1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_pm.h" 39 #include "gt/intel_context.h" 40 #include "gt/intel_execlists_submission.h" 41 #include "gt/intel_lrc.h" 42 #include "gt/intel_ring.h" 43 44 #include "i915_drv.h" 45 #include "i915_gem_gtt.h" 46 #include "gvt.h" 47 48 #define RING_CTX_OFF(x) \ 49 offsetof(struct execlist_ring_context, x) 50 51 static void set_context_pdp_root_pointer( 52 struct execlist_ring_context *ring_context, 53 u32 pdp[8]) 54 { 55 int i; 56 57 for (i = 0; i < 8; i++) 58 ring_context->pdps[i].val = pdp[7 - i]; 59 } 60 61 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 62 { 63 struct execlist_ring_context *shadow_ring_context; 64 struct intel_context *ctx = workload->req->context; 65 66 if (WARN_ON(!workload->shadow_mm)) 67 return; 68 69 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 70 return; 71 72 shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state; 73 set_context_pdp_root_pointer(shadow_ring_context, 74 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 75 } 76 77 /* 78 * when populating shadow ctx from guest, we should not overrride oa related 79 * registers, so that they will not be overlapped by guest oa configs. Thus 80 * made it possible to capture oa data from host for both host and guests. 81 */ 82 static void sr_oa_regs(struct intel_vgpu_workload *workload, 83 u32 *reg_state, bool save) 84 { 85 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; 86 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 87 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 88 int i = 0; 89 u32 flex_mmio[] = { 90 i915_mmio_reg_offset(EU_PERF_CNTL0), 91 i915_mmio_reg_offset(EU_PERF_CNTL1), 92 i915_mmio_reg_offset(EU_PERF_CNTL2), 93 i915_mmio_reg_offset(EU_PERF_CNTL3), 94 i915_mmio_reg_offset(EU_PERF_CNTL4), 95 i915_mmio_reg_offset(EU_PERF_CNTL5), 96 i915_mmio_reg_offset(EU_PERF_CNTL6), 97 }; 98 99 if (workload->engine->id != RCS0) 100 return; 101 102 if (save) { 103 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 104 105 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 106 u32 state_offset = ctx_flexeu0 + i * 2; 107 108 workload->flex_mmio[i] = reg_state[state_offset + 1]; 109 } 110 } else { 111 reg_state[ctx_oactxctrl] = 112 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 113 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 114 115 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 116 u32 state_offset = ctx_flexeu0 + i * 2; 117 u32 mmio = flex_mmio[i]; 118 119 reg_state[state_offset] = mmio; 120 reg_state[state_offset + 1] = workload->flex_mmio[i]; 121 } 122 } 123 } 124 125 static int populate_shadow_context(struct intel_vgpu_workload *workload) 126 { 127 struct intel_vgpu *vgpu = workload->vgpu; 128 struct intel_gvt *gvt = vgpu->gvt; 129 struct intel_context *ctx = workload->req->context; 130 struct execlist_ring_context *shadow_ring_context; 131 void *dst; 132 void *context_base; 133 unsigned long context_gpa, context_page_num; 134 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 135 unsigned long gpa_size; /* size of consecutive GPAs */ 136 struct intel_vgpu_submission *s = &vgpu->submission; 137 int i; 138 bool skip = false; 139 int ring_id = workload->engine->id; 140 int ret; 141 142 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 143 144 context_base = (void *) ctx->lrc_reg_state - 145 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 146 147 shadow_ring_context = (void *) ctx->lrc_reg_state; 148 149 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 150 #define COPY_REG(name) \ 151 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 152 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 153 #define COPY_REG_MASKED(name) {\ 154 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 155 + RING_CTX_OFF(name.val),\ 156 &shadow_ring_context->name.val, 4);\ 157 shadow_ring_context->name.val |= 0xffff << 16;\ 158 } 159 160 COPY_REG_MASKED(ctx_ctrl); 161 COPY_REG(ctx_timestamp); 162 163 if (workload->engine->id == RCS0) { 164 COPY_REG(bb_per_ctx_ptr); 165 COPY_REG(rcs_indirect_ctx); 166 COPY_REG(rcs_indirect_ctx_offset); 167 } else if (workload->engine->id == BCS0) 168 intel_gvt_hypervisor_read_gpa(vgpu, 169 workload->ring_context_gpa + 170 BCS_TILE_REGISTER_VAL_OFFSET, 171 (void *)shadow_ring_context + 172 BCS_TILE_REGISTER_VAL_OFFSET, 4); 173 #undef COPY_REG 174 #undef COPY_REG_MASKED 175 176 /* don't copy Ring Context (the first 0x50 dwords), 177 * only copy the Engine Context part from guest 178 */ 179 intel_gvt_hypervisor_read_gpa(vgpu, 180 workload->ring_context_gpa + 181 RING_CTX_SIZE, 182 (void *)shadow_ring_context + 183 RING_CTX_SIZE, 184 I915_GTT_PAGE_SIZE - RING_CTX_SIZE); 185 186 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 187 188 gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx", 189 workload->engine->name, workload->ctx_desc.lrca, 190 workload->ctx_desc.context_id, 191 workload->ring_context_gpa); 192 193 /* only need to ensure this context is not pinned/unpinned during the 194 * period from last submission to this this submission. 195 * Upon reaching this function, the currently submitted context is not 196 * supposed to get unpinned. If a misbehaving guest driver ever does 197 * this, it would corrupt itself. 198 */ 199 if (s->last_ctx[ring_id].valid && 200 (s->last_ctx[ring_id].lrca == 201 workload->ctx_desc.lrca) && 202 (s->last_ctx[ring_id].ring_context_gpa == 203 workload->ring_context_gpa)) 204 skip = true; 205 206 s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca; 207 s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa; 208 209 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip) 210 return 0; 211 212 s->last_ctx[ring_id].valid = false; 213 context_page_num = workload->engine->context_size; 214 context_page_num = context_page_num >> PAGE_SHIFT; 215 216 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0) 217 context_page_num = 19; 218 219 /* find consecutive GPAs from gma until the first inconsecutive GPA. 220 * read from the continuous GPAs into dst virtual address 221 */ 222 gpa_size = 0; 223 for (i = 2; i < context_page_num; i++) { 224 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 225 (u32)((workload->ctx_desc.lrca + i) << 226 I915_GTT_PAGE_SHIFT)); 227 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 228 gvt_vgpu_err("Invalid guest context descriptor\n"); 229 return -EFAULT; 230 } 231 232 if (gpa_size == 0) { 233 gpa_base = context_gpa; 234 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 235 } else if (context_gpa != gpa_base + gpa_size) 236 goto read; 237 238 gpa_size += I915_GTT_PAGE_SIZE; 239 240 if (i == context_page_num - 1) 241 goto read; 242 243 continue; 244 245 read: 246 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size); 247 gpa_base = context_gpa; 248 gpa_size = I915_GTT_PAGE_SIZE; 249 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 250 } 251 ret = intel_gvt_scan_engine_context(workload); 252 if (ret) { 253 gvt_vgpu_err("invalid cmd found in guest context pages\n"); 254 return ret; 255 } 256 s->last_ctx[ring_id].valid = true; 257 return 0; 258 } 259 260 static inline bool is_gvt_request(struct i915_request *rq) 261 { 262 return intel_context_force_single_submission(rq->context); 263 } 264 265 static void save_ring_hw_state(struct intel_vgpu *vgpu, 266 const struct intel_engine_cs *engine) 267 { 268 struct intel_uncore *uncore = engine->uncore; 269 i915_reg_t reg; 270 271 reg = RING_INSTDONE(engine->mmio_base); 272 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 273 intel_uncore_read(uncore, reg); 274 275 reg = RING_ACTHD(engine->mmio_base); 276 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 277 intel_uncore_read(uncore, reg); 278 279 reg = RING_ACTHD_UDW(engine->mmio_base); 280 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 281 intel_uncore_read(uncore, reg); 282 } 283 284 static int shadow_context_status_change(struct notifier_block *nb, 285 unsigned long action, void *data) 286 { 287 struct i915_request *rq = data; 288 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 289 shadow_ctx_notifier_block[rq->engine->id]); 290 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 291 enum intel_engine_id ring_id = rq->engine->id; 292 struct intel_vgpu_workload *workload; 293 unsigned long flags; 294 295 if (!is_gvt_request(rq)) { 296 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 297 if (action == INTEL_CONTEXT_SCHEDULE_IN && 298 scheduler->engine_owner[ring_id]) { 299 /* Switch ring from vGPU to host. */ 300 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 301 NULL, rq->engine); 302 scheduler->engine_owner[ring_id] = NULL; 303 } 304 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 305 306 return NOTIFY_OK; 307 } 308 309 workload = scheduler->current_workload[ring_id]; 310 if (unlikely(!workload)) 311 return NOTIFY_OK; 312 313 switch (action) { 314 case INTEL_CONTEXT_SCHEDULE_IN: 315 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 316 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 317 /* Switch ring from host to vGPU or vGPU to vGPU. */ 318 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 319 workload->vgpu, rq->engine); 320 scheduler->engine_owner[ring_id] = workload->vgpu; 321 } else 322 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 323 ring_id, workload->vgpu->id); 324 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 325 atomic_set(&workload->shadow_ctx_active, 1); 326 break; 327 case INTEL_CONTEXT_SCHEDULE_OUT: 328 save_ring_hw_state(workload->vgpu, rq->engine); 329 atomic_set(&workload->shadow_ctx_active, 0); 330 break; 331 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 332 save_ring_hw_state(workload->vgpu, rq->engine); 333 break; 334 default: 335 WARN_ON(1); 336 return NOTIFY_OK; 337 } 338 wake_up(&workload->shadow_ctx_status_wq); 339 return NOTIFY_OK; 340 } 341 342 static void 343 shadow_context_descriptor_update(struct intel_context *ce, 344 struct intel_vgpu_workload *workload) 345 { 346 u64 desc = ce->lrc.desc; 347 348 /* 349 * Update bits 0-11 of the context descriptor which includes flags 350 * like GEN8_CTX_* cached in desc_template 351 */ 352 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT); 353 desc |= (u64)workload->ctx_desc.addressing_mode << 354 GEN8_CTX_ADDRESSING_MODE_SHIFT; 355 356 ce->lrc.desc = desc; 357 } 358 359 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 360 { 361 struct intel_vgpu *vgpu = workload->vgpu; 362 struct i915_request *req = workload->req; 363 void *shadow_ring_buffer_va; 364 u32 *cs; 365 int err; 366 367 if (GRAPHICS_VER(req->engine->i915) == 9 && is_inhibit_context(req->context)) 368 intel_vgpu_restore_inhibit_context(vgpu, req); 369 370 /* 371 * To track whether a request has started on HW, we can emit a 372 * breadcrumb at the beginning of the request and check its 373 * timeline's HWSP to see if the breadcrumb has advanced past the 374 * start of this request. Actually, the request must have the 375 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 376 * scheduler might get a wrong state of it during reset. Since the 377 * requests from gvt always set the has_init_breadcrumb flag, here 378 * need to do the emit_init_breadcrumb for all the requests. 379 */ 380 if (req->engine->emit_init_breadcrumb) { 381 err = req->engine->emit_init_breadcrumb(req); 382 if (err) { 383 gvt_vgpu_err("fail to emit init breadcrumb\n"); 384 return err; 385 } 386 } 387 388 /* allocate shadow ring buffer */ 389 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 390 if (IS_ERR(cs)) { 391 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 392 workload->rb_len); 393 return PTR_ERR(cs); 394 } 395 396 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 397 398 /* get shadow ring buffer va */ 399 workload->shadow_ring_buffer_va = cs; 400 401 memcpy(cs, shadow_ring_buffer_va, 402 workload->rb_len); 403 404 cs += workload->rb_len / sizeof(u32); 405 intel_ring_advance(workload->req, cs); 406 407 return 0; 408 } 409 410 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 411 { 412 if (!wa_ctx->indirect_ctx.obj) 413 return; 414 415 i915_gem_object_lock(wa_ctx->indirect_ctx.obj, NULL); 416 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 417 i915_gem_object_unlock(wa_ctx->indirect_ctx.obj); 418 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 419 420 wa_ctx->indirect_ctx.obj = NULL; 421 wa_ctx->indirect_ctx.shadow_va = NULL; 422 } 423 424 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr) 425 { 426 struct scatterlist *sg = pd->pt.base->mm.pages->sgl; 427 428 /* This is not a good idea */ 429 sg->dma_address = addr; 430 } 431 432 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 433 struct intel_context *ce) 434 { 435 struct intel_vgpu_mm *mm = workload->shadow_mm; 436 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); 437 int i = 0; 438 439 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 440 set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]); 441 } else { 442 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 443 struct i915_page_directory * const pd = 444 i915_pd_entry(ppgtt->pd, i); 445 /* skip now as current i915 ppgtt alloc won't allocate 446 top level pdp for non 4-level table, won't impact 447 shadow ppgtt. */ 448 if (!pd) 449 break; 450 451 set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]); 452 } 453 } 454 } 455 456 static int 457 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 458 { 459 struct intel_vgpu *vgpu = workload->vgpu; 460 struct intel_vgpu_submission *s = &vgpu->submission; 461 struct i915_request *rq; 462 463 if (workload->req) 464 return 0; 465 466 rq = i915_request_create(s->shadow[workload->engine->id]); 467 if (IS_ERR(rq)) { 468 gvt_vgpu_err("fail to allocate gem request\n"); 469 return PTR_ERR(rq); 470 } 471 472 workload->req = i915_request_get(rq); 473 return 0; 474 } 475 476 /** 477 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 478 * shadow it as well, include ringbuffer,wa_ctx and ctx. 479 * @workload: an abstract entity for each execlist submission. 480 * 481 * This function is called before the workload submitting to i915, to make 482 * sure the content of the workload is valid. 483 */ 484 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 485 { 486 struct intel_vgpu *vgpu = workload->vgpu; 487 struct intel_vgpu_submission *s = &vgpu->submission; 488 int ret; 489 490 lockdep_assert_held(&vgpu->vgpu_lock); 491 492 if (workload->shadow) 493 return 0; 494 495 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated)) 496 shadow_context_descriptor_update(s->shadow[workload->engine->id], 497 workload); 498 499 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 500 if (ret) 501 return ret; 502 503 if (workload->engine->id == RCS0 && 504 workload->wa_ctx.indirect_ctx.size) { 505 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 506 if (ret) 507 goto err_shadow; 508 } 509 510 workload->shadow = true; 511 return 0; 512 513 err_shadow: 514 release_shadow_wa_ctx(&workload->wa_ctx); 515 return ret; 516 } 517 518 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 519 520 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 521 { 522 struct intel_gvt *gvt = workload->vgpu->gvt; 523 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 524 struct intel_vgpu_shadow_bb *bb; 525 struct i915_gem_ww_ctx ww; 526 int ret; 527 528 list_for_each_entry(bb, &workload->shadow_bb, list) { 529 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 530 * is only updated into ring_scan_buffer, not real ring address 531 * allocated in later copy_workload_to_ring_buffer. pls be noted 532 * shadow_ring_buffer_va is now pointed to real ring buffer va 533 * in copy_workload_to_ring_buffer. 534 */ 535 536 if (bb->bb_offset) 537 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 538 + bb->bb_offset; 539 540 /* 541 * For non-priv bb, scan&shadow is only for 542 * debugging purpose, so the content of shadow bb 543 * is the same as original bb. Therefore, 544 * here, rather than switch to shadow bb's gma 545 * address, we directly use original batch buffer's 546 * gma address, and send original bb to hardware 547 * directly 548 */ 549 if (!bb->ppgtt) { 550 i915_gem_ww_ctx_init(&ww, false); 551 retry: 552 i915_gem_object_lock(bb->obj, &ww); 553 554 bb->vma = i915_gem_object_ggtt_pin_ww(bb->obj, &ww, 555 NULL, 0, 0, 0); 556 if (IS_ERR(bb->vma)) { 557 ret = PTR_ERR(bb->vma); 558 if (ret == -EDEADLK) { 559 ret = i915_gem_ww_ctx_backoff(&ww); 560 if (!ret) 561 goto retry; 562 } 563 goto err; 564 } 565 566 /* relocate shadow batch buffer */ 567 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 568 if (gmadr_bytes == 8) 569 bb->bb_start_cmd_va[2] = 0; 570 571 ret = i915_vma_move_to_active(bb->vma, 572 workload->req, 573 0); 574 if (ret) 575 goto err; 576 577 /* No one is going to touch shadow bb from now on. */ 578 i915_gem_object_flush_map(bb->obj); 579 i915_gem_ww_ctx_fini(&ww); 580 } 581 } 582 return 0; 583 err: 584 i915_gem_ww_ctx_fini(&ww); 585 release_shadow_batch_buffer(workload); 586 return ret; 587 } 588 589 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 590 { 591 struct intel_vgpu_workload *workload = 592 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 593 struct i915_request *rq = workload->req; 594 struct execlist_ring_context *shadow_ring_context = 595 (struct execlist_ring_context *)rq->context->lrc_reg_state; 596 597 shadow_ring_context->bb_per_ctx_ptr.val = 598 (shadow_ring_context->bb_per_ctx_ptr.val & 599 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 600 shadow_ring_context->rcs_indirect_ctx.val = 601 (shadow_ring_context->rcs_indirect_ctx.val & 602 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 603 } 604 605 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 606 { 607 struct i915_vma *vma; 608 unsigned char *per_ctx_va = 609 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 610 wa_ctx->indirect_ctx.size; 611 struct i915_gem_ww_ctx ww; 612 int ret; 613 614 if (wa_ctx->indirect_ctx.size == 0) 615 return 0; 616 617 i915_gem_ww_ctx_init(&ww, false); 618 retry: 619 i915_gem_object_lock(wa_ctx->indirect_ctx.obj, &ww); 620 621 vma = i915_gem_object_ggtt_pin_ww(wa_ctx->indirect_ctx.obj, &ww, NULL, 622 0, CACHELINE_BYTES, 0); 623 if (IS_ERR(vma)) { 624 ret = PTR_ERR(vma); 625 if (ret == -EDEADLK) { 626 ret = i915_gem_ww_ctx_backoff(&ww); 627 if (!ret) 628 goto retry; 629 } 630 return ret; 631 } 632 633 i915_gem_ww_ctx_fini(&ww); 634 635 /* FIXME: we are not tracking our pinned VMA leaving it 636 * up to the core to fix up the stray pin_count upon 637 * free. 638 */ 639 640 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 641 642 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 643 memset(per_ctx_va, 0, CACHELINE_BYTES); 644 645 update_wa_ctx_2_shadow_ctx(wa_ctx); 646 return 0; 647 } 648 649 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 650 { 651 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) = 652 workload->rb_start; 653 } 654 655 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 656 { 657 struct intel_vgpu_shadow_bb *bb, *pos; 658 659 if (list_empty(&workload->shadow_bb)) 660 return; 661 662 bb = list_first_entry(&workload->shadow_bb, 663 struct intel_vgpu_shadow_bb, list); 664 665 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 666 if (bb->obj) { 667 i915_gem_object_lock(bb->obj, NULL); 668 if (bb->va && !IS_ERR(bb->va)) 669 i915_gem_object_unpin_map(bb->obj); 670 671 if (bb->vma && !IS_ERR(bb->vma)) 672 i915_vma_unpin(bb->vma); 673 674 i915_gem_object_unlock(bb->obj); 675 i915_gem_object_put(bb->obj); 676 } 677 