xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision ae213c44)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "i915_gem_pm.h"
40 #include "gvt.h"
41 
42 #define RING_CTX_OFF(x) \
43 	offsetof(struct execlist_ring_context, x)
44 
45 static void set_context_pdp_root_pointer(
46 		struct execlist_ring_context *ring_context,
47 		u32 pdp[8])
48 {
49 	int i;
50 
51 	for (i = 0; i < 8; i++)
52 		ring_context->pdps[i].val = pdp[7 - i];
53 }
54 
55 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
56 {
57 	struct drm_i915_gem_object *ctx_obj =
58 		workload->req->hw_context->state->obj;
59 	struct execlist_ring_context *shadow_ring_context;
60 	struct page *page;
61 
62 	if (WARN_ON(!workload->shadow_mm))
63 		return;
64 
65 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
66 		return;
67 
68 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
69 	shadow_ring_context = kmap(page);
70 	set_context_pdp_root_pointer(shadow_ring_context,
71 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
72 	kunmap(page);
73 }
74 
75 /*
76  * when populating shadow ctx from guest, we should not overrride oa related
77  * registers, so that they will not be overlapped by guest oa configs. Thus
78  * made it possible to capture oa data from host for both host and guests.
79  */
80 static void sr_oa_regs(struct intel_vgpu_workload *workload,
81 		u32 *reg_state, bool save)
82 {
83 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
84 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
85 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
86 	int i = 0;
87 	u32 flex_mmio[] = {
88 		i915_mmio_reg_offset(EU_PERF_CNTL0),
89 		i915_mmio_reg_offset(EU_PERF_CNTL1),
90 		i915_mmio_reg_offset(EU_PERF_CNTL2),
91 		i915_mmio_reg_offset(EU_PERF_CNTL3),
92 		i915_mmio_reg_offset(EU_PERF_CNTL4),
93 		i915_mmio_reg_offset(EU_PERF_CNTL5),
94 		i915_mmio_reg_offset(EU_PERF_CNTL6),
95 	};
96 
97 	if (workload->ring_id != RCS0)
98 		return;
99 
100 	if (save) {
101 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
102 
103 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
104 			u32 state_offset = ctx_flexeu0 + i * 2;
105 
106 			workload->flex_mmio[i] = reg_state[state_offset + 1];
107 		}
108 	} else {
109 		reg_state[ctx_oactxctrl] =
110 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
111 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
112 
113 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
114 			u32 state_offset = ctx_flexeu0 + i * 2;
115 			u32 mmio = flex_mmio[i];
116 
117 			reg_state[state_offset] = mmio;
118 			reg_state[state_offset + 1] = workload->flex_mmio[i];
119 		}
120 	}
121 }
122 
123 static int populate_shadow_context(struct intel_vgpu_workload *workload)
124 {
125 	struct intel_vgpu *vgpu = workload->vgpu;
126 	struct intel_gvt *gvt = vgpu->gvt;
127 	int ring_id = workload->ring_id;
128 	struct drm_i915_gem_object *ctx_obj =
129 		workload->req->hw_context->state->obj;
130 	struct execlist_ring_context *shadow_ring_context;
131 	struct page *page;
132 	void *dst;
133 	unsigned long context_gpa, context_page_num;
134 	int i;
135 
136 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
137 	shadow_ring_context = kmap(page);
138 
139 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
140 #define COPY_REG(name) \
141 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
142 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
143 #define COPY_REG_MASKED(name) {\
144 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 					      + RING_CTX_OFF(name.val),\
146 					      &shadow_ring_context->name.val, 4);\
147 		shadow_ring_context->name.val |= 0xffff << 16;\
148 	}
149 
150 	COPY_REG_MASKED(ctx_ctrl);
151 	COPY_REG(ctx_timestamp);
152 
153 	if (ring_id == RCS0) {
154 		COPY_REG(bb_per_ctx_ptr);
155 		COPY_REG(rcs_indirect_ctx);
156 		COPY_REG(rcs_indirect_ctx_offset);
157 	}
158 #undef COPY_REG
159 #undef COPY_REG_MASKED
160 
161 	intel_gvt_hypervisor_read_gpa(vgpu,
162 			workload->ring_context_gpa +
163 			sizeof(*shadow_ring_context),
164 			(void *)shadow_ring_context +
165 			sizeof(*shadow_ring_context),
166 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
167 
168 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
169 	kunmap(page);
170 
171 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
172 		return 0;
173 
174 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
175 			workload->ctx_desc.lrca);
176 
177 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
178 
179 	context_page_num = context_page_num >> PAGE_SHIFT;
180 
181 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
182 		context_page_num = 19;
183 
184 	i = 2;
185 	while (i < context_page_num) {
186 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
187 				(u32)((workload->ctx_desc.lrca + i) <<
188 				I915_GTT_PAGE_SHIFT));
189 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
190 			gvt_vgpu_err("Invalid guest context descriptor\n");
191 			return -EFAULT;
192 		}
193 
194 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
195 		dst = kmap(page);
196 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
197 				I915_GTT_PAGE_SIZE);
198 		kunmap(page);
199 		i++;
200 	}
201 	return 0;
202 }
203 
204 static inline bool is_gvt_request(struct i915_request *req)
205 {
206 	return i915_gem_context_force_single_submission(req->gem_context);
207 }
208 
209 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
210 {
211 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
212 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
213 	i915_reg_t reg;
214 
215 	reg = RING_INSTDONE(ring_base);
216 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
217 	reg = RING_ACTHD(ring_base);
218 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
219 	reg = RING_ACTHD_UDW(ring_base);
220 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
221 }
222 
223 static int shadow_context_status_change(struct notifier_block *nb,
224 		unsigned long action, void *data)
225 {
