1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "i915_drv.h" 39 #include "gvt.h" 40 41 #define RING_CTX_OFF(x) \ 42 offsetof(struct execlist_ring_context, x) 43 44 static void set_context_pdp_root_pointer( 45 struct execlist_ring_context *ring_context, 46 u32 pdp[8]) 47 { 48 int i; 49 50 for (i = 0; i < 8; i++) 51 ring_context->pdps[i].val = pdp[7 - i]; 52 } 53 54 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 55 { 56 struct drm_i915_gem_object *ctx_obj = 57 workload->req->hw_context->state->obj; 58 struct execlist_ring_context *shadow_ring_context; 59 struct page *page; 60 61 if (WARN_ON(!workload->shadow_mm)) 62 return; 63 64 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 65 return; 66 67 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 68 shadow_ring_context = kmap(page); 69 set_context_pdp_root_pointer(shadow_ring_context, 70 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 71 kunmap(page); 72 } 73 74 /* 75 * when populating shadow ctx from guest, we should not overrride oa related 76 * registers, so that they will not be overlapped by guest oa configs. Thus 77 * made it possible to capture oa data from host for both host and guests. 78 */ 79 static void sr_oa_regs(struct intel_vgpu_workload *workload, 80 u32 *reg_state, bool save) 81 { 82 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 83 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 84 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 85 int i = 0; 86 u32 flex_mmio[] = { 87 i915_mmio_reg_offset(EU_PERF_CNTL0), 88 i915_mmio_reg_offset(EU_PERF_CNTL1), 89 i915_mmio_reg_offset(EU_PERF_CNTL2), 90 i915_mmio_reg_offset(EU_PERF_CNTL3), 91 i915_mmio_reg_offset(EU_PERF_CNTL4), 92 i915_mmio_reg_offset(EU_PERF_CNTL5), 93 i915_mmio_reg_offset(EU_PERF_CNTL6), 94 }; 95 96 if (workload->ring_id != RCS) 97 return; 98 99 if (save) { 100 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 101 102 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 103 u32 state_offset = ctx_flexeu0 + i * 2; 104 105 workload->flex_mmio[i] = reg_state[state_offset + 1]; 106 } 107 } else { 108 reg_state[ctx_oactxctrl] = 109 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 110 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 111 112 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 113 u32 state_offset = ctx_flexeu0 + i * 2; 114 u32 mmio = flex_mmio[i]; 115 116 reg_state[state_offset] = mmio; 117 reg_state[state_offset + 1] = workload->flex_mmio[i]; 118 } 119 } 120 } 121 122 static int populate_shadow_context(struct intel_vgpu_workload *workload) 123 { 124 struct intel_vgpu *vgpu = workload->vgpu; 125 struct intel_gvt *gvt = vgpu->gvt; 126 int ring_id = workload->ring_id; 127 struct drm_i915_gem_object *ctx_obj = 128 workload->req->hw_context->state->obj; 129 struct execlist_ring_context *shadow_ring_context; 130 struct page *page; 131 void *dst; 132 unsigned long context_gpa, context_page_num; 133 int i; 134 135 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 136 shadow_ring_context = kmap(page); 137 138 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 139 #define COPY_REG(name) \ 140 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 141 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 142 #define COPY_REG_MASKED(name) {\ 143 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 144 + RING_CTX_OFF(name.val),\ 145 &shadow_ring_context->name.val, 4);\ 146 shadow_ring_context->name.val |= 0xffff << 16;\ 147 } 148 149 COPY_REG_MASKED(ctx_ctrl); 150 COPY_REG(ctx_timestamp); 151 152 if (ring_id == RCS) { 153 COPY_REG(bb_per_ctx_ptr); 154 COPY_REG(rcs_indirect_ctx); 155 COPY_REG(rcs_indirect_ctx_offset); 156 } 157 #undef COPY_REG 158 #undef COPY_REG_MASKED 159 160 intel_gvt_hypervisor_read_gpa(vgpu, 161 workload->ring_context_gpa + 162 sizeof(*shadow_ring_context), 163 (void *)shadow_ring_context + 164 sizeof(*shadow_ring_context), 165 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 166 167 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 168 kunmap(page); 169 170 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 171 return 0; 172 173 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 174 workload->ctx_desc.lrca); 175 176 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 177 178 context_page_num = context_page_num >> PAGE_SHIFT; 179 180 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS) 181 context_page_num = 19; 182 183 i = 2; 184 while (i < context_page_num) { 185 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 186 (u32)((workload->ctx_desc.lrca + i) << 187 I915_GTT_PAGE_SHIFT)); 188 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 189 gvt_vgpu_err("Invalid guest context descriptor\n"); 190 return -EFAULT; 191 } 192 193 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 194 dst = kmap(page); 195 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 196 I915_GTT_PAGE_SIZE); 197 kunmap(page); 198 i++; 199 } 200 return 0; 201 } 202 203 static inline bool is_gvt_request(struct i915_request *req) 204 { 205 return i915_gem_context_force_single_submission(req->gem_context); 206 } 207 208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 209 { 210 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 211 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 212 i915_reg_t reg; 213 214 reg = RING_INSTDONE(ring_base); 215 