xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 8a2fe6c0)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136 	shadow_ring_context = kmap(page);
137 
138 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144 					      + RING_CTX_OFF(name.val),\
145 					      &shadow_ring_context->name.val, 4);\
146 		shadow_ring_context->name.val |= 0xffff << 16;\
147 	}
148 
149 	COPY_REG_MASKED(ctx_ctrl);
150 	COPY_REG(ctx_timestamp);
151 
152 	if (ring_id == RCS) {
153 		COPY_REG(bb_per_ctx_ptr);
154 		COPY_REG(rcs_indirect_ctx);
155 		COPY_REG(rcs_indirect_ctx_offset);
156 	}
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159 
160 	intel_gvt_hypervisor_read_gpa(vgpu,
161 			workload->ring_context_gpa +
162 			sizeof(*shadow_ring_context),
163 			(void *)shadow_ring_context +
164 			sizeof(*shadow_ring_context),
165 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168 	kunmap(page);
169 
170 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171 		return 0;
172 
173 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174 			workload->ctx_desc.lrca);
175 
176 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177 
178 	context_page_num = context_page_num >> PAGE_SHIFT;
179 
180 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
181 		context_page_num = 19;
182 
183 	i = 2;
184 	while (i < context_page_num) {
185 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186 				(u32)((workload->ctx_desc.lrca + i) <<
187 				I915_GTT_PAGE_SHIFT));
188 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189 			gvt_vgpu_err("Invalid guest context descriptor\n");
190 			return -EFAULT;
191 		}
192 
193 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194 		dst = kmap(page);
195 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196 				I915_GTT_PAGE_SIZE);
197 		kunmap(page);
198 		i++;
199 	}
200 	return 0;
201 }
202 
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205 	return i915_gem_context_force_single_submission(req->gem_context);
206 }
207 
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212 	i915_reg_t reg;
213 
214 	reg = RING_INSTDONE(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 	reg = RING_ACTHD_UDW(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221 
222 static int shadow_context_status_change(struct notifier_block *nb,
223 		unsigned long action, void *data)
224 {
225 	struct i915_request *req = data;
226 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227 				shadow_ctx_notifier_block[req->engine->id]);
228 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229 	enum intel_engine_id ring_id = req->engine->id;
230 	struct intel_vgpu_workload *workload;
231 	unsigned long flags;
232 
233 	if (!is_gvt_request(req)) {
234 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236 		    scheduler->engine_owner[ring_id]) {
237 			/* Switch ring from vGPU to host. */
238 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239 					      NULL, ring_id);
240 			scheduler->engine_owner[ring_id] = NULL;
241 		}
242 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243 
244 		return NOTIFY_OK;
245 	}
246 
247 	workload = scheduler->current_workload[ring_id];
248 	if (unlikely(!workload))
249 		return NOTIFY_OK;
250 
251 	switch (action) {
252 	case INTEL_CONTEXT_SCHEDULE_IN:
253 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255 			/* Switch ring from host to vGPU or vGPU to vGPU. */
256 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257 					      workload->vgpu, ring_id);
258 			scheduler->engine_owner[ring_id] = workload->vgpu;
259 		} else
260 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261 				      ring_id, workload->vgpu->id);
262 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263 		atomic_set(&workload->shadow_ctx_active, 1);
264 		break;
265 	case INTEL_CONTEXT_SCHEDULE_OUT:
266 		save_ring_hw_state(workload->vgpu, ring_id);
267 		atomic_set(&workload->shadow_ctx_active, 0);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		break;
272 	default:
273 		WARN_ON(1);
274 		return NOTIFY_OK;
275 	}
276 	wake_up(&workload->shadow_ctx_status_wq);
277 	return NOTIFY_OK;
278 }
279 
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282 	u64 desc = 0;
283 
284 	desc = ce->lrc_desc;
285 
286 	/* Update bits 0-11 of the context descriptor which includes flags
287 	 * like GEN8_CTX_* cached in desc_template
288 	 */
289 	desc &= U64_MAX << 12;
290 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291 
292 	ce->lrc_desc = desc;
293 }
294 
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297 	struct intel_vgpu *vgpu = workload->vgpu;
298 	struct i915_request *req = workload->req;
299 	void *shadow_ring_buffer_va;
300 	u32 *cs;
301 
302 	if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)
303 		|| IS_COFFEELAKE(req->i915))
304 		&& is_inhibit_context(req->hw_context))
305 		intel_vgpu_restore_inhibit_context(vgpu, req);
306 
307 	/* allocate shadow ring buffer */
308 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
309 	if (IS_ERR(cs)) {
310 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
311 			workload->rb_len);
312 		return PTR_ERR(cs);
313 	}
314 
315 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
316 
317 	/* get shadow ring buffer va */
318 	workload->shadow_ring_buffer_va = cs;
319 
320 	memcpy(cs, shadow_ring_buffer_va,
321 			workload->rb_len);
322 
323 	cs += workload->rb_len / sizeof(u32);
324 	intel_ring_advance(workload->req, cs);
325 
326 	return 0;
327 }
328 
329 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
330 {
331 	if (!wa_ctx->indirect_ctx.obj)
332 		return;
333 
334 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
335 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
336 }
337 
338 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
339 					 struct i915_gem_context *ctx)
340 {
341 	struct intel_vgpu_mm *mm = workload->shadow_mm;
342 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
343 	int i = 0;
344 
345 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
346 		return -1;
347 
348 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
349 		px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
350 	} else {
351 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
352 			px_dma(ppgtt->pdp.page_directory[i]) =
353 				mm->ppgtt_mm.shadow_pdps[i];
354 		}
355 	}
356 
357 	return 0;
358 }
359 
360 /**
361  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
362  * shadow it as well, include ringbuffer,wa_ctx and ctx.