226 	struct i915_request *req = data;
227 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
228 				shadow_ctx_notifier_block[req->engine->id]);
229 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
230 	enum intel_engine_id ring_id = req->engine->id;
231 	struct intel_vgpu_workload *workload;
232 	unsigned long flags;
233 
234 	if (!is_gvt_request(req)) {
235 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
236 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
237 		    scheduler->engine_owner[ring_id]) {
238 			/* Switch ring from vGPU to host. */
239 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
240 					      NULL, ring_id);
241 			scheduler->engine_owner[ring_id] = NULL;
242 		}
243 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
244 
245 		return NOTIFY_OK;
246 	}
247 
248 	workload = scheduler->current_workload[ring_id];
249 	if (unlikely(!workload))
250 		return NOTIFY_OK;
251 
252 	switch (action) {
253 	case INTEL_CONTEXT_SCHEDULE_IN:
254 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
255 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
256 			/* Switch ring from host to vGPU or vGPU to vGPU. */
257 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
258 					      workload->vgpu, ring_id);
259 			scheduler->engine_owner[ring_id] = workload->vgpu;
260 		} else
261 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
262 				      ring_id, workload->vgpu->id);
263 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
264 		atomic_set(&workload->shadow_ctx_active, 1);
265 		break;
266 	case INTEL_CONTEXT_SCHEDULE_OUT:
267 		save_ring_hw_state(workload->vgpu, ring_id);
268 		atomic_set(&workload->shadow_ctx_active, 0);
269 		break;
270 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
271 		save_ring_hw_state(workload->vgpu, ring_id);
272 		break;
273 	default:
274 		WARN_ON(1);
275 		return NOTIFY_OK;
276 	}
277 	wake_up(&workload->shadow_ctx_status_wq);
278 	return NOTIFY_OK;
279 }
280 
281 static void
282 shadow_context_descriptor_update(struct intel_context *ce,
283 				 struct intel_vgpu_workload *workload)
284 {
285 	u64 desc = ce->lrc_desc;
286 
287 	/*
288 	 * Update bits 0-11 of the context descriptor which includes flags
289 	 * like GEN8_CTX_* cached in desc_template
290 	 */
291 	desc &= U64_MAX << 12;
292 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
293 
294 	desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
295 	desc |= workload->ctx_desc.addressing_mode <<
296 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
297 
298 	ce->lrc_desc = desc;
299 }
300 
301 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
302 {
303 	struct intel_vgpu *vgpu = workload->vgpu;
304 	struct i915_request *req = workload->req;
305 	void *shadow_ring_buffer_va;
306 	u32 *cs;
307 	int err;
308 
309 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
310 		intel_vgpu_restore_inhibit_context(vgpu, req);
311 
312 	/*
313 	 * To track whether a request has started on HW, we can emit a
314 	 * breadcrumb at the beginning of the request and check its
315 	 * timeline's HWSP to see if the breadcrumb has advanced past the
316 	 * start of this request. Actually, the request must have the
317 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
318 	 * scheduler might get a wrong state of it during reset. Since the
319 	 * requests from gvt always set the has_init_breadcrumb flag, here
320 	 * need to do the emit_init_breadcrumb for all the requests.
321 	 */
322 	if (req->engine->emit_init_breadcrumb) {
323 		err = req->engine->emit_init_breadcrumb(req);
324 		if (err) {
325 			gvt_vgpu_err("fail to emit init breadcrumb\n");
326 			return err;
327 		}
328 	}
329 
330 	/* allocate shadow ring buffer */
331 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
332 	if (IS_ERR(cs)) {
333 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
334 			workload->rb_len);
335 		return PTR_ERR(cs);
336 	}
337 
338 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
339 
340 	/* get shadow ring buffer va */
341 	workload->shadow_ring_buffer_va = cs;
342 
343 	memcpy(cs, shadow_ring_buffer_va,
344 			workload->rb_len);
345 
346 	cs += workload->rb_len / sizeof(u32);
347 	intel_ring_advance(workload->req, cs);
348 
349 	return 0;
350 }
351 
352 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
353 {
354 	if (!wa_ctx->indirect_ctx.obj)
355 		return;
356 
357 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
358 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
359 
360 	wa_ctx->indirect_ctx.obj = NULL;
361 	wa_ctx->indirect_ctx.shadow_va = NULL;
362 }
363 
364 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
365 					 struct i915_gem_context *ctx)
366 {
367 	struct intel_vgpu_mm *mm = workload->shadow_mm;
368 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
369 	int i = 0;
370 
371 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
372 		return -EINVAL;
373 
374 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
375 		px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
376 	} else {
377 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
378 			px_dma(ppgtt->pdp.page_directory[i]) =
379 				mm->ppgtt_mm.shadow_pdps[i];
380 		}
381 	}
382 
383 	return 0;
384 }
385 
386 static int
387 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
388 {
389 	struct intel_vgpu *vgpu = workload->vgpu;
390 	struct intel_vgpu_submission *s = &vgpu->submission;
391 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
392 	struct i915_request *rq;
393 
394 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
395 
396 	if (workload->req)
397 		return 0;
398 
399 	rq = i915_request_create(s->shadow[workload->ring_id]);
400 	if (IS_ERR(rq)) {
401 		gvt_vgpu_err("fail to allocate gem request\n");
402 		return PTR_ERR(rq);
403 	}
404 
405 	workload->req = i915_request_get(rq);
406 	return 0;
407 }
408 
409 /**
410  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
411  * shadow it as well, include ringbuffer,wa_ctx and ctx.