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 216 reg = RING_ACTHD(ring_base); 217 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 218 reg = RING_ACTHD_UDW(ring_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 220 } 221 222 static int shadow_context_status_change(struct notifier_block *nb, 223 unsigned long action, void *data) 224 { 225 struct i915_request *req = data; 226 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 227 shadow_ctx_notifier_block[req->engine->id]); 228 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 229 enum intel_engine_id ring_id = req->engine->id; 230 struct intel_vgpu_workload *workload; 231 unsigned long flags; 232 233 if (!is_gvt_request(req)) { 234 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 235 if (action == INTEL_CONTEXT_SCHEDULE_IN && 236 scheduler->engine_owner[ring_id]) { 237 /* Switch ring from vGPU to host. */ 238 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 239 NULL, ring_id); 240 scheduler->engine_owner[ring_id] = NULL; 241 } 242 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 243 244 return NOTIFY_OK; 245 } 246 247 workload = scheduler->current_workload[ring_id]; 248 if (unlikely(!workload)) 249 return NOTIFY_OK; 250 251 switch (action) { 252 case INTEL_CONTEXT_SCHEDULE_IN: 253 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 254 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 255 /* Switch ring from host to vGPU or vGPU to vGPU. */ 256 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 257 workload->vgpu, ring_id); 258 scheduler->engine_owner[ring_id] = workload->vgpu; 259 } else 260 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 261 ring_id, workload->vgpu->id); 262 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 263 atomic_set(&workload->shadow_ctx_active, 1); 264 break; 265 case INTEL_CONTEXT_SCHEDULE_OUT: 266 save_ring_hw_state(workload->vgpu, ring_id); 267 atomic_set(&workload->shadow_ctx_active, 0); 268 break; 269 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 270 save_ring_hw_state(workload->vgpu, ring_id); 271 break; 272 default: 273 WARN_ON(1); 274 return NOTIFY_OK; 275 } 276 wake_up(&workload->shadow_ctx_status_wq); 277 return NOTIFY_OK; 278 } 279 280 static void shadow_context_descriptor_update(struct intel_context *ce) 281 { 282 u64 desc = 0; 283 284 desc = ce->lrc_desc; 285 286 /* Update bits 0-11 of the context descriptor which includes flags 287 * like GEN8_CTX_* cached in desc_template 288 */ 289 desc &= U64_MAX << 12; 290 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1); 291 292 ce->lrc_desc = desc; 293 } 294 295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 296 { 297 struct intel_vgpu *vgpu = workload->vgpu; 298 struct i915_request *req = workload->req; 299 void *shadow_ring_buffer_va; 300 u32 *cs; 301 302 if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915) 303 || IS_COFFEELAKE(req->i915)) 304 && is_inhibit_context(req->hw_context)) 305 intel_vgpu_restore_inhibit_context(vgpu, req); 306 307 /* allocate shadow ring buffer */ 308 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 309 if (IS_ERR(cs)) { 310 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 311 workload->rb_len); 312 return PTR_ERR(cs); 313 } 314 315 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 316 317 /* get shadow ring buffer va */ 318 workload->shadow_ring_buffer_va = cs; 319 320 memcpy(cs, shadow_ring_buffer_va, 321 workload->rb_len); 322 323 cs += workload->rb_len / sizeof(u32); 324 intel_ring_advance(workload->req, cs); 325 326 return 0; 327 } 328 329 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 330 { 331 if (!wa_ctx->indirect_ctx.obj) 332 return; 333 334 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 335 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 336 } 337 338 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 339 struct i915_gem_context *ctx) 340 { 341 struct intel_vgpu_mm *mm = workload->shadow_mm; 342 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; 343 int i = 0; 344 345 if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed) 346 return -1; 347 348 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 349 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0]; 350 } else { 351 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 352 px_dma(ppgtt->pdp.page_directory[i]) = 353 mm->ppgtt_mm.shadow_pdps[i]; 354 } 355 } 356 357 return 0; 358 } 359 360 /** 361 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 362 * shadow it as well, include ringbuffer,wa_ctx and ctx. 363 * @workload: an abstract entity for each execlist submission. 364 * 365 * This function is called before the workload submitting to i915, to make 366 * sure the content of the workload is valid. 367 */ 368 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 369 { 370 struct intel_vgpu *vgpu = workload->vgpu; 371 struct intel_vgpu_submission *s = &vgpu->submission; 372 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 373 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 374 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 375 struct intel_context *ce; 376 struct i915_request *rq; 377 int ret; 378 379 lockdep_assert_held(&dev_priv->drm.struct_mutex); 380 381 if (workload->req) 382 return 0; 383 384 ret = set_context_ppgtt_from_shadow(workload, shadow_ctx); 385 if (ret < 0) { 386 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 387 return ret; 388 } 389 390 /* pin shadow context by gvt even the shadow context will be pinned 391 * when i915 alloc request. That is because gvt will update the guest 392 * context from shadow context when workload is completed, and at that 393 * moment, i915 may already unpined the shadow context to make the 394 * shadow_ctx pages invalid. So gvt need to pin itself. After update 395 * the guest context, gvt can unpin the shadow_ctx safely. 