1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "i915_drv.h" 39 #include "i915_gem_pm.h" 40 #include "gvt.h" 41 42 #define RING_CTX_OFF(x) \ 43 offsetof(struct execlist_ring_context, x) 44 45 static void set_context_pdp_root_pointer( 46 struct execlist_ring_context *ring_context, 47 u32 pdp[8]) 48 { 49 int i; 50 51 for (i = 0; i < 8; i++) 52 ring_context->pdps[i].val = pdp[7 - i]; 53 } 54 55 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 56 { 57 struct drm_i915_gem_object *ctx_obj = 58 workload->req->hw_context->state->obj; 59 struct execlist_ring_context *shadow_ring_context; 60 struct page *page; 61 62 if (WARN_ON(!workload->shadow_mm)) 63 return; 64 65 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 66 return; 67 68 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 69 shadow_ring_context = kmap(page); 70 set_context_pdp_root_pointer(shadow_ring_context, 71 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 72 kunmap(page); 73 } 74 75 /* 76 * when populating shadow ctx from guest, we should not overrride oa related 77 * registers, so that they will not be overlapped by guest oa configs. Thus 78 * made it possible to capture oa data from host for both host and guests. 79 */ 80 static void sr_oa_regs(struct intel_vgpu_workload *workload, 81 u32 *reg_state, bool save) 82 { 83 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 84 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 85 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 86 int i = 0; 87 u32 flex_mmio[] = { 88 i915_mmio_reg_offset(EU_PERF_CNTL0), 89 i915_mmio_reg_offset(EU_PERF_CNTL1), 90 i915_mmio_reg_offset(EU_PERF_CNTL2), 91 i915_mmio_reg_offset(EU_PERF_CNTL3), 92 i915_mmio_reg_offset(EU_PERF_CNTL4), 93 i915_mmio_reg_offset(EU_PERF_CNTL5), 94 i915_mmio_reg_offset(EU_PERF_CNTL6), 95 }; 96 97 if (workload->ring_id != RCS0) 98 return; 99 100 if (save) { 101 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 102 103 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 104 u32 state_offset = ctx_flexeu0 + i * 2; 105 106 workload->flex_mmio[i] = reg_state[state_offset + 1]; 107 } 108 } else { 109 reg_state[ctx_oactxctrl] = 110 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 111 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 112 113 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 114 u32 state_offset = ctx_flexeu0 + i * 2; 115 u32 mmio = flex_mmio[i]; 116 117 reg_state[state_offset] = mmio; 118 reg_state[state_offset + 1] = workload->flex_mmio[i]; 119 } 120 } 121 } 122 123 static int populate_shadow_context(struct intel_vgpu_workload *workload) 124 { 125 struct intel_vgpu *vgpu = workload->vgpu; 126 struct intel_gvt *gvt = vgpu->gvt; 127 int ring_id = workload->ring_id; 128 struct drm_i915_gem_object *ctx_obj = 129 workload->req->hw_context->state->obj; 130 struct execlist_ring_context *shadow_ring_context; 131 struct page *page; 132 void *dst; 133 unsigned long context_gpa, context_page_num; 134 int i; 135 136 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 137 shadow_ring_context = kmap(page); 138 139 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 140 #define COPY_REG(name) \ 141 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 142 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 143 #define COPY_REG_MASKED(name) {\ 144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 145 + RING_CTX_OFF(name.val),\ 146 &shadow_ring_context->name.val, 4);\ 147 shadow_ring_context->name.val |= 0xffff << 16;\ 148 } 149 150 COPY_REG_MASKED(ctx_ctrl); 151 COPY_REG(ctx_timestamp); 152 153 if (ring_id == RCS0) { 154 COPY_REG(bb_per_ctx_ptr); 155 COPY_REG(rcs_indirect_ctx); 156 COPY_REG(rcs_indirect_ctx_offset); 157 } 158 #undef COPY_REG 159 #undef COPY_REG_MASKED 160 161 intel_gvt_hypervisor_read_gpa(vgpu, 162 workload->ring_context_gpa + 163 sizeof(*shadow_ring_context), 164 (void *)shadow_ring_context + 165 sizeof(*shadow_ring_context), 166 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 167 168 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 169 kunmap(page); 170 171 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 172 return 0; 173 174 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 175 workload->ctx_desc.lrca); 176 177 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 178 179 context_page_num = context_page_num >> PAGE_SHIFT; 180 181 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0) 182 context_page_num = 19; 183 184 i = 2; 185 while (i < context_page_num) { 186 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 187 (u32)((workload->ctx_desc.lrca + i) << 188 I915_GTT_PAGE_SHIFT)); 189 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 190 gvt_vgpu_err("Invalid guest context descriptor\n"); 191 return -EFAULT; 192 } 193 194 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 195 dst = kmap(page); 196 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 197 I915_GTT_PAGE_SIZE); 198 kunmap(page); 199 i++; 200 } 201 return 0; 202 } 203 204 static inline bool is_gvt_request(struct i915_request *req) 205 { 206 return i915_gem_context_force_single_submission(req->gem_context); 207 } 208 209 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 210 { 211 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 212 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 213 i915_reg_t reg; 214 215 reg = RING_INSTDONE(ring_base); 216 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 217 reg = RING_ACTHD(ring_base); 218 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 