xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
49 	int i;
50 
51 	for (i = 0; i < 8; i++)
52 		pdp_pair[i].val = pdp[7 - i];
53 }
54 
55 static int populate_shadow_context(struct intel_vgpu_workload *workload)
56 {
57 	struct intel_vgpu *vgpu = workload->vgpu;
58 	struct intel_gvt *gvt = vgpu->gvt;
59 	int ring_id = workload->ring_id;
60 	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
61 	struct drm_i915_gem_object *ctx_obj =
62 		shadow_ctx->engine[ring_id].state->obj;
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct page *page;
65 	void *dst;
66 	unsigned long context_gpa, context_page_num;
67 	int i;
68 
69 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
70 			workload->ctx_desc.lrca);
71 
72 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
73 
74 	context_page_num = context_page_num >> PAGE_SHIFT;
75 
76 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
77 		context_page_num = 19;
78 
79 	i = 2;
80 
81 	while (i < context_page_num) {
82 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
83 				(u32)((workload->ctx_desc.lrca + i) <<
84 				GTT_PAGE_SHIFT));
85 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
86 			gvt_vgpu_err("Invalid guest context descriptor\n");
87 			return -EINVAL;
88 		}
89 
90 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
91 		dst = kmap(page);
92 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
93 				GTT_PAGE_SIZE);
94 		kunmap(page);
95 		i++;
96 	}
97 
98 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
99 	shadow_ring_context = kmap(page);
100 
101 #define COPY_REG(name) \
102 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
103 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
104 
105 	COPY_REG(ctx_ctrl);
106 	COPY_REG(ctx_timestamp);
107 
108 	if (ring_id == RCS) {
109 		COPY_REG(bb_per_ctx_ptr);
110 		COPY_REG(rcs_indirect_ctx);
111 		COPY_REG(rcs_indirect_ctx_offset);
112 	}
113 #undef COPY_REG
114 
115 	set_context_pdp_root_pointer(shadow_ring_context,
116 				     workload->shadow_mm->shadow_page_table);
117 
118 	intel_gvt_hypervisor_read_gpa(vgpu,
119 			workload->ring_context_gpa +
120 			sizeof(*shadow_ring_context),
121 			(void *)shadow_ring_context +
122 			sizeof(*shadow_ring_context),
123 			GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
124 
125 	kunmap(page);
126 	return 0;
127 }
128 
129 static inline bool is_gvt_request(struct drm_i915_gem_request *req)
130 {
131 	return i915_gem_context_force_single_submission(req->ctx);
132 }
133 
134 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
135 {
136 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
137 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
138 	i915_reg_t reg;
139 
140 	reg = RING_INSTDONE(ring_base);
141 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
142 	reg = RING_ACTHD(ring_base);
143 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
144 	reg = RING_ACTHD_UDW(ring_base);
145 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
146 }
147 
148 static int shadow_context_status_change(struct notifier_block *nb,
149 		unsigned long action, void *data)
150 {
151 	struct drm_i915_gem_request *req = (struct drm_i915_gem_request *)data;
152 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
153 				shadow_ctx_notifier_block[req->engine->id]);
154 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
155 	enum intel_engine_id ring_id = req->engine->id;
156 	struct intel_vgpu_workload *workload;
157 	unsigned long flags;
158 
159 	if (!is_gvt_request(req)) {
160 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
161 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
162 		    scheduler->engine_owner[ring_id]) {
163 			/* Switch ring from vGPU to host. */
164 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
165 					      NULL, ring_id);
166 			scheduler->engine_owner[ring_id] = NULL;
167 		}
168 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
169 
170 		return NOTIFY_OK;
171 	}
172 
173 	workload = scheduler->current_workload[ring_id];
174 	if (unlikely(!workload))
175 		return NOTIFY_OK;
176 
177 	switch (action) {
178 	case INTEL_CONTEXT_SCHEDULE_IN:
179 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
180 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