363  * @workload: an abstract entity for each execlist submission.
364  *
365  * This function is called before the workload submitting to i915, to make
366  * sure the content of the workload is valid.
367  */
368 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
369 {
370 	struct intel_vgpu *vgpu = workload->vgpu;
371 	struct intel_vgpu_submission *s = &vgpu->submission;
372 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
373 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
374 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
375 	struct intel_context *ce;
376 	struct i915_request *rq;
377 	int ret;
378 
379 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
380 
381 	if (workload->req)
382 		return 0;
383 
384 	ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
385 	if (ret < 0) {
386 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
387 		return ret;
388 	}
389 
390 	/* pin shadow context by gvt even the shadow context will be pinned
391 	 * when i915 alloc request. That is because gvt will update the guest
392 	 * context from shadow context when workload is completed, and at that
393 	 * moment, i915 may already unpined the shadow context to make the
394 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
395 	 * the guest context, gvt can unpin the shadow_ctx safely.
396 	 */
397 	ce = intel_context_pin(shadow_ctx, engine);
398 	if (IS_ERR(ce)) {
399 		gvt_vgpu_err("fail to pin shadow context\n");
400 		return PTR_ERR(ce);
401 	}
402 
403 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
404 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
405 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
406 
407 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
408 		shadow_context_descriptor_update(ce);
409 
410 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
411 	if (ret)
412 		goto err_unpin;
413 
414 	if ((workload->ring_id == RCS) &&
415 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
416 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
417 		if (ret)
418 			goto err_shadow;
419 	}
420 
421 	rq = i915_request_alloc(engine, shadow_ctx);
422 	if (IS_ERR(rq)) {
423 		gvt_vgpu_err("fail to allocate gem request\n");
424 		ret = PTR_ERR(rq);
425 		goto err_shadow;
426 	}
427 	workload->req = i915_request_get(rq);
428 
429 	ret = populate_shadow_context(workload);
430 	if (ret)
431 		goto err_req;
432 
433 	return 0;
434 err_req:
435 	rq = fetch_and_zero(&workload->req);
436 	i915_request_put(rq);
437 err_shadow:
438 	release_shadow_wa_ctx(&workload->wa_ctx);
439 err_unpin:
440 	intel_context_unpin(ce);
441 	return ret;
442 }
443 
444 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
445 
446 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
447 {
448 	struct intel_gvt *gvt = workload->vgpu->gvt;
449 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
450 	struct intel_vgpu_shadow_bb *bb;
451 	int ret;
452 
453 	list_for_each_entry(bb, &workload->shadow_bb, list) {
454 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
455 		 * is only updated into ring_scan_buffer, not real ring address
456 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
457 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
458 		 * in copy_workload_to_ring_buffer.
