1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_context.h" 39 #include "gem/i915_gem_pm.h" 40 #include "gt/intel_context.h" 41 42 #include "i915_drv.h" 43 #include "gvt.h" 44 45 #define RING_CTX_OFF(x) \ 46 offsetof(struct execlist_ring_context, x) 47 48 static void set_context_pdp_root_pointer( 49 struct execlist_ring_context *ring_context, 50 u32 pdp[8]) 51 { 52 int i; 53 54 for (i = 0; i < 8; i++) 55 ring_context->pdps[i].val = pdp[7 - i]; 56 } 57 58 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 59 { 60 struct drm_i915_gem_object *ctx_obj = 61 workload->req->hw_context->state->obj; 62 struct execlist_ring_context *shadow_ring_context; 63 struct page *page; 64 65 if (WARN_ON(!workload->shadow_mm)) 66 return; 67 68 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 69 return; 70 71 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 72 shadow_ring_context = kmap(page); 73 set_context_pdp_root_pointer(shadow_ring_context, 74 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 75 kunmap(page); 76 } 77 78 /* 79 * when populating shadow ctx from guest, we should not overrride oa related 80 * registers, so that they will not be overlapped by guest oa configs. Thus 81 * made it possible to capture oa data from host for both host and guests. 82 */ 83 static void sr_oa_regs(struct intel_vgpu_workload *workload, 84 u32 *reg_state, bool save) 85 { 86 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 87 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 88 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 89 int i = 0; 90 u32 flex_mmio[] = { 91 i915_mmio_reg_offset(EU_PERF_CNTL0), 92 i915_mmio_reg_offset(EU_PERF_CNTL1), 93 i915_mmio_reg_offset(EU_PERF_CNTL2), 94 i915_mmio_reg_offset(EU_PERF_CNTL3), 95 i915_mmio_reg_offset(EU_PERF_CNTL4), 96 i915_mmio_reg_offset(EU_PERF_CNTL5), 97 i915_mmio_reg_offset(EU_PERF_CNTL6), 98 }; 99 100 if (workload->ring_id != RCS0) 101 return; 102 103 if (save) { 104 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 105 106 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 107 u32 state_offset = ctx_flexeu0 + i * 2; 108 109 workload->flex_mmio[i] = reg_state[state_offset + 1]; 110 } 111 } else { 112 reg_state[ctx_oactxctrl] = 113 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 114 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 115 116 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 117 u32 state_offset = ctx_flexeu0 + i * 2; 118 u32 mmio = flex_mmio[i]; 119 120 reg_state[state_offset] = mmio; 121 reg_state[state_offset + 1] = workload->flex_mmio[i]; 122 } 123 } 124 } 125 126 static int populate_shadow_context(struct intel_vgpu_workload *workload) 127 { 128 struct intel_vgpu *vgpu = workload->vgpu; 129 struct intel_gvt *gvt = vgpu->gvt; 130 int ring_id = workload->ring_id; 131 struct drm_i915_gem_object *ctx_obj = 132 workload->req->hw_context->state->obj; 133 struct execlist_ring_context *shadow_ring_context; 134 struct page *page; 135 void *dst; 136 unsigned long context_gpa, context_page_num; 137 int i; 138 139 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 140 shadow_ring_context = kmap(page); 141 142 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 143 #define COPY_REG(name) \ 144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 146 #define COPY_REG_MASKED(name) {\ 147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 148 + RING_CTX_OFF(name.val),\ 149 &shadow_ring_context->name.val, 4);\ 150 shadow_ring_context->name.val |= 0xffff << 16;\ 151 } 152 153 COPY_REG_MASKED(ctx_ctrl); 154 COPY_REG(ctx_timestamp); 155 156 if (ring_id == RCS0) { 157 COPY_REG(bb_per_ctx_ptr); 158 COPY_REG(rcs_indirect_ctx); 159 COPY_REG(rcs_indirect_ctx_offset); 160 } 161 #undef COPY_REG 162 #undef COPY_REG_MASKED 163 164 intel_gvt_hypervisor_read_gpa(vgpu, 165 workload->ring_context_gpa + 166 sizeof(*shadow_ring_context), 167 (void *)shadow_ring_context + 168 sizeof(*shadow_ring_context), 169 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 170 171 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 172 kunmap(page); 173 174 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 175 return 0; 176 177 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 178 workload->ctx_desc.lrca); 179 180 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 181 182 context_page_num = context_page_num >> PAGE_SHIFT; 183 184 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0) 185 context_page_num = 19; 186 187 i = 2; 188 while (i < context_page_num) { 189 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 190 (u32)((workload->ctx_desc.lrca + i) << 191 I915_GTT_PAGE_SHIFT)); 192 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 193 gvt_vgpu_err("Invalid guest context descriptor\n"); 194 return -EFAULT; 195 } 196 197 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 198 dst = kmap(page); 199 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 200 I915_GTT_PAGE_SIZE); 201 kunmap(page); 202 i++; 203 } 204 return 0; 205 } 206 207 static inline bool is_gvt_request(struct i915_request *req) 208 { 209 return i915_gem_context_force_single_submission(req->gem_context); 210 } 211 212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 213 { 214 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 215 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 216 i915_reg_t reg; 217 218 reg = RING_INSTDONE(ring_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 220 reg = RING_ACTHD(ring_base); 221 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 222 reg = RING_ACTHD_UDW(ring_base); 223 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 224 } 225 226 static int shadow_context_status_change(struct notifier_block *nb, 227 unsigned long action, void *data) 228 { 229 struct i915_request *req = data; 230 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 231 shadow_ctx_notifier_block[req->engine->id]); 232 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 233 enum intel_engine_id ring_id = req->engine->id; 234 struct intel_vgpu_workload *workload; 235 unsigned long flags; 236 237 if (!is_gvt_request(req)) { 238 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 239 if (action == INTEL_CONTEXT_SCHEDULE_IN && 240 scheduler->engine_owner[ring_id]) { 241 /* Switch ring from vGPU to host. */ 242 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 243 NULL, ring_id); 244 scheduler->engine_owner[ring_id] = NULL; 245 } 246 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 247 248 return NOTIFY_OK; 249 } 250 251 workload = scheduler->current_workload[ring_id]; 252 if (unlikely(!workload)) 253 return NOTIFY_OK; 254 255 switch (action) { 256 case INTEL_CONTEXT_SCHEDULE_IN: 257 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 258 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 259 /* Switch ring from host to vGPU or vGPU to vGPU. */ 260 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 261 workload->vgpu, ring_id); 262 scheduler->engine_owner[ring_id] = workload->vgpu; 263 } else 264 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 265 ring_id, workload->vgpu->id); 266 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 267 atomic_set(&workload->shadow_ctx_active, 1); 268 break; 269 case INTEL_CONTEXT_SCHEDULE_OUT: 270 save_ring_hw_state(workload->vgpu, ring_id); 271 atomic_set(&workload->shadow_ctx_active, 0); 272 break; 273 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 274 save_ring_hw_state(workload->vgpu, ring_id); 275 break; 276 default: 277 WARN_ON(1); 278 return NOTIFY_OK; 279 } 280 wake_up(&workload->shadow_ctx_status_wq); 281 return NOTIFY_OK; 282 } 283 284 static void 285 shadow_context_descriptor_update(struct intel_context *ce, 286 struct intel_vgpu_workload *workload) 287 { 288 u64 desc = ce->lrc_desc; 289 290 /* 291 * Update bits 0-11 of the context descriptor which includes flags 292 * like GEN8_CTX_* cached in desc_template 293 */ 294 desc &= U64_MAX << 12; 295 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1); 296 297 desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 298 desc |= workload->ctx_desc.addressing_mode << 299 GEN8_CTX_ADDRESSING_MODE_SHIFT; 300 301 ce->lrc_desc = desc; 302 } 303 304 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 305 { 306 struct intel_vgpu *vgpu = workload->vgpu; 307 struct i915_request *req = workload->req; 308 void *shadow_ring_buffer_va; 309 u32 *cs; 310 int err; 311 312 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context)) 313 intel_vgpu_restore_inhibit_context(vgpu, req); 314 315 /* 316 * To track whether a request has started on HW, we can emit a 317 * breadcrumb at the beginning of the request and check its 318 * timeline's HWSP to see if the breadcrumb has advanced past the 319 * start of this request. Actually, the request must have the 320 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 321 * scheduler might get a wrong state of it during reset. Since the 322 * requests from gvt always set the has_init_breadcrumb flag, here 323 * need to do the emit_init_breadcrumb for all the requests. 324 */ 325 if (req->engine->emit_init_breadcrumb) { 326 err = req->engine->emit_init_breadcrumb(req); 327 if (err) { 328 gvt_vgpu_err("fail to emit init breadcrumb\n"); 329 return err; 330 } 331 } 332 333 /* allocate shadow ring buffer */ 334 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 335 if (IS_ERR(cs)) { 336 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 337 workload->rb_len); 338 return PTR_ERR(cs); 339 } 340 341 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 342 343 /* get shadow ring buffer va */ 344 workload->shadow_ring_buffer_va = cs; 345 346 memcpy(cs, shadow_ring_buffer_va, 347 workload->rb_len); 348 349 cs += workload->rb_len / sizeof(u32); 350 intel_ring_advance(workload->req, cs); 351 352 return 0; 353 } 354 355 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 356 { 357 if (!wa_ctx->indirect_ctx.obj) 358 return; 359 360 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 361 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 362 363 wa_ctx->indirect_ctx.obj = NULL; 364 wa_ctx->indirect_ctx.shadow_va = NULL; 365 } 366 367 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 368 struct i915_gem_context *ctx) 369 { 370 struct intel_vgpu_mm *mm = workload->shadow_mm; 371 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm); 372 int i = 0; 373 374 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 375 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0]; 376 } else { 377 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 378 struct i915_page_directory * const pd = 379 i915_pd_entry(ppgtt->pd, i); 380 381 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i]; 382 } 383 } 384 } 385 386 static int 387 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 388 { 389 struct intel_vgpu *vgpu = workload->vgpu; 390 struct intel_vgpu_submission *s = &vgpu->submission; 391 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 392 struct i915_request *rq; 393 394 lockdep_assert_held(&dev_priv->drm.struct_mutex); 395 396 if (workload->req) 397 return 0; 398 399 rq = i915_request_create(s->shadow[workload->ring_id]); 400 if (IS_ERR(rq)) { 401 gvt_vgpu_err("fail to allocate gem request\n"); 402 return PTR_ERR(rq); 403 } 404 405 workload->req = i915_request_get(rq); 406 return 0; 407 } 408 409 /** 410 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 411 * shadow it as well, include ringbuffer,wa_ctx and ctx. 412 * @workload: an abstract entity for each execlist submission. 