219 reg = RING_ACTHD_UDW(ring_base); 220 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 221 } 222 223 static int shadow_context_status_change(struct notifier_block *nb, 224 unsigned long action, void *data) 225 { 226 struct i915_request *req = data; 227 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 228 shadow_ctx_notifier_block[req->engine->id]); 229 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 230 enum intel_engine_id ring_id = req->engine->id; 231 struct intel_vgpu_workload *workload; 232 unsigned long flags; 233 234 if (!is_gvt_request(req)) { 235 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 236 if (action == INTEL_CONTEXT_SCHEDULE_IN && 237 scheduler->engine_owner[ring_id]) { 238 /* Switch ring from vGPU to host. */ 239 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 240 NULL, ring_id); 241 scheduler->engine_owner[ring_id] = NULL; 242 } 243 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 244 245 return NOTIFY_OK; 246 } 247 248 workload = scheduler->current_workload[ring_id]; 249 if (unlikely(!workload)) 250 return NOTIFY_OK; 251 252 switch (action) { 253 case INTEL_CONTEXT_SCHEDULE_IN: 254 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 255 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 256 /* Switch ring from host to vGPU or vGPU to vGPU. */ 257 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 258 workload->vgpu, ring_id); 259 scheduler->engine_owner[ring_id] = workload->vgpu; 260 } else 261 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 262 ring_id, workload->vgpu->id); 263 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 264 atomic_set(&workload->shadow_ctx_active, 1); 265 break; 266 case INTEL_CONTEXT_SCHEDULE_OUT: 267 save_ring_hw_state(workload->vgpu, ring_id); 268 atomic_set(&workload->shadow_ctx_active, 0); 269 break; 270 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 271 save_ring_hw_state(workload->vgpu, ring_id); 272 break; 273 default: 274 WARN_ON(1); 275 return NOTIFY_OK; 276 } 277 wake_up(&workload->shadow_ctx_status_wq); 278 return NOTIFY_OK; 279 } 280 281 static void 282 shadow_context_descriptor_update(struct intel_context *ce, 283 struct intel_vgpu_workload *workload) 284 { 285 u64 desc = ce->lrc_desc; 286 287 /* 288 * Update bits 0-11 of the context descriptor which includes flags 289 * like GEN8_CTX_* cached in desc_template 290 */ 291 desc &= U64_MAX << 12; 292 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1); 293 294 desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 295 desc |= workload->ctx_desc.addressing_mode << 296 GEN8_CTX_ADDRESSING_MODE_SHIFT; 297 298 ce->lrc_desc = desc; 299 } 300 301 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 302 { 303 struct intel_vgpu *vgpu = workload->vgpu; 304 struct i915_request *req = workload->req; 305 void *shadow_ring_buffer_va; 306 u32 *cs; 307 int err; 308 309 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context)) 310 intel_vgpu_restore_inhibit_context(vgpu, req); 311 312 /* 313 * To track whether a request has started on HW, we can emit a 314 * breadcrumb at the beginning of the request and check its 315 * timeline's HWSP to see if the breadcrumb has advanced past the 316 * start of this request. Actually, the request must have the 317 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 318 * scheduler might get a wrong state of it during reset. Since the 319 * requests from gvt always set the has_init_breadcrumb flag, here 320 * need to do the emit_init_breadcrumb for all the requests. 321 */ 322 if (req->engine->emit_init_breadcrumb) { 323 err = req->engine->emit_init_breadcrumb(req); 324 if (err) { 325 gvt_vgpu_err("fail to emit init breadcrumb\n"); 326 return err; 327 } 328 } 329 330 /* allocate shadow ring buffer */ 331 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 332 if (IS_ERR(cs)) { 333 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 334 workload->rb_len); 335 return PTR_ERR(cs); 336 } 337 338 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 339 340 /* get shadow ring buffer va */ 341 workload->shadow_ring_buffer_va = cs; 342 343 memcpy(cs, shadow_ring_buffer_va, 344 workload->rb_len); 345 346 cs += workload->rb_len / sizeof(u32); 347 intel_ring_advance(workload->req, cs); 348 349 return 0; 350 } 351 352 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 353 { 354 if (!wa_ctx->indirect_ctx.obj) 355 return; 356 357 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 358 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 359 360 wa_ctx->indirect_ctx.obj = NULL; 361 wa_ctx->indirect_ctx.shadow_va = NULL; 362 } 363 364 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 365 struct i915_gem_context *ctx) 366 { 367 struct intel_vgpu_mm *mm = workload->shadow_mm; 368 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; 369 int i = 0; 370 371 if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed) 372 return -EINVAL; 373 374 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 375 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0]; 376 } else { 377 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 378 px_dma(ppgtt->pdp.page_directory[i]) = 379 mm->ppgtt_mm.shadow_pdps[i]; 380 } 381 } 382 383 return 0; 384 } 385 386 static int 387 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 388 { 389 struct intel_vgpu *vgpu = workload->vgpu; 390 struct intel_vgpu_submission *s = &vgpu->submission; 391 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 392 struct i915_request *rq; 393 394 lockdep_assert_held(&dev_priv->drm.struct_mutex); 395 396 if (workload->req) 397 return 0; 398 399 rq = i915_request_create(s->shadow[workload->ring_id]); 400 if (IS_ERR(rq)) { 401 gvt_vgpu_err("fail to allocate gem request\n"); 402 return PTR_ERR(rq); 403 } 404 405 workload->req = i915_request_get(rq); 406 return 0; 407 } 408 409 /** 410 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 411 * shadow it as well, include ringbuffer,wa_ctx and ctx. 412 * @workload: an abstract entity for each execlist submission. 