459 		 */
460 
461 		if (bb->bb_offset)
462 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
463 				+ bb->bb_offset;
464 
465 		if (bb->ppgtt) {
466 			/* for non-priv bb, scan&shadow is only for
467 			 * debugging purpose, so the content of shadow bb
468 			 * is the same as original bb. Therefore,
469 			 * here, rather than switch to shadow bb's gma
470 			 * address, we directly use original batch buffer's
471 			 * gma address, and send original bb to hardware
472 			 * directly
473 			 */
474 			if (bb->clflush & CLFLUSH_AFTER) {
475 				drm_clflush_virt_range(bb->va,
476 						bb->obj->base.size);
477 				bb->clflush &= ~CLFLUSH_AFTER;
478 			}
479 			i915_gem_obj_finish_shmem_access(bb->obj);
480 			bb->accessing = false;
481 
482 		} else {
483 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
484 					NULL, 0, 0, 0);
485 			if (IS_ERR(bb->vma)) {
486 				ret = PTR_ERR(bb->vma);
487 				goto err;
488 			}
489 
490 			/* relocate shadow batch buffer */
491 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
492 			if (gmadr_bytes == 8)
493 				bb->bb_start_cmd_va[2] = 0;
494 
495 			/* No one is going to touch shadow bb from now on. */
496 			if (bb->clflush & CLFLUSH_AFTER) {
497 				drm_clflush_virt_range(bb->va,
498 						bb->obj->base.size);
499 				bb->clflush &= ~CLFLUSH_AFTER;
500 			}
501 
502 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
503 					false);
504 			if (ret)
505 				goto err;
506 
507 			i915_gem_obj_finish_shmem_access(bb->obj);
508 			bb->accessing = false;
509 
510 			ret = i915_vma_move_to_active(bb->vma,
511 						      workload->req,
512 						      0);
513 			if (ret)
514 				goto err;
515 		}
516 	}
517 	return 0;
518 err:
519 	release_shadow_batch_buffer(workload);
520 	return ret;
521 }
522 
523 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
524 {
525 	struct intel_vgpu_workload *workload =
526 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
527 	struct i915_request *rq = workload->req;
528 	struct execlist_ring_context *shadow_ring_context =
529 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
530 
531 	shadow_ring_context->bb_per_ctx_ptr.val =
532 		(shadow_ring_context->bb_per_ctx_ptr.val &
533 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
534 	shadow_ring_context->rcs_indirect_ctx.val =
535 		(shadow_ring_context->rcs_indirect_ctx.val &
536 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
537 }
538 
539 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
540 {
541 	struct i915_vma *vma;
542 	unsigned char *per_ctx_va =
543 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
544 		wa_ctx->indirect_ctx.size;
545 
546 	if (wa_ctx->indirect_ctx.size == 0)
547 		return 0;
548 
549 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
550 				       0, CACHELINE_BYTES, 0);
551 	if (IS_ERR(vma))
552 		return PTR_ERR(vma);
553 
554 	/* FIXME: we are not tracking our pinned VMA leaving it
555 	 * up to the core to fix up the stray pin_count upon
556 	 * free.
557 	 */
558 
559 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
560 
561 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
562 	memset(per_ctx_va, 0, CACHELINE_BYTES);
563 
564 	update_wa_ctx_2_shadow_ctx(wa_ctx);
565 	return 0;
566 }
567 
568 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
569 {
570 	struct intel_vgpu *vgpu = workload->vgpu;
571 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
572 	struct intel_vgpu_shadow_bb *bb, *pos;
573 
574 	if (list_empty(&workload->shadow_bb))
575 		return;
576 
577 	bb = list_first_entry(&workload->shadow_bb,
578 			struct intel_vgpu_shadow_bb, list);
579 
580 	mutex_lock(&dev_priv->drm.struct_mutex);
581 
582 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
583 		if (bb->obj) {
584 			if (bb->accessing)
585 				i915_gem_obj_finish_shmem_access(bb->obj);
586 
587 			if (bb->va && !IS_ERR(bb->va))
588 				i915_gem_object_unpin_map(bb->obj);
589 
590 			if (bb->vma && !IS_ERR(bb->vma)) {
591 				i915_vma_unpin(bb->vma);
592 				i915_vma_close(bb->vma);
593 			}
594 			__i915_gem_object_release_unless_active(bb->obj);
595 		}
596 		list_del(&bb->list);
597 		kfree(bb);
598 	}
599 
600 	mutex_unlock(&dev_priv->drm.struct_mutex);
601 }
602 
603 static int prepare_workload(struct intel_vgpu_workload *workload)
604 {
605 	struct intel_vgpu *vgpu = workload->vgpu;
606 	int ret = 0;
607 
608 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
609 	if (ret) {
610 		gvt_vgpu_err("fail to vgpu pin mm\n");
611 		return ret;
612 	}
613 
614 	update_shadow_pdps(workload);
615 
616 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
617 	if (ret) {
618 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
619 		goto err_unpin_mm;
620 	}
621 
622 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
623 	if (ret) {
624 		gvt_vgpu_err("fail to flush post shadow\n");
625 		goto err_unpin_mm;
626 	}
627 
628 	ret = copy_workload_to_ring_buffer(workload);
629 	if (ret) {
630 		gvt_vgpu_err("fail to generate request\n");
631 		goto err_unpin_mm;
632 	}
633 
634 	ret = prepare_shadow_batch_buffer(workload);
635 	if (ret) {
636 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
637 		goto err_unpin_mm;
638 	}
639 
640 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
641 	if (ret) {
642 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
643 		goto err_shadow_batch;
644 	}
645 
646 	if (workload->prepare) {
647 		ret = workload->prepare(workload);
648 		if (ret)
649 			goto err_shadow_wa_ctx;
650 	}
651 
652 	return 0;
653 err_shadow_wa_ctx:
654 	release_shadow_wa_ctx(&workload->wa_ctx);
655 err_shadow_batch:
656 	release_shadow_batch_buffer(workload);
657 err_unpin_mm:
658 	intel_vgpu_unpin_mm(workload->shadow_mm);
659 	return ret;
660 }
661 
662 static int dispatch_workload(struct intel_vgpu_workload *workload)
663 {