396 */ 397 ce = intel_context_pin(shadow_ctx, engine); 398 if (IS_ERR(ce)) { 399 gvt_vgpu_err("fail to pin shadow context\n"); 400 return PTR_ERR(ce); 401 } 402 403 shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 404 shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode << 405 GEN8_CTX_ADDRESSING_MODE_SHIFT; 406 407 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 408 shadow_context_descriptor_update(ce); 409 410 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 411 if (ret) 412 goto err_unpin; 413 414 if ((workload->ring_id == RCS) && 415 (workload->wa_ctx.indirect_ctx.size != 0)) { 416 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 417 if (ret) 418 goto err_shadow; 419 } 420 421 rq = i915_request_alloc(engine, shadow_ctx); 422 if (IS_ERR(rq)) { 423 gvt_vgpu_err("fail to allocate gem request\n"); 424 ret = PTR_ERR(rq); 425 goto err_shadow; 426 } 427 workload->req = i915_request_get(rq); 428 429 ret = populate_shadow_context(workload); 430 if (ret) 431 goto err_req; 432 433 return 0; 434 err_req: 435 rq = fetch_and_zero(&workload->req); 436 i915_request_put(rq); 437 err_shadow: 438 release_shadow_wa_ctx(&workload->wa_ctx); 439 err_unpin: 440 intel_context_unpin(ce); 441 return ret; 442 } 443 444 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 445 446 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 447 { 448 struct intel_gvt *gvt = workload->vgpu->gvt; 449 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 450 struct intel_vgpu_shadow_bb *bb; 451 int ret; 452 453 list_for_each_entry(bb, &workload->shadow_bb, list) { 454 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 455 * is only updated into ring_scan_buffer, not real ring address 456 * allocated in later copy_workload_to_ring_buffer. pls be noted 457 * shadow_ring_buffer_va is now pointed to real ring buffer va 458 * in copy_workload_to_ring_buffer. 459 */ 460 461 if (bb->bb_offset) 462 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 463 + bb->bb_offset; 464 465 if (bb->ppgtt) { 466 /* for non-priv bb, scan&shadow is only for 467 * debugging purpose, so the content of shadow bb 468 * is the same as original bb. Therefore, 469 * here, rather than switch to shadow bb's gma 470 * address, we directly use original batch buffer's 471 * gma address, and send original bb to hardware 472 * directly 473 */ 474 if (bb->clflush & CLFLUSH_AFTER) { 475 drm_clflush_virt_range(bb->va, 476 bb->obj->base.size); 477 bb->clflush &= ~CLFLUSH_AFTER; 478 } 479 i915_gem_obj_finish_shmem_access(bb->obj); 480 bb->accessing = false; 481 482 } else { 483 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 484 NULL, 0, 0, 0); 485 if (IS_ERR(bb->vma)) { 486 ret = PTR_ERR(bb->vma); 487 goto err; 488 } 489 490 /* relocate shadow batch buffer */ 491 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 492 if (gmadr_bytes == 8) 493 bb->bb_start_cmd_va[2] = 0; 494 495 /* No one is going to touch shadow bb from now on. */ 496 if (bb->clflush & CLFLUSH_AFTER) { 497 drm_clflush_virt_range(bb->va, 498 bb->obj->base.size); 499 bb->clflush &= ~CLFLUSH_AFTER; 500 } 501 502 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 503 false); 504 if (ret) 505 goto err; 506 507 i915_gem_obj_finish_shmem_access(bb->obj); 508 bb->accessing = false; 509 510 ret = i915_vma_move_to_active(bb->vma, 511 workload->req, 512 0); 513 if (ret) 514 goto err; 515 } 516 } 517 return 0; 518 err: 519 release_shadow_batch_buffer(workload); 520 return ret; 521 } 522 523 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 524 { 525 struct intel_vgpu_workload *workload = 526 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 527 struct i915_request *rq = workload->req; 528 struct execlist_ring_context *shadow_ring_context = 529 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 530 531 shadow_ring_context->bb_per_ctx_ptr.val = 532 (shadow_ring_context->bb_per_ctx_ptr.val & 533 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 534 shadow_ring_context->rcs_indirect_ctx.val = 535 (shadow_ring_context->rcs_indirect_ctx.val & 536 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 537 } 538 539 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 540 { 541 struct i915_vma *vma; 542 unsigned char *per_ctx_va = 543 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 544 wa_ctx->indirect_ctx.size; 545 546 if (wa_ctx->indirect_ctx.size == 0) 547 return 0; 548 549 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 550 0, CACHELINE_BYTES, 0); 551 if (IS_ERR(vma)) 552 return PTR_ERR(vma); 553 554 /* FIXME: we are not tracking our pinned VMA leaving it 555 * up to the core to fix up the stray pin_count upon 556 * free. 557 */ 558 559 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 560 561 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 562 memset(per_ctx_va, 0, CACHELINE_BYTES); 563 564 update_wa_ctx_2_shadow_ctx(wa_ctx); 565 return 0; 566 } 567 568 