list_del(&bb->list); 678 kfree(bb); 679 } 680 } 681 682 static int 683 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload) 684 { 685 struct intel_vgpu *vgpu = workload->vgpu; 686 struct intel_vgpu_mm *m; 687 int ret = 0; 688 689 ret = intel_vgpu_pin_mm(workload->shadow_mm); 690 if (ret) { 691 gvt_vgpu_err("fail to vgpu pin mm\n"); 692 return ret; 693 } 694 695 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 696 !workload->shadow_mm->ppgtt_mm.shadowed) { 697 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 698 return -EINVAL; 699 } 700 701 if (!list_empty(&workload->lri_shadow_mm)) { 702 list_for_each_entry(m, &workload->lri_shadow_mm, 703 ppgtt_mm.link) { 704 ret = intel_vgpu_pin_mm(m); 705 if (ret) { 706 list_for_each_entry_from_reverse(m, 707 &workload->lri_shadow_mm, 708 ppgtt_mm.link) 709 intel_vgpu_unpin_mm(m); 710 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n"); 711 break; 712 } 713 } 714 } 715 716 if (ret) 717 intel_vgpu_unpin_mm(workload->shadow_mm); 718 719 return ret; 720 } 721 722 static void 723 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload) 724 { 725 struct intel_vgpu_mm *m; 726 727 if (!list_empty(&workload->lri_shadow_mm)) { 728 list_for_each_entry(m, &workload->lri_shadow_mm, 729 ppgtt_mm.link) 730 intel_vgpu_unpin_mm(m); 731 } 732 intel_vgpu_unpin_mm(workload->shadow_mm); 733 } 734 735 static int prepare_workload(struct intel_vgpu_workload *workload) 736 { 737 struct intel_vgpu *vgpu = workload->vgpu; 738 struct intel_vgpu_submission *s = &vgpu->submission; 739 int ret = 0; 740 741 ret = intel_vgpu_shadow_mm_pin(workload); 742 if (ret) { 743 gvt_vgpu_err("fail to pin shadow mm\n"); 744 return ret; 745 } 746 747 update_shadow_pdps(workload); 748 749 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]); 750 751 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 752 if (ret) { 753 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 754 goto err_unpin_mm; 755 } 756 757 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 758 if (ret) { 759 gvt_vgpu_err("fail to flush post shadow\n"); 760 goto err_unpin_mm; 761 } 762 763 ret = copy_workload_to_ring_buffer(workload); 764 if (ret) { 765 gvt_vgpu_err("fail to generate request\n"); 766 goto err_unpin_mm; 767 } 768 769 ret = prepare_shadow_batch_buffer(workload); 770 if (ret) { 771 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 772 goto err_unpin_mm; 773 } 774 775 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 776 if (ret) { 777 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 778 goto err_shadow_batch; 779 } 780 781 if (workload->prepare) { 782 ret = workload->prepare(workload); 783 if (ret) 784 goto err_shadow_wa_ctx; 785 } 786 787 return 0; 788 err_shadow_wa_ctx: 789 release_shadow_wa_ctx(&workload->wa_ctx); 790 err_shadow_batch: 791 release_shadow_batch_buffer(workload); 792 err_unpin_mm: 793 intel_vgpu_shadow_mm_unpin(workload); 794 return ret; 795 } 796 797 static int dispatch_workload(struct intel_vgpu_workload *workload) 798 { 799 struct intel_vgpu *vgpu = workload->vgpu; 800 struct i915_request *rq; 801 int ret; 802 803 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n", 804 workload->engine->name, workload); 805 806 mutex_lock(&vgpu->vgpu_lock); 807 808 ret = intel_gvt_workload_req_alloc(workload); 809 if (ret) 810 goto err_req; 811 812 ret = intel_gvt_scan_and_shadow_workload(workload); 813 if (ret) 814 goto out; 815 816 ret = populate_shadow_context(workload); 817 if (ret) { 818 release_shadow_wa_ctx(&workload->wa_ctx); 819 goto out; 820 } 821 822 ret = prepare_workload(workload); 823 out: 824 if (ret) { 825 /* We might still need to add request with 826 * clean ctx to retire it properly.. 827 */ 828 rq = fetch_and_zero(&workload->req); 829 i915_request_put(rq); 830 } 831 832 if (!IS_ERR_OR_NULL(workload->req)) { 833 gvt_dbg_sched("ring id %s submit workload to i915 %p\n", 834 workload->engine->name, workload->req); 835 i915_request_add(workload->req); 836 workload->dispatched = true; 837 } 838 err_req: 839 if (ret) 840 workload->status = ret; 841 mutex_unlock(&vgpu->vgpu_lock); 842 return ret; 843 } 844 845 static struct intel_vgpu_workload * 846 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine) 847 { 848 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 849 struct intel_vgpu_workload *workload = NULL; 850 851 mutex_lock(&gvt->sched_lock); 852 853 /* 854 * no current vgpu / will be scheduled out / no workload 855 * bail out 856 */ 857 if (!scheduler->current_vgpu) { 858 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name); 859 goto out; 860 } 861 862 if (scheduler->need_reschedule) { 863 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name); 864 goto out; 865 } 866 867 if (!scheduler->current_vgpu->active || 868 list_empty(workload_q_head(scheduler->current_vgpu, engine))) 869 goto out; 870 871 /* 872 * still have current workload, maybe the workload disptacher 873 * fail to submit it for some reason, resubmit it. 874 */ 875 if (scheduler->current_workload[engine->id]) { 876 workload = scheduler->current_workload[engine->id]; 877 gvt_dbg_sched("ring %s still have current workload %p\n", 878 engine->name, workload); 879 goto out; 880 } 881 882 /* 883 * pick a workload as current workload 884 * once current workload is set, schedule policy routines 885 * will wait the current workload is finished when trying to 886 * schedule out a vgpu. 887 */ 888 scheduler->current_workload[engine->id] = 889 list_first_entry(workload_q_head(scheduler->current_vgpu, 890 engine), 891 struct intel_vgpu_workload, list); 892 893 workload = scheduler->current_workload[engine->id]; 894 895 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload); 896 897 atomic_inc(&workload->vgpu->submission.running_workload_num); 898 out: 899 mutex_unlock(&gvt->sched_lock); 900 return workload; 901 } 902 903 static void update_guest_pdps(struct intel_vgpu *vgpu, 904 u64 ring_context_gpa, u32 pdp[8]) 905 { 906 u64 gpa; 907 int i; 908 909 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 910 911 for (i = 0; i < 8; i++) 912 intel_gvt_hypervisor_write_gpa(vgpu, 913 gpa + i * 8, &pdp[7 - i], 4); 914 } 915 916 static __maybe_unused bool 917 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m) 918 { 919 if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 920 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32; 921 922 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) { 923 gvt_dbg_mm("4-level context ppgtt not match LRI command\n"); 924 return false; 925 } 