181 			/* Switch ring from host to vGPU or vGPU to vGPU. */
182 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
183 					      workload->vgpu, ring_id);
184 			scheduler->engine_owner[ring_id] = workload->vgpu;
185 		} else
186 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
187 				      ring_id, workload->vgpu->id);
188 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
189 		atomic_set(&workload->shadow_ctx_active, 1);
190 		break;
191 	case INTEL_CONTEXT_SCHEDULE_OUT:
192 		save_ring_hw_state(workload->vgpu, ring_id);
193 		atomic_set(&workload->shadow_ctx_active, 0);
194 		break;
195 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
196 		save_ring_hw_state(workload->vgpu, ring_id);
197 		break;
198 	default:
199 		WARN_ON(1);
200 		return NOTIFY_OK;
201 	}
202 	wake_up(&workload->shadow_ctx_status_wq);
203 	return NOTIFY_OK;
204 }
205 
206 static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
207 		struct intel_engine_cs *engine)
208 {
209 	struct intel_context *ce = &ctx->engine[engine->id];
210 	u64 desc = 0;
211 
212 	desc = ce->lrc_desc;
213 
214 	/* Update bits 0-11 of the context descriptor which includes flags
215 	 * like GEN8_CTX_* cached in desc_template
216 	 */
217 	desc &= U64_MAX << 12;
218 	desc |= ctx->desc_template & ((1ULL << 12) - 1);
219 
220 	ce->lrc_desc = desc;
221 }
222 
223 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
224 {
225 	struct intel_vgpu *vgpu = workload->vgpu;
226 	void *shadow_ring_buffer_va;
227 	u32 *cs;
228 
229 	/* allocate shadow ring buffer */
230 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
231 	if (IS_ERR(cs)) {
232 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
233 			workload->rb_len);
234 		return PTR_ERR(cs);
235 	}
236 
237 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
238 
239 	/* get shadow ring buffer va */
240 	workload->shadow_ring_buffer_va = cs;
241 
242 	memcpy(cs, shadow_ring_buffer_va,
243 			workload->rb_len);
244 
245 	cs += workload->rb_len / sizeof(u32);
246 	intel_ring_advance(workload->req, cs);
247 
248 	return 0;
249 }
250 
251 void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
252 {
253 	if (!wa_ctx->indirect_ctx.obj)
254 		return;
255 
256 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
257 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
258 }
259 
260 /**
261  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
262  * shadow it as well, include ringbuffer,wa_ctx and ctx.
263  * @workload: an abstract entity for each execlist submission.
264  *
265  * This function is called before the workload submitting to i915, to make
266  * sure the content of the workload is valid.
267  */
268 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
269 {
270 	int ring_id = workload->ring_id;
271 	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
272 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
273 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
274 	struct intel_vgpu *vgpu = workload->vgpu;
275 	struct intel_ring *ring;
276 	int ret;
277 
278 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
279 
280 	if (workload->shadowed)
281 		return 0;
282 
283 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
284 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
285 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
286 
287 	if (!test_and_set_bit(ring_id, vgpu->shadow_ctx_desc_updated))
288 		shadow_context_descriptor_update(shadow_ctx,
289 					dev_priv->engine[ring_id]);
290 
291 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
292 	if (ret)
293 		goto err_scan;
294 
295 	if ((workload->ring_id == RCS) &&
296 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
297 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
298 		if (ret)
299 			goto err_scan;
300 	}
301 
302 	/* pin shadow context by gvt even the shadow context will be pinned
303 	 * when i915 alloc request. That is because gvt will update the guest
304 	 * context from shadow context when workload is completed, and at that
305 	 * moment, i915 may already unpined the shadow context to make the
306 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
307 	 * the guest context, gvt can unpin the shadow_ctx safely.