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 569 { 570 struct intel_vgpu *vgpu = workload->vgpu; 571 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 572 struct intel_vgpu_shadow_bb *bb, *pos; 573 574 if (list_empty(&workload->shadow_bb)) 575 return; 576 577 bb = list_first_entry(&workload->shadow_bb, 578 struct intel_vgpu_shadow_bb, list); 579 580 mutex_lock(&dev_priv->drm.struct_mutex); 581 582 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 583 if (bb->obj) { 584 if (bb->accessing) 585 i915_gem_obj_finish_shmem_access(bb->obj); 586 587 if (bb->va && !IS_ERR(bb->va)) 588 i915_gem_object_unpin_map(bb->obj); 589 590 if (bb->vma && !IS_ERR(bb->vma)) { 591 i915_vma_unpin(bb->vma); 592 i915_vma_close(bb->vma); 593 } 594 __i915_gem_object_release_unless_active(bb->obj); 595 } 596 list_del(&bb->list); 597 kfree(bb); 598 } 599 600 mutex_unlock(&dev_priv->drm.struct_mutex); 601 } 602 603 static int prepare_workload(struct intel_vgpu_workload *workload) 604 { 605 struct intel_vgpu *vgpu = workload->vgpu; 606 int ret = 0; 607 608 ret = intel_vgpu_pin_mm(workload->shadow_mm); 609 if (ret) { 610 gvt_vgpu_err("fail to vgpu pin mm\n"); 611 return ret; 612 } 613 614 update_shadow_pdps(workload); 615 616 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 617 if (ret) { 618 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 619 goto err_unpin_mm; 620 } 621 622 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 623 if (ret) { 624 gvt_vgpu_err("fail to flush post shadow\n"); 625 goto err_unpin_mm; 626 } 627 628 ret = copy_workload_to_ring_buffer(workload); 629 if (ret) { 630 gvt_vgpu_err("fail to generate request\n"); 631 goto err_unpin_mm; 632 } 633 634 ret = prepare_shadow_batch_buffer(workload); 635 if (ret) { 636 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 637 goto err_unpin_mm; 638 } 639 640 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 641 if (ret) { 642 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 643 goto err_shadow_batch; 644 } 645 646 if (workload->prepare) { 647 ret = workload->prepare(workload); 648 if (ret) 649 goto err_shadow_wa_ctx; 650 } 651 652 return 0; 653 err_shadow_wa_ctx: 654 release_shadow_wa_ctx(&workload->wa_ctx); 655 err_shadow_batch: 656 release_shadow_batch_buffer(workload); 657 err_unpin_mm: 658 intel_vgpu_unpin_mm(workload->shadow_mm); 659 return ret; 660 } 661 662 static int dispatch_workload(struct intel_vgpu_workload *workload) 663 { 664 struct intel_vgpu *vgpu = workload->vgpu; 665 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 666 int ring_id = workload->ring_id; 667 int ret; 668 669 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 670 ring_id, workload); 671 672 mutex_lock(&vgpu->vgpu_lock); 673 mutex_lock(&dev_priv->drm.struct_mutex); 674 675 ret = intel_gvt_scan_and_shadow_workload(workload); 676 if (ret) 677 goto out; 678 679 ret = prepare_workload(workload); 680 681 out: 682 if (ret) 683 workload->status = ret; 684 685 if (!IS_ERR_OR_NULL(workload->req)) { 686 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 687 ring_id, workload->req); 688 i915_request_add(workload->req); 689 workload->dispatched = true; 690 } 691 692 mutex_unlock(&dev_priv->drm.struct_mutex); 693 mutex_unlock(&vgpu->vgpu_lock); 694 return ret; 695 } 696 697 static struct intel_vgpu_workload *pick_next_workload( 698 struct intel_gvt *gvt, int ring_id) 699 { 700 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 701 struct intel_vgpu_workload *workload = NULL; 702 703 mutex_lock(&gvt->sched_lock); 704 705 /* 706 * no current vgpu / will be scheduled out / no workload 707 * bail out 708 */ 709 if (!scheduler->current_vgpu) { 710 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 711 goto out; 712 } 713 714 if (scheduler->need_reschedule) { 715 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 716 goto out; 717 } 718 719 if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 720 goto out; 721 722 /* 723 * still have current workload, maybe the workload disptacher 724 * fail to submit it for some reason, resubmit it. 725 */ 726 if (scheduler->current_workload[ring_id]) { 727 workload = scheduler->current_workload[ring_id]; 728 gvt_dbg_sched("ring id %d still have current workload %p\n", 729 ring_id, workload); 730 goto out; 731 } 732 733 /* 734 * pick a workload as current workload 735 * once current workload is set, schedule policy routines 736 * will wait the current workload is finished when trying to 737 * schedule out a vgpu. 738 */ 739 scheduler->current_workload[ring_id] = container_of( 740 workload_q_head(scheduler->current_vgpu, ring_id)->next, 741 struct intel_vgpu_workload, list); 742 743 workload = scheduler->current_workload[ring_id]; 744 745 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 746 747 atomic_inc(&workload->vgpu->submission.running_workload_num); 748 out: 749 mutex_unlock(&gvt->sched_lock); 750 return workload; 751 } 752 753 static void update_guest_context(struct intel_vgpu_workload *workload) 754 { 755 struct i915_request *rq = workload->req; 756 struct intel_vgpu *vgpu = workload->vgpu; 757 struct intel_gvt *gvt = vgpu->gvt; 758 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 759 struct execlist_ring_context *shadow_ring_context; 760 struct page *page; 761 void *src; 762 unsigned long context_gpa, context_page_num; 763 int i; 764 765 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 