664 	struct intel_vgpu *vgpu = workload->vgpu;
665 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
666 	int ring_id = workload->ring_id;
667 	int ret;
668 
669 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
670 		ring_id, workload);
671 
672 	mutex_lock(&vgpu->vgpu_lock);
673 	mutex_lock(&dev_priv->drm.struct_mutex);
674 
675 	ret = intel_gvt_scan_and_shadow_workload(workload);
676 	if (ret)
677 		goto out;
678 
679 	ret = prepare_workload(workload);
680 
681 out:
682 	if (ret)
683 		workload->status = ret;
684 
685 	if (!IS_ERR_OR_NULL(workload->req)) {
686 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
687 				ring_id, workload->req);
688 		i915_request_add(workload->req);
689 		workload->dispatched = true;
690 	}
691 
692 	mutex_unlock(&dev_priv->drm.struct_mutex);
693 	mutex_unlock(&vgpu->vgpu_lock);
694 	return ret;
695 }
696 
697 static struct intel_vgpu_workload *pick_next_workload(
698 		struct intel_gvt *gvt, int ring_id)
699 {
700 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
701 	struct intel_vgpu_workload *workload = NULL;
702 
703 	mutex_lock(&gvt->sched_lock);
704 
705 	/*
706 	 * no current vgpu / will be scheduled out / no workload
707 	 * bail out
708 	 */
709 	if (!scheduler->current_vgpu) {
710 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
711 		goto out;
712 	}
713 
714 	if (scheduler->need_reschedule) {
715 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
716 		goto out;
717 	}
718 
719 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
720 		goto out;
721 
722 	/*
723 	 * still have current workload, maybe the workload disptacher
724 	 * fail to submit it for some reason, resubmit it.
725 	 */
726 	if (scheduler->current_workload[ring_id]) {
727 		workload = scheduler->current_workload[ring_id];
728 		gvt_dbg_sched("ring id %d still have current workload %p\n",
729 				ring_id, workload);
730 		goto out;
731 	}
732 
733 	/*
734 	 * pick a workload as current workload
735 	 * once current workload is set, schedule policy routines
736 	 * will wait the current workload is finished when trying to
737 	 * schedule out a vgpu.
738 	 */
739 	scheduler->current_workload[ring_id] = container_of(
740 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
741 			struct intel_vgpu_workload, list);
742 
743 	workload = scheduler->current_workload[ring_id];
744 
745 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
746 
747 	atomic_inc(&workload->vgpu->submission.running_workload_num);
748 out:
749 	mutex_unlock(&gvt->sched_lock);
750 	return workload;
751 }
752 
753 static void update_guest_context(struct intel_vgpu_workload *workload)
754 {
755 	struct i915_request *rq = workload->req;
756 	struct intel_vgpu *vgpu = workload->vgpu;
757 	struct intel_gvt *gvt = vgpu->gvt;
758 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
759 	struct execlist_ring_context *shadow_ring_context;
760 	struct page *page;
761 	void *src;
762 	unsigned long context_gpa, context_page_num;
763 	int i;
764 
765 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
766 		      workload->ctx_desc.lrca);
767 
768 	context_page_num = rq->engine->context_size;
769 	context_page_num = context_page_num >> PAGE_SHIFT;
770 
771 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS)
772 		context_page_num = 19;
773 
774 	i = 2;
775 
776 	while (i < context_page_num) {
777 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
778 				(u32)((workload->ctx_desc.lrca + i) <<
779 					I915_GTT_PAGE_SHIFT));
780 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
781 			gvt_vgpu_err("invalid guest context descriptor\n");
782 			return;
783 		}
784 
785 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
786 		src = kmap(page);
787 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
788 				I915_GTT_PAGE_SIZE);
789 		kunmap(page);
790 		i++;
791 	}
792 
793 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
794 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
795 
796 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
797 	shadow_ring_context = kmap(page);
798 
799 #define COPY_REG(name) \
800 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
801 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
802 
803 	COPY_REG(ctx_ctrl);
804 	COPY_REG(ctx_timestamp);
805 
806 #undef COPY_REG
807 
808 	intel_gvt_hypervisor_write_gpa(vgpu,
809 			workload->ring_context_gpa +
810 			sizeof(*shadow_ring_context),
811 			(void *)shadow_ring_context +
812 			sizeof(*shadow_ring_context),
813 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
814 
815 	kunmap(page);
816 }
817 
818 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
819 				unsigned long engine_mask)
820 {
821 	struct intel_vgpu_submission *s = &vgpu->submission;
822 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
823 	struct intel_engine_cs *engine;
824 	struct intel_vgpu_workload *pos, *n;
825 	unsigned int tmp;
826 
827 	/* free the unsubmited workloads in the queues. */
828 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
829 		list_for_each_entry_safe(pos, n,
830 			&s->workload_q_head[engine->id], list) {
831 			list_del_init(&pos->list);
832 			intel_vgpu_destroy_workload(pos);
833 		}
834 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
835 	}
836 }
837 
838 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
839 {
840 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
841 	struct intel_vgpu_workload *workload =
842 		scheduler->current_workload[ring_id];
843 	struct intel_vgpu *vgpu = workload->vgpu;
844 	struct intel_vgpu_submission *s = &vgpu->submission;
845 	struct i915_request *rq = workload->req;
846 	int event;
847 
848 	mutex_lock(&vgpu->vgpu_lock);
849 	mutex_lock(&gvt->sched_lock);
850 
851 	/* For the workload w/ request, needs to wait for the context
852 	 * switch to make sure request is completed.