308 	 */
309 	ring = engine->context_pin(engine, shadow_ctx);
310 	if (IS_ERR(ring)) {
311 		ret = PTR_ERR(ring);
312 		gvt_vgpu_err("fail to pin shadow context\n");
313 		goto err_shadow;
314 	}
315 
316 	ret = populate_shadow_context(workload);
317 	if (ret)
318 		goto err_unpin;
319 	workload->shadowed = true;
320 	return 0;
321 
322 err_unpin:
323 	engine->context_unpin(engine, shadow_ctx);
324 err_shadow:
325 	release_shadow_wa_ctx(&workload->wa_ctx);
326 err_scan:
327 	return ret;
328 }
329 
330 int intel_gvt_generate_request(struct intel_vgpu_workload *workload)
331 {
332 	int ring_id = workload->ring_id;
333 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
334 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
335 	struct drm_i915_gem_request *rq;
336 	struct intel_vgpu *vgpu = workload->vgpu;
337 	struct i915_gem_context *shadow_ctx = vgpu->shadow_ctx;
338 	int ret;
339 
340 	rq = i915_gem_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
341 	if (IS_ERR(rq)) {
342 		gvt_vgpu_err("fail to allocate gem request\n");
343 		ret = PTR_ERR(rq);
344 		goto err_unpin;
345 	}
346 
347 	gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
348 
349 	workload->req = i915_gem_request_get(rq);
350 	ret = copy_workload_to_ring_buffer(workload);
351 	if (ret)
352 		goto err_unpin;
353 	return 0;
354 
355 err_unpin:
356 	engine->context_unpin(engine, shadow_ctx);
357 	release_shadow_wa_ctx(&workload->wa_ctx);
358 	return ret;
359 }
360 
361 static int dispatch_workload(struct intel_vgpu_workload *workload)
362 {
363 	int ring_id = workload->ring_id;
364 	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
365 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
366 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
367 	int ret = 0;
368 
369 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
370 		ring_id, workload);
371 
372 	mutex_lock(&dev_priv->drm.struct_mutex);
373 
374 	ret = intel_gvt_scan_and_shadow_workload(workload);
375 	if (ret)
376 		goto out;
377 
378 	if (workload->prepare) {
379 		ret = workload->prepare(workload);
380 		if (ret) {
381 			engine->context_unpin(engine, shadow_ctx);
382 			goto out;
383 		}
384 	}
385 
386 out:
387 	if (ret)
388 		workload->status = ret;
389 
390 	if (!IS_ERR_OR_NULL(workload->req)) {
391 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
392 				ring_id, workload->req);
393 		i915_add_request(workload->req);
394 		workload->dispatched = true;
395 	}
396 
397 	mutex_unlock(&dev_priv->drm.struct_mutex);
398 	return ret;
399 }
400 
401 static struct intel_vgpu_workload *pick_next_workload(
402 		struct intel_gvt *gvt, int ring_id)
403 {
404 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
405 	struct intel_vgpu_workload *workload = NULL;
406 
407 	mutex_lock(&gvt->lock);
408 
409 	/*
410 	 * no current vgpu / will be scheduled out / no workload
411 	 * bail out
412 	 */
413 	if (!scheduler->current_vgpu) {
414 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
415 		goto out;
416 	}
417 
418 	if (scheduler->need_reschedule) {
419 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
420 		goto out;
421 	}
422 
423 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
424 		goto out;
425 
426 	/*
427 	 * still have current workload, maybe the workload disptacher
428 	 * fail to submit it for some reason, resubmit it.
429 	 */
430 	if (scheduler->current_workload[ring_id]) {
431 		workload = scheduler->current_workload[ring_id];
432 		gvt_dbg_sched("ring id %d still have current workload %p\n",
433 				ring_id, workload);
434 		goto out;
435 	}
436 
437 	/*
438 	 * pick a workload as current workload
439 	 * once current workload is set, schedule policy routines
440 	 * will wait the current workload is finished when trying to
441 	 * schedule out a vgpu.
442 	 */
443 	scheduler->current_workload[ring_id] = container_of(
444 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
445 			struct intel_vgpu_workload, list);
446 
447 	workload = scheduler->current_workload[ring_id];
448 
449 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
450 
451 	atomic_inc(&workload->vgpu->running_workload_num);
452 out:
453 	mutex_unlock(&gvt->lock);
454 	return workload;
455 }
456 
457 static void update_guest_context(struct intel_vgpu_workload *workload)
458 {
459 	struct intel_vgpu *vgpu = workload->vgpu;
460 	struct intel_gvt *gvt = vgpu->gvt;
461 	int ring_id = workload->ring_id;
462 	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
463 	struct drm_i915_gem_object *ctx_obj =
464 		shadow_ctx->engine[ring_id].state->obj;
465 	struct execlist_ring_context *shadow_ring_context;
466 	struct page *page;
467 	void *src;
468 	unsigned long context_gpa, context_page_num;
469 	int i;
470 
471 	gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
472 			workload->ctx_desc.lrca);
473 
474 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
475 
476 	context_page_num = context_page_num >> PAGE_SHIFT;
477 
478 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
479 		context_page_num = 19;
480 
481 	i = 2;
482 
483 	while (i < context_page_num) {
484 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
485 				(u32)((workload->ctx_desc.lrca + i) <<
486 					GTT_PAGE_SHIFT));
487 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
488 			gvt_vgpu_err("invalid guest context descriptor\n");
489 			return;
490 		}
491 
492 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
493 		src = kmap(page);
494 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
495 				GTT_PAGE_SIZE);
496 		kunmap(page);
497 		i++;
498 	}
499 
500 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
501 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
502 
503 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
504 	shadow_ring_context = kmap(page);
505 
506 #define COPY_REG(name) \
507 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
508 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
509 
510 	COPY_REG(ctx_ctrl);
511 	COPY_REG(ctx_timestamp);
512 
513 #undef COPY_REG
514 
515 	intel_gvt_hypervisor_write_gpa(vgpu,
516 			workload->ring_context_gpa +
517 			sizeof(*shadow_ring_context),
518 			(void *)shadow_ring_context +
519 			sizeof(*shadow_ring_context),
520 			GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
521 
522 	kunmap(page);
523 }
524 
525 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
526 {
527 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
528 	struct intel_vgpu_workload *workload;
529 	struct intel_vgpu *vgpu;
530 	int event;
531 
532 	mutex_lock(&gvt->lock);
533 
534 	workload = scheduler->current_workload[ring_id];
535 	vgpu = workload->vgpu;
536 
537 	/* For the workload w/ request, needs to wait for the context
538 	 * switch to make sure request is completed.
