1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "i915_drv.h" 39 #include "gvt.h" 40 41 #define RING_CTX_OFF(x) \ 42 offsetof(struct execlist_ring_context, x) 43 44 static void set_context_pdp_root_pointer( 45 struct execlist_ring_context *ring_context, 46 u32 pdp[8]) 47 { 48 int i; 49 50 for (i = 0; i < 8; i++) 51 ring_context->pdps[i].val = pdp[7 - i]; 52 } 53 54 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 55 { 56 struct drm_i915_gem_object *ctx_obj = 57 workload->req->hw_context->state->obj; 58 struct execlist_ring_context *shadow_ring_context; 59 struct page *page; 60 61 if (WARN_ON(!workload->shadow_mm)) 62 return; 63 64 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 65 return; 66 67 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 68 shadow_ring_context = kmap(page); 69 set_context_pdp_root_pointer(shadow_ring_context, 70 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 71 kunmap(page); 72 } 73 74 /* 75 * when populating shadow ctx from guest, we should not overrride oa related 76 * registers, so that they will not be overlapped by guest oa configs. Thus 77 * made it possible to capture oa data from host for both host and guests. 78 */ 79 static void sr_oa_regs(struct intel_vgpu_workload *workload, 80 u32 *reg_state, bool save) 81 { 82 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 83 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 84 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 85 int i = 0; 86 u32 flex_mmio[] = { 87 i915_mmio_reg_offset(EU_PERF_CNTL0), 88 i915_mmio_reg_offset(EU_PERF_CNTL1), 89 i915_mmio_reg_offset(EU_PERF_CNTL2), 90 i915_mmio_reg_offset(EU_PERF_CNTL3), 91 i915_mmio_reg_offset(EU_PERF_CNTL4), 92 i915_mmio_reg_offset(EU_PERF_CNTL5), 93 i915_mmio_reg_offset(EU_PERF_CNTL6), 94 }; 95 96 if (workload->ring_id != RCS) 97 return; 98 99 if (save) { 100 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 101 102 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 103 u32 state_offset = ctx_flexeu0 + i * 2; 104 105 workload->flex_mmio[i] = reg_state[state_offset + 1]; 106 } 107 } else { 108 reg_state[ctx_oactxctrl] = 109 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 110 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 111 112 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 113 u32 state_offset = ctx_flexeu0 + i * 2; 114 u32 mmio = flex_mmio[i]; 115 116 reg_state[state_offset] = mmio; 117 reg_state[state_offset + 1] = workload->flex_mmio[i]; 118 } 119 } 120 } 121 122 static int populate_shadow_context(struct intel_vgpu_workload *workload) 123 { 124 struct intel_vgpu *vgpu = workload->vgpu; 125 struct intel_gvt *gvt = vgpu->gvt; 126 int ring_id = workload->ring_id; 127 struct drm_i915_gem_object *ctx_obj = 128 workload->req->hw_context->state->obj; 129 struct execlist_ring_context *shadow_ring_context; 130 struct page *page; 131 void *dst; 132 unsigned long context_gpa, context_page_num; 133 int i; 134 135 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 136 workload->ctx_desc.lrca); 137 138 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 139 140 context_page_num = context_page_num >> PAGE_SHIFT; 141 142 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS) 143 context_page_num = 19; 144 145 i = 2; 146 147 while (i < context_page_num) { 148 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 149 (u32)((workload->ctx_desc.lrca + i) << 150 I915_GTT_PAGE_SHIFT)); 151 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 152 gvt_vgpu_err("Invalid guest context descriptor\n"); 153 return -EFAULT; 154 } 155 156 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 157 dst = kmap(page); 158 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 159 I915_GTT_PAGE_SIZE); 160 kunmap(page); 161 i++; 162 } 163 164 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 165 shadow_ring_context = kmap(page); 166 167 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 168 #define COPY_REG(name) \ 169 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 170 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 171 #define COPY_REG_MASKED(name) {\ 172 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 173 + RING_CTX_OFF(name.val),\ 174 &shadow_ring_context->name.val, 4);\ 175 shadow_ring_context->name.val |= 0xffff << 16;\ 176 } 177 178 COPY_REG_MASKED(ctx_ctrl); 179 COPY_REG(ctx_timestamp); 180 181 if (ring_id == RCS) { 182 COPY_REG(bb_per_ctx_ptr); 183 COPY_REG(rcs_indirect_ctx); 184 COPY_REG(rcs_indirect_ctx_offset); 185 } 186 #undef COPY_REG 187 #undef COPY_REG_MASKED 188 189 intel_gvt_hypervisor_read_gpa(vgpu, 190 workload->ring_context_gpa + 191 sizeof(*shadow_ring_context), 192 (void *)shadow_ring_context + 193 sizeof(*shadow_ring_context), 194 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 195 196 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 197 kunmap(page); 198 return 0; 199 } 200 201 static inline bool is_gvt_request(struct i915_request *req) 202 { 203 return i915_gem_context_force_single_submission(req->gem_context); 204 } 205 206 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 207 { 208 