413 * 414 * This function is called before the workload submitting to i915, to make 415 * sure the content of the workload is valid. 416 */ 417 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 418 { 419 struct intel_vgpu *vgpu = workload->vgpu; 420 struct intel_vgpu_submission *s = &vgpu->submission; 421 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 422 int ret; 423 424 lockdep_assert_held(&dev_priv->drm.struct_mutex); 425 426 if (workload->shadow) 427 return 0; 428 429 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 430 shadow_context_descriptor_update(s->shadow[workload->ring_id], 431 workload); 432 433 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 434 if (ret) 435 return ret; 436 437 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) { 438 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 439 if (ret) 440 goto err_shadow; 441 } 442 443 workload->shadow = true; 444 return 0; 445 err_shadow: 446 release_shadow_wa_ctx(&workload->wa_ctx); 447 return ret; 448 } 449 450 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 451 452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 453 { 454 struct intel_gvt *gvt = workload->vgpu->gvt; 455 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 456 struct intel_vgpu_shadow_bb *bb; 457 int ret; 458 459 list_for_each_entry(bb, &workload->shadow_bb, list) { 460 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 461 * is only updated into ring_scan_buffer, not real ring address 462 * allocated in later copy_workload_to_ring_buffer. pls be noted 463 * shadow_ring_buffer_va is now pointed to real ring buffer va 464 * in copy_workload_to_ring_buffer. 465 */ 466 467 if (bb->bb_offset) 468 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 469 + bb->bb_offset; 470 471 if (bb->ppgtt) { 472 /* for non-priv bb, scan&shadow is only for 473 * debugging purpose, so the content of shadow bb 474 * is the same as original bb. Therefore, 475 * here, rather than switch to shadow bb's gma 476 * address, we directly use original batch buffer's 477 * gma address, and send original bb to hardware 478 * directly 479 */ 480 if (bb->clflush & CLFLUSH_AFTER) { 481 drm_clflush_virt_range(bb->va, 482 bb->obj->base.size); 483 bb->clflush &= ~CLFLUSH_AFTER; 484 } 485 i915_gem_obj_finish_shmem_access(bb->obj); 486 bb->accessing = false; 487 488 } else { 489 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 490 NULL, 0, 0, 0); 491 if (IS_ERR(bb->vma)) { 492 ret = PTR_ERR(bb->vma); 493 goto err; 494 } 495 496 /* relocate shadow batch buffer */ 497 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 498 if (gmadr_bytes == 8) 499 bb->bb_start_cmd_va[2] = 0; 500 501 /* No one is going to touch shadow bb from now on. */ 502 if (bb->clflush & CLFLUSH_AFTER) { 503 drm_clflush_virt_range(bb->va, 504 bb->obj->base.size); 505 bb->clflush &= ~CLFLUSH_AFTER; 506 } 507 508 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 509 false); 510 if (ret) 511 goto err; 512 513 i915_gem_obj_finish_shmem_access(bb->obj); 514 bb->accessing = false; 515 516 ret = i915_vma_move_to_active(bb->vma, 517 workload->req, 518 0); 519 if (ret) 520 goto err; 521 } 522 } 523 return 0; 524 err: 525 release_shadow_batch_buffer(workload); 526 return ret; 527 } 528 529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 530 { 531 struct intel_vgpu_workload *workload = 532 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 533 struct i915_request *rq = workload->req; 534 struct execlist_ring_context *shadow_ring_context = 535 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 536 537 shadow_ring_context->bb_per_ctx_ptr.val = 538 (shadow_ring_context->bb_per_ctx_ptr.val & 539 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 540 shadow_ring_context->rcs_indirect_ctx.val = 541 (shadow_ring_context->rcs_indirect_ctx.val & 542 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 543 } 544 545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 546 { 547 struct i915_vma *vma; 548 unsigned char *per_ctx_va = 549 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 550 wa_ctx->indirect_ctx.size; 551 552 if (wa_ctx->indirect_ctx.size == 0) 553 return 0; 554 555 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 556 0, CACHELINE_BYTES, 0); 557 if (IS_ERR(vma)) 558 return PTR_ERR(vma); 559 560 /* FIXME: we are not tracking our pinned VMA leaving it 561 * up to the core to fix up the stray pin_count upon 562 * free. 563 */ 564 565 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 566 567 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 568 memset(per_ctx_va, 0, CACHELINE_BYTES); 569 570 update_wa_ctx_2_shadow_ctx(wa_ctx); 571 return 0; 572 } 573 574 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 575 { 576 struct intel_vgpu *vgpu = workload->vgpu; 577 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 578 struct intel_vgpu_shadow_bb *bb, *pos; 579 580 if (list_empty(&workload->shadow_bb)) 581 return; 582 583 bb = list_first_entry(&workload->shadow_bb, 584 struct intel_vgpu_shadow_bb, list); 