412  * @workload: an abstract entity for each execlist submission.
413  *
414  * This function is called before the workload submitting to i915, to make
415  * sure the content of the workload is valid.
416  */
417 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
418 {
419 	struct intel_vgpu *vgpu = workload->vgpu;
420 	struct intel_vgpu_submission *s = &vgpu->submission;
421 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
422 	int ret;
423 
424 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
425 
426 	if (workload->shadow)
427 		return 0;
428 
429 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
430 		shadow_context_descriptor_update(s->shadow[workload->ring_id],
431 						 workload);
432 
433 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
434 	if (ret)
435 		return ret;
436 
437 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
438 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
439 		if (ret)
440 			goto err_shadow;
441 	}
442 
443 	workload->shadow = true;
444 	return 0;
445 err_shadow:
446 	release_shadow_wa_ctx(&workload->wa_ctx);
447 	return ret;
448 }
449 
450 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
451 
452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
453 {
454 	struct intel_gvt *gvt = workload->vgpu->gvt;
455 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
456 	struct intel_vgpu_shadow_bb *bb;
457 	int ret;
458 
459 	list_for_each_entry(bb, &workload->shadow_bb, list) {
460 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
461 		 * is only updated into ring_scan_buffer, not real ring address
462 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
463 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
464 		 * in copy_workload_to_ring_buffer.
465 		 */
466 
467 		if (bb->bb_offset)
468 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
469 				+ bb->bb_offset;
470 
471 		if (bb->ppgtt) {
472 			/* for non-priv bb, scan&shadow is only for
473 			 * debugging purpose, so the content of shadow bb
474 			 * is the same as original bb. Therefore,
475 			 * here, rather than switch to shadow bb's gma
476 			 * address, we directly use original batch buffer's
477 			 * gma address, and send original bb to hardware
478 			 * directly
479 			 */
480 			if (bb->clflush & CLFLUSH_AFTER) {
481 				drm_clflush_virt_range(bb->va,
482 						bb->obj->base.size);
483 				bb->clflush &= ~CLFLUSH_AFTER;
484 			}
485 			i915_gem_obj_finish_shmem_access(bb->obj);
486 			bb->accessing = false;
487 
488 		} else {
489 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
490 					NULL, 0, 0, 0);
491 			if (IS_ERR(bb->vma)) {
492 				ret = PTR_ERR(bb->vma);
493 				goto err;
494 			}
495 
496 			/* relocate shadow batch buffer */
497 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
498 			if (gmadr_bytes == 8)
499 				bb->bb_start_cmd_va[2] = 0;
500 
501 			/* No one is going to touch shadow bb from now on. */
502 			if (bb->clflush & CLFLUSH_AFTER) {
503 				drm_clflush_virt_range(bb->va,
504 						bb->obj->base.size);
505 				bb->clflush &= ~CLFLUSH_AFTER;
506 			}
507 
508 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
509 					false);
510 			if (ret)
511 				goto err;
512 
513 			i915_gem_obj_finish_shmem_access(bb->obj);
514 			bb->accessing = false;
515 
516 			ret = i915_vma_move_to_active(bb->vma,
517 						      workload->req,
518 						      0);
519 			if (ret)
520 				goto err;
521 		}
522 	}
523 	return 0;
524 err:
525 	release_shadow_batch_buffer(workload);
526 	return ret;
527 }
528 
529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
530 {
531 	struct intel_vgpu_workload *workload =
532 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
533 	struct i915_request *rq = workload->req;
534 	struct execlist_ring_context *shadow_ring_context =
535 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
536 
537 	shadow_ring_context->bb_per_ctx_ptr.val =
538 		(shadow_ring_context->bb_per_ctx_ptr.val &
539 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
540 	shadow_ring_context->rcs_indirect_ctx.val =
541 		(shadow_ring_context->rcs_indirect_ctx.val &
542 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
543 }
544 
545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
546 {
547 	struct i915_vma *vma;
548 	unsigned char *per_ctx_va =
549 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
550 		wa_ctx->indirect_ctx.size;
551 
552 	if (wa_ctx->indirect_ctx.size == 0)
553 		return 0;
554 
555 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
556 				       0, CACHELINE_BYTES, 0);
557 	if (IS_ERR(vma))
558 		return PTR_ERR(vma);
559 
560 	/* FIXME: we are not tracking our pinned VMA leaving it
561 	 * up to the core to fix up the stray pin_count upon
562 	 * free.