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 209 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 210 i915_reg_t reg; 211 212 reg = RING_INSTDONE(ring_base); 213 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 214 reg = RING_ACTHD(ring_base); 215 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 216 reg = RING_ACTHD_UDW(ring_base); 217 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 218 } 219 220 static int shadow_context_status_change(struct notifier_block *nb, 221 unsigned long action, void *data) 222 { 223 struct i915_request *req = data; 224 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 225 shadow_ctx_notifier_block[req->engine->id]); 226 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 227 enum intel_engine_id ring_id = req->engine->id; 228 struct intel_vgpu_workload *workload; 229 unsigned long flags; 230 231 if (!is_gvt_request(req)) { 232 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 233 if (action == INTEL_CONTEXT_SCHEDULE_IN && 234 scheduler->engine_owner[ring_id]) { 235 /* Switch ring from vGPU to host. */ 236 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 237 NULL, ring_id); 238 scheduler->engine_owner[ring_id] = NULL; 239 } 240 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 241 242 return NOTIFY_OK; 243 } 244 245 workload = scheduler->current_workload[ring_id]; 246 if (unlikely(!workload)) 247 return NOTIFY_OK; 248 249 switch (action) { 250 case INTEL_CONTEXT_SCHEDULE_IN: 251 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 252 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 253 /* Switch ring from host to vGPU or vGPU to vGPU. */ 254 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 255 workload->vgpu, ring_id); 256 scheduler->engine_owner[ring_id] = workload->vgpu; 257 } else 258 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 259 ring_id, workload->vgpu->id); 260 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 261 atomic_set(&workload->shadow_ctx_active, 1); 262 break; 263 case INTEL_CONTEXT_SCHEDULE_OUT: 264 save_ring_hw_state(workload->vgpu, ring_id); 265 atomic_set(&workload->shadow_ctx_active, 0); 266 break; 267 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 268 save_ring_hw_state(workload->vgpu, ring_id); 269 break; 270 default: 271 WARN_ON(1); 272 return NOTIFY_OK; 273 } 274 wake_up(&workload->shadow_ctx_status_wq); 275 return NOTIFY_OK; 276 } 277 278 static void shadow_context_descriptor_update(struct intel_context *ce) 279 { 280 u64 desc = 0; 281 282 desc = ce->lrc_desc; 283 284 /* Update bits 0-11 of the context descriptor which includes flags 285 * like GEN8_CTX_* cached in desc_template 286 */ 287 desc &= U64_MAX << 12; 288 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1); 289 290 ce->lrc_desc = desc; 291 } 292 293 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 294 { 295 struct intel_vgpu *vgpu = workload->vgpu; 296 struct i915_request *req = workload->req; 297 void *shadow_ring_buffer_va; 298 u32 *cs; 299 300 if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)) 301 && is_inhibit_context(req->hw_context)) 302 intel_vgpu_restore_inhibit_context(vgpu, req); 303 304 /* allocate shadow ring buffer */ 305 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 306 if (IS_ERR(cs)) { 307 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 308 workload->rb_len); 309 return PTR_ERR(cs); 310 } 311 312 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 313 314 /* get shadow ring buffer va */ 315 workload->shadow_ring_buffer_va = cs; 316 317 memcpy(cs, shadow_ring_buffer_va, 318 workload->rb_len); 319 320 cs += workload->rb_len / sizeof(u32); 321 intel_ring_advance(workload->req, cs); 322 323 return 0; 324 } 325 326 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 327 { 328 if (!wa_ctx->indirect_ctx.obj) 329 return; 330 331 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 332 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 333 } 334 335 /** 336 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 337 * shadow it as well, include ringbuffer,wa_ctx and ctx. 338 * @workload: an abstract entity for each execlist submission. 339 * 340 * This function is called before the workload submitting to i915, to make 341 * sure the content of the workload is valid. 342 */ 343 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 344 { 345 struct intel_vgpu *vgpu = workload->vgpu; 346 struct intel_vgpu_submission *s = &vgpu->submission; 347 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 348 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 349 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 350 struct intel_context *ce; 351 struct i915_request *rq; 352 int ret; 353 354 lockdep_assert_held(&dev_priv->drm.struct_mutex); 355 356 if (workload->req) 357 return 0; 358 359 /* pin shadow context by gvt even the shadow context will be pinned 360 * when i915 alloc request. That is because gvt will update the guest 361 * context from shadow context when workload is completed, and at that 362 * moment, i915 may already unpined the shadow context to make the 363 * shadow_ctx pages invalid. So gvt need to pin itself. After update 364 * the guest context, gvt can unpin the shadow_ctx safely. 