585 586 mutex_lock(&dev_priv->drm.struct_mutex); 587 588 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 589 if (bb->obj) { 590 if (bb->accessing) 591 i915_gem_obj_finish_shmem_access(bb->obj); 592 593 if (bb->va && !IS_ERR(bb->va)) 594 i915_gem_object_unpin_map(bb->obj); 595 596 if (bb->vma && !IS_ERR(bb->vma)) { 597 i915_vma_unpin(bb->vma); 598 i915_vma_close(bb->vma); 599 } 600 __i915_gem_object_release_unless_active(bb->obj); 601 } 602 list_del(&bb->list); 603 kfree(bb); 604 } 605 606 mutex_unlock(&dev_priv->drm.struct_mutex); 607 } 608 609 static int prepare_workload(struct intel_vgpu_workload *workload) 610 { 611 struct intel_vgpu *vgpu = workload->vgpu; 612 int ret = 0; 613 614 ret = intel_vgpu_pin_mm(workload->shadow_mm); 615 if (ret) { 616 gvt_vgpu_err("fail to vgpu pin mm\n"); 617 return ret; 618 } 619 620 update_shadow_pdps(workload); 621 622 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 623 if (ret) { 624 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 625 goto err_unpin_mm; 626 } 627 628 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 629 if (ret) { 630 gvt_vgpu_err("fail to flush post shadow\n"); 631 goto err_unpin_mm; 632 } 633 634 ret = copy_workload_to_ring_buffer(workload); 635 if (ret) { 636 gvt_vgpu_err("fail to generate request\n"); 637 goto err_unpin_mm; 638 } 639 640 ret = prepare_shadow_batch_buffer(workload); 641 if (ret) { 642 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 643 goto err_unpin_mm; 644 } 645 646 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 647 if (ret) { 648 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 649 goto err_shadow_batch; 650 } 651 652 if (workload->prepare) { 653 ret = workload->prepare(workload); 654 if (ret) 655 goto err_shadow_wa_ctx; 656 } 657 658 return 0; 659 err_shadow_wa_ctx: 660 release_shadow_wa_ctx(&workload->wa_ctx); 661 err_shadow_batch: 662 release_shadow_batch_buffer(workload); 663 err_unpin_mm: 664 intel_vgpu_unpin_mm(workload->shadow_mm); 665 return ret; 666 } 667 668 static int dispatch_workload(struct intel_vgpu_workload *workload) 669 { 670 struct intel_vgpu *vgpu = workload->vgpu; 671 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 672 struct intel_vgpu_submission *s = &vgpu->submission; 673 struct i915_request *rq; 674 int ring_id = workload->ring_id; 675 int ret; 676 677 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 678 ring_id, workload); 679 680 mutex_lock(&vgpu->vgpu_lock); 681 mutex_lock(&dev_priv->drm.struct_mutex); 682 683 ret = set_context_ppgtt_from_shadow(workload, 684 s->shadow[ring_id]->gem_context); 685 if (ret < 0) { 686 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 687 goto err_req; 688 } 689 690 ret = intel_gvt_workload_req_alloc(workload); 691 if (ret) 692 goto err_req; 693 694 ret = intel_gvt_scan_and_shadow_workload(workload); 695 if (ret) 696 goto out; 697 698 ret = populate_shadow_context(workload); 699 if (ret) { 700 release_shadow_wa_ctx(&workload->wa_ctx); 701 goto out; 702 } 703 704 ret = prepare_workload(workload); 705 out: 706 if (ret) { 707 /* We might still need to add request with 708 * clean ctx to retire it properly.. 709 */ 710 rq = fetch_and_zero(&workload->req); 711 i915_request_put(rq); 712 } 713 714 if (!IS_ERR_OR_NULL(workload->req)) { 715 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 716 ring_id, workload->req); 717 i915_request_add(workload->req); 718 workload->dispatched = true; 719 } 720 err_req: 721 if (ret) 722 workload->status = ret; 723 mutex_unlock(&dev_priv->drm.struct_mutex); 724 mutex_unlock(&vgpu->vgpu_lock); 725 return ret; 726 } 727 728 static struct intel_vgpu_workload *pick_next_workload( 729 struct intel_gvt *gvt, int ring_id) 730 { 731 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 732 struct intel_vgpu_workload *workload = NULL; 733 734 mutex_lock(&gvt->sched_lock); 735 736 /* 737 * no current vgpu / will be scheduled out / no workload 738 * bail out 739 */ 740 if (!scheduler->current_vgpu) { 741 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 742 goto out; 743 } 744 745 if (scheduler->need_reschedule) { 746 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 747 goto out; 748 } 749 750 if (!scheduler->current_vgpu->active || 751 list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 752 goto out; 753 754 /* 755 * still have current workload, maybe the workload disptacher 756 * fail to submit it for some reason, resubmit it. 757 */ 758 if (scheduler->current_workload[ring_id]) { 759 workload = scheduler->current_workload[ring_id]; 760 gvt_dbg_sched("ring id %d still have current workload %p\n", 761 ring_id, workload); 762 goto out; 763 } 764 765 /* 766 * pick a workload as current workload 767 * once current workload is set, schedule policy routines 768 * will wait the current workload is finished when trying to 769 * schedule out a vgpu. 770 */ 771 scheduler->current_workload[ring_id] = container_of( 772 workload_q_head(scheduler->current_vgpu, ring_id)->next, 773 struct intel_vgpu_workload, list); 774 775 workload = scheduler->current_workload[ring_id]; 776 777 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 778 779 atomic_inc(&workload->vgpu->submission.running_workload_num); 780 out: 781 mutex_unlock(&gvt->sched_lock); 782 return workload; 783 } 784 785 static void update_guest_context(struct intel_vgpu_workload *workload) 786 { 787 struct i915_request *rq = workload->req; 788 struct intel_vgpu *vgpu = workload->vgpu; 789 struct intel_gvt *gvt = vgpu->gvt; 790 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 