926 return true; 927 } else { 928 /* see comment in LRI handler in cmd_parser.c */ 929 gvt_dbg_mm("invalid shadow mm type\n"); 930 return false; 931 } 932 } 933 934 static void update_guest_context(struct intel_vgpu_workload *workload) 935 { 936 struct i915_request *rq = workload->req; 937 struct intel_vgpu *vgpu = workload->vgpu; 938 struct execlist_ring_context *shadow_ring_context; 939 struct intel_context *ctx = workload->req->context; 940 void *context_base; 941 void *src; 942 unsigned long context_gpa, context_page_num; 943 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 944 unsigned long gpa_size; /* size of consecutive GPAs*/ 945 int i; 946 u32 ring_base; 947 u32 head, tail; 948 u16 wrap_count; 949 950 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 951 workload->ctx_desc.lrca); 952 953 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 954 955 head = workload->rb_head; 956 tail = workload->rb_tail; 957 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 958 959 if (tail < head) { 960 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 961 wrap_count = 0; 962 else 963 wrap_count += 1; 964 } 965 966 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 967 968 ring_base = rq->engine->mmio_base; 969 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 970 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 971 972 context_page_num = rq->engine->context_size; 973 context_page_num = context_page_num >> PAGE_SHIFT; 974 975 if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0) 976 context_page_num = 19; 977 978 context_base = (void *) ctx->lrc_reg_state - 979 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 980 981 /* find consecutive GPAs from gma until the first inconsecutive GPA. 982 * write to the consecutive GPAs from src virtual address 983 */ 984 gpa_size = 0; 985 for (i = 2; i < context_page_num; i++) { 986 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 987 (u32)((workload->ctx_desc.lrca + i) << 988 I915_GTT_PAGE_SHIFT)); 989 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 990 gvt_vgpu_err("invalid guest context descriptor\n"); 991 return; 992 } 993 994 if (gpa_size == 0) { 995 gpa_base = context_gpa; 996 src = context_base + (i << I915_GTT_PAGE_SHIFT); 997 } else if (context_gpa != gpa_base + gpa_size) 998 goto write; 999 1000 gpa_size += I915_GTT_PAGE_SIZE; 1001 1002 if (i == context_page_num - 1) 1003 goto write; 1004 1005 continue; 1006 1007 write: 1008 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size); 1009 gpa_base = context_gpa; 1010 gpa_size = I915_GTT_PAGE_SIZE; 1011 src = context_base + (i << I915_GTT_PAGE_SHIFT); 1012 } 1013 1014 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 1015 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 1016 1017 shadow_ring_context = (void *) ctx->lrc_reg_state; 1018 1019 if (!list_empty(&workload->lri_shadow_mm)) { 1020 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm, 1021 struct intel_vgpu_mm, 1022 ppgtt_mm.link); 1023 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m)); 1024 update_guest_pdps(vgpu, workload->ring_context_gpa, 1025 (void *)m->ppgtt_mm.guest_pdps); 1026 } 1027 1028 #define COPY_REG(name) \ 1029 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 1030 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 1031 1032 COPY_REG(ctx_ctrl); 1033 COPY_REG(ctx_timestamp); 1034 1035 #undef COPY_REG 1036 1037 intel_gvt_hypervisor_write_gpa(vgpu, 1038 workload->ring_context_gpa + 1039 sizeof(*shadow_ring_context), 1040 (void *)shadow_ring_context + 1041 sizeof(*shadow_ring_context), 1042 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 1043 } 1044 1045 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 1046 intel_engine_mask_t engine_mask) 1047 { 1048 struct intel_vgpu_submission *s = &vgpu->submission; 1049 struct intel_engine_cs *engine; 1050 struct intel_vgpu_workload *pos, *n; 1051 intel_engine_mask_t tmp; 1052 1053 /* free the unsubmited workloads in the queues. */ 1054 for_each_engine_masked(engine, vgpu->gvt->gt, engine_mask, tmp) { 1055 list_for_each_entry_safe(pos, n, 1056 &s->workload_q_head[engine->id], list) { 1057 list_del_init(&pos->list); 1058 intel_vgpu_destroy_workload(pos); 1059 } 1060 clear_bit(engine->id, s->shadow_ctx_desc_updated); 1061 } 1062 } 1063 1064 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 1065 { 1066 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1067 struct intel_vgpu_workload *workload = 1068 scheduler->current_workload[ring_id]; 1069 struct intel_vgpu *vgpu = workload->vgpu; 1070 struct intel_vgpu_submission *s = &vgpu->submission; 1071 struct i915_request *rq = workload->req; 1072 int event; 1073 1074 mutex_lock(&vgpu->vgpu_lock); 1075 mutex_lock(&gvt->sched_lock); 1076 1077 /* For the workload w/ request, needs to wait for the context 1078 * switch to make sure request is completed. 1079 * For the workload w/o request, directly complete the workload. 1080 */ 1081 if (rq) { 1082 wait_event(workload->shadow_ctx_status_wq, 1083 !atomic_read(&workload->shadow_ctx_active)); 1084 1085 /* If this request caused GPU hang, req->fence.error will 1086 * be set to -EIO. Use -EIO to set workload status so 1087 * that when this request caused GPU hang, didn't trigger 1088 * context switch interrupt to guest. 1089 */ 1090 if (likely(workload->status == -EINPROGRESS)) { 1091 if (workload->req->fence.error == -EIO) 1092 workload->status = -EIO; 1093 else 1094 workload->status = 0; 1095 } 1096 1097 if (!workload->status && 1098 !(vgpu->resetting_eng & BIT(ring_id))) { 1099 update_guest_context(workload); 1100 1101 for_each_set_bit(event, workload->pending_events, 1102 INTEL_GVT_EVENT_MAX) 1103 intel_vgpu_trigger_virtual_event(vgpu, event); 1104 } 1105 1106 i915_request_put(fetch_and_zero(&workload->req)); 1107 } 1108 1109 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 1110 ring_id, workload, workload->status); 1111 1112 scheduler->current_workload[ring_id] = NULL; 1113 1114 list_del_init(&workload->list); 1115 1116 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 1117 /* if workload->status is not successful means HW GPU 1118 * has occurred GPU hang or something wrong with i915/GVT, 1119 * and GVT won't inject context switch interrupt to guest. 1120 * So this error is a vGPU hang actually to the guest. 