365 */ 366 ce = intel_context_pin(shadow_ctx, engine); 367 if (IS_ERR(ce)) { 368 gvt_vgpu_err("fail to pin shadow context\n"); 369 return PTR_ERR(ce); 370 } 371 372 shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 373 shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode << 374 GEN8_CTX_ADDRESSING_MODE_SHIFT; 375 376 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 377 shadow_context_descriptor_update(ce); 378 379 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 380 if (ret) 381 goto err_unpin; 382 383 if ((workload->ring_id == RCS) && 384 (workload->wa_ctx.indirect_ctx.size != 0)) { 385 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 386 if (ret) 387 goto err_shadow; 388 } 389 390 rq = i915_request_alloc(engine, shadow_ctx); 391 if (IS_ERR(rq)) { 392 gvt_vgpu_err("fail to allocate gem request\n"); 393 ret = PTR_ERR(rq); 394 goto err_shadow; 395 } 396 workload->req = i915_request_get(rq); 397 398 ret = populate_shadow_context(workload); 399 if (ret) 400 goto err_req; 401 402 return 0; 403 err_req: 404 rq = fetch_and_zero(&workload->req); 405 i915_request_put(rq); 406 err_shadow: 407 release_shadow_wa_ctx(&workload->wa_ctx); 408 err_unpin: 409 intel_context_unpin(ce); 410 return ret; 411 } 412 413 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 414 415 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 416 { 417 struct intel_gvt *gvt = workload->vgpu->gvt; 418 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 419 struct intel_vgpu_shadow_bb *bb; 420 int ret; 421 422 list_for_each_entry(bb, &workload->shadow_bb, list) { 423 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 424 * is only updated into ring_scan_buffer, not real ring address 425 * allocated in later copy_workload_to_ring_buffer. pls be noted 426 * shadow_ring_buffer_va is now pointed to real ring buffer va 427 * in copy_workload_to_ring_buffer. 428 */ 429 430 if (bb->bb_offset) 431 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 432 + bb->bb_offset; 433 434 if (bb->ppgtt) { 435 /* for non-priv bb, scan&shadow is only for 436 * debugging purpose, so the content of shadow bb 437 * is the same as original bb. Therefore, 438 * here, rather than switch to shadow bb's gma 439 * address, we directly use original batch buffer's 440 * gma address, and send original bb to hardware 441 * directly 442 */ 443 if (bb->clflush & CLFLUSH_AFTER) { 444 drm_clflush_virt_range(bb->va, 445 bb->obj->base.size); 446 bb->clflush &= ~CLFLUSH_AFTER; 447 } 448 i915_gem_obj_finish_shmem_access(bb->obj); 449 bb->accessing = false; 450 451 } else { 452 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 453 NULL, 0, 0, 0); 454 if (IS_ERR(bb->vma)) { 455 ret = PTR_ERR(bb->vma); 456 goto err; 457 } 458 459 /* relocate shadow batch buffer */ 460 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 461 if (gmadr_bytes == 8) 462 bb->bb_start_cmd_va[2] = 0; 463 464 /* No one is going to touch shadow bb from now on. */ 465 if (bb->clflush & CLFLUSH_AFTER) { 466 drm_clflush_virt_range(bb->va, 467 bb->obj->base.size); 468 bb->clflush &= ~CLFLUSH_AFTER; 469 } 470 471 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 472 false); 473 if (ret) 474 goto err; 475 476 i915_gem_obj_finish_shmem_access(bb->obj); 477 bb->accessing = false; 478 479 ret = i915_vma_move_to_active(bb->vma, 480 workload->req, 481 0); 482 if (ret) 483 goto err; 484 } 485 } 486 return 0; 487 err: 488 release_shadow_batch_buffer(workload); 489 return ret; 490 } 491 492 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 493 { 494 struct intel_vgpu_workload *workload = 495 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 496 struct i915_request *rq = workload->req; 497 struct execlist_ring_context *shadow_ring_context = 498 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 499 500 shadow_ring_context->bb_per_ctx_ptr.val = 501 (shadow_ring_context->bb_per_ctx_ptr.val & 502 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 503 shadow_ring_context->rcs_indirect_ctx.val = 504 (shadow_ring_context->rcs_indirect_ctx.val & 505 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 506 } 507 508 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 509 { 510 struct i915_vma *vma; 511 unsigned char *per_ctx_va = 512 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 513 wa_ctx->indirect_ctx.size; 514 515 if (wa_ctx->indirect_ctx.size == 0) 516 return 0; 517 518 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 519 0, CACHELINE_BYTES, 0); 520 if (IS_ERR(vma)) 521 return PTR_ERR(vma); 522 523 /* FIXME: we are not tracking our pinned VMA leaving it 524 * up to the core to fix up the stray pin_count upon 525 * free. 526 */ 527 528 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 529 530 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 531 memset(per_ctx_va, 0, CACHELINE_BYTES); 532 533 update_wa_ctx_2_shadow_ctx(wa_ctx); 534 return 0; 535 } 536 537 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 538 { 539 struct intel_vgpu *vgpu = workload->vgpu; 540 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 