xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 8e8e69d6)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS0)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136 	shadow_ring_context = kmap(page);
137 
138 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144 					      + RING_CTX_OFF(name.val),\
145 					      &shadow_ring_context->name.val, 4);\
146 		shadow_ring_context->name.val |= 0xffff << 16;\
147 	}
148 
149 	COPY_REG_MASKED(ctx_ctrl);
150 	COPY_REG(ctx_timestamp);
151 
152 	if (ring_id == RCS0) {
153 		COPY_REG(bb_per_ctx_ptr);
154 		COPY_REG(rcs_indirect_ctx);
155 		COPY_REG(rcs_indirect_ctx_offset);
156 	}
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159 
160 	intel_gvt_hypervisor_read_gpa(vgpu,
161 			workload->ring_context_gpa +
162 			sizeof(*shadow_ring_context),
163 			(void *)shadow_ring_context +
164 			sizeof(*shadow_ring_context),
165 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168 	kunmap(page);
169 
170 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171 		return 0;
172 
173 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174 			workload->ctx_desc.lrca);
175 
176 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177 
178 	context_page_num = context_page_num >> PAGE_SHIFT;
179 
180 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
181 		context_page_num = 19;
182 
183 	i = 2;
184 	while (i < context_page_num) {
185 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186 				(u32)((workload->ctx_desc.lrca + i) <<
187 				I915_GTT_PAGE_SHIFT));
188 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189 			gvt_vgpu_err("Invalid guest context descriptor\n");
190 			return -EFAULT;
191 		}
192 
193 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194 		dst = kmap(page);
195 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196 				I915_GTT_PAGE_SIZE);
197 		kunmap(page);
198 		i++;
199 	}
200 	return 0;
201 }
202 
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205 	return i915_gem_context_force_single_submission(req->gem_context);
206 }
207 
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212 	i915_reg_t reg;
213 
214 	reg = RING_INSTDONE(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 	reg = RING_ACTHD_UDW(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221 
222 static int shadow_context_status_change(struct notifier_block *nb,
223 		unsigned long action, void *data)
224 {
225 	struct i915_request *req = data;
226 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227 				shadow_ctx_notifier_block[req->engine->id]);
228 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229 	enum intel_engine_id ring_id = req->engine->id;
230 	struct intel_vgpu_workload *workload;
231 	unsigned long flags;
232 
233 	if (!is_gvt_request(req)) {
234 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236 		    scheduler->engine_owner[ring_id]) {
237 			/* Switch ring from vGPU to host. */
238 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239 					      NULL, ring_id);
240 			scheduler->engine_owner[ring_id] = NULL;
241 		}
242 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243 
244 		return NOTIFY_OK;
245 	}
246 
247 	workload = scheduler->current_workload[ring_id];
248 	if (unlikely(!workload))
249 		return NOTIFY_OK;
250 
251 	switch (action) {
252 	case INTEL_CONTEXT_SCHEDULE_IN:
253 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255 			/* Switch ring from host to vGPU or vGPU to vGPU. */
256 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257 					      workload->vgpu, ring_id);
258 			scheduler->engine_owner[ring_id] = workload->vgpu;
259 		} else
260 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261 				      ring_id, workload->vgpu->id);
262 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263 		atomic_set(&workload->shadow_ctx_active, 1);
264 		break;
265 	case INTEL_CONTEXT_SCHEDULE_OUT:
266 		save_ring_hw_state(workload->vgpu, ring_id);
267 		atomic_set(&workload->shadow_ctx_active, 0);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		break;
272 	default:
273 		WARN_ON(1);
274 		return NOTIFY_OK;
275 	}
276 	wake_up(&workload->shadow_ctx_status_wq);
277 	return NOTIFY_OK;
278 }
279 
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282 	u64 desc = 0;
283 
284 	desc = ce->lrc_desc;
285 
286 	/* Update bits 0-11 of the context descriptor which includes flags
287 	 * like GEN8_CTX_* cached in desc_template
288 	 */
289 	desc &= U64_MAX << 12;
290 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291 
292 	ce->lrc_desc = desc;
293 }
294 
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297 	struct intel_vgpu *vgpu = workload->vgpu;
298 	struct i915_request *req = workload->req;
299 	void *shadow_ring_buffer_va;
300 	u32 *cs;
301 	int err;
302 
303 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
304 		intel_vgpu_restore_inhibit_context(vgpu, req);
305 
306 	/*
307 	 * To track whether a request has started on HW, we can emit a
308 	 * breadcrumb at the beginning of the request and check its
309 	 * timeline's HWSP to see if the breadcrumb has advanced past the
310 	 * start of this request. Actually, the request must have the
311 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
312 	 * scheduler might get a wrong state of it during reset. Since the
313 	 * requests from gvt always set the has_init_breadcrumb flag, here
314 	 * need to do the emit_init_breadcrumb for all the requests.