853 	 * For the workload w/o request, directly complete the workload.
854 	 */
855 	if (rq) {
856 		wait_event(workload->shadow_ctx_status_wq,
857 			   !atomic_read(&workload->shadow_ctx_active));
858 
859 		/* If this request caused GPU hang, req->fence.error will
860 		 * be set to -EIO. Use -EIO to set workload status so
861 		 * that when this request caused GPU hang, didn't trigger
862 		 * context switch interrupt to guest.
863 		 */
864 		if (likely(workload->status == -EINPROGRESS)) {
865 			if (workload->req->fence.error == -EIO)
866 				workload->status = -EIO;
867 			else
868 				workload->status = 0;
869 		}
870 
871 		if (!workload->status && !(vgpu->resetting_eng &
872 					   ENGINE_MASK(ring_id))) {
873 			update_guest_context(workload);
874 
875 			for_each_set_bit(event, workload->pending_events,
876 					 INTEL_GVT_EVENT_MAX)
877 				intel_vgpu_trigger_virtual_event(vgpu, event);
878 		}
879 
880 		/* unpin shadow ctx as the shadow_ctx update is done */
881 		mutex_lock(&rq->i915->drm.struct_mutex);
882 		intel_context_unpin(rq->hw_context);
883 		mutex_unlock(&rq->i915->drm.struct_mutex);
884 
885 		i915_request_put(fetch_and_zero(&workload->req));
886 	}
887 
888 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
889 			ring_id, workload, workload->status);
890 
891 	scheduler->current_workload[ring_id] = NULL;
892 
893 	list_del_init(&workload->list);
894 
895 	if (!workload->status) {
896 		release_shadow_batch_buffer(workload);
897 		release_shadow_wa_ctx(&workload->wa_ctx);
898 	}
899 
900 	if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
901 		/* if workload->status is not successful means HW GPU
902 		 * has occurred GPU hang or something wrong with i915/GVT,
903 		 * and GVT won't inject context switch interrupt to guest.
904 		 * So this error is a vGPU hang actually to the guest.
905 		 * According to this we should emunlate a vGPU hang. If
906 		 * there are pending workloads which are already submitted
907 		 * from guest, we should clean them up like HW GPU does.
908 		 *
909 		 * if it is in middle of engine resetting, the pending
910 		 * workloads won't be submitted to HW GPU and will be
911 		 * cleaned up during the resetting process later, so doing
912 		 * the workload clean up here doesn't have any impact.
913 		 **/
914 		intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id));
915 	}
916 
917 	workload->complete(workload);
918 
919 	atomic_dec(&s->running_workload_num);
920 	wake_up(&scheduler->workload_complete_wq);
921 
922 	if (gvt->scheduler.need_reschedule)
923 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
924 
925 	mutex_unlock(&gvt->sched_lock);
926 	mutex_unlock(&vgpu->vgpu_lock);
927 }
928 
929 struct workload_thread_param {
930 	struct intel_gvt *gvt;
931 	int ring_id;
932 };
933 
934 static int workload_thread(void *priv)
935 {
936 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
937 	struct intel_gvt *gvt = p->gvt;
938 	int ring_id = p->ring_id;
939 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
940 	struct intel_vgpu_workload *workload = NULL;
941 	struct intel_vgpu *vgpu = NULL;
942 	int ret;
943 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
944 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
945 
946 	kfree(p);
947 
948 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
949 
950 	while (!kthread_should_stop()) {
951 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
952 		do {
953 			workload = pick_next_workload(gvt, ring_id);
954 			if (workload)
955 				break;
956 			wait_woken(&wait, TASK_INTERRUPTIBLE,
957 				   MAX_SCHEDULE_TIMEOUT);
958 		} while (!kthread_should_stop());
959 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
960 
961 		if (!workload)
962 			break;
963 
964 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
965 				workload->ring_id, workload,
966 				workload->vgpu->id);
967 
968 		intel_runtime_pm_get(gvt->dev_priv);
969 
970 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
971 				workload->ring_id, workload);
972 
973 		if (need_force_wake)
974 			intel_uncore_forcewake_get(gvt->dev_priv,
975 					FORCEWAKE_ALL);
976 
977 		ret = dispatch_workload(workload);
978 
979 		if (ret) {
980 			vgpu = workload->vgpu;
981 			gvt_vgpu_err("fail to dispatch workload, skip\n");
982 			goto complete;
983 		}
984 
985 		gvt_dbg_sched("ring id %d wait workload %p\n",
986 				workload->ring_id, workload);
987 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
988 
989 complete:
990 		gvt_dbg_sched("will complete workload %p, status: %d\n",
991 				workload, workload->status);
992 
993 		complete_current_workload(gvt, ring_id);
994 
995 		if (need_force_wake)