541 struct intel_vgpu_shadow_bb *bb, *pos; 542 543 if (list_empty(&workload->shadow_bb)) 544 return; 545 546 bb = list_first_entry(&workload->shadow_bb, 547 struct intel_vgpu_shadow_bb, list); 548 549 mutex_lock(&dev_priv->drm.struct_mutex); 550 551 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 552 if (bb->obj) { 553 if (bb->accessing) 554 i915_gem_obj_finish_shmem_access(bb->obj); 555 556 if (bb->va && !IS_ERR(bb->va)) 557 i915_gem_object_unpin_map(bb->obj); 558 559 if (bb->vma && !IS_ERR(bb->vma)) { 560 i915_vma_unpin(bb->vma); 561 i915_vma_close(bb->vma); 562 } 563 __i915_gem_object_release_unless_active(bb->obj); 564 } 565 list_del(&bb->list); 566 kfree(bb); 567 } 568 569 mutex_unlock(&dev_priv->drm.struct_mutex); 570 } 571 572 static int prepare_workload(struct intel_vgpu_workload *workload) 573 { 574 struct intel_vgpu *vgpu = workload->vgpu; 575 int ret = 0; 576 577 ret = intel_vgpu_pin_mm(workload->shadow_mm); 578 if (ret) { 579 gvt_vgpu_err("fail to vgpu pin mm\n"); 580 return ret; 581 } 582 583 update_shadow_pdps(workload); 584 585 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 586 if (ret) { 587 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 588 goto err_unpin_mm; 589 } 590 591 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 592 if (ret) { 593 gvt_vgpu_err("fail to flush post shadow\n"); 594 goto err_unpin_mm; 595 } 596 597 ret = copy_workload_to_ring_buffer(workload); 598 if (ret) { 599 gvt_vgpu_err("fail to generate request\n"); 600 goto err_unpin_mm; 601 } 602 603 ret = prepare_shadow_batch_buffer(workload); 604 if (ret) { 605 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 606 goto err_unpin_mm; 607 } 608 609 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 610 if (ret) { 611 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 612 goto err_shadow_batch; 613 } 614 615 if (workload->prepare) { 616 ret = workload->prepare(workload); 617 if (ret) 618 goto err_shadow_wa_ctx; 619 } 620 621 return 0; 622 err_shadow_wa_ctx: 623 release_shadow_wa_ctx(&workload->wa_ctx); 624 err_shadow_batch: 625 release_shadow_batch_buffer(workload); 626 err_unpin_mm: 627 intel_vgpu_unpin_mm(workload->shadow_mm); 628 return ret; 629 } 630 631 static int dispatch_workload(struct intel_vgpu_workload *workload) 632 { 633 struct intel_vgpu *vgpu = workload->vgpu; 634 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 635 int ring_id = workload->ring_id; 636 int ret; 637 638 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 639 ring_id, workload); 640 641 mutex_lock(&vgpu->vgpu_lock); 642 mutex_lock(&dev_priv->drm.struct_mutex); 643 644 ret = intel_gvt_scan_and_shadow_workload(workload); 645 if (ret) 646 goto out; 647 648 ret = prepare_workload(workload); 649 650 out: 651 if (ret) 652 workload->status = ret; 653 654 if (!IS_ERR_OR_NULL(workload->req)) { 655 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 656 ring_id, workload->req); 657 i915_request_add(workload->req); 658 workload->dispatched = true; 659 } 660 661 mutex_unlock(&dev_priv->drm.struct_mutex); 662 mutex_unlock(&vgpu->vgpu_lock); 663 return ret; 664 } 665 666 static struct intel_vgpu_workload *pick_next_workload( 667 struct intel_gvt *gvt, int ring_id) 668 { 669 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 670 struct intel_vgpu_workload *workload = NULL; 671 672 mutex_lock(&gvt->sched_lock); 673 674 /* 675 * no current vgpu / will be scheduled out / no workload 676 * bail out 677 */ 678 if (!scheduler->current_vgpu) { 679 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 680 goto out; 681 } 682 683 if (scheduler->need_reschedule) { 684 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 685 goto out; 686 } 687 688 if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 689 goto out; 690 691 /* 692 * still have current workload, maybe the workload disptacher 693 * fail to submit it for some reason, resubmit it. 694 */ 695 if (scheduler->current_workload[ring_id]) { 696 workload = scheduler->current_workload[ring_id]; 697 gvt_dbg_sched("ring id %d still have current workload %p\n", 698 ring_id, workload); 699 goto out; 700 } 701 702 /* 703 * pick a workload as current workload 704 * once current workload is set, schedule policy routines 705 * will wait the current workload is finished when trying to 706 * schedule out a vgpu. 707 */ 708 scheduler->current_workload[ring_id] = container_of( 709 workload_q_head(scheduler->current_vgpu, ring_id)->next, 710 struct intel_vgpu_workload, list); 711 712 workload = scheduler->current_workload[ring_id]; 713 714 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 715 716 atomic_inc(&workload->vgpu->submission.running_workload_num); 717 out: 718 mutex_unlock(&gvt->sched_lock); 719 return workload; 720 } 721 722 static void update_guest_context(struct intel_vgpu_workload *workload) 723 { 724 struct i915_request *rq = workload->req; 725 struct intel_vgpu *vgpu = workload->vgpu; 726 struct intel_gvt *gvt = vgpu->gvt; 727 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 728 struct execlist_ring_context *shadow_ring_context; 729 struct page *page; 730 void *src; 731 unsigned long