766 workload->ctx_desc.lrca); 767 768 context_page_num = rq->engine->context_size; 769 context_page_num = context_page_num >> PAGE_SHIFT; 770 771 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS) 772 context_page_num = 19; 773 774 i = 2; 775 776 while (i < context_page_num) { 777 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 778 (u32)((workload->ctx_desc.lrca + i) << 779 I915_GTT_PAGE_SHIFT)); 780 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 781 gvt_vgpu_err("invalid guest context descriptor\n"); 782 return; 783 } 784 785 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 786 src = kmap(page); 787 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 788 I915_GTT_PAGE_SIZE); 789 kunmap(page); 790 i++; 791 } 792 793 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 794 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 795 796 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 797 shadow_ring_context = kmap(page); 798 799 #define COPY_REG(name) \ 800 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 801 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 802 803 COPY_REG(ctx_ctrl); 804 COPY_REG(ctx_timestamp); 805 806 #undef COPY_REG 807 808 intel_gvt_hypervisor_write_gpa(vgpu, 809 workload->ring_context_gpa + 810 sizeof(*shadow_ring_context), 811 (void *)shadow_ring_context + 812 sizeof(*shadow_ring_context), 813 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 814 815 kunmap(page); 816 } 817 818 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 819 unsigned long engine_mask) 820 { 821 struct intel_vgpu_submission *s = &vgpu->submission; 822 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 823 struct intel_engine_cs *engine; 824 struct intel_vgpu_workload *pos, *n; 825 unsigned int tmp; 826 827 /* free the unsubmited workloads in the queues. */ 828 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 829 list_for_each_entry_safe(pos, n, 830 &s->workload_q_head[engine->id], list) { 831 list_del_init(&pos->list); 832 intel_vgpu_destroy_workload(pos); 833 } 834 clear_bit(engine->id, s->shadow_ctx_desc_updated); 835 } 836 } 837 838 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 839 { 840 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 841 struct intel_vgpu_workload *workload = 842 scheduler->current_workload[ring_id]; 843 struct intel_vgpu *vgpu = workload->vgpu; 844 struct intel_vgpu_submission *s = &vgpu->submission; 845 struct i915_request *rq = workload->req; 846 int event; 847 848 mutex_lock(&vgpu->vgpu_lock); 849 mutex_lock(&gvt->sched_lock); 850 851 /* For the workload w/ request, needs to wait for the context 852 * switch to make sure request is completed. 853 * For the workload w/o request, directly complete the workload. 854 */ 855 if (rq) { 856 wait_event(workload->shadow_ctx_status_wq, 857 !atomic_read(&workload->shadow_ctx_active)); 858 859 /* If this request caused GPU hang, req->fence.error will 860 * be set to -EIO. Use -EIO to set workload status so 861 * that when this request caused GPU hang, didn't trigger 862 * context switch interrupt to guest. 863 */ 864 if (likely(workload->status == -EINPROGRESS)) { 865 if (workload->req->fence.error == -EIO) 866 workload->status = -EIO; 867 else 868 workload->status = 0; 869 } 870 871 if (!workload->status && !(vgpu->resetting_eng & 872 ENGINE_MASK(ring_id))) { 873 update_guest_context(workload); 874 875 for_each_set_bit(event, workload->pending_events, 876 INTEL_GVT_EVENT_MAX) 877 intel_vgpu_trigger_virtual_event(vgpu, event); 878 } 879 880 /* unpin shadow ctx as the shadow_ctx update is done */ 881 mutex_lock(&rq->i915->drm.struct_mutex); 882 intel_context_unpin(rq->hw_context); 883 mutex_unlock(&rq->i915->drm.struct_mutex); 884 885 i915_request_put(fetch_and_zero(&workload->req)); 886 } 887 888 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 889 ring_id, workload, workload->status); 890 891 scheduler->current_workload[ring_id] = NULL; 892 893 list_del_init(&workload->list); 894 895 if (!workload->status) { 896 release_shadow_batch_buffer(workload); 897 release_shadow_wa_ctx(&workload->wa_ctx); 898 } 899 900 if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) { 901 /* if workload->status is not successful means HW GPU 902 * has occurred GPU hang or something wrong with i915/GVT, 903 * and GVT won't inject context switch interrupt to guest. 904 * So this error is a vGPU hang actually to the guest. 905 * According to this we should emunlate a vGPU hang. If 906 * there are pending workloads which are already submitted 907 * from guest, we should clean them up like HW GPU does. 908 * 909 * if it is in middle of engine resetting, the pending 910 * workloads won't be submitted to HW GPU and will be 911 * cleaned up during the resetting process later, so doing 912 * the workload clean up here doesn't have any impact. 