1121 * According to this we should emunlate a vGPU hang. If 1122 * there are pending workloads which are already submitted 1123 * from guest, we should clean them up like HW GPU does. 1124 * 1125 * if it is in middle of engine resetting, the pending 1126 * workloads won't be submitted to HW GPU and will be 1127 * cleaned up during the resetting process later, so doing 1128 * the workload clean up here doesn't have any impact. 1129 **/ 1130 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 1131 } 1132 1133 workload->complete(workload); 1134 1135 intel_vgpu_shadow_mm_unpin(workload); 1136 intel_vgpu_destroy_workload(workload); 1137 1138 atomic_dec(&s->running_workload_num); 1139 wake_up(&scheduler->workload_complete_wq); 1140 1141 if (gvt->scheduler.need_reschedule) 1142 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 1143 1144 mutex_unlock(&gvt->sched_lock); 1145 mutex_unlock(&vgpu->vgpu_lock); 1146 } 1147 1148 static int workload_thread(void *arg) 1149 { 1150 struct intel_engine_cs *engine = arg; 1151 const bool need_force_wake = GRAPHICS_VER(engine->i915) >= 9; 1152 struct intel_gvt *gvt = engine->i915->gvt; 1153 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1154 struct intel_vgpu_workload *workload = NULL; 1155 struct intel_vgpu *vgpu = NULL; 1156 int ret; 1157 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1158 1159 gvt_dbg_core("workload thread for ring %s started\n", engine->name); 1160 1161 while (!kthread_should_stop()) { 1162 intel_wakeref_t wakeref; 1163 1164 add_wait_queue(&scheduler->waitq[engine->id], &wait); 1165 do { 1166 workload = pick_next_workload(gvt, engine); 1167 if (workload) 1168 break; 1169 wait_woken(&wait, TASK_INTERRUPTIBLE, 1170 MAX_SCHEDULE_TIMEOUT); 1171 } while (!kthread_should_stop()); 1172 remove_wait_queue(&scheduler->waitq[engine->id], &wait); 1173 1174 if (!workload) 1175 break; 1176 1177 gvt_dbg_sched("ring %s next workload %p vgpu %d\n", 1178 engine->name, workload, 1179 workload->vgpu->id); 1180 1181 wakeref = intel_runtime_pm_get(engine->uncore->rpm); 1182 1183 gvt_dbg_sched("ring %s will dispatch workload %p\n", 1184 engine->name, workload); 1185 1186 if (need_force_wake) 1187 intel_uncore_forcewake_get(engine->uncore, 1188 FORCEWAKE_ALL); 1189 /* 1190 * Update the vReg of the vGPU which submitted this 1191 * workload. The vGPU may use these registers for checking 1192 * the context state. The value comes from GPU commands 1193 * in this workload. 1194 */ 1195 update_vreg_in_ctx(workload); 1196 1197 ret = dispatch_workload(workload); 1198 1199 if (ret) { 1200 vgpu = workload->vgpu; 1201 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1202 goto complete; 1203 } 1204 1205 gvt_dbg_sched("ring %s wait workload %p\n", 1206 engine->name, workload); 1207 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1208 1209 complete: 1210 gvt_dbg_sched("will complete workload %p, status: %d\n", 1211 workload, workload->status); 1212 1213 complete_current_workload(gvt, engine->id); 1214 1215 if (need_force_wake) 1216 intel_uncore_forcewake_put(engine->uncore, 1217 FORCEWAKE_ALL); 1218 1219 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1220 if (ret && (vgpu_is_vm_unhealthy(ret))) 1221 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1222 } 1223 return 0; 1224 } 1225 1226 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1227 { 1228 struct intel_vgpu_submission *s = &vgpu->submission; 1229 struct intel_gvt *gvt = vgpu->gvt; 1230 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1231 1232 if (atomic_read(&s->running_workload_num)) { 1233 gvt_dbg_sched("wait vgpu idle\n"); 1234 1235 wait_event(scheduler->workload_complete_wq, 1236 !atomic_read(&s->running_workload_num)); 1237 } 1238 } 1239 1240 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1241 { 1242 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1243 struct intel_engine_cs *engine; 1244 enum intel_engine_id i; 1245 1246 gvt_dbg_core("clean workload scheduler\n"); 1247 1248 for_each_engine(engine, gvt->gt, i) { 1249 atomic_notifier_chain_unregister( 1250 &engine->context_status_notifier, 1251 &gvt->shadow_ctx_notifier_block[i]); 1252 kthread_stop(scheduler->thread[i]); 1253 } 1254 } 1255 1256 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1257 { 1258 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1259 struct intel_engine_cs *engine; 1260 enum intel_engine_id i; 1261 int ret; 1262 1263 gvt_dbg_core("init workload scheduler\n"); 1264 1265 init_waitqueue_head(&scheduler->workload_complete_wq); 1266 1267 for_each_engine(engine, gvt->gt, i) { 1268 init_waitqueue_head(&scheduler->waitq[i]); 1269 1270 scheduler->thread[i] = kthread_run(workload_thread, engine, 1271 "gvt:%s", engine->name); 1272 if (IS_ERR(scheduler->thread[i])) { 1273 gvt_err("fail to create workload thread\n"); 1274 ret = PTR_ERR(scheduler->thread[i]); 1275 goto err; 1276 } 1277 1278 gvt->shadow_ctx_notifier_block[i].notifier_call = 1279 shadow_context_status_change; 1280 atomic_notifier_chain_register(&engine->context_status_notifier, 1281 &gvt->shadow_ctx_notifier_block[i]); 1282 } 1283 1284 return 0; 1285 1286 err: 1287 intel_gvt_clean_workload_scheduler(gvt); 1288 return ret; 1289 } 1290 1291 static void 1292 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1293 struct i915_ppgtt *ppgtt) 1294 { 1295 int i; 1296 1297 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1298 set_dma_address(ppgtt->pd, s->i915_context_pml4); 1299 } else { 1300 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1301 struct i915_page_directory * const pd = 1302 i915_pd_entry(ppgtt->pd, i); 1303 1304 set_dma_address(pd, s->i915_context_pdps[i]); 1305 } 1306 } 1307 } 1308 1309 /** 1310 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1311 * @vgpu: a vGPU 1312 * 1313 * This function is called when a vGPU is being destroyed. 1314 * 1315 */ 1316 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1317 { 1318 struct intel_vgpu_submission *s = &vgpu->submission; 1319 struct intel_engine_cs *engine; 1320 enum intel_engine_id id; 1321 1322 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1323 1324 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1325 for_each_engine(engine, vgpu->gvt->gt, id) 1326 intel_context_put(s->shadow[id]); 1327 1328 kmem_cache_destroy(s->workloads); 1329 } 1330 1331 1332 /** 1333 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1334 * @vgpu: a vGPU 1335 * @engine_mask: engines expected to be reset 1336 * 1337 * This function is called when a vGPU is being destroyed. 