context_gpa, context_page_num; 732 int i; 733 734 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 735 workload->ctx_desc.lrca); 736 737 context_page_num = rq->engine->context_size; 738 context_page_num = context_page_num >> PAGE_SHIFT; 739 740 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS) 741 context_page_num = 19; 742 743 i = 2; 744 745 while (i < context_page_num) { 746 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 747 (u32)((workload->ctx_desc.lrca + i) << 748 I915_GTT_PAGE_SHIFT)); 749 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 750 gvt_vgpu_err("invalid guest context descriptor\n"); 751 return; 752 } 753 754 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 755 src = kmap(page); 756 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 757 I915_GTT_PAGE_SIZE); 758 kunmap(page); 759 i++; 760 } 761 762 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 763 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 764 765 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 766 shadow_ring_context = kmap(page); 767 768 #define COPY_REG(name) \ 769 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 770 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 771 772 COPY_REG(ctx_ctrl); 773 COPY_REG(ctx_timestamp); 774 775 #undef COPY_REG 776 777 intel_gvt_hypervisor_write_gpa(vgpu, 778 workload->ring_context_gpa + 779 sizeof(*shadow_ring_context), 780 (void *)shadow_ring_context + 781 sizeof(*shadow_ring_context), 782 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 783 784 kunmap(page); 785 } 786 787 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 788 unsigned long engine_mask) 789 { 790 struct intel_vgpu_submission *s = &vgpu->submission; 791 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 792 struct intel_engine_cs *engine; 793 struct intel_vgpu_workload *pos, *n; 794 unsigned int tmp; 795 796 /* free the unsubmited workloads in the queues. */ 797 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 798 list_for_each_entry_safe(pos, n, 799 &s->workload_q_head[engine->id], list) { 800 list_del_init(&pos->list); 801 intel_vgpu_destroy_workload(pos); 802 } 803 clear_bit(engine->id, s->shadow_ctx_desc_updated); 804 } 805 } 806 807 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 808 { 809 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 810 struct intel_vgpu_workload *workload = 811 scheduler->current_workload[ring_id]; 812 struct intel_vgpu *vgpu = workload->vgpu; 813 struct intel_vgpu_submission *s = &vgpu->submission; 814 struct i915_request *rq = workload->req; 815 int event; 816 817 mutex_lock(&vgpu->vgpu_lock); 818 mutex_lock(&gvt->sched_lock); 819 820 /* For the workload w/ request, needs to wait for the context 821 * switch to make sure request is completed. 822 * For the workload w/o request, directly complete the workload. 823 */ 824 if (rq) { 825 wait_event(workload->shadow_ctx_status_wq, 826 !atomic_read(&workload->shadow_ctx_active)); 827 828 /* If this request caused GPU hang, req->fence.error will 829 * be set to -EIO. Use -EIO to set workload status so 830 * that when this request caused GPU hang, didn't trigger 831 * context switch interrupt to guest. 832 */ 833 if (likely(workload->status == -EINPROGRESS)) { 834 if (workload->req->fence.error == -EIO) 835 workload->status = -EIO; 836 else 837 workload->status = 0; 838 } 839 840 if (!workload->status && !(vgpu->resetting_eng & 841 ENGINE_MASK(ring_id))) { 842 update_guest_context(workload); 843 844 for_each_set_bit(event, workload->pending_events, 845 INTEL_GVT_EVENT_MAX) 846 intel_vgpu_trigger_virtual_event(vgpu, event); 847 } 848 849 /* unpin shadow ctx as the shadow_ctx update is done */ 850 mutex_lock(&rq->i915->drm.struct_mutex); 851 intel_context_unpin(rq->hw_context); 852 mutex_unlock(&rq->i915->drm.struct_mutex); 853 854 i915_request_put(fetch_and_zero(&workload->req)); 855 } 856 857 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 858 ring_id, workload, workload->status); 859 860 scheduler->current_workload[ring_id] = NULL; 861 862 list_del_init(&workload->list); 863 864 if (!workload->status) { 865 release_shadow_batch_buffer(workload); 866 release_shadow_wa_ctx(&workload->wa_ctx); 867 } 868 869 if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) { 870 /* if workload->status is not successful means HW GPU 871 * has occurred GPU hang or something wrong with i915/GVT, 872 * and GVT won't inject context switch interrupt to guest. 873 * So this error is a vGPU hang actually to the guest. 874 * According to this we should emunlate a vGPU hang. If 875 * there are pending workloads which are already submitted 876 * from guest, we should clean them up like HW GPU does. 877 * 878 * if it is in middle of engine resetting, the pending 879 * workloads won't be submitted to HW GPU and will be 880 * cleaned up during the resetting process later, so doing 881 * the workload clean up here doesn't have any impact. 