413 * 414 * This function is called before the workload submitting to i915, to make 415 * sure the content of the workload is valid. 416 */ 417 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 418 { 419 struct intel_vgpu *vgpu = workload->vgpu; 420 struct intel_vgpu_submission *s = &vgpu->submission; 421 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 422 int ret; 423 424 lockdep_assert_held(&dev_priv->drm.struct_mutex); 425 426 if (workload->shadow) 427 return 0; 428 429 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 430 shadow_context_descriptor_update(s->shadow[workload->ring_id], 431 workload); 432 433 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 434 if (ret) 435 return ret; 436 437 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) { 438 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 439 if (ret) 440 goto err_shadow; 441 } 442 443 workload->shadow = true; 444 return 0; 445 err_shadow: 446 release_shadow_wa_ctx(&workload->wa_ctx); 447 return ret; 448 } 449 450 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 451 452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 453 { 454 struct intel_gvt *gvt = workload->vgpu->gvt; 455 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 456 struct intel_vgpu_shadow_bb *bb; 457 int ret; 458 459 list_for_each_entry(bb, &workload->shadow_bb, list) { 460 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 461 * is only updated into ring_scan_buffer, not real ring address 462 * allocated in later copy_workload_to_ring_buffer. pls be noted 463 * shadow_ring_buffer_va is now pointed to real ring buffer va 464 * in copy_workload_to_ring_buffer. 465 */ 466 467 if (bb->bb_offset) 468 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 469 + bb->bb_offset; 470 471 if (bb->ppgtt) { 472 /* for non-priv bb, scan&shadow is only for 473 * debugging purpose, so the content of shadow bb 474 * is the same as original bb. Therefore, 475 * here, rather than switch to shadow bb's gma 476 * address, we directly use original batch buffer's 477 * gma address, and send original bb to hardware 478 * directly 479 */ 480 if (bb->clflush & CLFLUSH_AFTER) { 481 drm_clflush_virt_range(bb->va, 482 bb->obj->base.size); 483 bb->clflush &= ~CLFLUSH_AFTER; 484 } 485 i915_gem_object_finish_access(bb->obj); 486 bb->accessing = false; 487 488 } else { 489 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 490 NULL, 0, 0, 0); 491 if (IS_ERR(bb->vma)) { 492 ret = PTR_ERR(bb->vma); 493 goto err; 494 } 495 496 /* relocate shadow batch buffer */ 497 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 498 if (gmadr_bytes == 8) 499 bb->bb_start_cmd_va[2] = 0; 500 501 /* No one is going to touch shadow bb from now on. */ 502 if (bb->clflush & CLFLUSH_AFTER) { 503 drm_clflush_virt_range(bb->va, 504 bb->obj->base.size); 505 bb->clflush &= ~CLFLUSH_AFTER; 506 } 507 508 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 509 false); 510 if (ret) 511 goto err; 512 513 ret = i915_vma_move_to_active(bb->vma, 514 workload->req, 515 0); 516 if (ret) 517 goto err; 518 519 i915_gem_object_finish_access(bb->obj); 520 bb->accessing = false; 521 } 522 } 523 return 0; 524 err: 525 release_shadow_batch_buffer(workload); 526 return ret; 527 } 528 529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 530 { 531 struct intel_vgpu_workload *workload = 532 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 533 struct i915_request *rq = workload->req; 534 struct execlist_ring_context *shadow_ring_context = 535 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 536 537 shadow_ring_context->bb_per_ctx_ptr.val = 538 (shadow_ring_context->bb_per_ctx_ptr.val & 539 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 540 shadow_ring_context->rcs_indirect_ctx.val = 541 (shadow_ring_context->rcs_indirect_ctx.val & 542 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 543 } 544 545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 546 { 547 struct i915_vma *vma; 548 unsigned char *per_ctx_va = 549 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 550 wa_ctx->indirect_ctx.size; 551 552 if (wa_ctx->indirect_ctx.size == 0) 553 return 0; 554 555 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 556 0, CACHELINE_BYTES, 0); 557 if (IS_ERR(vma)) 558 return PTR_ERR(vma); 559 560 /* FIXME: we are not tracking our pinned VMA leaving it 561 * up to the core to fix up the stray pin_count upon 562 * free. 563 */ 564 565 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 566 567 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 568 memset(per_ctx_va, 0, CACHELINE_BYTES); 569 570 update_wa_ctx_2_shadow_ctx(wa_ctx); 571 return 0; 572 } 573 574 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 575 { 576 struct intel_vgpu *vgpu = workload->vgpu; 577 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 578 struct intel_vgpu_shadow_bb *bb, *pos; 579 580 if (list_empty(&workload->shadow_bb)) 581 return; 582 583 bb = list_first_entry(&workload->shadow_bb, 584 struct intel_vgpu_shadow_bb, list); 585 586 mutex_lock(&dev_priv->drm.struct_mutex); 587 588 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 589 if (bb->obj) { 590 if (bb->accessing) 591 i915_gem_object_finish_access(bb->obj); 592 593 if (bb->va && !IS_ERR(bb->va)) 594 i915_gem_object_unpin_map(bb->obj); 595 596 if (bb->vma && !IS_ERR(bb->vma)) { 597 i915_vma_unpin(bb->vma); 598 i915_vma_close(bb->vma); 599 } 600 i915_gem_object_put(bb->obj); 601 } 602 list_del(&bb->list); 603 kfree(bb); 604 } 605 606 mutex_unlock(&dev_priv->drm.struct_mutex); 607 } 608 609 static int prepare_workload(struct intel_vgpu_workload *workload) 610 { 611 struct intel_vgpu *vgpu = workload->vgpu; 612 struct intel_vgpu_submission *s = &vgpu->submission; 613 int ring = workload->ring_id; 614 int ret = 0; 615 616 ret = intel_vgpu_pin_mm(workload->shadow_mm); 617 if (ret) { 618 gvt_vgpu_err("fail to vgpu pin mm\n"); 619 return ret; 620 } 621 622 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 623 !workload->shadow_mm->ppgtt_mm.shadowed) { 624 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 625 return -EINVAL; 626 } 627 628 update_shadow_pdps(workload); 629 630 set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context); 631 632 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 633 if (ret) { 634 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 635 goto err_unpin_mm; 636 } 637 638 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 639 if (ret) { 640 gvt_vgpu_err("fail to flush post shadow\n"); 641 goto err_unpin_mm; 642 } 643 644 ret = copy_workload_to_ring_buffer(workload); 645 if (ret) { 646 gvt_vgpu_err("fail to generate request\n"); 647 goto err_unpin_mm; 648 } 649 650 ret = prepare_shadow_batch_buffer(workload); 651 if (ret) { 652 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 653 goto err_unpin_mm; 654 } 655 656 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 657 if (ret) { 658 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 659 goto err_shadow_batch; 660 } 661 662 if (workload->prepare) { 663 ret = workload->prepare(workload); 664 if (ret) 665 goto err_shadow_wa_ctx; 666 } 667 668 return 0; 669 err_shadow_wa_ctx: 670 release_shadow_wa_ctx(&workload->wa_ctx); 671 err_shadow_batch: 672 release_shadow_batch_buffer(workload); 673 err_unpin_mm: 674 intel_vgpu_unpin_mm(workload->shadow_mm); 675 return ret; 676 } 677 678 static int dispatch_workload(struct intel_vgpu_workload *workload) 679 { 680 struct intel_vgpu *vgpu = workload->vgpu; 681 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 682 struct i915_request *rq; 683 int ring_id = workload->ring_id; 684 int ret; 685 686 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 687 ring_id, workload); 688 689 mutex_lock(&vgpu->vgpu_lock); 690 mutex_lock(&dev_priv->drm.struct_mutex); 691 692 ret = intel_gvt_workload_req_alloc(workload); 693 if (ret) 694 goto err_req; 695 696 ret = intel_gvt_scan_and_shadow_workload(workload); 697 if (ret) 698 goto out; 699 700 ret = populate_shadow_context(workload); 701 if (ret) { 702 release_shadow_wa_ctx(&workload->wa_ctx); 703 goto out; 704 } 705 706 ret = prepare_workload(workload); 707 out: 708 if (ret) { 709 /* We might still need to add request with 710 * clean ctx to retire it properly.. 711 */ 712 rq = fetch_and_zero(&workload->req); 713 i915_request_put(rq); 714 } 715 716 if (!IS_ERR_OR_NULL(workload->req)) { 717 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 718 ring_id, workload->req); 719 i915_request_add(workload->req); 720 workload->dispatched = true; 721 } 722 err_req: 723 if (ret) 724 workload->status = ret; 725 mutex_unlock(&dev_priv->drm.struct_mutex); 726 mutex_unlock(&vgpu->vgpu_lock); 727 return ret; 728 } 729 730 static struct intel_vgpu_workload *pick_next_workload( 731 struct intel_gvt *gvt, int ring_id) 732 { 733 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 734 struct intel_vgpu_workload *workload = NULL; 735 736 mutex_lock(&gvt->sched_lock); 737 738 /* 739 * no current vgpu / will be scheduled out / no workload 740 * bail out 741 */ 742 if (!scheduler->current_vgpu) { 743 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 744 goto out; 745 } 746 747 if (scheduler->need_reschedule) { 748 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 749 goto out; 750 } 751 752 if (!scheduler->current_vgpu->active || 753 list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 754 goto out; 755 756 /* 757 * still have current workload, maybe the workload disptacher 758 * fail to submit it for some reason, resubmit it. 759 */ 760 if (scheduler->current_workload[ring_id]) { 761 workload = scheduler->current_workload[ring_id]; 762 gvt_dbg_sched("ring id %d still have current workload %p\n", 763 ring_id, workload); 764 goto out; 765 } 766 767 /* 768 * pick a workload as current workload 769 * once current workload is set, schedule policy routines 770 * will wait the current workload is finished when trying to 771 * schedule out a vgpu. 772 */ 773 scheduler->current_workload[ring_id] = container_of( 774 workload_q_head(scheduler->current_vgpu, ring_id)->next, 775 struct intel_vgpu_workload, list); 776 777 workload = scheduler->current_workload[ring_id]; 778 779 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 780 781 atomic_inc(&workload->vgpu->submission.running_workload_num); 782 out: 783 mutex_unlock(&gvt->sched_lock); 784 return workload; 785 } 786 787 static void update_guest_context(struct intel_vgpu_workload *workload) 788 { 789 struct i915_request *rq = workload->req; 790 struct intel_vgpu *vgpu = workload->vgpu; 791 struct intel_gvt *gvt = vgpu->gvt; 792 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 793 struct execlist_ring_context *shadow_ring_context; 794 struct page *page; 795 void *src; 796 unsigned long context_gpa, context_page_num; 797 int i; 798 struct drm_i915_private *dev_priv = gvt->dev_priv; 799 u32 ring_base; 800 u32 head, tail; 801 u16 wrap_count; 802 803 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 804 workload->ctx_desc.lrca); 805 806 head = workload->rb_head; 807 tail = workload->rb_tail; 808 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 809 810 if (tail < head) { 811 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 812 wrap_count = 0; 813 else 814 wrap_count += 1; 815 } 816 817 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 818 819 ring_base = dev_priv->engine[workload->ring_id]->mmio_base; 820 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 821 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 822 823 context_page_num = rq->engine->context_size; 824 context_page_num = context_page_num >> PAGE_SHIFT; 825 826 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0) 827 context_page_num = 19; 828 829 i = 2; 830 831 while (i < context_page_num) { 832 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 833 (u32)((workload->ctx_desc.lrca + i) << 834 I915_GTT_PAGE_SHIFT)); 835 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 836 gvt_vgpu_err("invalid guest context descriptor\n"); 837 return; 838 } 839 840 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 841 src = kmap(page); 842 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 843 I915_GTT_PAGE_SIZE); 844 kunmap(page); 845 i++; 846 } 847 848 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 849 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 850 851 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 852 shadow_ring_context = kmap(page); 853 854 #define COPY_REG(name) \ 855 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 856 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 857 858 COPY_REG(ctx_ctrl); 859 COPY_REG(ctx_timestamp); 860 861 #undef COPY_REG 862 863 intel_gvt_hypervisor_write_gpa(vgpu, 864 workload->ring_context_gpa + 865 sizeof(*shadow_ring_context), 866 (void *)shadow_ring_context + 867 sizeof(*shadow_ring_context), 868 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 869 870 kunmap(page); 871 } 872 873 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 874 intel_engine_mask_t engine_mask) 875 { 876 struct intel_vgpu_submission *s = &vgpu->submission; 877 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 878 struct intel_engine_cs *engine; 879 struct intel_vgpu_workload *pos, *n; 880 intel_engine_mask_t tmp; 881 882 /* free the unsubmited workloads in the queues. */ 883 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 884 list_for_each_entry_safe(pos, n, 885 &s->workload_q_head[engine->id], list) { 886 list_del_init(&pos->list); 887 intel_vgpu_destroy_workload(pos); 888 } 889 clear_bit(engine->id, s->shadow_ctx_desc_updated); 890 } 891 } 892 893 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 894 { 895 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 896 struct intel_vgpu_workload *workload = 897 scheduler->current_workload[ring_id]; 898 struct intel_vgpu *vgpu = workload->vgpu; 899 struct intel_vgpu_submission *s = &vgpu->submission; 900 struct i915_request *rq = workload->req; 901 int event; 902 903 mutex_lock(&vgpu->vgpu_lock); 904 mutex_lock(&gvt->sched_lock); 905 906 /* For the workload w/ request, needs to wait for the context 907 * switch to make sure request is completed. 908 * For the workload w/o request, directly complete the workload. 909 */ 910 if (rq) { 911 wait_event(workload->shadow_ctx_status_wq, 912 !atomic_read(&workload->shadow_ctx_active)); 913 914 /* If this request caused GPU hang, req->fence.error will 915 * be set to -EIO. Use -EIO to set workload status so 916 * that when this request caused GPU hang, didn't trigger 917 * context switch interrupt to guest. 918 */ 919 if (likely(workload->status == -EINPROGRESS)) { 920 if (workload->req->fence.error == -EIO) 921 workload->status = -EIO; 922 else 923 workload->status = 0; 924 } 925 926 if (!workload->status && 927 !(vgpu->resetting_eng & BIT(ring_id))) { 928 update_guest_context(workload); 929 930 for_each_set_bit(event, workload->pending_events, 931 INTEL_GVT_EVENT_MAX) 932 intel_vgpu_trigger_virtual_event(vgpu, event); 933 } 934 935 i915_request_put(fetch_and_zero(&workload->req)); 936 } 937 938 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 939 ring_id, workload, workload->status); 940 941 scheduler->current_workload[ring_id] = NULL; 942 943 list_del_init(&workload->list); 944 945 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 946 /* if workload->status is not successful means HW GPU 947 * has occurred GPU hang or something wrong with i915/GVT, 948 * and GVT won't inject context switch interrupt to guest. 949 * So this error is a vGPU hang actually to the guest. 950 * According to this we should emunlate a vGPU hang. If 951 * there are pending workloads which are already submitted 952 * from guest, we should clean them up like HW GPU does. 953 * 954 * if it is in middle of engine resetting, the pending 955 * workloads won't be submitted to HW GPU and will be 956 * cleaned up during the resetting process later, so doing 957 * the workload clean up here doesn't have any impact. 958 **/ 959 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 960 } 961 962 workload->complete(workload); 963 964 atomic_dec(&s->running_workload_num); 965 wake_up(&scheduler->workload_complete_wq); 966 967 if (gvt->scheduler.need_reschedule) 968 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 969 970 mutex_unlock(&gvt->sched_lock); 971 mutex_unlock(&vgpu->vgpu_lock); 972 } 973 974 struct workload_thread_param { 975 struct intel_gvt *gvt; 976 int ring_id; 977 }; 978 979 static int workload_thread(void *priv) 980 { 981 struct workload_thread_param *p = (struct workload_thread_param *)priv; 982 struct intel_gvt *gvt = p->gvt; 983 int ring_id = p->ring_id; 984 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 985 struct intel_vgpu_workload *workload = NULL; 986 struct intel_vgpu *vgpu = NULL; 987 int ret; 988 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9); 989 DEFINE_WAIT_FUNC(wait, woken_wake_function); 990 struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm; 991 992 kfree(p); 993 994 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 995 996 while (!kthread_should_stop()) { 997 add_wait_queue(&scheduler->waitq[ring_id], &wait); 998 do { 999 workload = pick_next_workload(gvt, ring_id); 1000 if (workload) 1001 break; 1002 wait_woken(&wait, TASK_INTERRUPTIBLE, 1003 MAX_SCHEDULE_TIMEOUT); 1004 } while (!kthread_should_stop()); 1005 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 1006 1007 if (!workload) 1008 break; 1009 1010 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 1011 workload->ring_id, workload, 1012 workload->vgpu->id); 1013 1014 intel_runtime_pm_get(rpm); 1015 1016 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 1017 workload->ring_id, workload); 1018 1019 if (need_force_wake) 1020 intel_uncore_forcewake_get(&gvt->dev_priv->uncore, 1021 FORCEWAKE_ALL); 1022 1023 ret = dispatch_workload(workload); 1024 1025 if (ret) { 1026 vgpu = workload->vgpu; 1027 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1028 goto complete; 1029 } 1030 1031 gvt_dbg_sched("ring id %d wait workload %p\n", 1032 workload->ring_id, workload); 1033 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1034 1035 complete: 1036 gvt_dbg_sched("will complete workload %p, status: %d\n", 1037 workload, workload->status); 1038 1039 complete_current_workload(gvt, ring_id); 1040 1041 if (need_force_wake) 1042 intel_uncore_forcewake_put(&gvt->dev_priv->uncore, 1043 FORCEWAKE_ALL); 1044 1045 intel_runtime_pm_put_unchecked(rpm); 1046 if (ret && (vgpu_is_vm_unhealthy(ret))) 1047 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1048 } 1049 return 0; 1050 } 1051 1052 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1053 { 1054 struct intel_vgpu_submission *s = &vgpu->submission; 1055 struct intel_gvt *gvt = vgpu->gvt; 1056 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1057 1058 if (atomic_read(&s->running_workload_num)) { 1059 gvt_dbg_sched("wait vgpu idle\n"); 1060 1061 wait_event(scheduler->workload_complete_wq, 1062 !atomic_read(&s->running_workload_num)); 1063 } 1064 } 1065 1066 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1067 { 1068 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1069 struct intel_engine_cs *engine; 1070 enum intel_engine_id i; 1071 1072 gvt_dbg_core("clean workload scheduler\n"); 1073 1074 for_each_engine(engine, gvt->dev_priv, i) { 1075 atomic_notifier_chain_unregister( 1076 &engine->context_status_notifier, 1077 &gvt->shadow_ctx_notifier_block[i]); 1078 kthread_stop(scheduler->thread[i]); 1079 } 1080 } 1081 1082 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1083 { 1084 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1085 struct workload_thread_param *param = NULL; 1086 struct intel_engine_cs *engine; 1087 enum intel_engine_id i; 1088 int ret; 1089 1090 gvt_dbg_core("init workload scheduler\n"); 1091 1092 init_waitqueue_head(&scheduler->workload_complete_wq); 1093 1094 for_each_engine(engine, gvt->dev_priv, i) { 1095 init_waitqueue_head(&scheduler->waitq[i]); 1096 1097 param = kzalloc(sizeof(*param), GFP_KERNEL); 1098 if (!param) { 1099 ret = -ENOMEM; 1100 goto err; 1101 } 1102 1103 param->gvt = gvt; 1104 param->ring_id = i; 1105 1106 scheduler->thread[i] = kthread_run(workload_thread, param, 1107 "gvt workload %d", i); 1108 if (IS_ERR(scheduler->thread[i])) { 1109 gvt_err("fail to create workload thread\n"); 1110 ret = PTR_ERR(scheduler->thread[i]); 1111 goto err; 1112 } 1113 1114 gvt->shadow_ctx_notifier_block[i].notifier_call = 1115 shadow_context_status_change; 1116 atomic_notifier_chain_register(&engine->context_status_notifier, 1117 &gvt->shadow_ctx_notifier_block[i]); 1118 } 1119 return 0; 1120 err: 1121 intel_gvt_clean_workload_scheduler(gvt); 1122 kfree(param); 1123 param = NULL; 1124 return ret; 1125 } 1126 1127 static void 1128 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1129 struct i915_ppgtt *ppgtt) 1130 { 1131 int i; 1132 1133 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1134 px_dma(ppgtt->pd) = s->i915_context_pml4; 1135 } else { 1136 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1137 struct i915_page_directory * const pd = 1138 i915_pd_entry(ppgtt->pd, i); 1139 1140 px_dma(pd) = s->i915_context_pdps[i]; 1141 } 1142 } 1143 } 1144 1145 /** 1146 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1147 * @vgpu: a vGPU 1148 * 1149 * This function is called when a vGPU is being destroyed. 1150 * 1151 */ 1152 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1153 { 1154 struct intel_vgpu_submission *s = &vgpu->submission; 1155 struct intel_engine_cs *engine; 1156 enum intel_engine_id id; 1157 1158 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1159 1160 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1161 for_each_engine(engine, vgpu->gvt->dev_priv, id) 1162 intel_context_unpin(s->shadow[id]); 1163 1164 kmem_cache_destroy(s->workloads); 1165 } 1166 1167 1168 /** 1169 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1170 * @vgpu: a vGPU 1171 * @engine_mask: engines expected to be reset 1172 * 1173 * This function is called when a vGPU is being destroyed. 1174 * 1175 */ 1176 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1177 intel_engine_mask_t engine_mask) 1178 { 1179 struct intel_vgpu_submission *s = &vgpu->submission; 1180 1181 if (!s->active) 1182 return; 1183 1184 intel_vgpu_clean_workloads(vgpu, engine_mask); 1185 s->ops->reset(vgpu, engine_mask); 1186 } 1187 1188 static void 1189 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1190 struct i915_ppgtt *ppgtt) 1191 { 1192 int i; 1193 1194 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1195 s->i915_context_pml4 = px_dma(ppgtt->pd); 1196 } else { 1197 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1198 struct i915_page_directory * const pd = 1199 i915_pd_entry(ppgtt->pd, i); 1200 1201 s->i915_context_pdps[i] = px_dma(pd); 1202 } 1203 } 1204 } 1205 1206 /** 1207 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1208 * @vgpu: a vGPU 1209 * 1210 * This function is called when a vGPU is being created. 1211 * 1212 * Returns: 1213 * Zero on success, negative error code if failed. 