791 struct execlist_ring_context *shadow_ring_context; 792 struct page *page; 793 void *src; 794 unsigned long context_gpa, context_page_num; 795 int i; 796 797 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 798 workload->ctx_desc.lrca); 799 800 context_page_num = rq->engine->context_size; 801 context_page_num = context_page_num >> PAGE_SHIFT; 802 803 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0) 804 context_page_num = 19; 805 806 i = 2; 807 808 while (i < context_page_num) { 809 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 810 (u32)((workload->ctx_desc.lrca + i) << 811 I915_GTT_PAGE_SHIFT)); 812 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 813 gvt_vgpu_err("invalid guest context descriptor\n"); 814 return; 815 } 816 817 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 818 src = kmap(page); 819 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 820 I915_GTT_PAGE_SIZE); 821 kunmap(page); 822 i++; 823 } 824 825 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 826 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 827 828 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 829 shadow_ring_context = kmap(page); 830 831 #define COPY_REG(name) \ 832 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 833 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 834 835 COPY_REG(ctx_ctrl); 836 COPY_REG(ctx_timestamp); 837 838 #undef COPY_REG 839 840 intel_gvt_hypervisor_write_gpa(vgpu, 841 workload->ring_context_gpa + 842 sizeof(*shadow_ring_context), 843 (void *)shadow_ring_context + 844 sizeof(*shadow_ring_context), 845 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 846 847 kunmap(page); 848 } 849 850 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 851 intel_engine_mask_t engine_mask) 852 { 853 struct intel_vgpu_submission *s = &vgpu->submission; 854 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 855 struct intel_engine_cs *engine; 856 struct intel_vgpu_workload *pos, *n; 857 intel_engine_mask_t tmp; 858 859 /* free the unsubmited workloads in the queues. */ 860 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 861 list_for_each_entry_safe(pos, n, 862 &s->workload_q_head[engine->id], list) { 863 list_del_init(&pos->list); 864 intel_vgpu_destroy_workload(pos); 865 } 866 clear_bit(engine->id, s->shadow_ctx_desc_updated); 867 } 868 } 869 870 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 871 { 872 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 873 struct intel_vgpu_workload *workload = 874 scheduler->current_workload[ring_id]; 875 struct intel_vgpu *vgpu = workload->vgpu; 876 struct intel_vgpu_submission *s = &vgpu->submission; 877 struct i915_request *rq = workload->req; 878 int event; 879 880 mutex_lock(&vgpu->vgpu_lock); 881 mutex_lock(&gvt->sched_lock); 882 883 /* For the workload w/ request, needs to wait for the context 884 * switch to make sure request is completed. 885 * For the workload w/o request, directly complete the workload. 886 */ 887 if (rq) { 888 wait_event(workload->shadow_ctx_status_wq, 889 !atomic_read(&workload->shadow_ctx_active)); 890 891 /* If this request caused GPU hang, req->fence.error will 892 * be set to -EIO. Use -EIO to set workload status so 893 * that when this request caused GPU hang, didn't trigger 894 * context switch interrupt to guest. 895 */ 896 if (likely(workload->status == -EINPROGRESS)) { 897 if (workload->req->fence.error == -EIO) 898 workload->status = -EIO; 899 else 900 workload->status = 0; 901 } 902 903 if (!workload->status && 904 !(vgpu->resetting_eng & BIT(ring_id))) { 905 update_guest_context(workload); 906 907 for_each_set_bit(event, workload->pending_events, 908 INTEL_GVT_EVENT_MAX) 909 intel_vgpu_trigger_virtual_event(vgpu, event); 910 } 911 912 i915_request_put(fetch_and_zero(&workload->req)); 913 } 914 915 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 916 ring_id, workload, workload->status); 917 918 scheduler->current_workload[ring_id] = NULL; 919 920 list_del_init(&workload->list); 921 922 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 923 /* if workload->status is not successful means HW GPU 924 * has occurred GPU hang or something wrong with i915/GVT, 925 * and GVT won't inject context switch interrupt to guest. 926 * So this error is a vGPU hang actually to the guest. 927 * According to this we should emunlate a vGPU hang. If 928 * there are pending workloads which are already submitted 929 * from guest, we should clean them up like HW GPU does. 930 * 931 * if it is in middle of engine resetting, the pending 932 * workloads won't be submitted to HW GPU and will be 933 * cleaned up during the resetting process later, so doing 934 * the workload clean up here doesn't have any impact. 