882 **/ 883 intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id)); 884 } 885 886 workload->complete(workload); 887 888 atomic_dec(&s->running_workload_num); 889 wake_up(&scheduler->workload_complete_wq); 890 891 if (gvt->scheduler.need_reschedule) 892 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 893 894 mutex_unlock(&gvt->sched_lock); 895 mutex_unlock(&vgpu->vgpu_lock); 896 } 897 898 struct workload_thread_param { 899 struct intel_gvt *gvt; 900 int ring_id; 901 }; 902 903 static int workload_thread(void *priv) 904 { 905 struct workload_thread_param *p = (struct workload_thread_param *)priv; 906 struct intel_gvt *gvt = p->gvt; 907 int ring_id = p->ring_id; 908 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 909 struct intel_vgpu_workload *workload = NULL; 910 struct intel_vgpu *vgpu = NULL; 911 int ret; 912 bool need_force_wake = IS_SKYLAKE(gvt->dev_priv) 913 || IS_KABYLAKE(gvt->dev_priv) 914 || IS_BROXTON(gvt->dev_priv); 915 DEFINE_WAIT_FUNC(wait, woken_wake_function); 916 917 kfree(p); 918 919 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 920 921 while (!kthread_should_stop()) { 922 add_wait_queue(&scheduler->waitq[ring_id], &wait); 923 do { 924 workload = pick_next_workload(gvt, ring_id); 925 if (workload) 926 break; 927 wait_woken(&wait, TASK_INTERRUPTIBLE, 928 MAX_SCHEDULE_TIMEOUT); 929 } while (!kthread_should_stop()); 930 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 931 932 if (!workload) 933 break; 934 935 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 936 workload->ring_id, workload, 937 workload->vgpu->id); 938 939 intel_runtime_pm_get(gvt->dev_priv); 940 941 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 942 workload->ring_id, workload); 943 944 if (need_force_wake) 945 intel_uncore_forcewake_get(gvt->dev_priv, 946 FORCEWAKE_ALL); 947 948 ret = dispatch_workload(workload); 949 950 if (ret) { 951 vgpu = workload->vgpu; 952 gvt_vgpu_err("fail to dispatch workload, skip\n"); 953 goto complete; 954 } 955 956 gvt_dbg_sched("ring id %d wait workload %p\n", 957 workload->ring_id, workload); 958 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 959 960 complete: 961 gvt_dbg_sched("will complete workload %p, status: %d\n", 962 workload, workload->status); 963 964 complete_current_workload(gvt, ring_id); 965 966 if (need_force_wake) 967 intel_uncore_forcewake_put(gvt->dev_priv, 968 FORCEWAKE_ALL); 969 970 intel_runtime_pm_put(gvt->dev_priv); 971 if (ret && (vgpu_is_vm_unhealthy(ret))) 972 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 973 } 974 return 0; 975 } 976 977 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 978 { 979 struct intel_vgpu_submission *s = &vgpu->submission; 980 struct intel_gvt *gvt = vgpu->gvt; 981 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 982 983 if (atomic_read(&s->running_workload_num)) { 984 gvt_dbg_sched("wait vgpu idle\n"); 985 986 wait_event(scheduler->workload_complete_wq, 987 !atomic_read(&s->running_workload_num)); 988 } 989 } 990 991 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 992 { 993 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 994 struct intel_engine_cs *engine; 995 enum intel_engine_id i; 996 997 gvt_dbg_core("clean workload scheduler\n"); 998 999 for_each_engine(engine, gvt->dev_priv, i) { 1000 atomic_notifier_chain_unregister( 1001 &engine->context_status_notifier, 1002 &gvt->shadow_ctx_notifier_block[i]); 1003 kthread_stop(scheduler->thread[i]); 1004 } 1005 } 1006 1007 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1008 { 1009 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1010 struct workload_thread_param *param = NULL; 1011 struct intel_engine_cs *engine; 1012 enum intel_engine_id i; 1013 int ret; 1014 1015 gvt_dbg_core("init workload scheduler\n"); 1016 1017 init_waitqueue_head(&scheduler->workload_complete_wq); 1018 1019 for_each_engine(engine, gvt->dev_priv, i) { 1020 init_waitqueue_head(&scheduler->waitq[i]); 1021 1022 param = kzalloc(sizeof(*param), GFP_KERNEL); 1023 if (!param) { 1024 ret = -ENOMEM; 1025 goto err; 1026 } 1027 1028 param->gvt = gvt; 1029 param->ring_id = i; 1030 1031 scheduler->thread[i] = kthread_run(workload_thread, param, 1032 "gvt workload %d", i); 1033 if (IS_ERR(scheduler->thread[i])) { 1034 gvt_err("fail to create workload thread\n"); 1035 ret = PTR_ERR(scheduler->thread[i]); 1036 goto err; 1037 } 1038 1039 gvt->shadow_ctx_notifier_block[i].notifier_call = 1040 shadow_context_status_change; 1041 atomic_notifier_chain_register(&engine->context_status_notifier, 1042 &gvt->shadow_ctx_notifier_block[i]); 1043 } 1044 return 0; 1045 err: 1046 intel_gvt_clean_workload_scheduler(gvt); 1047 kfree(param); 1048 param = NULL; 1049 return ret; 1050 } 1051 1052 /** 1053 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1054 * @vgpu: a vGPU 1055 * 1056 * This function is called when a vGPU is being destroyed. 1057 * 1058 */ 1059 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1060 { 1061 struct intel_vgpu_submission *s = &vgpu->submission; 1062 1063 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1064 i915_gem_context_put(s->shadow_ctx); 1065 kmem_cache_destroy(s->workloads); 1066 } 1067 1068 1069 /** 1070 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1071 * @vgpu: a vGPU 1072 * @engine_mask: engines expected to be reset 1073 * 1074 * This function is called when a vGPU is being destroyed. 