563 	 */
564 
565 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
566 
567 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
568 	memset(per_ctx_va, 0, CACHELINE_BYTES);
569 
570 	update_wa_ctx_2_shadow_ctx(wa_ctx);
571 	return 0;
572 }
573 
574 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
575 {
576 	struct intel_vgpu *vgpu = workload->vgpu;
577 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
578 	struct intel_vgpu_shadow_bb *bb, *pos;
579 
580 	if (list_empty(&workload->shadow_bb))
581 		return;
582 
583 	bb = list_first_entry(&workload->shadow_bb,
584 			struct intel_vgpu_shadow_bb, list);
585 
586 	mutex_lock(&dev_priv->drm.struct_mutex);
587 
588 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
589 		if (bb->obj) {
590 			if (bb->accessing)
591 				i915_gem_obj_finish_shmem_access(bb->obj);
592 
593 			if (bb->va && !IS_ERR(bb->va))
594 				i915_gem_object_unpin_map(bb->obj);
595 
596 			if (bb->vma && !IS_ERR(bb->vma)) {
597 				i915_vma_unpin(bb->vma);
598 				i915_vma_close(bb->vma);
599 			}
600 			__i915_gem_object_release_unless_active(bb->obj);
601 		}
602 		list_del(&bb->list);
603 		kfree(bb);
604 	}
605 
606 	mutex_unlock(&dev_priv->drm.struct_mutex);
607 }
608 
609 static int prepare_workload(struct intel_vgpu_workload *workload)
610 {
611 	struct intel_vgpu *vgpu = workload->vgpu;
612 	int ret = 0;
613 
614 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
615 	if (ret) {
616 		gvt_vgpu_err("fail to vgpu pin mm\n");
617 		return ret;
618 	}
619 
620 	update_shadow_pdps(workload);
621 
622 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
623 	if (ret) {
624 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
625 		goto err_unpin_mm;
626 	}
627 
628 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
629 	if (ret) {
630 		gvt_vgpu_err("fail to flush post shadow\n");
631 		goto err_unpin_mm;
632 	}
633 
634 	ret = copy_workload_to_ring_buffer(workload);
635 	if (ret) {
636 		gvt_vgpu_err("fail to generate request\n");
637 		goto err_unpin_mm;
638 	}
639 
640 	ret = prepare_shadow_batch_buffer(workload);
641 	if (ret) {
642 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
643 		goto err_unpin_mm;
644 	}
645 
646 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
647 	if (ret) {
648 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
649 		goto err_shadow_batch;
650 	}
651 
652 	if (workload->prepare) {
653 		ret = workload->prepare(workload);
654 		if (ret)
655 			goto err_shadow_wa_ctx;
656 	}
657 
658 	return 0;
659 err_shadow_wa_ctx:
660 	release_shadow_wa_ctx(&workload->wa_ctx);
661 err_shadow_batch:
662 	release_shadow_batch_buffer(workload);
663 err_unpin_mm:
664 	intel_vgpu_unpin_mm(workload->shadow_mm);
665 	return ret;
666 }
667 
668 static int dispatch_workload(struct intel_vgpu_workload *workload)
669 {
670 	struct intel_vgpu *vgpu = workload->vgpu;
671 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
672 	struct intel_vgpu_submission *s = &vgpu->submission;
673 	struct i915_request *rq;
674 	int ring_id = workload->ring_id;
675 	int ret;
676 
677 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
678 		ring_id, workload);
679 
680 	mutex_lock(&vgpu->vgpu_lock);
681 	mutex_lock(&dev_priv->drm.struct_mutex);
682 
683 	ret = set_context_ppgtt_from_shadow(workload,
684 					    s->shadow[ring_id]->gem_context);
685 	if (ret < 0) {
686 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
687 		goto err_req;
688 	}
689 
690 	ret = intel_gvt_workload_req_alloc(workload);
691 	if (ret)
692 		goto err_req;
693 
694 	ret = intel_gvt_scan_and_shadow_workload(workload);
695 	if (ret)
696 		goto out;
697 
698 	ret = populate_shadow_context(workload);
699 	if (ret) {
700 		release_shadow_wa_ctx(&workload->wa_ctx);
701 		goto out;
702 	}
703 
704 	ret = prepare_workload(workload);
705 out:
706 	if (ret) {
707 		/* We might still need to add request with
708 		 * clean ctx to retire it properly..
709 		 */
710 		rq = fetch_and_zero(&workload->req);
711 		i915_request_put(rq);
712 	}
713 
714 	if (!IS_ERR_OR_NULL(workload->req)) {
715 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
716 				ring_id, workload->req);
717 		i915_request_add(workload->req);
718 		workload->dispatched = true;
719 	}
720 err_req:
721 	if (ret)
722 		workload->status = ret;
723 	mutex_unlock(&dev_priv->drm.struct_mutex);
724 	mutex_unlock(&vgpu->vgpu_lock);
725 	return ret;
726 }
727 
728 static struct intel_vgpu_workload *pick_next_workload(
729 		struct intel_gvt *gvt, int ring_id)
730 {
731 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
732 	struct intel_vgpu_workload *workload = NULL;
733 
734 	mutex_lock(&gvt->sched_lock);
735 
736 	/*
737 	 * no current vgpu / will be scheduled out / no workload
738 	 * bail out
739 	 */
740 	if (!scheduler->current_vgpu) {
741 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
742 		goto out;
743 	}
744 
745 	if (scheduler->need_reschedule) {
746 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
747 		goto out;
748 	}
749 
750 	if (!scheduler->current_vgpu->active ||
751 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
752 		goto out;
753 
754 	/*
755 	 * still have current workload, maybe the workload disptacher
756 	 * fail to submit it for some reason, resubmit it.
757 	 */
758 	if (scheduler->current_workload[ring_id]) {
759 		workload = scheduler->current_workload[ring_id];
760 		gvt_dbg_sched("ring id %d still have current workload %p\n",
761 				ring_id, workload);
762 		goto out;
763 	}
764 
765 	/*
766 	 * pick a workload as current workload
767 	 * once current workload is set, schedule policy routines
768 	 * will wait the current workload is finished when trying to
769 	 * schedule out a vgpu.