315 	 */
316 	if (req->engine->emit_init_breadcrumb) {
317 		err = req->engine->emit_init_breadcrumb(req);
318 		if (err) {
319 			gvt_vgpu_err("fail to emit init breadcrumb\n");
320 			return err;
321 		}
322 	}
323 
324 	/* allocate shadow ring buffer */
325 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
326 	if (IS_ERR(cs)) {
327 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
328 			workload->rb_len);
329 		return PTR_ERR(cs);
330 	}
331 
332 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
333 
334 	/* get shadow ring buffer va */
335 	workload->shadow_ring_buffer_va = cs;
336 
337 	memcpy(cs, shadow_ring_buffer_va,
338 			workload->rb_len);
339 
340 	cs += workload->rb_len / sizeof(u32);
341 	intel_ring_advance(workload->req, cs);
342 
343 	return 0;
344 }
345 
346 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
347 {
348 	if (!wa_ctx->indirect_ctx.obj)
349 		return;
350 
351 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
352 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
353 
354 	wa_ctx->indirect_ctx.obj = NULL;
355 	wa_ctx->indirect_ctx.shadow_va = NULL;
356 }
357 
358 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
359 					 struct i915_gem_context *ctx)
360 {
361 	struct intel_vgpu_mm *mm = workload->shadow_mm;
362 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
363 	int i = 0;
364 
365 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
366 		return -EINVAL;
367 
368 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
369 		px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
370 	} else {
371 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
372 			px_dma(ppgtt->pdp.page_directory[i]) =
373 				mm->ppgtt_mm.shadow_pdps[i];
374 		}
375 	}
376 
377 	return 0;
378 }
379 
380 static int
381 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
382 {
383 	struct intel_vgpu *vgpu = workload->vgpu;
384 	struct intel_vgpu_submission *s = &vgpu->submission;
385 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
386 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
387 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
388 	struct i915_request *rq;
389 	int ret = 0;
390 
391 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
392 
393 	if (workload->req)
394 		goto out;
395 
396 	rq = i915_request_alloc(engine, shadow_ctx);
397 	if (IS_ERR(rq)) {
398 		gvt_vgpu_err("fail to allocate gem request\n");
399 		ret = PTR_ERR(rq);
400 		goto out;
401 	}
402 	workload->req = i915_request_get(rq);
403 out:
404 	return ret;
405 }
406 
407 /**
408  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
409  * shadow it as well, include ringbuffer,wa_ctx and ctx.
410  * @workload: an abstract entity for each execlist submission.
411  *
412  * This function is called before the workload submitting to i915, to make
413  * sure the content of the workload is valid.
414  */
415 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
416 {
417 	struct intel_vgpu *vgpu = workload->vgpu;
418 	struct intel_vgpu_submission *s = &vgpu->submission;
419 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
420 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
421 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
422 	struct intel_context *ce;
423 	int ret;
424 
425 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
426 
427 	if (workload->shadow)
428 		return 0;
429 
430 	/* pin shadow context by gvt even the shadow context will be pinned
431 	 * when i915 alloc request. That is because gvt will update the guest
432 	 * context from shadow context when workload is completed, and at that
433 	 * moment, i915 may already unpined the shadow context to make the
434 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
435 	 * the guest context, gvt can unpin the shadow_ctx safely.
436 	 */
437 	ce = intel_context_pin(shadow_ctx, engine);
438 	if (IS_ERR(ce)) {
439 		gvt_vgpu_err("fail to pin shadow context\n");
440 		return PTR_ERR(ce);
441 	}
442 
443 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
444 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
445 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
446 
447 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
448 		shadow_context_descriptor_update(ce);
449 
450 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
451 	if (ret)
452 		goto err_unpin;
453 
454 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
455 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
456 		if (ret)
457 			goto err_shadow;
458 	}
459 
460 	workload->shadow = true;
461 	return 0;
462 err_shadow:
463 	release_shadow_wa_ctx(&workload->wa_ctx);
464 err_unpin:
465 	intel_context_unpin(ce);
466 	return ret;
467 }
468 
469 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
470 
471 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
472 {
473 	struct intel_gvt *gvt = workload->vgpu->gvt;
474 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
475 	struct intel_vgpu_shadow_bb *bb;
476 	int ret;
477 
478 	list_for_each_entry(bb, &workload->shadow_bb, list) {
479 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
480 		 * is only updated into ring_scan_buffer, not real ring address
481 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
482 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
483 		 * in copy_workload_to_ring_buffer.