1075 * 1076 */ 1077 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1078 unsigned long engine_mask) 1079 { 1080 struct intel_vgpu_submission *s = &vgpu->submission; 1081 1082 if (!s->active) 1083 return; 1084 1085 intel_vgpu_clean_workloads(vgpu, engine_mask); 1086 s->ops->reset(vgpu, engine_mask); 1087 } 1088 1089 /** 1090 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1091 * @vgpu: a vGPU 1092 * 1093 * This function is called when a vGPU is being created. 1094 * 1095 * Returns: 1096 * Zero on success, negative error code if failed. 1097 * 1098 */ 1099 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1100 { 1101 struct intel_vgpu_submission *s = &vgpu->submission; 1102 enum intel_engine_id i; 1103 struct intel_engine_cs *engine; 1104 int ret; 1105 1106 s->shadow_ctx = i915_gem_context_create_gvt( 1107 &vgpu->gvt->dev_priv->drm); 1108 if (IS_ERR(s->shadow_ctx)) 1109 return PTR_ERR(s->shadow_ctx); 1110 1111 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1112 1113 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1114 sizeof(struct intel_vgpu_workload), 0, 1115 SLAB_HWCACHE_ALIGN, 1116 offsetof(struct intel_vgpu_workload, rb_tail), 1117 sizeof_field(struct intel_vgpu_workload, rb_tail), 1118 NULL); 1119 1120 if (!s->workloads) { 1121 ret = -ENOMEM; 1122 goto out_shadow_ctx; 1123 } 1124 1125 for_each_engine(engine, vgpu->gvt->dev_priv, i) 1126 INIT_LIST_HEAD(&s->workload_q_head[i]); 1127 1128 atomic_set(&s->running_workload_num, 0); 1129 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1130 1131 return 0; 1132 1133 out_shadow_ctx: 1134 i915_gem_context_put(s->shadow_ctx); 1135 return ret; 1136 } 1137 1138 /** 1139 * intel_vgpu_select_submission_ops - select virtual submission interface 1140 * @vgpu: a vGPU 1141 * @interface: expected vGPU virtual submission interface 1142 * 1143 * This function is called when guest configures submission interface. 1144 * 1145 * Returns: 1146 * Zero on success, negative error code if failed. 1147 * 1148 */ 1149 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1150 unsigned long engine_mask, 1151 unsigned int interface) 1152 { 1153 struct intel_vgpu_submission *s = &vgpu->submission; 1154 const struct intel_vgpu_submission_ops *ops[] = { 1155 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1156 &intel_vgpu_execlist_submission_ops, 1157 }; 1158 int ret; 1159 1160 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1161 return -EINVAL; 1162 1163 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1164 return -EINVAL; 1165 1166 if (s->active) 1167 s->ops->clean(vgpu, engine_mask); 1168 1169 if (interface == 0) { 1170 s->ops = NULL; 1171 s->virtual_submission_interface = 0; 1172 s->active = false; 1173 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1174 return 0; 1175 } 1176 1177 ret = ops[interface]->init(vgpu, engine_mask); 1178 if (ret) 1179 return ret; 1180 1181 s->ops = ops[interface]; 1182 s->virtual_submission_interface = interface; 1183 s->active = true; 1184 1185 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1186 vgpu->id, s->ops->name); 1187 1188 return 0; 1189 } 1190 1191 /** 1192 * intel_vgpu_destroy_workload - destroy a vGPU workload 1193 * @vgpu: a vGPU 1194 * 1195 * This function is called when destroy a vGPU workload. 1196 * 1197 */ 1198 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1199 { 1200 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1201 1202 if (workload->shadow_mm) 1203 intel_vgpu_mm_put(workload->shadow_mm); 1204 1205 kmem_cache_free(s->workloads, workload); 1206 } 1207 1208 static struct intel_vgpu_workload * 1209 alloc_workload(struct intel_vgpu *vgpu) 1210 { 1211 struct intel_vgpu_submission *s = &vgpu->submission; 1212 struct intel_vgpu_workload *workload; 1213 1214 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1215 if (!workload) 1216 return ERR_PTR(-ENOMEM); 1217 1218 INIT_LIST_HEAD(&workload->list); 1219 INIT_LIST_HEAD(&workload->shadow_bb); 1220 1221 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1222 atomic_set(&workload->shadow_ctx_active, 0); 1223 1224 workload->status = -EINPROGRESS; 1225 workload->vgpu = vgpu; 1226 1227 return workload; 1228 } 1229 1230 #define RING_CTX_OFF(x) \ 1231 offsetof(struct execlist_ring_context, x) 1232 1233 static void read_guest_pdps(struct intel_vgpu *vgpu, 1234 u64 ring_context_gpa, u32 pdp[8]) 1235 { 1236 u64 gpa; 1237 int i; 1238 1239 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1240 1241 for (i = 0; i < 8; i++) 1242 intel_gvt_hypervisor_read_gpa(vgpu, 1243 gpa + i * 8, &pdp[7 - i], 4); 1244 } 1245 1246 static int prepare_mm(struct intel_vgpu_workload *workload) 1247 { 1248 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1249 struct intel_vgpu_mm *mm; 1250 struct intel_vgpu *vgpu = workload->vgpu; 1251 intel_gvt_gtt_type_t root_entry_type; 1252 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1253 1254 switch (desc->addressing_mode) { 1255 case 1: /* legacy 32-bit */ 1256 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1257 break; 1258 case 3: /* legacy 64-bit */ 1259 