996 			intel_uncore_forcewake_put(gvt->dev_priv,
997 					FORCEWAKE_ALL);
998 
999 		intel_runtime_pm_put_unchecked(gvt->dev_priv);
1000 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1001 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1002 	}
1003 	return 0;
1004 }
1005 
1006 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1007 {
1008 	struct intel_vgpu_submission *s = &vgpu->submission;
1009 	struct intel_gvt *gvt = vgpu->gvt;
1010 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1011 
1012 	if (atomic_read(&s->running_workload_num)) {
1013 		gvt_dbg_sched("wait vgpu idle\n");
1014 
1015 		wait_event(scheduler->workload_complete_wq,
1016 				!atomic_read(&s->running_workload_num));
1017 	}
1018 }
1019 
1020 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1021 {
1022 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1023 	struct intel_engine_cs *engine;
1024 	enum intel_engine_id i;
1025 
1026 	gvt_dbg_core("clean workload scheduler\n");
1027 
1028 	for_each_engine(engine, gvt->dev_priv, i) {
1029 		atomic_notifier_chain_unregister(
1030 					&engine->context_status_notifier,
1031 					&gvt->shadow_ctx_notifier_block[i]);
1032 		kthread_stop(scheduler->thread[i]);
1033 	}
1034 }
1035 
1036 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1037 {
1038 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1039 	struct workload_thread_param *param = NULL;
1040 	struct intel_engine_cs *engine;
1041 	enum intel_engine_id i;
1042 	int ret;
1043 
1044 	gvt_dbg_core("init workload scheduler\n");
1045 
1046 	init_waitqueue_head(&scheduler->workload_complete_wq);
1047 
1048 	for_each_engine(engine, gvt->dev_priv, i) {
1049 		init_waitqueue_head(&scheduler->waitq[i]);
1050 
1051 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1052 		if (!param) {
1053 			ret = -ENOMEM;
1054 			goto err;
1055 		}
1056 
1057 		param->gvt = gvt;
1058 		param->ring_id = i;
1059 
1060 		scheduler->thread[i] = kthread_run(workload_thread, param,
1061 			"gvt workload %d", i);
1062 		if (IS_ERR(scheduler->thread[i])) {
1063 			gvt_err("fail to create workload thread\n");
1064 			ret = PTR_ERR(scheduler->thread[i]);
1065 			goto err;
1066 		}
1067 
1068 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1069 					shadow_context_status_change;
1070 		atomic_notifier_chain_register(&engine->context_status_notifier,
1071 					&gvt->shadow_ctx_notifier_block[i]);
1072 	}
1073 	return 0;
1074 err:
1075 	intel_gvt_clean_workload_scheduler(gvt);
1076 	kfree(param);
1077 	param = NULL;
1078 	return ret;
1079 }
1080 
1081 static void
1082 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1083 {
1084 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1085 	int i;
1086 
1087 	if (i915_vm_is_48bit(&i915_ppgtt->vm))
1088 		px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1089 	else {
1090 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1091 			px_dma(i915_ppgtt->pdp.page_directory[i]) =
1092 						s->i915_context_pdps[i];
1093 	}
1094 }
1095 
1096 /**
1097  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1098  * @vgpu: a vGPU
1099  *
1100  * This function is called when a vGPU is being destroyed.
1101  *
1102  */
1103 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1104 {
1105 	struct intel_vgpu_submission *s = &vgpu->submission;
1106 
1107 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1108 	i915_context_ppgtt_root_restore(s);
1109 	i915_gem_context_put(s->shadow_ctx);
1110 	kmem_cache_destroy(s->workloads);
1111 }
1112 
1113 
1114 /**
1115  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1116  * @vgpu: a vGPU
1117  * @engine_mask: engines expected to be reset
1118  *
1119  * This function is called when a vGPU is being destroyed.
1120  *
1121  */
1122 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1123 		unsigned long engine_mask)
1124 {
1125 	struct intel_vgpu_submission *s = &vgpu->submission;
1126 
1127 	if (!s->active)
1128 		return;
1129 
1130 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1131 	s->ops->reset(vgpu, engine_mask);
1132 }
1133 
1134 static void
1135 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1136 {
1137 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1138 	int i;
1139 
1140 	if (i915_vm_is_48bit(&i915_ppgtt->vm))
1141 		s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1142 	else {
1143 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1144 			s->i915_context_pdps[i] =
1145 				px_dma(i915_ppgtt->pdp.page_directory[i]);
1146 	}
1147 }
1148 
1149 /**
1150  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1151  * @vgpu: a vGPU
1152  *
1153  * This function is called when a vGPU is being created.