935 **/ 936 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 937 } 938 939 workload->complete(workload); 940 941 atomic_dec(&s->running_workload_num); 942 wake_up(&scheduler->workload_complete_wq); 943 944 if (gvt->scheduler.need_reschedule) 945 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 946 947 mutex_unlock(&gvt->sched_lock); 948 mutex_unlock(&vgpu->vgpu_lock); 949 } 950 951 struct workload_thread_param { 952 struct intel_gvt *gvt; 953 int ring_id; 954 }; 955 956 static int workload_thread(void *priv) 957 { 958 struct workload_thread_param *p = (struct workload_thread_param *)priv; 959 struct intel_gvt *gvt = p->gvt; 960 int ring_id = p->ring_id; 961 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 962 struct intel_vgpu_workload *workload = NULL; 963 struct intel_vgpu *vgpu = NULL; 964 int ret; 965 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9); 966 DEFINE_WAIT_FUNC(wait, woken_wake_function); 967 968 kfree(p); 969 970 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 971 972 while (!kthread_should_stop()) { 973 add_wait_queue(&scheduler->waitq[ring_id], &wait); 974 do { 975 workload = pick_next_workload(gvt, ring_id); 976 if (workload) 977 break; 978 wait_woken(&wait, TASK_INTERRUPTIBLE, 979 MAX_SCHEDULE_TIMEOUT); 980 } while (!kthread_should_stop()); 981 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 982 983 if (!workload) 984 break; 985 986 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 987 workload->ring_id, workload, 988 workload->vgpu->id); 989 990 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 991 workload->ring_id, workload); 992 993 if (need_force_wake) 994 intel_uncore_forcewake_get(&gvt->dev_priv->uncore, 995 FORCEWAKE_ALL); 996 997 ret = dispatch_workload(workload); 998 999 if (ret) { 1000 vgpu = workload->vgpu; 1001 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1002 goto complete; 1003 } 1004 1005 gvt_dbg_sched("ring id %d wait workload %p\n", 1006 workload->ring_id, workload); 1007 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1008 1009 complete: 1010 gvt_dbg_sched("will complete workload %p, status: %d\n", 1011 workload, workload->status); 1012 1013 complete_current_workload(gvt, ring_id); 1014 1015 if (need_force_wake) 1016 intel_uncore_forcewake_put(&gvt->dev_priv->uncore, 1017 FORCEWAKE_ALL); 1018 1019 if (ret && (vgpu_is_vm_unhealthy(ret))) 1020 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1021 } 1022 return 0; 1023 } 1024 1025 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1026 { 1027 struct intel_vgpu_submission *s = &vgpu->submission; 1028 struct intel_gvt *gvt = vgpu->gvt; 1029 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1030 1031 if (atomic_read(&s->running_workload_num)) { 1032 gvt_dbg_sched("wait vgpu idle\n"); 1033 1034 wait_event(scheduler->workload_complete_wq, 1035 !atomic_read(&s->running_workload_num)); 1036 } 1037 } 1038 1039 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1040 { 1041 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1042 struct intel_engine_cs *engine; 1043 enum intel_engine_id i; 1044 1045 gvt_dbg_core("clean workload scheduler\n"); 1046 1047 for_each_engine(engine, gvt->dev_priv, i) { 1048 atomic_notifier_chain_unregister( 1049 &engine->context_status_notifier, 1050 &gvt->shadow_ctx_notifier_block[i]); 1051 kthread_stop(scheduler->thread[i]); 1052 } 1053 } 1054 1055 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1056 { 1057 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1058 struct workload_thread_param *param = NULL; 1059 struct intel_engine_cs *engine; 1060 enum intel_engine_id i; 1061 int ret; 1062 1063 gvt_dbg_core("init workload scheduler\n"); 1064 1065 init_waitqueue_head(&scheduler->workload_complete_wq); 1066 1067 for_each_engine(engine, gvt->dev_priv, i) { 1068 init_waitqueue_head(&scheduler->waitq[i]); 1069 1070 param = kzalloc(sizeof(*param), GFP_KERNEL); 1071 if (!param) { 1072 ret = -ENOMEM; 1073 goto err; 1074 } 1075 1076 param->gvt = gvt; 1077 param->ring_id = i; 1078 1079 scheduler->thread[i] = kthread_run(workload_thread, param, 1080 "gvt workload %d", i); 1081 if (IS_ERR(scheduler->thread[i])) { 1082 gvt_err("fail to create workload thread\n"); 1083 ret = PTR_ERR(scheduler->thread[i]); 1084 goto err; 1085 } 1086 1087 gvt->shadow_ctx_notifier_block[i].notifier_call = 1088 shadow_context_status_change; 1089 atomic_notifier_chain_register(&engine->context_status_notifier, 1090 &gvt->shadow_ctx_notifier_block[i]); 1091 } 1092 return 0; 1093 err: 1094 intel_gvt_clean_workload_scheduler(gvt); 1095 kfree(param); 1096 param = NULL; 1097 return ret; 1098 } 1099 1100 static void 1101 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1102 struct i915_hw_ppgtt *ppgtt) 1103 { 1104 int i; 1105 1106 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1107 px_dma(&ppgtt->pml4) = s->i915_context_pml4; 1108 } else { 1109 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1110 px_dma(ppgtt->pdp.page_directory[i]) = 1111 s->i915_context_pdps[i]; 1112 } 1113 } 1114 1115 /** 1116 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1117 * @vgpu: a vGPU 1118 * 1119 * This function is called when a vGPU is being destroyed. 1120 * 1121 */ 1122 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1123 { 1124 struct intel_vgpu_submission *s = &vgpu->submission; 1125 struct intel_engine_cs *engine; 1126 enum intel_engine_id id; 1127 1128 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1129 1130 i915_context_ppgtt_root_restore(s, s->shadow[0]->gem_context->ppgtt); 1131 for_each_engine(engine, vgpu->gvt->dev_priv, id) 1132 intel_context_unpin(s->shadow[id]); 1133 1134 kmem_cache_destroy(s->workloads); 1135 } 1136 1137 1138 /** 1139 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1140 * @vgpu: a vGPU 1141 * @engine_mask: engines expected to be reset 1142 * 1143 * This function is called when a vGPU is being destroyed. 