484 		 */
485 
486 		if (bb->bb_offset)
487 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
488 				+ bb->bb_offset;
489 
490 		if (bb->ppgtt) {
491 			/* for non-priv bb, scan&shadow is only for
492 			 * debugging purpose, so the content of shadow bb
493 			 * is the same as original bb. Therefore,
494 			 * here, rather than switch to shadow bb's gma
495 			 * address, we directly use original batch buffer's
496 			 * gma address, and send original bb to hardware
497 			 * directly
498 			 */
499 			if (bb->clflush & CLFLUSH_AFTER) {
500 				drm_clflush_virt_range(bb->va,
501 						bb->obj->base.size);
502 				bb->clflush &= ~CLFLUSH_AFTER;
503 			}
504 			i915_gem_obj_finish_shmem_access(bb->obj);
505 			bb->accessing = false;
506 
507 		} else {
508 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
509 					NULL, 0, 0, 0);
510 			if (IS_ERR(bb->vma)) {
511 				ret = PTR_ERR(bb->vma);
512 				goto err;
513 			}
514 
515 			/* relocate shadow batch buffer */
516 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
517 			if (gmadr_bytes == 8)
518 				bb->bb_start_cmd_va[2] = 0;
519 
520 			/* No one is going to touch shadow bb from now on. */
521 			if (bb->clflush & CLFLUSH_AFTER) {
522 				drm_clflush_virt_range(bb->va,
523 						bb->obj->base.size);
524 				bb->clflush &= ~CLFLUSH_AFTER;
525 			}
526 
527 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
528 					false);
529 			if (ret)
530 				goto err;
531 
532 			i915_gem_obj_finish_shmem_access(bb->obj);
533 			bb->accessing = false;
534 
535 			ret = i915_vma_move_to_active(bb->vma,
536 						      workload->req,
537 						      0);
538 			if (ret)
539 				goto err;
540 		}
541 	}
542 	return 0;
543 err:
544 	release_shadow_batch_buffer(workload);
545 	return ret;
546 }
547 
548 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
549 {
550 	struct intel_vgpu_workload *workload =
551 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
552 	struct i915_request *rq = workload->req;
553 	struct execlist_ring_context *shadow_ring_context =
554 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
555 
556 	shadow_ring_context->bb_per_ctx_ptr.val =
557 		(shadow_ring_context->bb_per_ctx_ptr.val &
558 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
559 	shadow_ring_context->rcs_indirect_ctx.val =
560 		(shadow_ring_context->rcs_indirect_ctx.val &
561 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
562 }
563 
564 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
565 {
566 	struct i915_vma *vma;
567 	unsigned char *per_ctx_va =
568 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
569 		wa_ctx->indirect_ctx.size;
570 
571 	if (wa_ctx->indirect_ctx.size == 0)
572 		return 0;
573 
574 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
575 				       0, CACHELINE_BYTES, 0);
576 	if (IS_ERR(vma))
577 		return PTR_ERR(vma);
578 
579 	/* FIXME: we are not tracking our pinned VMA leaving it
580 	 * up to the core to fix up the stray pin_count upon
581 	 * free.
582 	 */
583 
584 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
585 
586 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
587 	memset(per_ctx_va, 0, CACHELINE_BYTES);
588 
589 	update_wa_ctx_2_shadow_ctx(wa_ctx);
590 	return 0;
591 }
592 
593 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
594 {
595 	struct intel_vgpu *vgpu = workload->vgpu;
596 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
597 	struct intel_vgpu_shadow_bb *bb, *pos;
598 
599 	if (list_empty(&workload->shadow_bb))
600 		return;
601 
602 	bb = list_first_entry(&workload->shadow_bb,
603 			struct intel_vgpu_shadow_bb, list);
604 
605 	mutex_lock(&dev_priv->drm.struct_mutex);
606 
607 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
608 		if (bb->obj) {
609 			if (bb->accessing)
610 				i915_gem_obj_finish_shmem_access(bb->obj);
611 
612 			if (bb->va && !IS_ERR(bb->va))
613 				i915_gem_object_unpin_map(bb->obj);
614 
615 			if (bb->vma && !IS_ERR(bb->vma)) {
616 				i915_vma_unpin(bb->vma);
617 				i915_vma_close(bb->vma);
618 			}
619 			__i915_gem_object_release_unless_active(bb->obj);
620 		}
621 		list_del(&bb->list);
622 		kfree(bb);
623 	}
624 
625 	mutex_unlock(&dev_priv->drm.struct_mutex);
626 }
627 
628 static int prepare_workload(struct intel_vgpu_workload *workload)
629 {
630 	struct intel_vgpu *vgpu = workload->vgpu;
631 	int ret = 0;
632 
633 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
634 	if (ret) {
635 		gvt_vgpu_err("fail to vgpu pin mm\n");
636 		return ret;
637 	}
638 
639 	update_shadow_pdps(workload);
640 
641 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
642 	if (ret) {
643 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
644 		goto err_unpin_mm;
645 	}
646 
647 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
648 	if (ret) {
649 		gvt_vgpu_err("fail to flush post shadow\n");
650 		goto err_unpin_mm;
651 	}
652 
653 	ret = copy_workload_to_ring_buffer(workload);
654 	if (ret) {
655 		gvt_vgpu_err("fail to generate request\n");
656 		goto err_unpin_mm;
657 	}
658 
659 	ret = prepare_shadow_batch_buffer(workload);
660 	if (ret) {
661 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
662 		goto err_unpin_mm;
663 	}
664 
665 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
666 	if (ret) {
667 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
668 		goto err_shadow_batch;
669 	}
670 
671 	if (workload->prepare) {
672 		ret = workload->prepare(workload);
673 		if (ret)
674 			goto err_shadow_wa_ctx;
675 	}
676 
677 	return 0;
678 err_shadow_wa_ctx:
679 	release_shadow_wa_ctx(&workload->wa_ctx);
680 err_shadow_batch:
681 	release_shadow_batch_buffer(workload);
682 err_unpin_mm:
683 	intel_vgpu_unpin_mm(workload->shadow_mm);
684 	return ret;
685 }
686 
687 static int dispatch_workload(struct intel_vgpu_workload *workload)
688 {
689 	struct intel_vgpu *vgpu = workload->vgpu;
690 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
691 	struct intel_vgpu_submission *s = &vgpu->submission;
692 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
693 	struct i915_request *rq;
694 	int ring_id = workload->ring_id;
695 	int ret;
696 
697 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
698 		ring_id, workload);
699 
700 	mutex_lock(&vgpu->vgpu_lock);
701 	mutex_lock(&dev_priv->drm.struct_mutex);
702 
703 	ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
704 	if (ret < 0) {
705 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
706 		goto err_req;
707 	}
708 
709 	ret = intel_gvt_workload_req_alloc(workload);
710 	if (ret)
711 		goto err_req;
712 
713 	ret = intel_gvt_scan_and_shadow_workload(workload);
714 	if (ret)
715 		goto out;
716 
717 	ret = populate_shadow_context(workload);
718 	if (ret) {
719 		release_shadow_wa_ctx(&workload->wa_ctx);
720 		goto out;
721 	}
722 
723 	ret = prepare_workload(workload);
724 out:
725 	if (ret) {
726 		/* We might still need to add request with
727 		 * clean ctx to retire it properly..