770 	 */
771 	scheduler->current_workload[ring_id] = container_of(
772 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
773 			struct intel_vgpu_workload, list);
774 
775 	workload = scheduler->current_workload[ring_id];
776 
777 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
778 
779 	atomic_inc(&workload->vgpu->submission.running_workload_num);
780 out:
781 	mutex_unlock(&gvt->sched_lock);
782 	return workload;
783 }
784 
785 static void update_guest_context(struct intel_vgpu_workload *workload)
786 {
787 	struct i915_request *rq = workload->req;
788 	struct intel_vgpu *vgpu = workload->vgpu;
789 	struct intel_gvt *gvt = vgpu->gvt;
790 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
791 	struct execlist_ring_context *shadow_ring_context;
792 	struct page *page;
793 	void *src;
794 	unsigned long context_gpa, context_page_num;
795 	int i;
796 
797 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
798 		      workload->ctx_desc.lrca);
799 
800 	context_page_num = rq->engine->context_size;
801 	context_page_num = context_page_num >> PAGE_SHIFT;
802 
803 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
804 		context_page_num = 19;
805 
806 	i = 2;
807 
808 	while (i < context_page_num) {
809 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
810 				(u32)((workload->ctx_desc.lrca + i) <<
811 					I915_GTT_PAGE_SHIFT));
812 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
813 			gvt_vgpu_err("invalid guest context descriptor\n");
814 			return;
815 		}
816 
817 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
818 		src = kmap(page);
819 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
820 				I915_GTT_PAGE_SIZE);
821 		kunmap(page);
822 		i++;
823 	}
824 
825 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
826 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
827 
828 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
829 	shadow_ring_context = kmap(page);
830 
831 #define COPY_REG(name) \
832 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
833 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
834 
835 	COPY_REG(ctx_ctrl);
836 	COPY_REG(ctx_timestamp);
837 
838 #undef COPY_REG
839 
840 	intel_gvt_hypervisor_write_gpa(vgpu,
841 			workload->ring_context_gpa +
842 			sizeof(*shadow_ring_context),
843 			(void *)shadow_ring_context +
844 			sizeof(*shadow_ring_context),
845 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
846 
847 	kunmap(page);
848 }
849 
850 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
851 				intel_engine_mask_t engine_mask)
852 {
853 	struct intel_vgpu_submission *s = &vgpu->submission;
854 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
855 	struct intel_engine_cs *engine;
856 	struct intel_vgpu_workload *pos, *n;
857 	intel_engine_mask_t tmp;
858 
859 	/* free the unsubmited workloads in the queues. */
860 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
861 		list_for_each_entry_safe(pos, n,
862 			&s->workload_q_head[engine->id], list) {
863 			list_del_init(&pos->list);
864 			intel_vgpu_destroy_workload(pos);
865 		}
866 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
867 	}
868 }
869 
870 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
871 {
872 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
873 	struct intel_vgpu_workload *workload =
874 		scheduler->current_workload[ring_id];
875 	struct intel_vgpu *vgpu = workload->vgpu;
876 	struct intel_vgpu_submission *s = &vgpu->submission;
877 	struct i915_request *rq = workload->req;
878 	int event;
879 
880 	mutex_lock(&vgpu->vgpu_lock);
881 	mutex_lock(&gvt->sched_lock);
882 
883 	/* For the workload w/ request, needs to wait for the context
884 	 * switch to make sure request is completed.
885 	 * For the workload w/o request, directly complete the workload.
886 	 */
887 	if (rq) {
888 		wait_event(workload->shadow_ctx_status_wq,
889 			   !atomic_read(&workload->shadow_ctx_active));
890 
891 		/* If this request caused GPU hang, req->fence.error will
892 		 * be set to -EIO. Use -EIO to set workload status so
893 		 * that when this request caused GPU hang, didn't trigger
894 		 * context switch interrupt to guest.
895 		 */
896 		if (likely(workload->status == -EINPROGRESS)) {
897 			if (workload->req->fence.error == -EIO)
898 				workload->status = -EIO;
899 			else
900 				workload->status = 0;
901 		}
902 
903 		if (!workload->status &&
904 		    !(vgpu->resetting_eng & BIT(ring_id))) {
905 			update_guest_context(workload);
906 
907 			for_each_set_bit(event, workload->pending_events,
908 					 INTEL_GVT_EVENT_MAX)
909 				intel_vgpu_trigger_virtual_event(vgpu, event);
910 		}
911 
912 		i915_request_put(fetch_and_zero(&workload->req));
913 	}
914 
915 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
916 			ring_id, workload, workload->status);
917 
918 	scheduler->current_workload[ring_id] = NULL;
919 
920 	list_del_init(&workload->list);
921 
922 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
923 		/* if workload->status is not successful means HW GPU
924 		 * has occurred GPU hang or something wrong with i915/GVT,
925 		 * and GVT won't inject context switch interrupt to guest.
926 		 * So this error is a vGPU hang actually to the guest.
927 		 * According to this we should emunlate a vGPU hang. If
928 		 * there are pending workloads which are already submitted
929 		 * from guest, we should clean them up like HW GPU does.
930 		 *
931 		 * if it is in middle of engine resetting, the pending
932 		 * workloads won't be submitted to HW GPU and will be
933 		 * cleaned up during the resetting process later, so doing
934 		 * the workload clean up here doesn't have any impact.