1214 * 1215 */ 1216 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1217 { 1218 struct intel_vgpu_submission *s = &vgpu->submission; 1219 struct intel_engine_cs *engine; 1220 struct i915_gem_context *ctx; 1221 enum intel_engine_id i; 1222 int ret; 1223 1224 ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm); 1225 if (IS_ERR(ctx)) 1226 return PTR_ERR(ctx); 1227 1228 i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm)); 1229 1230 for_each_engine(engine, vgpu->gvt->dev_priv, i) { 1231 struct intel_context *ce; 1232 1233 INIT_LIST_HEAD(&s->workload_q_head[i]); 1234 s->shadow[i] = ERR_PTR(-EINVAL); 1235 1236 ce = i915_gem_context_get_engine(ctx, i); 1237 if (IS_ERR(ce)) { 1238 ret = PTR_ERR(ce); 1239 goto out_shadow_ctx; 1240 } 1241 1242 ret = intel_context_pin(ce); 1243 intel_context_put(ce); 1244 if (ret) 1245 goto out_shadow_ctx; 1246 1247 s->shadow[i] = ce; 1248 } 1249 1250 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1251 1252 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1253 sizeof(struct intel_vgpu_workload), 0, 1254 SLAB_HWCACHE_ALIGN, 1255 offsetof(struct intel_vgpu_workload, rb_tail), 1256 sizeof_field(struct intel_vgpu_workload, rb_tail), 1257 NULL); 1258 1259 if (!s->workloads) { 1260 ret = -ENOMEM; 1261 goto out_shadow_ctx; 1262 } 1263 1264 atomic_set(&s->running_workload_num, 0); 1265 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1266 1267 i915_gem_context_put(ctx); 1268 return 0; 1269 1270 out_shadow_ctx: 1271 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm)); 1272 for_each_engine(engine, vgpu->gvt->dev_priv, i) { 1273 if (IS_ERR(s->shadow[i])) 1274 break; 1275 1276 intel_context_unpin(s->shadow[i]); 1277 } 1278 i915_gem_context_put(ctx); 1279 return ret; 1280 } 1281 1282 /** 1283 * intel_vgpu_select_submission_ops - select virtual submission interface 1284 * @vgpu: a vGPU 1285 * @engine_mask: either ALL_ENGINES or target engine mask 1286 * @interface: expected vGPU virtual submission interface 1287 * 1288 * This function is called when guest configures submission interface. 1289 * 1290 * Returns: 1291 * Zero on success, negative error code if failed. 1292 * 1293 */ 1294 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1295 intel_engine_mask_t engine_mask, 1296 unsigned int interface) 1297 { 1298 struct intel_vgpu_submission *s = &vgpu->submission; 1299 const struct intel_vgpu_submission_ops *ops[] = { 1300 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1301 &intel_vgpu_execlist_submission_ops, 1302 }; 1303 int ret; 1304 1305 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1306 return -EINVAL; 1307 1308 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1309 return -EINVAL; 1310 1311 if (s->active) 1312 s->ops->clean(vgpu, engine_mask); 1313 1314 if (interface == 0) { 1315 s->ops = NULL; 1316 s->virtual_submission_interface = 0; 1317 s->active = false; 1318 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1319 return 0; 1320 } 1321 1322 ret = ops[interface]->init(vgpu, engine_mask); 1323 if (ret) 1324 return ret; 1325 1326 s->ops = ops[interface]; 1327 s->virtual_submission_interface = interface; 1328 s->active = true; 1329 1330 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1331 vgpu->id, s->ops->name); 1332 1333 return 0; 1334 } 1335 1336 /** 1337 * intel_vgpu_destroy_workload - destroy a vGPU workload 1338 * @workload: workload to destroy 1339 * 1340 * This function is called when destroy a vGPU workload. 1341 * 1342 */ 1343 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1344 { 1345 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1346 1347 release_shadow_batch_buffer(workload); 1348 release_shadow_wa_ctx(&workload->wa_ctx); 1349 1350 if (workload->shadow_mm) 1351 intel_vgpu_mm_put(workload->shadow_mm); 1352 1353 kmem_cache_free(s->workloads, workload); 1354 } 1355 1356 static struct intel_vgpu_workload * 1357 alloc_workload(struct intel_vgpu *vgpu) 1358 { 1359 struct intel_vgpu_submission *s = &vgpu->submission; 1360 struct intel_vgpu_workload *workload; 1361 1362 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1363 if (!workload) 1364 return ERR_PTR(-ENOMEM); 1365 1366 INIT_LIST_HEAD(&workload->list); 1367 INIT_LIST_HEAD(&workload->shadow_bb); 1368 1369 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1370 atomic_set(&workload->shadow_ctx_active, 0); 1371 1372 workload->status = -EINPROGRESS; 1373 workload->vgpu = vgpu; 1374 1375 return workload; 1376 } 1377 1378 #define RING_CTX_OFF(x) \ 1379 offsetof(struct execlist_ring_context, x) 1380 1381 static void read_guest_pdps(struct intel_vgpu *vgpu, 1382 u64 ring_context_gpa, u32 pdp[8]) 1383 { 1384 u64 gpa; 1385 int i; 1386 1387 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1388 1389 for (i = 0; i < 8; i++) 1390 intel_gvt_hypervisor_read_gpa(vgpu, 1391 gpa + i * 8, &pdp[7 - i], 4); 1392 } 1393 1394 static int prepare_mm(struct intel_vgpu_workload *workload) 1395 { 1396 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1397 struct intel_vgpu_mm *mm; 1398 struct intel_vgpu *vgpu = workload->vgpu; 1399 enum intel_gvt_gtt_type root_entry_type; 1400 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1401 1402 switch (desc->addressing_mode) { 1403 case 1: /* legacy 32-bit */ 1404 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1405 break; 1406 case 3: /* legacy 64-bit */ 1407 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1408 break; 1409 default: 1410 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1411 return -EINVAL; 1412 } 1413 1414 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1415 1416 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1417 if (IS_ERR(mm)) 1418 return PTR_ERR(mm); 1419 1420 workload->shadow_mm = mm; 1421 return 0; 1422 } 1423 1424 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1425 ((a)->lrca == (b)->lrca)) 1426 1427 #define get_last_workload(q) \ 1428 (list_empty(q) ? NULL : container_of(q->prev, \ 1429 struct intel_vgpu_workload, list)) 1430 /** 1431 * intel_vgpu_create_workload - create a vGPU workload 1432 * @vgpu: a vGPU 1433 * @ring_id: ring index 1434 * @desc: a guest context descriptor 1435 * 1436 * This function is called when creating a vGPU workload. 