728 		 */
729 		rq = fetch_and_zero(&workload->req);
730 		i915_request_put(rq);
731 	}
732 
733 	if (!IS_ERR_OR_NULL(workload->req)) {
734 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
735 				ring_id, workload->req);
736 		i915_request_add(workload->req);
737 		workload->dispatched = true;
738 	}
739 err_req:
740 	if (ret)
741 		workload->status = ret;
742 	mutex_unlock(&dev_priv->drm.struct_mutex);
743 	mutex_unlock(&vgpu->vgpu_lock);
744 	return ret;
745 }
746 
747 static struct intel_vgpu_workload *pick_next_workload(
748 		struct intel_gvt *gvt, int ring_id)
749 {
750 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
751 	struct intel_vgpu_workload *workload = NULL;
752 
753 	mutex_lock(&gvt->sched_lock);
754 
755 	/*
756 	 * no current vgpu / will be scheduled out / no workload
757 	 * bail out
758 	 */
759 	if (!scheduler->current_vgpu) {
760 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
761 		goto out;
762 	}
763 
764 	if (scheduler->need_reschedule) {
765 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
766 		goto out;
767 	}
768 
769 	if (!scheduler->current_vgpu->active ||
770 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
771 		goto out;
772 
773 	/*
774 	 * still have current workload, maybe the workload disptacher
775 	 * fail to submit it for some reason, resubmit it.
776 	 */
777 	if (scheduler->current_workload[ring_id]) {
778 		workload = scheduler->current_workload[ring_id];
779 		gvt_dbg_sched("ring id %d still have current workload %p\n",
780 				ring_id, workload);
781 		goto out;
782 	}
783 
784 	/*
785 	 * pick a workload as current workload
786 	 * once current workload is set, schedule policy routines
787 	 * will wait the current workload is finished when trying to
788 	 * schedule out a vgpu.
789 	 */
790 	scheduler->current_workload[ring_id] = container_of(
791 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
792 			struct intel_vgpu_workload, list);
793 
794 	workload = scheduler->current_workload[ring_id];
795 
796 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
797 
798 	atomic_inc(&workload->vgpu->submission.running_workload_num);
799 out:
800 	mutex_unlock(&gvt->sched_lock);
801 	return workload;
802 }
803 
804 static void update_guest_context(struct intel_vgpu_workload *workload)
805 {
806 	struct i915_request *rq = workload->req;
807 	struct intel_vgpu *vgpu = workload->vgpu;
808 	struct intel_gvt *gvt = vgpu->gvt;
809 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
810 	struct execlist_ring_context *shadow_ring_context;
811 	struct page *page;
812 	void *src;
813 	unsigned long context_gpa, context_page_num;
814 	int i;
815 
816 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
817 		      workload->ctx_desc.lrca);
818 
819 	context_page_num = rq->engine->context_size;
820 	context_page_num = context_page_num >> PAGE_SHIFT;
821 
822 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
823 		context_page_num = 19;
824 
825 	i = 2;
826 
827 	while (i < context_page_num) {
828 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
829 				(u32)((workload->ctx_desc.lrca + i) <<
830 					I915_GTT_PAGE_SHIFT));
831 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
832 			gvt_vgpu_err("invalid guest context descriptor\n");
833 			return;
834 		}
835 
836 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
837 		src = kmap(page);
838 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
839 				I915_GTT_PAGE_SIZE);
840 		kunmap(page);
841 		i++;
842 	}
843 
844 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
845 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
846 
847 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
848 	shadow_ring_context = kmap(page);
849 
850 #define COPY_REG(name) \
851 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
852 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
853 
854 	COPY_REG(ctx_ctrl);
855 	COPY_REG(ctx_timestamp);
856 
857 #undef COPY_REG
858 
859 	intel_gvt_hypervisor_write_gpa(vgpu,
860 			workload->ring_context_gpa +
861 			sizeof(*shadow_ring_context),
862 			(void *)shadow_ring_context +
863 			sizeof(*shadow_ring_context),
864 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
865 
866 	kunmap(page);
867 }
868 
869 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
870 				intel_engine_mask_t engine_mask)
871 {
872 	struct intel_vgpu_submission *s = &vgpu->submission;
873 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
874 	struct intel_engine_cs *engine;
875 	struct intel_vgpu_workload *pos, *n;
876 	intel_engine_mask_t tmp;
877 
878 	/* free the unsubmited workloads in the queues. */
879 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
880 		list_for_each_entry_safe(pos, n,
881 			&s->workload_q_head[engine->id], list) {
882 			list_del_init(&pos->list);
883 			intel_vgpu_destroy_workload(pos);
884 		}
885 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
886 	}
887 }
888 
889 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
890 {
891 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
892 	struct intel_vgpu_workload *workload =
893 		scheduler->current_workload[ring_id];
894 	struct intel_vgpu *vgpu = workload->vgpu;
895 	struct intel_vgpu_submission *s = &vgpu->submission;
896 	struct i915_request *rq = workload->req;
897 	int event;
898 
899 	mutex_lock(&vgpu->vgpu_lock);
900 	mutex_lock(&gvt->sched_lock);
901 
902 	/* For the workload w/ request, needs to wait for the context
903 	 * switch to make sure request is completed.