1144 * 1145 */ 1146 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1147 intel_engine_mask_t engine_mask) 1148 { 1149 struct intel_vgpu_submission *s = &vgpu->submission; 1150 1151 if (!s->active) 1152 return; 1153 1154 intel_vgpu_clean_workloads(vgpu, engine_mask); 1155 s->ops->reset(vgpu, engine_mask); 1156 } 1157 1158 static void 1159 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1160 struct i915_hw_ppgtt *ppgtt) 1161 { 1162 int i; 1163 1164 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1165 s->i915_context_pml4 = px_dma(&ppgtt->pml4); 1166 } else { 1167 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1168 s->i915_context_pdps[i] = 1169 px_dma(ppgtt->pdp.page_directory[i]); 1170 } 1171 } 1172 1173 /** 1174 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1175 * @vgpu: a vGPU 1176 * 1177 * This function is called when a vGPU is being created. 1178 * 1179 * Returns: 1180 * Zero on success, negative error code if failed. 1181 * 1182 */ 1183 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1184 { 1185 struct intel_vgpu_submission *s = &vgpu->submission; 1186 struct intel_engine_cs *engine; 1187 struct i915_gem_context *ctx; 1188 enum intel_engine_id i; 1189 int ret; 1190 1191 ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm); 1192 if (IS_ERR(ctx)) 1193 return PTR_ERR(ctx); 1194 1195 i915_context_ppgtt_root_save(s, ctx->ppgtt); 1196 1197 for_each_engine(engine, vgpu->gvt->dev_priv, i) { 1198 struct intel_context *ce; 1199 1200 INIT_LIST_HEAD(&s->workload_q_head[i]); 1201 s->shadow[i] = ERR_PTR(-EINVAL); 1202 1203 ce = i915_gem_context_get_engine(ctx, i); 1204 if (IS_ERR(ce)) { 1205 ret = PTR_ERR(ce); 1206 goto out_shadow_ctx; 1207 } 1208 1209 ret = intel_context_pin(ce); 1210 intel_context_put(ce); 1211 if (ret) 1212 goto out_shadow_ctx; 1213 1214 s->shadow[i] = ce; 1215 } 1216 1217 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1218 1219 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1220 sizeof(struct intel_vgpu_workload), 0, 1221 SLAB_HWCACHE_ALIGN, 1222 offsetof(struct intel_vgpu_workload, rb_tail), 1223 sizeof_field(struct intel_vgpu_workload, rb_tail), 1224 NULL); 1225 1226 if (!s->workloads) { 1227 ret = -ENOMEM; 1228 goto out_shadow_ctx; 1229 } 1230 1231 atomic_set(&s->running_workload_num, 0); 1232 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1233 1234 i915_gem_context_put(ctx); 1235 return 0; 1236 1237 out_shadow_ctx: 1238 i915_context_ppgtt_root_restore(s, ctx->ppgtt); 1239 for_each_engine(engine, vgpu->gvt->dev_priv, i) { 1240 if (IS_ERR(s->shadow[i])) 1241 break; 1242 1243 intel_context_unpin(s->shadow[i]); 1244 } 1245 i915_gem_context_put(ctx); 1246 return ret; 1247 } 1248 1249 /** 1250 * intel_vgpu_select_submission_ops - select virtual submission interface 1251 * @vgpu: a vGPU 1252 * @engine_mask: either ALL_ENGINES or target engine mask 1253 * @interface: expected vGPU virtual submission interface 1254 * 1255 * This function is called when guest configures submission interface. 1256 * 1257 * Returns: 1258 * Zero on success, negative error code if failed. 1259 * 1260 */ 1261 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1262 intel_engine_mask_t engine_mask, 1263 unsigned int interface) 1264 { 1265 struct intel_vgpu_submission *s = &vgpu->submission; 1266 const struct intel_vgpu_submission_ops *ops[] = { 1267 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1268 &intel_vgpu_execlist_submission_ops, 1269 }; 1270 int ret; 1271 1272 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1273 return -EINVAL; 1274 1275 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1276 return -EINVAL; 1277 1278 if (s->active) 1279 s->ops->clean(vgpu, engine_mask); 1280 1281 if (interface == 0) { 1282 s->ops = NULL; 1283 s->virtual_submission_interface = 0; 1284 s->active = false; 1285 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1286 return 0; 1287 } 1288 1289 ret = ops[interface]->init(vgpu, engine_mask); 1290 if (ret) 1291 return ret; 1292 1293 s->ops = ops[interface]; 1294 s->virtual_submission_interface = interface; 1295 s->active = true; 1296 1297 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1298 vgpu->id, s->ops->name); 1299 1300 return 0; 1301 } 1302 1303 /** 1304 * intel_vgpu_destroy_workload - destroy a vGPU workload 1305 * @workload: workload to destroy 1306 * 1307 * This function is called when destroy a vGPU workload. 1308 * 1309 */ 1310 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1311 { 1312 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1313 1314 release_shadow_batch_buffer(workload); 1315 release_shadow_wa_ctx(&workload->wa_ctx); 1316 1317 if (workload->shadow_mm) 1318 intel_vgpu_mm_put(workload->shadow_mm); 1319 1320 kmem_cache_free(s->workloads, workload); 1321 } 1322 1323 static struct intel_vgpu_workload * 1324 alloc_workload(struct intel_vgpu *vgpu) 1325 { 1326 struct intel_vgpu_submission *s = &vgpu->submission; 1327 struct intel_vgpu_workload *workload; 1328 1329 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1330 if (!workload) 1331 return ERR_PTR(-ENOMEM); 1332 1333 INIT_LIST_HEAD(&workload->list); 1334 INIT_LIST_HEAD(&workload->shadow_bb); 1335 1336 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1337 atomic_set(&workload->shadow_ctx_active, 0); 1338 1339 workload->status = -EINPROGRESS; 1340 workload->vgpu = vgpu; 1341 1342 return workload; 1343 } 1344 1345 #define RING_CTX_OFF(x) \ 1346 offsetof(struct execlist_ring_context, x) 1347 1348 static void read_guest_pdps(struct intel_vgpu *vgpu, 1349 u64 ring_context_gpa, u32 pdp[8]) 1350 { 1351 u64 gpa; 1352 int i; 1353 1354 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1355 1356 for (i = 0; i < 8; i++) 1357 intel_gvt_hypervisor_read_gpa(vgpu, 1358 gpa + i * 8, &pdp[7 - i], 4); 1359 } 1360 1361 static int prepare_mm(struct intel_vgpu_workload *workload) 1362 { 1363 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1364 struct intel_vgpu_mm *mm; 