539 	 * For the workload w/o request, directly complete the workload.
540 	 */
541 	if (workload->req) {
542 		struct drm_i915_private *dev_priv =
543 			workload->vgpu->gvt->dev_priv;
544 		struct intel_engine_cs *engine =
545 			dev_priv->engine[workload->ring_id];
546 		wait_event(workload->shadow_ctx_status_wq,
547 			   !atomic_read(&workload->shadow_ctx_active));
548 
549 		/* If this request caused GPU hang, req->fence.error will
550 		 * be set to -EIO. Use -EIO to set workload status so
551 		 * that when this request caused GPU hang, didn't trigger
552 		 * context switch interrupt to guest.
553 		 */
554 		if (likely(workload->status == -EINPROGRESS)) {
555 			if (workload->req->fence.error == -EIO)
556 				workload->status = -EIO;
557 			else
558 				workload->status = 0;
559 		}
560 
561 		i915_gem_request_put(fetch_and_zero(&workload->req));
562 
563 		if (!workload->status && !(vgpu->resetting_eng &
564 					   ENGINE_MASK(ring_id))) {
565 			update_guest_context(workload);
566 
567 			for_each_set_bit(event, workload->pending_events,
568 					 INTEL_GVT_EVENT_MAX)
569 				intel_vgpu_trigger_virtual_event(vgpu, event);
570 		}
571 		mutex_lock(&dev_priv->drm.struct_mutex);
572 		/* unpin shadow ctx as the shadow_ctx update is done */
573 		engine->context_unpin(engine, workload->vgpu->shadow_ctx);
574 		mutex_unlock(&dev_priv->drm.struct_mutex);
575 	}
576 
577 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
578 			ring_id, workload, workload->status);
579 
580 	scheduler->current_workload[ring_id] = NULL;
581 
582 	list_del_init(&workload->list);
583 	workload->complete(workload);
584 
585 	atomic_dec(&vgpu->running_workload_num);
586 	wake_up(&scheduler->workload_complete_wq);
587 
588 	if (gvt->scheduler.need_reschedule)
589 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
590 
591 	mutex_unlock(&gvt->lock);
592 }
593 
594 struct workload_thread_param {
595 	struct intel_gvt *gvt;
596 	int ring_id;
597 };
598 
599 static int workload_thread(void *priv)
600 {
601 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
602 	struct intel_gvt *gvt = p->gvt;
603 	int ring_id = p->ring_id;
604 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
605 	struct intel_vgpu_workload *workload = NULL;
606 	struct intel_vgpu *vgpu = NULL;
607 	int ret;
608 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
609 			|| IS_KABYLAKE(gvt->dev_priv);
610 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
611 
612 	kfree(p);
613 
614 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
615 
616 	while (!kthread_should_stop()) {
617 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
618 		do {
619 			workload = pick_next_workload(gvt, ring_id);
620 			if (workload)
621 				break;
622 			wait_woken(&wait, TASK_INTERRUPTIBLE,
623 				   MAX_SCHEDULE_TIMEOUT);
624 		} while (!kthread_should_stop());
625 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
626 
627 		if (!workload)
628 			break;
629 
630 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
631 				workload->ring_id, workload,
632 				workload->vgpu->id);
633 
634 		intel_runtime_pm_get(gvt->dev_priv);
635 
636 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
637 				workload->ring_id, workload);
638 
639 		if (need_force_wake)
640 			intel_uncore_forcewake_get(gvt->dev_priv,
641 					FORCEWAKE_ALL);
642 
643 		mutex_lock(&gvt->lock);
644 		ret = dispatch_workload(workload);
645 		mutex_unlock(&gvt->lock);
646 
647 		if (ret) {