904 	 * For the workload w/o request, directly complete the workload.
905 	 */
906 	if (rq) {
907 		wait_event(workload->shadow_ctx_status_wq,
908 			   !atomic_read(&workload->shadow_ctx_active));
909 
910 		/* If this request caused GPU hang, req->fence.error will
911 		 * be set to -EIO. Use -EIO to set workload status so
912 		 * that when this request caused GPU hang, didn't trigger
913 		 * context switch interrupt to guest.
914 		 */
915 		if (likely(workload->status == -EINPROGRESS)) {
916 			if (workload->req->fence.error == -EIO)
917 				workload->status = -EIO;
918 			else
919 				workload->status = 0;
920 		}
921 
922 		if (!workload->status &&
923 		    !(vgpu->resetting_eng & BIT(ring_id))) {
924 			update_guest_context(workload);
925 
926 			for_each_set_bit(event, workload->pending_events,
927 					 INTEL_GVT_EVENT_MAX)
928 				intel_vgpu_trigger_virtual_event(vgpu, event);
929 		}
930 
931 		/* unpin shadow ctx as the shadow_ctx update is done */
932 		mutex_lock(&rq->i915->drm.struct_mutex);
933 		intel_context_unpin(rq->hw_context);
934 		mutex_unlock(&rq->i915->drm.struct_mutex);
935 
936 		i915_request_put(fetch_and_zero(&workload->req));
937 	}
938 
939 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
940 			ring_id, workload, workload->status);
941 
942 	scheduler->current_workload[ring_id] = NULL;
943 
944 	list_del_init(&workload->list);
945 
946 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
947 		/* if workload->status is not successful means HW GPU
948 		 * has occurred GPU hang or something wrong with i915/GVT,
949 		 * and GVT won't inject context switch interrupt to guest.
950 		 * So this error is a vGPU hang actually to the guest.
951 		 * According to this we should emunlate a vGPU hang. If
952 		 * there are pending workloads which are already submitted
953 		 * from guest, we should clean them up like HW GPU does.
954 		 *
955 		 * if it is in middle of engine resetting, the pending
956 		 * workloads won't be submitted to HW GPU and will be
957 		 * cleaned up during the resetting process later, so doing
958 		 * the workload clean up here doesn't have any impact.