1154  *
1155  * Returns:
1156  * Zero on success, negative error code if failed.
1157  *
1158  */
1159 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1160 {
1161 	struct intel_vgpu_submission *s = &vgpu->submission;
1162 	enum intel_engine_id i;
1163 	struct intel_engine_cs *engine;
1164 	int ret;
1165 
1166 	s->shadow_ctx = i915_gem_context_create_gvt(
1167 			&vgpu->gvt->dev_priv->drm);
1168 	if (IS_ERR(s->shadow_ctx))
1169 		return PTR_ERR(s->shadow_ctx);
1170 
1171 	i915_context_ppgtt_root_save(s);
1172 
1173 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1174 
1175 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1176 						  sizeof(struct intel_vgpu_workload), 0,
1177 						  SLAB_HWCACHE_ALIGN,
1178 						  offsetof(struct intel_vgpu_workload, rb_tail),
1179 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1180 						  NULL);
1181 
1182 	if (!s->workloads) {
1183 		ret = -ENOMEM;
1184 		goto out_shadow_ctx;
1185 	}
1186 
1187 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1188 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1189 
1190 	atomic_set(&s->running_workload_num, 0);
1191 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1192 
1193 	return 0;
1194 
1195 out_shadow_ctx:
1196 	i915_gem_context_put(s->shadow_ctx);
1197 	return ret;
1198 }
1199 
1200 /**
1201  * intel_vgpu_select_submission_ops - select virtual submission interface
1202  * @vgpu: a vGPU
1203  * @engine_mask: either ALL_ENGINES or target engine mask
1204  * @interface: expected vGPU virtual submission interface
1205  *
1206  * This function is called when guest configures submission interface.
1207  *
1208  * Returns:
1209  * Zero on success, negative error code if failed.
1210  *
1211  */
1212 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1213 				     unsigned long engine_mask,
1214 				     unsigned int interface)
1215 {
1216 	struct intel_vgpu_submission *s = &vgpu->submission;
1217 	const struct intel_vgpu_submission_ops *ops[] = {
1218 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1219 			&intel_vgpu_execlist_submission_ops,
1220 	};
1221 	int ret;
1222 
1223 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1224 		return -EINVAL;
1225 
1226 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1227 		return -EINVAL;
1228 
1229 	if (s->active)
1230 		s->ops->clean(vgpu, engine_mask);
1231 
1232 	if (interface == 0) {
1233 		s->ops = NULL;
1234 		s->virtual_submission_interface = 0;
1235 		s->active = false;
1236 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1237 		return 0;
1238 	}
1239 
1240 	ret = ops[interface]->init(vgpu, engine_mask);
1241 	if (ret)
1242 		return ret;
1243 
1244 	s->ops = ops[interface];
1245 	s->virtual_submission_interface = interface;
1246 	s->active = true;
1247 
1248 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1249 			vgpu->id, s->ops->name);
1250 
1251 	return 0;
1252 }
1253 
1254 /**
1255  * intel_vgpu_destroy_workload - destroy a vGPU workload
1256  * @workload: workload to destroy
1257  *
1258  * This function is called when destroy a vGPU workload.
1259  *
1260  */
1261 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1262 {
1263 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1264 
1265 	if (workload->shadow_mm)
1266 		intel_vgpu_mm_put(workload->shadow_mm);
1267 
1268 	kmem_cache_free(s->workloads, workload);
1269 }
1270 
1271 static struct intel_vgpu_workload *
1272 alloc_workload(struct intel_vgpu *vgpu)
1273 {
1274 	struct intel_vgpu_submission *s = &vgpu->submission;
1275 	struct intel_vgpu_workload *workload;
1276 
1277 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1278 	if (!workload)
1279 		return ERR_PTR(-ENOMEM);
1280 
1281 	INIT_LIST_HEAD(&workload->list);
1282 	INIT_LIST_HEAD(&workload->shadow_bb);
1283 
1284 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1285 	atomic_set(&workload->shadow_ctx_active, 0);
1286 
1287 	workload->status = -EINPROGRESS;
1288 	workload->vgpu = vgpu;
1289 
1290 	return workload;
1291 }
1292 
1293 #define RING_CTX_OFF(x) \
1294 	offsetof(struct execlist_ring_context, x)
1295 
1296 static void read_guest_pdps(struct intel_vgpu *vgpu,
1297 		u64 ring_context_gpa, u32 pdp[8])
1298 {
1299 	u64 gpa;
1300 	int i;
1301 
1302 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1303 
1304 	for (i = 0; i < 8; i++)
1305 		intel_gvt_hypervisor_read_gpa(vgpu,
1306 				gpa + i * 8, &pdp[7 - i], 4);
1307 }
1308 
1309 static int prepare_mm(struct intel_vgpu_workload *workload)
1310 {
1311 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1312 	struct intel_vgpu_mm *mm;
1313 	struct intel_vgpu *vgpu = workload->vgpu;
1314 	intel_gvt_gtt_type_t root_entry_type;
1315 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1316 
1317 	switch (desc->addressing_mode) {
1318 	case 1: /* legacy 32-bit */
1319 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1320 		break;
1321 	case 3: /* legacy 64-bit */
1322 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1323 		break;
1324 	default:
1325 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1326 		return -EINVAL;
1327 	}
1328 
1329 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1330 
1331 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1332 	if (IS_ERR(mm))
1333 		return PTR_ERR(mm);
1334 
1335 	workload->shadow_mm = mm;
1336 	return 0;
1337 }
1338 
1339 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1340 		((a)->lrca == (b)->lrca))
1341 
1342 #define get_last_workload(q) \
1343 	(list_empty(q) ? NULL : container_of(q->prev, \
1344 	struct intel_vgpu_workload, list))
1345 /**
1346  * intel_vgpu_create_workload - create a vGPU workload
1347  * @vgpu: a vGPU
1348  * @ring_id: ring index
1349  * @desc: a guest context descriptor
1350  *
1351  * This function is called when creating a vGPU workload.