1338 * 1339 */ 1340 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1341 intel_engine_mask_t engine_mask) 1342 { 1343 struct intel_vgpu_submission *s = &vgpu->submission; 1344 1345 if (!s->active) 1346 return; 1347 1348 intel_vgpu_clean_workloads(vgpu, engine_mask); 1349 s->ops->reset(vgpu, engine_mask); 1350 } 1351 1352 static void 1353 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1354 struct i915_ppgtt *ppgtt) 1355 { 1356 int i; 1357 1358 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1359 s->i915_context_pml4 = px_dma(ppgtt->pd); 1360 } else { 1361 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1362 struct i915_page_directory * const pd = 1363 i915_pd_entry(ppgtt->pd, i); 1364 1365 s->i915_context_pdps[i] = px_dma(pd); 1366 } 1367 } 1368 } 1369 1370 /** 1371 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1372 * @vgpu: a vGPU 1373 * 1374 * This function is called when a vGPU is being created. 1375 * 1376 * Returns: 1377 * Zero on success, negative error code if failed. 1378 * 1379 */ 1380 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1381 { 1382 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1383 struct intel_vgpu_submission *s = &vgpu->submission; 1384 struct intel_engine_cs *engine; 1385 struct i915_ppgtt *ppgtt; 1386 enum intel_engine_id i; 1387 int ret; 1388 1389 ppgtt = i915_ppgtt_create(&i915->gt); 1390 if (IS_ERR(ppgtt)) 1391 return PTR_ERR(ppgtt); 1392 1393 i915_context_ppgtt_root_save(s, ppgtt); 1394 1395 for_each_engine(engine, vgpu->gvt->gt, i) { 1396 struct intel_context *ce; 1397 1398 INIT_LIST_HEAD(&s->workload_q_head[i]); 1399 s->shadow[i] = ERR_PTR(-EINVAL); 1400 1401 ce = intel_context_create(engine); 1402 if (IS_ERR(ce)) { 1403 ret = PTR_ERR(ce); 1404 goto out_shadow_ctx; 1405 } 1406 1407 i915_vm_put(ce->vm); 1408 ce->vm = i915_vm_get(&ppgtt->vm); 1409 intel_context_set_single_submission(ce); 1410 1411 /* Max ring buffer size */ 1412 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) 1413 ce->ring_size = SZ_2M; 1414 1415 s->shadow[i] = ce; 1416 } 1417 1418 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1419 1420 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1421 sizeof(struct intel_vgpu_workload), 0, 1422 SLAB_HWCACHE_ALIGN, 1423 offsetof(struct intel_vgpu_workload, rb_tail), 1424 sizeof_field(struct intel_vgpu_workload, rb_tail), 1425 NULL); 1426 1427 if (!s->workloads) { 1428 ret = -ENOMEM; 1429 goto out_shadow_ctx; 1430 } 1431 1432 atomic_set(&s->running_workload_num, 0); 1433 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1434 1435 memset(s->last_ctx, 0, sizeof(s->last_ctx)); 1436 1437 i915_vm_put(&ppgtt->vm); 1438 return 0; 1439 1440 out_shadow_ctx: 1441 i915_context_ppgtt_root_restore(s, ppgtt); 1442 for_each_engine(engine, vgpu->gvt->gt, i) { 1443 if (IS_ERR(s->shadow[i])) 1444 break; 1445 1446 intel_context_put(s->shadow[i]); 1447 } 1448 i915_vm_put(&ppgtt->vm); 1449 return ret; 1450 } 1451 1452 /** 1453 * intel_vgpu_select_submission_ops - select virtual submission interface 1454 * @vgpu: a vGPU 1455 * @engine_mask: either ALL_ENGINES or target engine mask 1456 * @interface: expected vGPU virtual submission interface 1457 * 1458 * This function is called when guest configures submission interface. 1459 * 1460 * Returns: 1461 * Zero on success, negative error code if failed. 1462 * 1463 */ 1464 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1465 intel_engine_mask_t engine_mask, 1466 unsigned int interface) 1467 { 1468 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1469 struct intel_vgpu_submission *s = &vgpu->submission; 1470 const struct intel_vgpu_submission_ops *ops[] = { 1471 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1472 &intel_vgpu_execlist_submission_ops, 1473 }; 1474 int ret; 1475 1476 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops))) 1477 return -EINVAL; 1478 1479 if (drm_WARN_ON(&i915->drm, 1480 interface == 0 && engine_mask != ALL_ENGINES)) 1481 return -EINVAL; 1482 1483 if (s->active) 1484 s->ops->clean(vgpu, engine_mask); 1485 1486 if (interface == 0) { 1487 s->ops = NULL; 1488 s->virtual_submission_interface = 0; 1489 s->active = false; 1490 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1491 return 0; 1492 } 1493 1494 ret = ops[interface]->init(vgpu, engine_mask); 1495 if (ret) 1496 return ret; 1497 1498 s->ops = ops[interface]; 1499 s->virtual_submission_interface = interface; 1500 s->active = true; 1501 1502 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1503 vgpu->id, s->ops->name); 1504 1505 return 0; 1506 } 1507 1508 /** 1509 * intel_vgpu_destroy_workload - destroy a vGPU workload 1510 * @workload: workload to destroy 1511 * 1512 * This function is called when destroy a vGPU workload. 1513 * 1514 */ 1515 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1516 { 1517 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1518 1519 intel_context_unpin(s->shadow[workload->engine->id]); 1520 release_shadow_batch_buffer(workload); 1521 release_shadow_wa_ctx(&workload->wa_ctx); 1522 1523 if (!list_empty(&workload->lri_shadow_mm)) { 1524 struct intel_vgpu_mm *m, *mm; 1525 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm, 1526 ppgtt_mm.link) { 1527 list_del(&m->ppgtt_mm.link); 1528 intel_vgpu_mm_put(m); 1529 } 1530 } 1531 1532 GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm)); 1533 if (workload->shadow_mm) 1534 intel_vgpu_mm_put(workload->shadow_mm); 1535 1536 kmem_cache_free(s->workloads, workload); 1537 } 1538 1539 static struct intel_vgpu_workload * 1540 alloc_workload(struct intel_vgpu *vgpu) 1541 { 1542 struct intel_vgpu_submission *s = &vgpu->submission; 1543 struct intel_vgpu_workload *workload; 1544 1545 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1546 if (!workload) 1547 return ERR_PTR(-ENOMEM); 1548 1549 INIT_LIST_HEAD(&workload->list); 1550 INIT_LIST_HEAD(&workload->shadow_bb); 1551 INIT_LIST_HEAD(&workload->lri_shadow_mm); 1552 1553 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1554 atomic_set(&workload->shadow_ctx_active, 0); 1555 1556 workload->status = -EINPROGRESS; 1557 workload->vgpu = vgpu; 1558 1559 return workload; 1560 } 1561 1562 #define RING_CTX_OFF(x) \ 1563 offsetof(struct execlist_ring_context, x) 1564 1565 static void read_guest_pdps(struct intel_vgpu *vgpu, 1566 u64 ring_context_gpa, u32 pdp[8]) 1567 { 1568 u64 gpa; 1569 int i; 1570 1571 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1572 1573 for (i = 0; i < 8; i++) 1574 intel_gvt_hypervisor_read_gpa(vgpu, 1575 gpa + i * 8, &pdp[7 - i], 4); 1576 } 1577 1578 static int prepare_mm(struct intel_vgpu_workload *workload) 1579 { 1580 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1581 struct intel_vgpu_mm *mm; 1582 struct intel_vgpu *vgpu = workload->vgpu; 1583 enum intel_gvt_gtt_type root_entry_type; 1584 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1585 1586 switch (desc->addressing_mode) { 1587 case 1: /* legacy 32-bit */ 1588 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1589 break; 1590 case 3: /* legacy 64-bit */ 1591 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1592 break; 1593 default: 1594 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1595 return -EINVAL; 1596 } 1597 1598 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1599 1600 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1601 if (IS_ERR(mm)) 1602 return PTR_ERR(mm); 1603 1604 workload->shadow_mm = mm; 1605 return 0; 1606 } 1607 1608 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1609 ((a)->lrca == (b)->lrca)) 1610 1611 /** 1612 * intel_vgpu_create_workload - create a vGPU workload 1613 * @vgpu: a vGPU 1614 * @engine: the engine 1615 * @desc: a guest context descriptor 1616 * 1617 * This function is called when creating a vGPU workload. 1618 * 1619 * Returns: 1620 * struct intel_vgpu_workload * on success, negative error code in 1621 * pointer if failed. 1622 * 1623 */ 1624 struct intel_vgpu_workload * 1625 intel_vgpu_create_workload(struct intel_vgpu *vgpu, 1626 const struct intel_engine_cs *engine, 1627 struct execlist_ctx_descriptor_format *desc) 1628 { 1629 struct intel_vgpu_submission *s = &vgpu->submission; 1630 struct list_head *q = workload_q_head(vgpu, engine); 1631 struct intel_vgpu_workload *last_workload = NULL; 1632 struct intel_vgpu_workload *workload = NULL; 1633 u64 ring_context_gpa; 1634 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1635 u32 guest_head; 1636 int ret; 1637 1638 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1639 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1640 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1641 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1642 return ERR_PTR(-EINVAL); 1643 } 1644 1645 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1646 RING_CTX_OFF(ring_header.val), &head, 4); 1647 1648 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1649 RING_CTX_OFF(ring_tail.val), &tail, 4); 1650 1651 guest_head = head; 1652 1653 head &= RB_HEAD_OFF_MASK; 1654 tail &= RB_TAIL_OFF_MASK; 1655 1656 list_for_each_entry_reverse(last_workload, q, list) { 1657 1658 if (same_context(&last_workload->ctx_desc, desc)) { 1659 gvt_dbg_el("ring %s cur workload == last\n", 1660 engine->name); 1661 gvt_dbg_el("ctx head %x real head %lx\n", head, 1662 last_workload->rb_tail); 1663 /* 1664 * cannot use guest context head pointer here, 1665 * as it might not be updated at this time 1666 */ 1667 head = last_workload->rb_tail; 1668 break; 1669 } 1670 } 1671 1672 gvt_dbg_el("ring %s begin a new workload\n", engine->name); 1673 1674 /* record some ring buffer register values for scan and shadow */ 1675 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1676 RING_CTX_OFF(rb_start.val), &start, 4); 1677 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1678 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1679 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1680 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1681 1682 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1683 _RING_CTL_BUF_SIZE(ctl))) { 1684 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1685 return ERR_PTR(-EINVAL); 1686 } 1687 1688 workload = alloc_workload(vgpu); 1689 if (IS_ERR(workload)) 1690 return workload; 1691 1692 workload->engine = engine; 1693 workload->ctx_desc = *desc; 1694 workload->ring_context_gpa = ring_context_gpa; 1695 workload->rb_head = head; 1696 workload->guest_rb_head = guest_head; 1697 workload->rb_tail = tail; 1698 workload->rb_start = start; 1699 workload->rb_ctl = ctl; 1700 1701 if (engine->id == RCS0) { 1702 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1703 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1704 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1705 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1706 1707 workload->wa_ctx.indirect_ctx.guest_gma = 1708 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1709 workload->wa_ctx.indirect_ctx.size = 1710 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1711 CACHELINE_BYTES; 1712 1713 if (workload->wa_ctx.indirect_ctx.size != 0) { 1714 if (!intel_gvt_ggtt_validate_range(vgpu, 1715 workload->wa_ctx.indirect_ctx.guest_gma, 1716 workload->wa_ctx.indirect_ctx.size)) { 1717 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1718 workload->wa_ctx.indirect_ctx.guest_gma); 1719 kmem_cache_free(s->workloads, workload); 1720 return ERR_PTR(-EINVAL); 1721 } 1722 } 1723 1724 workload->wa_ctx.per_ctx.guest_gma = 1725 per_ctx & PER_CTX_ADDR_MASK; 1726 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1727 if (workload->wa_ctx.per_ctx.valid) { 1728 if (!intel_gvt_ggtt_validate_range(vgpu, 1729 workload->wa_ctx.per_ctx.guest_gma, 1730 CACHELINE_BYTES)) { 1731 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1732 workload->wa_ctx.per_ctx.guest_gma); 1733 kmem_cache_free(s->workloads, workload); 1734 return ERR_PTR(-EINVAL); 1735 } 1736 } 1737 } 1738 1739 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n", 1740 workload, engine->name, head, tail, start, ctl); 1741 1742 ret = prepare_mm(workload); 1743 if (ret) { 1744 kmem_cache_free(s->workloads, workload); 1745 return ERR_PTR(ret); 1746 } 1747 1748 /* Only scan and shadow the first workload in the queue 1749 * as there is only one pre-allocated buf-obj for shadow. 1750 */ 1751 if (list_empty(q)) { 1752 intel_wakeref_t wakeref; 1753 1754 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref) 1755 ret = intel_gvt_scan_and_shadow_workload(workload); 1756 } 1757 1758 if (ret) { 1759 if (vgpu_is_vm_unhealthy(ret)) 1760 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1761 intel_vgpu_destroy_workload(workload); 1762 return ERR_PTR(ret); 1763 } 1764 1765 ret = intel_context_pin(s->shadow[engine->id]); 1766 if (ret) { 1767 intel_vgpu_destroy_workload(workload); 1768 return ERR_PTR(ret); 1769 } 1770 1771 return workload; 1772 } 1773 1774 /** 1775 * intel_vgpu_queue_workload - Qeue a vGPU workload 1776 * @workload: the workload to queue in 1777 */ 1778 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1779 { 1780 list_add_tail(&workload->list, 1781 workload_q_head(workload->vgpu, workload->engine)); 1782 intel_gvt_kick_schedule(workload->vgpu->gvt); 1783 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]); 1784 } 1785