959 		 **/
960 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
961 	}
962 
963 	workload->complete(workload);
964 
965 	atomic_dec(&s->running_workload_num);
966 	wake_up(&scheduler->workload_complete_wq);
967 
968 	if (gvt->scheduler.need_reschedule)
969 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
970 
971 	mutex_unlock(&gvt->sched_lock);
972 	mutex_unlock(&vgpu->vgpu_lock);
973 }
974 
975 struct workload_thread_param {
976 	struct intel_gvt *gvt;
977 	int ring_id;
978 };
979 
980 static int workload_thread(void *priv)
981 {
982 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
983 	struct intel_gvt *gvt = p->gvt;
984 	int ring_id = p->ring_id;
985 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
986 	struct intel_vgpu_workload *workload = NULL;
987 	struct intel_vgpu *vgpu = NULL;
988 	int ret;
989 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
990 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
991 
992 	kfree(p);
993 
994 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
995 
996 	while (!kthread_should_stop()) {
997 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
998 		do {
999 			workload = pick_next_workload(gvt, ring_id);
1000 			if (workload)
1001 				break;
1002 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1003 				   MAX_SCHEDULE_TIMEOUT);
1004 		} while (!kthread_should_stop());
1005 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1006 
1007 		if (!workload)
1008 			break;
1009 
1010 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1011 				workload->ring_id, workload,
1012 				workload->vgpu->id);
1013 
1014 		intel_runtime_pm_get(gvt->dev_priv);
1015 
1016 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1017 				workload->ring_id, workload);
1018 
1019 		if (need_force_wake)
1020 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1021 					FORCEWAKE_ALL);
1022 
1023 		ret = dispatch_workload(workload);
1024 
1025 		if (ret) {
1026 			vgpu = workload->vgpu;
1027 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1028 			goto complete;
1029 		}
1030 
1031 		gvt_dbg_sched("ring id %d wait workload %p\n",
1032 				workload->ring_id, workload);
1033 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1034 
1035 complete:
1036 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1037 				workload, workload->status);
1038 
1039 		complete_current_workload(gvt, ring_id);
1040 
1041 		if (need_force_wake)
1042 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1043 					FORCEWAKE_ALL);
1044 
1045 		intel_runtime_pm_put_unchecked(gvt->dev_priv);
1046 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1047 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1048 	}
1049 	return 0;
1050 }
1051 
1052 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1053 {
1054 	struct intel_vgpu_submission *s = &vgpu->submission;
1055 	struct intel_gvt *gvt = vgpu->gvt;
1056 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1057 
1058 	if (atomic_read(&s->running_workload_num)) {
1059 		gvt_dbg_sched("wait vgpu idle\n");
1060 
1061 		wait_event(scheduler->workload_complete_wq,
1062 				!atomic_read(&s->running_workload_num));
1063 	}
1064 }
1065 
1066 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1067 {
1068 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1069 	struct intel_engine_cs *engine;
1070 	enum intel_engine_id i;
1071 
1072 	gvt_dbg_core("clean workload scheduler\n");
1073 
1074 	for_each_engine(engine, gvt->dev_priv, i) {
1075 		atomic_notifier_chain_unregister(
1076 					&engine->context_status_notifier,
1077 					&gvt->shadow_ctx_notifier_block[i]);
1078 		kthread_stop(scheduler->thread[i]);
1079 	}
1080 }
1081 
1082 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1083 {
1084 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1085 	struct workload_thread_param *param = NULL;
1086 	struct intel_engine_cs *engine;
1087 	enum intel_engine_id i;
1088 	int ret;
1089 
1090 	gvt_dbg_core("init workload scheduler\n");
1091 
1092 	init_waitqueue_head(&scheduler->workload_complete_wq);
1093 
1094 	for_each_engine(engine, gvt->dev_priv, i) {
1095 		init_waitqueue_head(&scheduler->waitq[i]);
1096 
1097 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1098 		if (!param) {
1099 			ret = -ENOMEM;
1100 			goto err;
1101 		}
1102 
1103 		param->gvt = gvt;
1104 		param->ring_id = i;
1105 
1106 		scheduler->thread[i] = kthread_run(workload_thread, param,
1107 			"gvt workload %d", i);
1108 		if (IS_ERR(scheduler->thread[i])) {
1109 			gvt_err("fail to create workload thread\n");
1110 			ret = PTR_ERR(scheduler->thread[i]);
1111 			goto err;
1112 		}
1113 
1114 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1115 					shadow_context_status_change;
1116 		atomic_notifier_chain_register(&engine->context_status_notifier,
1117 					&gvt->shadow_ctx_notifier_block[i]);
1118 	}
1119 	return 0;
1120 err:
1121 	intel_gvt_clean_workload_scheduler(gvt);
1122 	kfree(param);
1123 	param = NULL;
1124 	return ret;
1125 }
1126 
1127 static void
1128 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1129 {
1130 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1131 	int i;
1132 
1133 	if (i915_vm_is_4lvl(&i915_ppgtt->vm)) {
1134 		px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1135 	} else {
1136 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1137 			px_dma(i915_ppgtt->pdp.page_directory[i]) =
1138 						s->i915_context_pdps[i];
1139 	}
1140 }
1141 
1142 /**
1143  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1144  * @vgpu: a vGPU
1145  *
1146  * This function is called when a vGPU is being destroyed.
1147  *
1148  */
1149 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1150 {
1151 	struct intel_vgpu_submission *s = &vgpu->submission;
1152 
1153 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1154 	i915_context_ppgtt_root_restore(s);
1155 	i915_gem_context_put(s->shadow_ctx);
1156 	kmem_cache_destroy(s->workloads);
1157 }
1158 
1159 
1160 /**
1161  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1162  * @vgpu: a vGPU
1163  * @engine_mask: engines expected to be reset
1164  *
1165  * This function is called when a vGPU is being destroyed.
1166  *
1167  */
1168 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1169 				 intel_engine_mask_t engine_mask)
1170 {
1171 	struct intel_vgpu_submission *s = &vgpu->submission;
1172 
1173 	if (!s->active)
1174 		return;
1175 
1176 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1177 	s->ops->reset(vgpu, engine_mask);
1178 }
1179 
1180 static void
1181 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1182 {
1183 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1184 	int i;
1185 
1186 	if (i915_vm_is_4lvl(&i915_ppgtt->vm))
1187 		s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1188 	else {
1189 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1190 			s->i915_context_pdps[i] =
1191 				px_dma(i915_ppgtt->pdp.page_directory[i]);
1192 	}
1193 }
1194 
1195 /**
1196  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1197  * @vgpu: a vGPU
1198  *
1199  * This function is called when a vGPU is being created.