935 		 **/
936 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
937 	}
938 
939 	workload->complete(workload);
940 
941 	atomic_dec(&s->running_workload_num);
942 	wake_up(&scheduler->workload_complete_wq);
943 
944 	if (gvt->scheduler.need_reschedule)
945 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
946 
947 	mutex_unlock(&gvt->sched_lock);
948 	mutex_unlock(&vgpu->vgpu_lock);
949 }
950 
951 struct workload_thread_param {
952 	struct intel_gvt *gvt;
953 	int ring_id;
954 };
955 
956 static int workload_thread(void *priv)
957 {
958 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
959 	struct intel_gvt *gvt = p->gvt;
960 	int ring_id = p->ring_id;
961 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
962 	struct intel_vgpu_workload *workload = NULL;
963 	struct intel_vgpu *vgpu = NULL;
964 	int ret;
965 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
966 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
967 
968 	kfree(p);
969 
970 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
971 
972 	while (!kthread_should_stop()) {
973 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
974 		do {
975 			workload = pick_next_workload(gvt, ring_id);
976 			if (workload)
977 				break;
978 			wait_woken(&wait, TASK_INTERRUPTIBLE,
979 				   MAX_SCHEDULE_TIMEOUT);
980 		} while (!kthread_should_stop());
981 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
982 
983 		if (!workload)
984 			break;
985 
986 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
987 				workload->ring_id, workload,
988 				workload->vgpu->id);
989 
990 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
991 				workload->ring_id, workload);
992 
993 		if (need_force_wake)
994 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
995 					FORCEWAKE_ALL);
996 
997 		ret = dispatch_workload(workload);
998 
999 		if (ret) {
1000 			vgpu = workload->vgpu;
1001 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1002 			goto complete;
1003 		}
1004 
1005 		gvt_dbg_sched("ring id %d wait workload %p\n",
1006 				workload->ring_id, workload);
1007 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1008 
1009 complete:
1010 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1011 				workload, workload->status);
1012 
1013 		complete_current_workload(gvt, ring_id);
1014 
1015 		if (need_force_wake)
1016 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1017 					FORCEWAKE_ALL);
1018 
1019 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1020 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1021 	}
1022 	return 0;
1023 }
1024 
1025 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1026 {
1027 	struct intel_vgpu_submission *s = &vgpu->submission;
1028 	struct intel_gvt *gvt = vgpu->gvt;
1029 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1030 
1031 	if (atomic_read(&s->running_workload_num)) {
1032 		gvt_dbg_sched("wait vgpu idle\n");
1033 
1034 		wait_event(scheduler->workload_complete_wq,
1035 				!atomic_read(&s->running_workload_num));
1036 	}
1037 }
1038 
1039 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1040 {
1041 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1042 	struct intel_engine_cs *engine;
1043 	enum intel_engine_id i;
1044 
1045 	gvt_dbg_core("clean workload scheduler\n");
1046 
1047 	for_each_engine(engine, gvt->dev_priv, i) {
1048 		atomic_notifier_chain_unregister(
1049 					&engine->context_status_notifier,
1050 					&gvt->shadow_ctx_notifier_block[i]);
1051 		kthread_stop(scheduler->thread[i]);
1052 	}
1053 }
1054 
1055 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1056 {
1057 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1058 	struct workload_thread_param *param = NULL;
1059 	struct intel_engine_cs *engine;
1060 	enum intel_engine_id i;
1061 	int ret;
1062 
1063 	gvt_dbg_core("init workload scheduler\n");
1064 
1065 	init_waitqueue_head(&scheduler->workload_complete_wq);
1066 
1067 	for_each_engine(engine, gvt->dev_priv, i) {
1068 		init_waitqueue_head(&scheduler->waitq[i]);
1069 
1070 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1071 		if (!param) {
1072 			ret = -ENOMEM;
1073 			goto err;
1074 		}
1075 
1076 		param->gvt = gvt;
1077 		param->ring_id = i;
1078 
1079 		scheduler->thread[i] = kthread_run(workload_thread, param,
1080 			"gvt workload %d", i);
1081 		if (IS_ERR(scheduler->thread[i])) {
1082 			gvt_err("fail to create workload thread\n");
1083 			ret = PTR_ERR(scheduler->thread[i]);
1084 			goto err;
1085 		}
1086 
1087 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1088 					shadow_context_status_change;
1089 		atomic_notifier_chain_register(&engine->context_status_notifier,
1090 					&gvt->shadow_ctx_notifier_block[i]);
1091 	}
1092 	return 0;
1093 err:
1094 	intel_gvt_clean_workload_scheduler(gvt);
1095 	kfree(param);
1096 	param = NULL;
1097 	return ret;
1098 }
1099 
1100 static void
1101 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1102 				struct i915_hw_ppgtt *ppgtt)
1103 {
1104 	int i;
1105 
1106 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1107 		px_dma(&ppgtt->pml4) = s->i915_context_pml4;
1108 	} else {
1109 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1110 			px_dma(ppgtt->pdp.page_directory[i]) =
1111 				s->i915_context_pdps[i];
1112 	}
1113 }
1114 
1115 /**
1116  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1117  * @vgpu: a vGPU
1118  *
1119  * This function is called when a vGPU is being destroyed.
1120  *
1121  */
1122 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1123 {
1124 	struct intel_vgpu_submission *s = &vgpu->submission;
1125 	struct intel_engine_cs *engine;
1126 	enum intel_engine_id id;
1127 
1128 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1129 
1130 	i915_context_ppgtt_root_restore(s, s->shadow[0]->gem_context->ppgtt);
1131 	for_each_engine(engine, vgpu->gvt->dev_priv, id)
1132 		intel_context_unpin(s->shadow[id]);
1133 
1134 	kmem_cache_destroy(s->workloads);
1135 }
1136 
1137 
1138 /**
1139  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1140  * @vgpu: a vGPU
1141  * @engine_mask: engines expected to be reset
1142  *
1143  * This function is called when a vGPU is being destroyed.