913 **/ 914 intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id)); 915 } 916 917 workload->complete(workload); 918 919 atomic_dec(&s->running_workload_num); 920 wake_up(&scheduler->workload_complete_wq); 921 922 if (gvt->scheduler.need_reschedule) 923 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 924 925 mutex_unlock(&gvt->sched_lock); 926 mutex_unlock(&vgpu->vgpu_lock); 927 } 928 929 struct workload_thread_param { 930 struct intel_gvt *gvt; 931 int ring_id; 932 }; 933 934 static int workload_thread(void *priv) 935 { 936 struct workload_thread_param *p = (struct workload_thread_param *)priv; 937 struct intel_gvt *gvt = p->gvt; 938 int ring_id = p->ring_id; 939 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 940 struct intel_vgpu_workload *workload = NULL; 941 struct intel_vgpu *vgpu = NULL; 942 int ret; 943 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9); 944 DEFINE_WAIT_FUNC(wait, woken_wake_function); 945 946 kfree(p); 947 948 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 949 950 while (!kthread_should_stop()) { 951 add_wait_queue(&scheduler->waitq[ring_id], &wait); 952 do { 953 workload = pick_next_workload(gvt, ring_id); 954 if (workload) 955 break; 956 wait_woken(&wait, TASK_INTERRUPTIBLE, 957 MAX_SCHEDULE_TIMEOUT); 958 } while (!kthread_should_stop()); 959 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 960 961 if (!workload) 962 break; 963 964 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 965 workload->ring_id, workload, 966 workload->vgpu->id); 967 968 intel_runtime_pm_get(gvt->dev_priv); 969 970 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 971 workload->ring_id, workload); 972 973 if (need_force_wake) 974 intel_uncore_forcewake_get(gvt->dev_priv, 975 FORCEWAKE_ALL); 976 977 ret = dispatch_workload(workload); 978 979 if (ret) { 980 vgpu = workload->vgpu; 981 gvt_vgpu_err("fail to dispatch workload, skip\n"); 982 goto complete; 983 } 984 985 gvt_dbg_sched("ring id %d wait workload %p\n", 986 workload->ring_id, workload); 987 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 988 989 complete: 990 gvt_dbg_sched("will complete workload %p, status: %d\n", 991 workload, workload->status); 992 993 complete_current_workload(gvt, ring_id); 994 995 if (need_force_wake) 996 intel_uncore_forcewake_put(gvt->dev_priv, 997 FORCEWAKE_ALL); 998 999 intel_runtime_pm_put_unchecked(gvt->dev_priv); 1000 if (ret && (vgpu_is_vm_unhealthy(ret))) 1001 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1002 } 1003 return 0; 1004 } 1005 1006 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1007 { 1008 struct intel_vgpu_submission *s = &vgpu->submission; 1009 struct intel_gvt *gvt = vgpu->gvt; 1010 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1011 1012 if (atomic_read(&s->running_workload_num)) { 1013 gvt_dbg_sched("wait vgpu idle\n"); 1014 1015 wait_event(scheduler->workload_complete_wq, 1016 !atomic_read(&s->running_workload_num)); 1017 } 1018 } 1019 1020 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1021 { 1022 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1023 struct intel_engine_cs *engine; 1024 enum intel_engine_id i; 1025 1026 gvt_dbg_core("clean workload scheduler\n"); 1027 1028 for_each_engine(engine, gvt->dev_priv, i) { 1029 atomic_notifier_chain_unregister( 1030 &engine->context_status_notifier, 1031 &gvt->shadow_ctx_notifier_block[i]); 1032 kthread_stop(scheduler->thread[i]); 1033 } 1034 } 1035 1036 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1037 { 1038 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1039 struct workload_thread_param *param = NULL; 1040 struct intel_engine_cs *engine; 1041 enum intel_engine_id i; 1042 int ret; 1043 1044 gvt_dbg_core("init workload scheduler\n"); 1045 1046 init_waitqueue_head(&scheduler->workload_complete_wq); 1047 1048 for_each_engine(engine, gvt->dev_priv, i) { 1049 init_waitqueue_head(&scheduler->waitq[i]); 1050 1051 param = kzalloc(sizeof(*param), GFP_KERNEL); 1052 if (!param) { 1053 ret = -ENOMEM; 1054 goto err; 1055 } 1056 1057 param->gvt = gvt; 1058 param->ring_id = i; 1059 1060 scheduler->thread[i] = kthread_run(workload_thread, param, 1061 "gvt workload %d", i); 1062 if (IS_ERR(scheduler->thread[i])) { 1063 gvt_err("fail to create workload thread\n"); 1064 ret = PTR_ERR(scheduler->thread[i]); 1065 goto err; 1066 } 1067 1068 gvt->shadow_ctx_notifier_block[i].notifier_call = 1069 shadow_context_status_change; 1070 atomic_notifier_chain_register(&engine->context_status_notifier, 1071 &gvt->shadow_ctx_notifier_block[i]); 1072 } 1073 return 0; 1074 err: 1075 intel_gvt_clean_workload_scheduler(gvt); 1076 kfree(param); 1077 param = NULL; 1078 return ret; 1079 } 1080 1081 static void 1082 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s) 1083 { 1084 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1085 int i; 1086 1087 if (i915_vm_is_48bit(&i915_ppgtt->vm)) 1088 px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4; 1089 else { 1090 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1091 px_dma(i915_ppgtt->pdp.page_directory[i]) = 1092 s->i915_context_pdps[i]; 1093 } 1094 } 1095 1096 /** 1097 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1098 * @vgpu: a vGPU 1099 * 1100 * This function is called when a vGPU is being destroyed. 1101 * 1102 */ 1103 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1104 { 1105 struct intel_vgpu_submission *s = &vgpu->submission; 1106 1107 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1108 i915_context_ppgtt_root_restore(s); 1109 i915_gem_context_put(s->shadow_ctx); 1110 kmem_cache_destroy(s->workloads); 1111 } 1112 1113 1114 /** 1115 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1116 * @vgpu: a vGPU 1117 * @engine_mask: engines expected to be reset 1118 * 1119 * This function is called when a vGPU is being destroyed. 