1200  *
1201  * Returns:
1202  * Zero on success, negative error code if failed.
1203  *
1204  */
1205 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1206 {
1207 	struct intel_vgpu_submission *s = &vgpu->submission;
1208 	enum intel_engine_id i;
1209 	struct intel_engine_cs *engine;
1210 	int ret;
1211 
1212 	s->shadow_ctx = i915_gem_context_create_gvt(
1213 			&vgpu->gvt->dev_priv->drm);
1214 	if (IS_ERR(s->shadow_ctx))
1215 		return PTR_ERR(s->shadow_ctx);
1216 
1217 	i915_context_ppgtt_root_save(s);
1218 
1219 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1220 
1221 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1222 						  sizeof(struct intel_vgpu_workload), 0,
1223 						  SLAB_HWCACHE_ALIGN,
1224 						  offsetof(struct intel_vgpu_workload, rb_tail),
1225 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1226 						  NULL);
1227 
1228 	if (!s->workloads) {
1229 		ret = -ENOMEM;
1230 		goto out_shadow_ctx;
1231 	}
1232 
1233 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1234 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1235 
1236 	atomic_set(&s->running_workload_num, 0);
1237 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1238 
1239 	return 0;
1240 
1241 out_shadow_ctx:
1242 	i915_gem_context_put(s->shadow_ctx);
1243 	return ret;
1244 }
1245 
1246 /**
1247  * intel_vgpu_select_submission_ops - select virtual submission interface
1248  * @vgpu: a vGPU
1249  * @engine_mask: either ALL_ENGINES or target engine mask
1250  * @interface: expected vGPU virtual submission interface
1251  *
1252  * This function is called when guest configures submission interface.
1253  *
1254  * Returns:
1255  * Zero on success, negative error code if failed.
1256  *
1257  */
1258 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1259 				     intel_engine_mask_t engine_mask,
1260 				     unsigned int interface)
1261 {
1262 	struct intel_vgpu_submission *s = &vgpu->submission;
1263 	const struct intel_vgpu_submission_ops *ops[] = {
1264 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1265 			&intel_vgpu_execlist_submission_ops,
1266 	};
1267 	int ret;
1268 
1269 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1270 		return -EINVAL;
1271 
1272 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1273 		return -EINVAL;
1274 
1275 	if (s->active)
1276 		s->ops->clean(vgpu, engine_mask);
1277 
1278 	if (interface == 0) {
1279 		s->ops = NULL;
1280 		s->virtual_submission_interface = 0;
1281 		s->active = false;
1282 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1283 		return 0;
1284 	}
1285 
1286 	ret = ops[interface]->init(vgpu, engine_mask);
1287 	if (ret)
1288 		return ret;
1289 
1290 	s->ops = ops[interface];
1291 	s->virtual_submission_interface = interface;
1292 	s->active = true;
1293 
1294 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1295 			vgpu->id, s->ops->name);
1296 
1297 	return 0;
1298 }
1299 
1300 /**
1301  * intel_vgpu_destroy_workload - destroy a vGPU workload
1302  * @workload: workload to destroy
1303  *
1304  * This function is called when destroy a vGPU workload.
1305  *
1306  */
1307 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1308 {
1309 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1310 
1311 	release_shadow_batch_buffer(workload);
1312 	release_shadow_wa_ctx(&workload->wa_ctx);
1313 
1314 	if (workload->shadow_mm)
1315 		intel_vgpu_mm_put(workload->shadow_mm);
1316 
1317 	kmem_cache_free(s->workloads, workload);
1318 }
1319 
1320 static struct intel_vgpu_workload *
1321 alloc_workload(struct intel_vgpu *vgpu)
1322 {
1323 	struct intel_vgpu_submission *s = &vgpu->submission;
1324 	struct intel_vgpu_workload *workload;
1325 
1326 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1327 	if (!workload)
1328 		return ERR_PTR(-ENOMEM);
1329 
1330 	INIT_LIST_HEAD(&workload->list);
1331 	INIT_LIST_HEAD(&workload->shadow_bb);
1332 
1333 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1334 	atomic_set(&workload->shadow_ctx_active, 0);
1335 
1336 	workload->status = -EINPROGRESS;
1337 	workload->vgpu = vgpu;
1338 
1339 	return workload;
1340 }
1341 
1342 #define RING_CTX_OFF(x) \
1343 	offsetof(struct execlist_ring_context, x)
1344 
1345 static void read_guest_pdps(struct intel_vgpu *vgpu,
1346 		u64 ring_context_gpa, u32 pdp[8])
1347 {
1348 	u64 gpa;
1349 	int i;
1350 
1351 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1352 
1353 	for (i = 0; i < 8; i++)
1354 		intel_gvt_hypervisor_read_gpa(vgpu,
1355 				gpa + i * 8, &pdp[7 - i], 4);
1356 }
1357 
1358 static int prepare_mm(struct intel_vgpu_workload *workload)
1359 {
1360 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1361 	struct intel_vgpu_mm *mm;
1362 	struct intel_vgpu *vgpu = workload->vgpu;
1363 	enum intel_gvt_gtt_type root_entry_type;
1364 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1365 
1366 	switch (desc->addressing_mode) {
1367 	case 1: /* legacy 32-bit */
1368 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1369 		break;
1370 	case 3: /* legacy 64-bit */
1371 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1372 		break;
1373 	default:
1374 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1375 		return -EINVAL;
1376 	}
1377 
1378 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1379 
1380 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1381 	if (IS_ERR(mm))
1382 		return PTR_ERR(mm);
1383 
1384 	workload->shadow_mm = mm;
1385 	return 0;
1386 }
1387 
1388 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1389 		((a)->lrca == (b)->lrca))
1390 
1391 #define get_last_workload(q) \
1392 	(list_empty(q) ? NULL : container_of(q->prev, \
1393 	struct intel_vgpu_workload, list))
1394 /**
1395  * intel_vgpu_create_workload - create a vGPU workload
1396  * @vgpu: a vGPU
1397  * @ring_id: ring index
1398  * @desc: a guest context descriptor
1399  *
1400  * This function is called when creating a vGPU workload.
