgtt->pd, i);
1199 
1200 			s->i915_context_pdps[i] = px_dma(pd);
1201 		}
1202 	}
1203 }
1204 
1205 /**
1206  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1207  * @vgpu: a vGPU
1208  *
1209  * This function is called when a vGPU is being created.
1210  *
1211  * Returns:
1212  * Zero on success, negative error code if failed.
1213  *
1214  */
1215 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1216 {
1217 	struct intel_vgpu_submission *s = &vgpu->submission;
1218 	struct intel_engine_cs *engine;
1219 	struct i915_gem_context *ctx;
1220 	enum intel_engine_id i;
1221 	int ret;
1222 
1223 	ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm);
1224 	if (IS_ERR(ctx))
1225 		return PTR_ERR(ctx);
1226 
1227 	i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1228 
1229 	for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1230 		struct intel_context *ce;
1231 
1232 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1233 		s->shadow[i] = ERR_PTR(-EINVAL);
1234 
1235 		ce = i915_gem_context_get_engine(ctx, i);
1236 		if (IS_ERR(ce)) {
1237 			ret = PTR_ERR(ce);
1238 			goto out_shadow_ctx;
1239 		}
1240 
1241 		ret = intel_context_pin(ce);
1242 		intel_context_put(ce);
1243 		if (ret)
1244 			goto out_shadow_ctx;
1245 
1246 		s->shadow[i] = ce;
1247 	}
1248 
1249 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1250 
1251 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1252 						  sizeof(struct intel_vgpu_workload), 0,
1253 						  SLAB_HWCACHE_ALIGN,
1254 						  offsetof(struct intel_vgpu_workload, rb_tail),
1255 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1256 						  NULL);
1257 
1258 	if (!s->workloads) {
1259 		ret = -ENOMEM;
1260 		goto out_shadow_ctx;
1261 	}
1262 
1263 	atomic_set(&s->running_workload_num, 0);
1264 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1265 
1266 	i915_gem_context_put(ctx);
1267 	return 0;
1268 
1269 out_shadow_ctx:
1270 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1271 	for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1272 		if (IS_ERR(s->shadow[i]))
1273 			break;
1274 
1275 		intel_context_unpin(s->shadow[i]);
1276 	}
1277 	i915_gem_context_put(ctx);
1278 	return ret;
1279 }
1280 
1281 /**
1282  * intel_vgpu_select_submission_ops - select virtual submission interface
1283  * @vgpu: a vGPU
1284  * @engine_mask: either ALL_ENGINES or target engine mask
1285  * @interface: expected vGPU virtual submission interface
1286  *
1287  * This function is called when guest configures submission interface.
1288  *
1289  * Returns:
1290  * Zero on success, negative error code if failed.
1291  *
1292  */
1293 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1294 				     intel_engine_mask_t engine_mask,
1295 				     unsigned int interface)
1296 {
1297 	struct intel_vgpu_submission *s = &vgpu->submission;
1298 	const struct intel_vgpu_submission_ops *ops[] = {
1299 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1300 			&intel_vgpu_execlist_submission_ops,
1301 	};
1302 	int ret;
1303 
1304 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1305 		return -EINVAL;
1306 
1307 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1308 		return -EINVAL;
1309 
1310 	if (s->active)
1311 		s->ops->clean(vgpu, engine_mask);
1312 
1313 	if (interface == 0) {
1314 		s->ops = NULL;
1315 		s->virtual_submission_interface = 0;
1316 		s->active = false;
1317 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1318 		return 0;
1319 	}
1320 
1321 	ret = ops[interface]->init(vgpu, engine_mask);
1322 	if (ret)
1323 		return ret;
1324 
1325 	s->ops = ops[interface];
1326 	s->virtual_submission_interface = interface;
1327 	s->active = true;
1328 
1329 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1330 			vgpu->id, s->ops->name);
1331 
1332 	return 0;
1333 }
1334 
1335 /**
1336  * intel_vgpu_destroy_workload - destroy a vGPU workload
1337  * @workload: workload to destroy
1338  *
1339  * This function is called when destroy a vGPU workload.