1120 * 1121 */ 1122 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1123 unsigned long engine_mask) 1124 { 1125 struct intel_vgpu_submission *s = &vgpu->submission; 1126 1127 if (!s->active) 1128 return; 1129 1130 intel_vgpu_clean_workloads(vgpu, engine_mask); 1131 s->ops->reset(vgpu, engine_mask); 1132 } 1133 1134 static void 1135 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s) 1136 { 1137 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1138 int i; 1139 1140 if (i915_vm_is_48bit(&i915_ppgtt->vm)) 1141 s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4); 1142 else { 1143 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1144 s->i915_context_pdps[i] = 1145 px_dma(i915_ppgtt->pdp.page_directory[i]); 1146 } 1147 } 1148 1149 /** 1150 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1151 * @vgpu: a vGPU 1152 * 1153 * This function is called when a vGPU is being created. 1154 * 1155 * Returns: 1156 * Zero on success, negative error code if failed. 1157 * 1158 */ 1159 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1160 { 1161 struct intel_vgpu_submission *s = &vgpu->submission; 1162 enum intel_engine_id i; 1163 struct intel_engine_cs *engine; 1164 int ret; 1165 1166 s->shadow_ctx = i915_gem_context_create_gvt( 1167 &vgpu->gvt->dev_priv->drm); 1168 if (IS_ERR(s->shadow_ctx)) 1169 return PTR_ERR(s->shadow_ctx); 1170 1171 i915_context_ppgtt_root_save(s); 1172 1173 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1174 1175 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1176 sizeof(struct intel_vgpu_workload), 0, 1177 SLAB_HWCACHE_ALIGN, 1178 offsetof(struct intel_vgpu_workload, rb_tail), 1179 sizeof_field(struct intel_vgpu_workload, rb_tail), 1180 NULL); 1181 1182 if (!s->workloads) { 1183 ret = -ENOMEM; 1184 goto out_shadow_ctx; 1185 } 1186 1187 for_each_engine(engine, vgpu->gvt->dev_priv, i) 1188 INIT_LIST_HEAD(&s->workload_q_head[i]); 1189 1190 atomic_set(&s->running_workload_num, 0); 1191 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1192 1193 return 0; 1194 1195 out_shadow_ctx: 1196 i915_gem_context_put(s->shadow_ctx); 1197 return ret; 1198 } 1199 1200 /** 1201 * intel_vgpu_select_submission_ops - select virtual submission interface 1202 * @vgpu: a vGPU 1203 * @engine_mask: either ALL_ENGINES or target engine mask 1204 * @interface: expected vGPU virtual submission interface 1205 * 1206 * This function is called when guest configures submission interface. 1207 * 1208 * Returns: 1209 * Zero on success, negative error code if failed. 1210 * 1211 */ 1212 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1213 unsigned long engine_mask, 1214 unsigned int interface) 1215 { 1216 struct intel_vgpu_submission *s = &vgpu->submission; 1217 const struct intel_vgpu_submission_ops *ops[] = { 1218 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1219 &intel_vgpu_execlist_submission_ops, 1220 }; 1221 int ret; 1222 1223 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1224 return -EINVAL; 1225 1226 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1227 return -EINVAL; 1228 1229 if (s->active) 1230 s->ops->clean(vgpu, engine_mask); 1231 1232 if (interface == 0) { 1233 s->ops = NULL; 1234 s->virtual_submission_interface = 0; 1235 s->active = false; 1236 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1237 return 0; 1238 } 1239 1240 ret = ops[interface]->init(vgpu, engine_mask); 1241 if (ret) 1242 return ret; 1243 1244 s->ops = ops[interface]; 1245 s->virtual_submission_interface = interface; 1246 s->active = true; 1247 1248 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1249 vgpu->id, s->ops->name); 1250 1251 return 0; 1252 } 1253 1254 /** 1255 * intel_vgpu_destroy_workload - destroy a vGPU workload 1256 * @workload: workload to destroy 1257 * 1258 * This function is called when destroy a vGPU workload. 1259 * 1260 */ 1261 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1262 { 1263 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1264 1265 if (workload->shadow_mm) 1266 intel_vgpu_mm_put(workload->shadow_mm); 1267 1268 kmem_cache_free(s->workloads, workload); 1269 } 1270 1271 static struct intel_vgpu_workload * 1272 alloc_workload(struct intel_vgpu *vgpu) 1273 { 1274 struct intel_vgpu_submission *s = &vgpu->submission; 1275 struct intel_vgpu_workload *workload; 1276 1277 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1278 if (!workload) 1279 return ERR_PTR(-ENOMEM); 1280 1281 INIT_LIST_HEAD(&workload->list); 1282 INIT_LIST_HEAD(&workload->shadow_bb); 1283 1284 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1285 atomic_set(&workload->shadow_ctx_active, 0); 1286 1287 workload->status = -EINPROGRESS; 1288 workload->vgpu = vgpu; 1289 1290 return workload; 1291 } 1292 1293 #define RING_CTX_OFF(x) \ 1294 offsetof(struct execlist_ring_context, x) 1295 1296 static void read_guest_pdps(struct intel_vgpu *vgpu, 1297 u64 ring_context_gpa, u32 pdp[8]) 1298 { 1299 u64 gpa; 1300 int i; 1301 1302 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1303 1304 for (i = 0; i < 8; i++) 1305 intel_gvt_hypervisor_read_gpa(vgpu, 1306 gpa + i * 8, &pdp[7 - i], 4); 1307 } 1308 1309 static int prepare_mm(struct intel_vgpu_workload *workload) 1310 { 1311 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1312 struct intel_vgpu_mm *mm; 1313 struct intel_vgpu *vgpu = workload->vgpu; 1314 intel_gvt_gtt_type_t root_entry_type; 1315 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1316 