1401  *
1402  * Returns:
1403  * struct intel_vgpu_workload * on success, negative error code in
1404  * pointer if failed.
1405  *
1406  */
1407 struct intel_vgpu_workload *
1408 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1409 			   struct execlist_ctx_descriptor_format *desc)
1410 {
1411 	struct intel_vgpu_submission *s = &vgpu->submission;
1412 	struct list_head *q = workload_q_head(vgpu, ring_id);
1413 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1414 	struct intel_vgpu_workload *workload = NULL;
1415 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1416 	u64 ring_context_gpa;
1417 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1418 	int ret;
1419 
1420 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1421 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1422 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1423 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1424 		return ERR_PTR(-EINVAL);
1425 	}
1426 
1427 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1428 			RING_CTX_OFF(ring_header.val), &head, 4);
1429 
1430 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1431 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1432 
1433 	head &= RB_HEAD_OFF_MASK;
1434 	tail &= RB_TAIL_OFF_MASK;
1435 
1436 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1437 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1438 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1439 				last_workload->rb_tail);
1440 		/*
1441 		 * cannot use guest context head pointer here,
1442 		 * as it might not be updated at this time
1443 		 */
1444 		head = last_workload->rb_tail;
1445 	}
1446 
1447 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1448 
1449 	/* record some ring buffer register values for scan and shadow */
1450 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1451 			RING_CTX_OFF(rb_start.val), &start, 4);
1452 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1453 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1454 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1455 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1456 
1457 	workload = alloc_workload(vgpu);
1458 	if (IS_ERR(workload))
1459 		return workload;
1460 
1461 	workload->ring_id = ring_id;
1462 	workload->ctx_desc = *desc;
1463 	workload->ring_context_gpa = ring_context_gpa;
1464 	workload->rb_head = head;
1465 	workload->rb_tail = tail;
1466 	workload->rb_start = start;
1467 	workload->rb_ctl = ctl;
1468 
1469 	if (ring_id == RCS0) {
1470 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1471 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1472 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1473 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1474 
1475 		workload->wa_ctx.indirect_ctx.guest_gma =
1476 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1477 		workload->wa_ctx.indirect_ctx.size =
1478 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1479 			CACHELINE_BYTES;
1480 		workload->wa_ctx.per_ctx.guest_gma =
1481 			per_ctx & PER_CTX_ADDR_MASK;
1482 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1483 	}
1484 
1485 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1486 			workload, ring_id, head, tail, start, ctl);
1487 
1488 	ret = prepare_mm(workload);
1489 	if (ret) {
1490 		kmem_cache_free(s->workloads, workload);
1491 		return ERR_PTR(ret);
1492 	}
1493 
1494 	/* Only scan and shadow the first workload in the queue
1495 	 * as there is only one pre-allocated buf-obj for shadow.
1496 	 */
1497 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1498 		intel_runtime_pm_get(dev_priv);
1499 		mutex_lock(&dev_priv->drm.struct_mutex);
1500 		ret = intel_gvt_scan_and_shadow_workload(workload);
1501 		mutex_unlock(&dev_priv->drm.struct_mutex);
1502 		intel_runtime_pm_put_unchecked(dev_priv);
1503 	}
1504 
1505 	if (ret) {
1506 		if (vgpu_is_vm_unhealthy(ret))
1507 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1508 		intel_vgpu_destroy_workload(workload);
1509 		return ERR_PTR(ret);
1510 	}
1511 
1512 	return workload;
1513 }
1514 
1515 /**
1516  * intel_vgpu_queue_workload - Qeue a vGPU workload
1517  * @workload: the workload to queue in
1518  */
1519 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1520 {
1521 	list_add_tail(&workload->list,
1522 		workload_q_head(workload->vgpu, workload->ring_id));
1523 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1524 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1525 }
1526