1352  *
1353  * Returns:
1354  * struct intel_vgpu_workload * on success, negative error code in
1355  * pointer if failed.
1356  *
1357  */
1358 struct intel_vgpu_workload *
1359 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1360 			   struct execlist_ctx_descriptor_format *desc)
1361 {
1362 	struct intel_vgpu_submission *s = &vgpu->submission;
1363 	struct list_head *q = workload_q_head(vgpu, ring_id);
1364 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1365 	struct intel_vgpu_workload *workload = NULL;
1366 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1367 	u64 ring_context_gpa;
1368 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1369 	int ret;
1370 
1371 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1372 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1373 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1374 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1375 		return ERR_PTR(-EINVAL);
1376 	}
1377 
1378 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1379 			RING_CTX_OFF(ring_header.val), &head, 4);
1380 
1381 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1382 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1383 
1384 	head &= RB_HEAD_OFF_MASK;
1385 	tail &= RB_TAIL_OFF_MASK;
1386 
1387 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1388 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1389 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1390 				last_workload->rb_tail);
1391 		/*
1392 		 * cannot use guest context head pointer here,
1393 		 * as it might not be updated at this time
1394 		 */
1395 		head = last_workload->rb_tail;
1396 	}
1397 
1398 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1399 
1400 	/* record some ring buffer register values for scan and shadow */
1401 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1402 			RING_CTX_OFF(rb_start.val), &start, 4);
1403 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1404 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1405 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1406 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1407 
1408 	workload = alloc_workload(vgpu);
1409 	if (IS_ERR(workload))
1410 		return workload;
1411 
1412 	workload->ring_id = ring_id;
1413 	workload->ctx_desc = *desc;
1414 	workload->ring_context_gpa = ring_context_gpa;
1415 	workload->rb_head = head;
1416 	workload->rb_tail = tail;
1417 	workload->rb_start = start;
1418 	workload->rb_ctl = ctl;
1419 
1420 	if (ring_id == RCS) {
1421 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1422 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1423 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1424 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1425 
1426 		workload->wa_ctx.indirect_ctx.guest_gma =
1427 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1428 		workload->wa_ctx.indirect_ctx.size =
1429 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1430 			CACHELINE_BYTES;
1431 		workload->wa_ctx.per_ctx.guest_gma =
1432 			per_ctx & PER_CTX_ADDR_MASK;
1433 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1434 	}
1435 
1436 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1437 			workload, ring_id, head, tail, start, ctl);
1438 
1439 	ret = prepare_mm(workload);
1440 	if (ret) {
1441 		kmem_cache_free(s->workloads, workload);
1442 		return ERR_PTR(ret);
1443 	}
1444 
1445 	/* Only scan and shadow the first workload in the queue
1446 	 * as there is only one pre-allocated buf-obj for shadow.
1447 	 */
1448 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1449 		intel_runtime_pm_get(dev_priv);
1450 		mutex_lock(&dev_priv->drm.struct_mutex);
1451 		ret = intel_gvt_scan_and_shadow_workload(workload);
1452 		mutex_unlock(&dev_priv->drm.struct_mutex);
1453 		intel_runtime_pm_put_unchecked(dev_priv);
1454 	}
1455 
1456 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1457 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1458 		intel_vgpu_destroy_workload(workload);
1459 		return ERR_PTR(ret);
1460 	}
1461 
1462 	return workload;
1463 }
1464 
1465 /**
1466  * intel_vgpu_queue_workload - Qeue a vGPU workload
1467  * @workload: the workload to queue in
1468  */
1469 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1470 {
1471 	list_add_tail(&workload->list,
1472 		workload_q_head(workload->vgpu, workload->ring_id));
1473 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1474 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1475 }
1476