1317 switch (desc->addressing_mode) { 1318 case 1: /* legacy 32-bit */ 1319 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1320 break; 1321 case 3: /* legacy 64-bit */ 1322 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1323 break; 1324 default: 1325 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1326 return -EINVAL; 1327 } 1328 1329 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1330 1331 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1332 if (IS_ERR(mm)) 1333 return PTR_ERR(mm); 1334 1335 workload->shadow_mm = mm; 1336 return 0; 1337 } 1338 1339 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1340 ((a)->lrca == (b)->lrca)) 1341 1342 #define get_last_workload(q) \ 1343 (list_empty(q) ? NULL : container_of(q->prev, \ 1344 struct intel_vgpu_workload, list)) 1345 /** 1346 * intel_vgpu_create_workload - create a vGPU workload 1347 * @vgpu: a vGPU 1348 * @ring_id: ring index 1349 * @desc: a guest context descriptor 1350 * 1351 * This function is called when creating a vGPU workload. 1352 * 1353 * Returns: 1354 * struct intel_vgpu_workload * on success, negative error code in 1355 * pointer if failed. 1356 * 1357 */ 1358 struct intel_vgpu_workload * 1359 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1360 struct execlist_ctx_descriptor_format *desc) 1361 { 1362 struct intel_vgpu_submission *s = &vgpu->submission; 1363 struct list_head *q = workload_q_head(vgpu, ring_id); 1364 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1365 struct intel_vgpu_workload *workload = NULL; 1366 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1367 u64 ring_context_gpa; 1368 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1369 int ret; 1370 1371 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1372 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1373 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1374 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1375 return ERR_PTR(-EINVAL); 1376 } 1377 1378 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1379 RING_CTX_OFF(ring_header.val), &head, 4); 1380 1381 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1382 RING_CTX_OFF(ring_tail.val), &tail, 4); 1383 1384 head &= RB_HEAD_OFF_MASK; 1385 tail &= RB_TAIL_OFF_MASK; 1386 1387 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1388 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1389 gvt_dbg_el("ctx head %x real head %lx\n", head, 1390 last_workload->rb_tail); 1391 /* 1392 * cannot use guest context head pointer here, 1393 * as it might not be updated at this time 1394 */ 1395 head = last_workload->rb_tail; 1396 } 1397 1398 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1399 1400 /* record some ring buffer register values for scan and shadow */ 1401 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1402 RING_CTX_OFF(rb_start.val), &start, 4); 1403 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1404 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1405 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1406 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1407 1408 workload = alloc_workload(vgpu); 1409 if (IS_ERR(workload)) 1410 return workload; 1411 1412 workload->ring_id = ring_id; 1413 workload->ctx_desc = *desc; 1414 workload->ring_context_gpa = ring_context_gpa; 1415 workload->rb_head = head; 1416 workload->rb_tail = tail; 1417 workload->rb_start = start; 1418 workload->rb_ctl = ctl; 1419 1420 if (ring_id == RCS) { 1421 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1422 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1423 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1424 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1425 1426 workload->wa_ctx.indirect_ctx.guest_gma = 1427 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1428 workload->wa_ctx.indirect_ctx.size = 1429 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1430 CACHELINE_BYTES; 1431 workload->wa_ctx.per_ctx.guest_gma = 1432 per_ctx & PER_CTX_ADDR_MASK; 1433 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1434 } 1435 1436 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1437 workload, ring_id, head, tail, start, ctl); 1438 1439 ret = prepare_mm(workload); 1440 if (ret) { 1441 kmem_cache_free(s->workloads, workload); 1442 return ERR_PTR(ret); 1443 } 1444 1445 /* Only scan and shadow the first workload in the queue 1446 * as there is only one pre-allocated buf-obj for shadow. 1447 */ 1448 if (list_empty(workload_q_head(vgpu, ring_id))) { 1449 intel_runtime_pm_get(dev_priv); 1450 mutex_lock(&dev_priv->drm.struct_mutex); 1451 ret = intel_gvt_scan_and_shadow_workload(workload); 1452 mutex_unlock(&dev_priv->drm.struct_mutex); 1453 intel_runtime_pm_put_unchecked(dev_priv); 1454 } 1455 1456 if (ret && (vgpu_is_vm_unhealthy(ret))) { 1457 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1458 intel_vgpu_destroy_workload(workload); 1459 return ERR_PTR(ret); 1460 } 1461 1462 return workload; 1463 } 1464 1465 /** 1466 * intel_vgpu_queue_workload - Qeue a vGPU workload 1467 * @workload: the workload to queue in 1468 */ 1469 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1470 { 1471 list_add_tail(&workload->list, 1472 workload_q_head(workload->vgpu, workload->ring_id)); 1473 intel_gvt_kick_schedule(workload->vgpu->gvt); 1474 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1475 } 1476