1437 * 1438 * Returns: 1439 * struct intel_vgpu_workload * on success, negative error code in 1440 * pointer if failed. 1441 * 1442 */ 1443 struct intel_vgpu_workload * 1444 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1445 struct execlist_ctx_descriptor_format *desc) 1446 { 1447 struct intel_vgpu_submission *s = &vgpu->submission; 1448 struct list_head *q = workload_q_head(vgpu, ring_id); 1449 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1450 struct intel_vgpu_workload *workload = NULL; 1451 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1452 u64 ring_context_gpa; 1453 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1454 u32 guest_head; 1455 int ret; 1456 1457 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1458 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1459 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1460 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1461 return ERR_PTR(-EINVAL); 1462 } 1463 1464 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1465 RING_CTX_OFF(ring_header.val), &head, 4); 1466 1467 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1468 RING_CTX_OFF(ring_tail.val), &tail, 4); 1469 1470 guest_head = head; 1471 1472 head &= RB_HEAD_OFF_MASK; 1473 tail &= RB_TAIL_OFF_MASK; 1474 1475 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1476 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1477 gvt_dbg_el("ctx head %x real head %lx\n", head, 1478 last_workload->rb_tail); 1479 /* 1480 * cannot use guest context head pointer here, 1481 * as it might not be updated at this time 1482 */ 1483 head = last_workload->rb_tail; 1484 } 1485 1486 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1487 1488 /* record some ring buffer register values for scan and shadow */ 1489 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1490 RING_CTX_OFF(rb_start.val), &start, 4); 1491 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1492 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1493 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1494 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1495 1496 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1497 _RING_CTL_BUF_SIZE(ctl))) { 1498 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1499 return ERR_PTR(-EINVAL); 1500 } 1501 1502 workload = alloc_workload(vgpu); 1503 if (IS_ERR(workload)) 1504 return workload; 1505 1506 workload->ring_id = ring_id; 1507 workload->ctx_desc = *desc; 1508 workload->ring_context_gpa = ring_context_gpa; 1509 workload->rb_head = head; 1510 workload->guest_rb_head = guest_head; 1511 workload->rb_tail = tail; 1512 workload->rb_start = start; 1513 workload->rb_ctl = ctl; 1514 1515 if (ring_id == RCS0) { 1516 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1517 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1518 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1519 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1520 1521 workload->wa_ctx.indirect_ctx.guest_gma = 1522 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1523 workload->wa_ctx.indirect_ctx.size = 1524 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1525 CACHELINE_BYTES; 1526 1527 if (workload->wa_ctx.indirect_ctx.size != 0) { 1528 if (!intel_gvt_ggtt_validate_range(vgpu, 1529 workload->wa_ctx.indirect_ctx.guest_gma, 1530 workload->wa_ctx.indirect_ctx.size)) { 1531 kmem_cache_free(s->workloads, workload); 1532 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1533 workload->wa_ctx.indirect_ctx.guest_gma); 1534 return ERR_PTR(-EINVAL); 1535 } 1536 } 1537 1538 workload->wa_ctx.per_ctx.guest_gma = 1539 per_ctx & PER_CTX_ADDR_MASK; 1540 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1541 if (workload->wa_ctx.per_ctx.valid) { 1542 if (!intel_gvt_ggtt_validate_range(vgpu, 1543 workload->wa_ctx.per_ctx.guest_gma, 1544 CACHELINE_BYTES)) { 1545 kmem_cache_free(s->workloads, workload); 1546 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1547 workload->wa_ctx.per_ctx.guest_gma); 1548 return ERR_PTR(-EINVAL); 1549 } 1550 } 1551 } 1552 1553 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1554 workload, ring_id, head, tail, start, ctl); 1555 1556 ret = prepare_mm(workload); 1557 if (ret) { 1558 kmem_cache_free(s->workloads, workload); 1559 return ERR_PTR(ret); 1560 } 1561 1562 /* Only scan and shadow the first workload in the queue 1563 * as there is only one pre-allocated buf-obj for shadow. 1564 */ 1565 if (list_empty(workload_q_head(vgpu, ring_id))) { 1566 intel_runtime_pm_get(&dev_priv->runtime_pm); 1567 mutex_lock(&dev_priv->drm.struct_mutex); 1568 ret = intel_gvt_scan_and_shadow_workload(workload); 1569 mutex_unlock(&dev_priv->drm.struct_mutex); 1570 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm); 1571 } 1572 1573 if (ret) { 1574 if (vgpu_is_vm_unhealthy(ret)) 1575 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1576 intel_vgpu_destroy_workload(workload); 1577 return ERR_PTR(ret); 1578 } 1579 1580 return workload; 1581 } 1582 1583 /** 1584 * intel_vgpu_queue_workload - Qeue a vGPU workload 1585 * @workload: the workload to queue in 1586 */ 1587 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1588 { 1589 list_add_tail(&workload->list, 1590 workload_q_head(workload->vgpu, workload->ring_id)); 1591 intel_gvt_kick_schedule(workload->vgpu->gvt); 1592 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1593 } 1594