1144  *
1145  */
1146 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1147 				 intel_engine_mask_t engine_mask)
1148 {
1149 	struct intel_vgpu_submission *s = &vgpu->submission;
1150 
1151 	if (!s->active)
1152 		return;
1153 
1154 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1155 	s->ops->reset(vgpu, engine_mask);
1156 }
1157 
1158 static void
1159 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1160 			     struct i915_hw_ppgtt *ppgtt)
1161 {
1162 	int i;
1163 
1164 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1165 		s->i915_context_pml4 = px_dma(&ppgtt->pml4);
1166 	} else {
1167 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1168 			s->i915_context_pdps[i] =
1169 				px_dma(ppgtt->pdp.page_directory[i]);
1170 	}
1171 }
1172 
1173 /**
1174  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1175  * @vgpu: a vGPU
1176  *
1177  * This function is called when a vGPU is being created.
1178  *
1179  * Returns:
1180  * Zero on success, negative error code if failed.
1181  *
1182  */
1183 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1184 {
1185 	struct intel_vgpu_submission *s = &vgpu->submission;
1186 	struct intel_engine_cs *engine;
1187 	struct i915_gem_context *ctx;
1188 	enum intel_engine_id i;
1189 	int ret;
1190 
1191 	ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm);
1192 	if (IS_ERR(ctx))
1193 		return PTR_ERR(ctx);
1194 
1195 	i915_context_ppgtt_root_save(s, ctx->ppgtt);
1196 
1197 	for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1198 		struct intel_context *ce;
1199 
1200 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1201 		s->shadow[i] = ERR_PTR(-EINVAL);
1202 
1203 		ce = i915_gem_context_get_engine(ctx, i);
1204 		if (IS_ERR(ce)) {
1205 			ret = PTR_ERR(ce);
1206 			goto out_shadow_ctx;
1207 		}
1208 
1209 		ret = intel_context_pin(ce);
1210 		intel_context_put(ce);
1211 		if (ret)
1212 			goto out_shadow_ctx;
1213 
1214 		s->shadow[i] = ce;
1215 	}
1216 
1217 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1218 
1219 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1220 						  sizeof(struct intel_vgpu_workload), 0,
1221 						  SLAB_HWCACHE_ALIGN,
1222 						  offsetof(struct intel_vgpu_workload, rb_tail),
1223 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1224 						  NULL);
1225 
1226 	if (!s->workloads) {
1227 		ret = -ENOMEM;
1228 		goto out_shadow_ctx;
1229 	}
1230 
1231 	atomic_set(&s->running_workload_num, 0);
1232 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1233 
1234 	i915_gem_context_put(ctx);
1235 	return 0;
1236 
1237 out_shadow_ctx:
1238 	i915_context_ppgtt_root_restore(s, ctx->ppgtt);
1239 	for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1240 		if (IS_ERR(s->shadow[i]))
1241 			break;
1242 
1243 		intel_context_unpin(s->shadow[i]);
1244 	}
1245 	i915_gem_context_put(ctx);
1246 	return ret;
1247 }
1248 
1249 /**
1250  * intel_vgpu_select_submission_ops - select virtual submission interface
1251  * @vgpu: a vGPU
1252  * @engine_mask: either ALL_ENGINES or target engine mask
1253  * @interface: expected vGPU virtual submission interface
1254  *
1255  * This function is called when guest configures submission interface.
1256  *
1257  * Returns:
1258  * Zero on success, negative error code if failed.
1259  *
1260  */
1261 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1262 				     intel_engine_mask_t engine_mask,
1263 				     unsigned int interface)
1264 {
1265 	struct intel_vgpu_submission *s = &vgpu->submission;
1266 	const struct intel_vgpu_submission_ops *ops[] = {
1267 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1268 			&intel_vgpu_execlist_submission_ops,
1269 	};
1270 	int ret;
1271 
1272 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1273 		return -EINVAL;
1274 
1275 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1276 		return -EINVAL;
1277 
1278 	if (s->active)
1279 		s->ops->clean(vgpu, engine_mask);
1280 
1281 	if (interface == 0) {
1282 		s->ops = NULL;
1283 		s->virtual_submission_interface = 0;
1284 		s->active = false;
1285 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1286 		return 0;
1287 	}
1288 
1289 	ret = ops[interface]->init(vgpu, engine_mask);
1290 	if (ret)
1291 		return ret;
1292 
1293 	s->ops = ops[interface];
1294 	s->virtual_submission_interface = interface;
1295 	s->active = true;
1296 
1297 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1298 			vgpu->id, s->ops->name);
1299 
1300 	return 0;
1301 }
1302 
1303 /**
1304  * intel_vgpu_destroy_workload - destroy a vGPU workload
1305  * @workload: workload to destroy
1306  *
1307  * This function is called when destroy a vGPU workload.