648 			vgpu = workload->vgpu;
649 			gvt_vgpu_err("fail to dispatch workload, skip\n");
650 			goto complete;
651 		}
652 
653 		gvt_dbg_sched("ring id %d wait workload %p\n",
654 				workload->ring_id, workload);
655 		i915_wait_request(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
656 
657 complete:
658 		gvt_dbg_sched("will complete workload %p, status: %d\n",
659 				workload, workload->status);
660 
661 		complete_current_workload(gvt, ring_id);
662 
663 		if (need_force_wake)
664 			intel_uncore_forcewake_put(gvt->dev_priv,
665 					FORCEWAKE_ALL);
666 
667 		intel_runtime_pm_put(gvt->dev_priv);
668 	}
669 	return 0;
670 }
671 
672 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
673 {
674 	struct intel_gvt *gvt = vgpu->gvt;
675 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
676 
677 	if (atomic_read(&vgpu->running_workload_num)) {
678 		gvt_dbg_sched("wait vgpu idle\n");
679 
680 		wait_event(scheduler->workload_complete_wq,
681 				!atomic_read(&vgpu->running_workload_num));
682 	}
683 }
684 
685 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
686 {
687 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
688 	struct intel_engine_cs *engine;
689 	enum intel_engine_id i;
690 
691 	gvt_dbg_core("clean workload scheduler\n");
692 
693 	for_each_engine(engine, gvt->dev_priv, i) {
694 		atomic_notifier_chain_unregister(
695 					&engine->context_status_notifier,
696 					&gvt->shadow_ctx_notifier_block[i]);
697 		kthread_stop(scheduler->thread[i]);
698 	}
699 }
700 
701 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
702 {
703 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
704 	struct workload_thread_param *param = NULL;
705 	struct intel_engine_cs *engine;
706 	enum intel_engine_id i;
707 	int ret;
708 
709 	gvt_dbg_core("init workload scheduler\n");
710 
711 	init_waitqueue_head(&scheduler->workload_complete_wq);
712 
713 	for_each_engine(engine, gvt->dev_priv, i) {
714 		init_waitqueue_head(&scheduler->waitq[i]);
715 
716 		param = kzalloc(sizeof(*param), GFP_KERNEL);
717 		if (!param) {
718 			ret = -ENOMEM;
719 			goto err;
720 		}
721 
722 		param->gvt = gvt;
723 		param->ring_id = i;
724 
725 		scheduler->thread[i] = kthread_run(workload_thread, param,
726 			"gvt workload %d", i);
727 		if (IS_ERR(scheduler->thread[i])) {
728 			gvt_err("fail to create workload thread\n");
729 			ret = PTR_ERR(scheduler->thread[i]);
730 			goto err;
731 		}
732 
733 		gvt->shadow_ctx_notifier_block[i].notifier_call =
734 					shadow_context_status_change;
735 		atomic_notifier_chain_register(&engine->context_status_notifier,
736 					&gvt->shadow_ctx_notifier_block[i]);
737 	}
738 	return 0;
739 err:
740 	intel_gvt_clean_workload_scheduler(gvt);
741 	kfree(param);
742 	param = NULL;
743 	return ret;
744 }
745 
746 void intel_vgpu_clean_gvt_context(struct intel_vgpu *vgpu)
747 {
748 	i915_gem_context_put(vgpu->shadow_ctx);
749 }
750 
751 int intel_vgpu_init_gvt_context(struct intel_vgpu *vgpu)
752 {
753 	atomic_set(&vgpu->running_workload_num, 0);
754 
755 	vgpu->shadow_ctx = i915_gem_context_create_gvt(
756 			&vgpu->gvt->dev_priv->drm);
757 	if (IS_ERR(vgpu->shadow_ctx))
758 		return PTR_ERR(vgpu->shadow_ctx);
759 
760 	if (INTEL_INFO(vgpu->gvt->dev_priv)->has_logical_ring_preemption)
761 		vgpu->shadow_ctx->priority = INT_MAX;
762 
763 	vgpu->shadow_ctx->engine[RCS].initialised = true;
764 
765 	bitmap_zero(vgpu->shadow_ctx_desc_updated, I915_NUM_ENGINES);
766 
767 	return 0;
768 }
769