1365 struct intel_vgpu *vgpu = workload->vgpu; 1366 enum intel_gvt_gtt_type root_entry_type; 1367 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1368 1369 switch (desc->addressing_mode) { 1370 case 1: /* legacy 32-bit */ 1371 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1372 break; 1373 case 3: /* legacy 64-bit */ 1374 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1375 break; 1376 default: 1377 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1378 return -EINVAL; 1379 } 1380 1381 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1382 1383 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1384 if (IS_ERR(mm)) 1385 return PTR_ERR(mm); 1386 1387 workload->shadow_mm = mm; 1388 return 0; 1389 } 1390 1391 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1392 ((a)->lrca == (b)->lrca)) 1393 1394 #define get_last_workload(q) \ 1395 (list_empty(q) ? NULL : container_of(q->prev, \ 1396 struct intel_vgpu_workload, list)) 1397 /** 1398 * intel_vgpu_create_workload - create a vGPU workload 1399 * @vgpu: a vGPU 1400 * @ring_id: ring index 1401 * @desc: a guest context descriptor 1402 * 1403 * This function is called when creating a vGPU workload. 1404 * 1405 * Returns: 1406 * struct intel_vgpu_workload * on success, negative error code in 1407 * pointer if failed. 1408 * 1409 */ 1410 struct intel_vgpu_workload * 1411 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1412 struct execlist_ctx_descriptor_format *desc) 1413 { 1414 struct intel_vgpu_submission *s = &vgpu->submission; 1415 struct list_head *q = workload_q_head(vgpu, ring_id); 1416 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1417 struct intel_vgpu_workload *workload = NULL; 1418 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1419 u64 ring_context_gpa; 1420 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1421 int ret; 1422 1423 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1424 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1425 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1426 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1427 return ERR_PTR(-EINVAL); 1428 } 1429 1430 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1431 RING_CTX_OFF(ring_header.val), &head, 4); 1432 1433 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1434 RING_CTX_OFF(ring_tail.val), &tail, 4); 1435 1436 head &= RB_HEAD_OFF_MASK; 1437 tail &= RB_TAIL_OFF_MASK; 1438 1439 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1440 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1441 gvt_dbg_el("ctx head %x real head %lx\n", head, 1442 last_workload->rb_tail); 1443 /* 1444 * cannot use guest context head pointer here, 1445 * as it might not be updated at this time 1446 */ 1447 head = last_workload->rb_tail; 1448 } 1449 1450 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1451 1452 /* record some ring buffer register values for scan and shadow */ 1453 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1454 RING_CTX_OFF(rb_start.val), &start, 4); 1455 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1456 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1457 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1458 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1459 1460 workload = alloc_workload(vgpu); 1461 if (IS_ERR(workload)) 1462 return workload; 1463 1464 workload->ring_id = ring_id; 1465 workload->ctx_desc = *desc; 1466 workload->ring_context_gpa = ring_context_gpa; 1467 workload->rb_head = head; 1468 workload->rb_tail = tail; 1469 workload->rb_start = start; 1470 workload->rb_ctl = ctl; 1471 1472 if (ring_id == RCS0) { 1473 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1474 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1475 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1476 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1477 1478 workload->wa_ctx.indirect_ctx.guest_gma = 1479 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1480 workload->wa_ctx.indirect_ctx.size = 1481 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1482 CACHELINE_BYTES; 1483 workload->wa_ctx.per_ctx.guest_gma = 1484 per_ctx & PER_CTX_ADDR_MASK; 1485 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1486 } 1487 1488 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1489 workload, ring_id, head, tail, start, ctl); 1490 1491 ret = prepare_mm(workload); 1492 if (ret) { 1493 kmem_cache_free(s->workloads, workload); 1494 return ERR_PTR(ret); 1495 } 1496 1497 /* Only scan and shadow the first workload in the queue 1498 * as there is only one pre-allocated buf-obj for shadow. 1499 */ 1500 if (list_empty(workload_q_head(vgpu, ring_id))) { 1501 intel_runtime_pm_get(dev_priv); 1502 mutex_lock(&dev_priv->drm.struct_mutex); 1503 ret = intel_gvt_scan_and_shadow_workload(workload); 1504 mutex_unlock(&dev_priv->drm.struct_mutex); 1505 intel_runtime_pm_put_unchecked(dev_priv); 1506 } 1507 1508 if (ret) { 1509 if (vgpu_is_vm_unhealthy(ret)) 1510 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1511 intel_vgpu_destroy_workload(workload); 1512 return ERR_PTR(ret); 1513 } 1514 1515 return workload; 1516 } 1517 1518 /** 1519 * intel_vgpu_queue_workload - Qeue a vGPU workload 1520 * @workload: the workload to queue in 1521 */ 1522 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1523 { 1524 list_add_tail(&workload->list, 1525 workload_q_head(workload->vgpu, workload->ring_id)); 1526 intel_gvt_kick_schedule(workload->vgpu->gvt); 1527 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1528 } 1529