1308  *
1309  */
1310 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1311 {
1312 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1313 
1314 	release_shadow_batch_buffer(workload);
1315 	release_shadow_wa_ctx(&workload->wa_ctx);
1316 
1317 	if (workload->shadow_mm)
1318 		intel_vgpu_mm_put(workload->shadow_mm);
1319 
1320 	kmem_cache_free(s->workloads, workload);
1321 }
1322 
1323 static struct intel_vgpu_workload *
1324 alloc_workload(struct intel_vgpu *vgpu)
1325 {
1326 	struct intel_vgpu_submission *s = &vgpu->submission;
1327 	struct intel_vgpu_workload *workload;
1328 
1329 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1330 	if (!workload)
1331 		return ERR_PTR(-ENOMEM);
1332 
1333 	INIT_LIST_HEAD(&workload->list);
1334 	INIT_LIST_HEAD(&workload->shadow_bb);
1335 
1336 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1337 	atomic_set(&workload->shadow_ctx_active, 0);
1338 
1339 	workload->status = -EINPROGRESS;
1340 	workload->vgpu = vgpu;
1341 
1342 	return workload;
1343 }
1344 
1345 #define RING_CTX_OFF(x) \
1346 	offsetof(struct execlist_ring_context, x)
1347 
1348 static void read_guest_pdps(struct intel_vgpu *vgpu,
1349 		u64 ring_context_gpa, u32 pdp[8])
1350 {
1351 	u64 gpa;
1352 	int i;
1353 
1354 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1355 
1356 	for (i = 0; i < 8; i++)
1357 		intel_gvt_hypervisor_read_gpa(vgpu,
1358 				gpa + i * 8, &pdp[7 - i], 4);
1359 }
1360 
1361 static int prepare_mm(struct intel_vgpu_workload *workload)
1362 {
1363 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1364 	struct intel_vgpu_mm *mm;
1365 	struct intel_vgpu *vgpu = workload->vgpu;
1366 	enum intel_gvt_gtt_type root_entry_type;
1367 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1368 
1369 	switch (desc->addressing_mode) {
1370 	case 1: /* legacy 32-bit */
1371 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1372 		break;
1373 	case 3: /* legacy 64-bit */
1374 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1375 		break;
1376 	default:
1377 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1378 		return -EINVAL;
1379 	}
1380 
1381 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1382 
1383 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1384 	if (IS_ERR(mm))
1385 		return PTR_ERR(mm);
1386 
1387 	workload->shadow_mm = mm;
1388 	return 0;
1389 }
1390 
1391 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1392 		((a)->lrca == (b)->lrca))
1393 
1394 #define get_last_workload(q) \
1395 	(list_empty(q) ? NULL : container_of(q->prev, \
1396 	struct intel_vgpu_workload, list))
1397 /**
1398  * intel_vgpu_create_workload - create a vGPU workload
1399  * @vgpu: a vGPU
1400  * @ring_id: ring index
1401  * @desc: a guest context descriptor
1402  *
1403  * This function is called when creating a vGPU workload.
1404  *
1405  * Returns:
1406  * struct intel_vgpu_workload * on success, negative error code in
1407  * pointer if failed.
1408  *
1409  */
1410 struct intel_vgpu_workload *
1411 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1412 			   struct execlist_ctx_descriptor_format *desc)
1413 {
1414 	struct intel_vgpu_submission *s = &vgpu->submission;
1415 	struct list_head *q = workload_q_head(vgpu, ring_id);
1416 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1417 	struct intel_vgpu_workload *workload = NULL;
1418 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1419 	u64 ring_context_gpa;
1420 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1421 	int ret;
1422 
1423 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1424 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1425 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1426 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1427 		return ERR_PTR(-EINVAL);
1428 	}
1429 
1430 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1431 			RING_CTX_OFF(ring_header.val), &head, 4);
1432 
1433 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1434 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1435 
1436 	head &= RB_HEAD_OFF_MASK;
1437 	tail &= RB_TAIL_OFF_MASK;
1438 
1439 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1440 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1441 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1442 				last_workload->rb_tail);
1443 		/*
1444 		 * cannot use guest context head pointer here,
1445 		 * as it might not be updated at this time
1446 		 */
1447 		head = last_workload->rb_tail;
1448 	}
1449 
1450 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1451 
1452 	/* record some ring buffer register values for scan and shadow */
1453 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1454 			RING_CTX_OFF(rb_start.val), &start, 4);
1455 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1456 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1457 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1458 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1459 
1460 	workload = alloc_workload(vgpu);
1461 	if (IS_ERR(workload))
1462 		return workload;
1463 
1464 	workload->ring_id = ring_id;
1465 	workload->ctx_desc = *desc;
1466 	workload->ring_context_gpa = ring_context_gpa;
1467 	workload->rb_head = head;
1468 	workload->rb_tail = tail;
1469 	workload->rb_start = start;
1470 	workload->rb_ctl = ctl;
1471 
1472 	if (ring_id == RCS0) {
1473 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1474 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1475 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1476 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1477 
1478 		workload->wa_ctx.indirect_ctx.guest_gma =
1479 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1480 		workload->wa_ctx.indirect_ctx.size =
1481 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1482 			CACHELINE_BYTES;
1483 		workload->wa_ctx.per_ctx.guest_gma =
1484 			per_ctx & PER_CTX_ADDR_MASK;
1485 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1486 	}
1487 
1488 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1489 			workload, ring_id, head, tail, start, ctl);
1490 
1491 	ret = prepare_mm(workload);
1492 	if (ret) {
1493 		kmem_cache_free(s->workloads, workload);
1494 		return ERR_PTR(ret);
1495 	}
1496 
1497 	/* Only scan and shadow the first workload in the queue
1498 	 * as there is only one pre-allocated buf-obj for shadow.
1499 	 */
1500 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1501 		intel_runtime_pm_get(dev_priv);
1502 		mutex_lock(&dev_priv->drm.struct_mutex);
1503 		ret = intel_gvt_scan_and_shadow_workload(workload);
1504 		mutex_unlock(&dev_priv->drm.struct_mutex);
1505 		intel_runtime_pm_put_unchecked(dev_priv);
1506 	}
1507 
1508 	if (ret) {
1509 		if (vgpu_is_vm_unhealthy(ret))
1510 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1511 		intel_vgpu_destroy_workload(workload);
1512 		return ERR_PTR(ret);
1513 	}
1514 
1515 	return workload;
1516 }
1517 
1518 /**
1519  * intel_vgpu_queue_workload - Qeue a vGPU workload
1520  * @workload: the workload to queue in
1521  */
1522 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1523 {
1524 	list_add_tail(&workload->list,
1525 		workload_q_head(workload->vgpu, workload->ring_id));
1526 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1527 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1528 }
1529