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1260 break; 1261 default: 1262 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1263 return -EINVAL; 1264 } 1265 1266 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1267 1268 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1269 if (IS_ERR(mm)) 1270 return PTR_ERR(mm); 1271 1272 workload->shadow_mm = mm; 1273 return 0; 1274 } 1275 1276 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1277 ((a)->lrca == (b)->lrca)) 1278 1279 #define get_last_workload(q) \ 1280 (list_empty(q) ? NULL : container_of(q->prev, \ 1281 struct intel_vgpu_workload, list)) 1282 /** 1283 * intel_vgpu_create_workload - create a vGPU workload 1284 * @vgpu: a vGPU 1285 * @desc: a guest context descriptor 1286 * 1287 * This function is called when creating a vGPU workload. 1288 * 1289 * Returns: 1290 * struct intel_vgpu_workload * on success, negative error code in 1291 * pointer if failed. 1292 * 1293 */ 1294 struct intel_vgpu_workload * 1295 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1296 struct execlist_ctx_descriptor_format *desc) 1297 { 1298 struct intel_vgpu_submission *s = &vgpu->submission; 1299 struct list_head *q = workload_q_head(vgpu, ring_id); 1300 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1301 struct intel_vgpu_workload *workload = NULL; 1302 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1303 u64 ring_context_gpa; 1304 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1305 int ret; 1306 1307 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1308 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1309 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1310 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1311 return ERR_PTR(-EINVAL); 1312 } 1313 1314 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1315 RING_CTX_OFF(ring_header.val), &head, 4); 1316 1317 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1318 RING_CTX_OFF(ring_tail.val), &tail, 4); 1319 1320 head &= RB_HEAD_OFF_MASK; 1321 tail &= RB_TAIL_OFF_MASK; 1322 1323 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1324 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1325 gvt_dbg_el("ctx head %x real head %lx\n", head, 1326 last_workload->rb_tail); 1327 /* 1328 * cannot use guest context head pointer here, 1329 * as it might not be updated at this time 1330 */ 1331 head = last_workload->rb_tail; 1332 } 1333 1334 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1335 1336 /* record some ring buffer register values for scan and shadow */ 1337 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1338 RING_CTX_OFF(rb_start.val), &start, 4); 1339 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1340 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1341 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1342 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1343 1344 workload = alloc_workload(vgpu); 1345 if (IS_ERR(workload)) 1346 return workload; 1347 1348 workload->ring_id = ring_id; 1349 workload->ctx_desc = *desc; 1350 workload->ring_context_gpa = ring_context_gpa; 1351 workload->rb_head = head; 1352 workload->rb_tail = tail; 1353 workload->rb_start = start; 1354 workload->rb_ctl = ctl; 1355 1356 if (ring_id == RCS) { 1357 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1358 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1359 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1360 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1361 1362 workload->wa_ctx.indirect_ctx.guest_gma = 1363 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1364 workload->wa_ctx.indirect_ctx.size = 1365 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1366 CACHELINE_BYTES; 1367 workload->wa_ctx.per_ctx.guest_gma = 1368 per_ctx & PER_CTX_ADDR_MASK; 1369 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1370 } 1371 1372 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1373 workload, ring_id, head, tail, start, ctl); 1374 1375 ret = prepare_mm(workload); 1376 if (ret) { 1377 kmem_cache_free(s->workloads, workload); 1378 return ERR_PTR(ret); 1379 } 1380 1381 /* Only scan and shadow the first workload in the queue 1382 * as there is only one pre-allocated buf-obj for shadow. 1383 */ 1384 if (list_empty(workload_q_head(vgpu, ring_id))) { 1385 intel_runtime_pm_get(dev_priv); 1386 mutex_lock(&dev_priv->drm.struct_mutex); 1387 ret = intel_gvt_scan_and_shadow_workload(workload); 1388 mutex_unlock(&dev_priv->drm.struct_mutex); 1389 intel_runtime_pm_put(dev_priv); 1390 } 1391 1392 if (ret && (vgpu_is_vm_unhealthy(ret))) { 1393 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1394 intel_vgpu_destroy_workload(workload); 1395 return ERR_PTR(ret); 1396 } 1397 1398 return workload; 1399 } 1400 1401 /** 1402 * intel_vgpu_queue_workload - Qeue a vGPU workload 1403 * @workload: the workload to queue in 1404 */ 1405 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1406 { 1407 list_add_tail(&workload->list, 1408 workload_q_head(workload->vgpu, workload->ring_id)); 1409 intel_gvt_kick_schedule(workload->vgpu->gvt); 1410 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1411 } 1412