1340  *
1341  */
1342 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1343 {
1344 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1345 
1346 	release_shadow_batch_buffer(workload);
1347 	release_shadow_wa_ctx(&workload->wa_ctx);
1348 
1349 	if (workload->shadow_mm)
1350 		intel_vgpu_mm_put(workload->shadow_mm);
1351 
1352 	kmem_cache_free(s->workloads, workload);
1353 }
1354 
1355 static struct intel_vgpu_workload *
1356 alloc_workload(struct intel_vgpu *vgpu)
1357 {
1358 	struct intel_vgpu_submission *s = &vgpu->submission;
1359 	struct intel_vgpu_workload *workload;
1360 
1361 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1362 	if (!workload)
1363 		return ERR_PTR(-ENOMEM);
1364 
1365 	INIT_LIST_HEAD(&workload->list);
1366 	INIT_LIST_HEAD(&workload->shadow_bb);
1367 
1368 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1369 	atomic_set(&workload->shadow_ctx_active, 0);
1370 
1371 	workload->status = -EINPROGRESS;
1372 	workload->vgpu = vgpu;
1373 
1374 	return workload;
1375 }
1376 
1377 #define RING_CTX_OFF(x) \
1378 	offsetof(struct execlist_ring_context, x)
1379 
1380 static void read_guest_pdps(struct intel_vgpu *vgpu,
1381 		u64 ring_context_gpa, u32 pdp[8])
1382 {
1383 	u64 gpa;
1384 	int i;
1385 
1386 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1387 
1388 	for (i = 0; i < 8; i++)
1389 		intel_gvt_hypervisor_read_gpa(vgpu,
1390 				gpa + i * 8, &pdp[7 - i], 4);
1391 }
1392 
1393 static int prepare_mm(struct intel_vgpu_workload *workload)
1394 {
1395 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1396 	struct intel_vgpu_mm *mm;
1397 	struct intel_vgpu *vgpu = workload->vgpu;
1398 	enum intel_gvt_gtt_type root_entry_type;
1399 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1400 
1401 	switch (desc->addressing_mode) {
1402 	case 1: /* legacy 32-bit */
1403 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1404 		break;
1405 	case 3: /* legacy 64-bit */
1406 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1407 		break;
1408 	default:
1409 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1410 		return -EINVAL;
1411 	}
1412 
1413 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1414 
1415 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1416 	if (IS_ERR(mm))
1417 		return PTR_ERR(mm);
1418 
1419 	workload->shadow_mm = mm;
1420 	return 0;
1421 }
1422 
1423 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1424 		((a)->lrca == (b)->lrca))
1425 
1426 #define get_last_workload(q) \
1427 	(list_empty(q) ? NULL : container_of(q->prev, \
1428 	struct intel_vgpu_workload, list))
1429 /**
1430  * intel_vgpu_create_workload - create a vGPU workload
1431  * @vgpu: a vGPU
1432  * @ring_id: ring index
1433  * @desc: a guest context descriptor
1434  *
1435  * This function is called when creating a vGPU workload.
1436  *
1437  * Returns:
1438  * struct intel_vgpu_workload * on success, negative error code in
1439  * pointer if failed.
1440  *
1441  */
1442 struct intel_vgpu_workload *
1443 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1444 			   struct execlist_ctx_descriptor_format *desc)
1445 {
1446 	struct intel_vgpu_submission *s = &vgpu->submission;
1447 	struct list_head *q = workload_q_head(vgpu, ring_id);
1448 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1449 	struct intel_vgpu_workload *workload = NULL;
1450 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1451 	u64 ring_context_gpa;
1452 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1453 	u32 guest_head;
1454 	int ret;
1455 
1456 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1457 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1458 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1459 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1460 		return ERR_PTR(-EINVAL);
1461 	}
1462 
1463 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1464 			RING_CTX_OFF(ring_header.val), &head, 4);
1465 
1466 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1467 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1468 
1469 	guest_head = head;
1470 
1471 	head &= RB_HEAD_OFF_MASK;
1472 	tail &= RB_TAIL_OFF_MASK;
1473 
1474 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1475 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1476 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1477 				last_workload->rb_tail);
1478 		/*
1479 		 * cannot use guest context head pointer here,
1480 		 * as it might not be updated at this time
1481 		 */
1482 		head = last_workload->rb_tail;
1483 	}
1484 
1485 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1486 
1487 	/* record some ring buffer register values for scan and shadow */
1488 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1489 			RING_CTX_OFF(rb_start.val), &start, 4);
1490 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1491 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1492 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1493 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1494 
1495 	workload = alloc_workload(vgpu);
1496 	if (IS_ERR(workload))
1497 		return workload;
1498 
1499 	workload->ring_id = ring_id;
1500 	workload->ctx_desc = *desc;
1501 	workload->ring_context_gpa = ring_context_gpa;
1502 	workload->rb_head = head;
1503 	workload->guest_rb_head = guest_head;
1504 	workload->rb_tail = tail;
1505 	workload->rb_start = start;
1506 	workload->rb_ctl = ctl;
1507 
1508 	if (ring_id == RCS0) {
1509 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1510 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1511 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1512 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1513 
1514 		workload->wa_ctx.indirect_ctx.guest_gma =
1515 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1516 		workload->wa_ctx.indirect_ctx.size =
1517 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1518 			CACHELINE_BYTES;
1519 		workload->wa_ctx.per_ctx.guest_gma =
1520 			per_ctx & PER_CTX_ADDR_MASK;
1521 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1522 	}
1523 
1524 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1525 			workload, ring_id, head, tail, start, ctl);
1526 
1527 	ret = prepare_mm(workload);
1528 	if (ret) {
1529 		kmem_cache_free(s->workloads, workload);
1530 		return ERR_PTR(ret);
1531 	}
1532 
1533 	/* Only scan and shadow the first workload in the queue
1534 	 * as there is only one pre-allocated buf-obj for shadow.
1535 	 */
1536 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1537 		intel_runtime_pm_get(&dev_priv->runtime_pm);
1538 		mutex_lock(&dev_priv->drm.struct_mutex);
1539 		ret = intel_gvt_scan_and_shadow_workload(workload);
1540 		mutex_unlock(&dev_priv->drm.struct_mutex);
1541 		intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1542 	}
1543 
1544 	if (ret) {
1545 		if (vgpu_is_vm_unhealthy(ret))
1546 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1547 		intel_vgpu_destroy_workload(workload);
1548 		return ERR_PTR(ret);
1549 	}
1550 
1551 	return workload;
1552 }
1553 
1554 /**
1555  * intel_vgpu_queue_workload - Qeue a vGPU workload
1556  * @workload: the workload to queue in
1557  */
1558 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1559 {
1560 	list_add_tail(&workload->list,
1561 		workload_q_head(workload->vgpu, workload->ring_id));
1562 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1563 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1564 }
1565