1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_context.h" 39 #include "gem/i915_gem_pm.h" 40 #include "gt/intel_context.h" 41 42 #include "i915_drv.h" 43 #include "gvt.h" 44 45 #define RING_CTX_OFF(x) \ 46 offsetof(struct execlist_ring_context, x) 47 48 static void set_context_pdp_root_pointer( 49 struct execlist_ring_context *ring_context, 50 u32 pdp[8]) 51 { 52 int i; 53 54 for (i = 0; i < 8; i++) 55 ring_context->pdps[i].val = pdp[7 - i]; 56 } 57 58 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 59 { 60 struct drm_i915_gem_object *ctx_obj = 61 workload->req->hw_context->state->obj; 62 struct execlist_ring_context *shadow_ring_context; 63 struct page *page; 64 65 if (WARN_ON(!workload->shadow_mm)) 66 return; 67 68 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 69 return; 70 71 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 72 shadow_ring_context = kmap(page); 73 set_context_pdp_root_pointer(shadow_ring_context, 74 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 75 kunmap(page); 76 } 77 78 /* 79 * when populating shadow ctx from guest, we should not overrride oa related 80 * registers, so that they will not be overlapped by guest oa configs. Thus 81 * made it possible to capture oa data from host for both host and guests. 82 */ 83 static void sr_oa_regs(struct intel_vgpu_workload *workload, 84 u32 *reg_state, bool save) 85 { 86 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 87 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 88 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 89 int i = 0; 90 u32 flex_mmio[] = { 91 i915_mmio_reg_offset(EU_PERF_CNTL0), 92 i915_mmio_reg_offset(EU_PERF_CNTL1), 93 i915_mmio_reg_offset(EU_PERF_CNTL2), 94 i915_mmio_reg_offset(EU_PERF_CNTL3), 95 i915_mmio_reg_offset(EU_PERF_CNTL4), 96 i915_mmio_reg_offset(EU_PERF_CNTL5), 97 i915_mmio_reg_offset(EU_PERF_CNTL6), 98 }; 99 100 if (workload->ring_id != RCS0) 101 return; 102 103 if (save) { 104 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 105 106 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 107 u32 state_offset = ctx_flexeu0 + i * 2; 108 109 workload->flex_mmio[i] = reg_state[state_offset + 1]; 110 } 111 } else { 112 reg_state[ctx_oactxctrl] = 113 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 114 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 115 116 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 117 u32 state_offset = ctx_flexeu0 + i * 2; 118 u32 mmio = flex_mmio[i]; 119 120 reg_state[state_offset] = mmio; 121 reg_state[state_offset + 1] = workload->flex_mmio[i]; 122 } 123 } 124 } 125 126 static int populate_shadow_context(struct intel_vgpu_workload *workload) 127 { 128 struct intel_vgpu *vgpu = workload->vgpu; 129 struct intel_gvt *gvt = vgpu->gvt; 130 int ring_id = workload->ring_id; 131 struct drm_i915_gem_object *ctx_obj = 132 workload->req->hw_context->state->obj; 133 struct execlist_ring_context *shadow_ring_context; 134 struct page *page; 135 void *dst; 136 unsigned long context_gpa, context_page_num; 137 int i; 138 139 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 140 shadow_ring_context = kmap(page); 141 142 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 143 #define COPY_REG(name) \ 144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 146 #define COPY_REG_MASKED(name) {\ 147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 148 + RING_CTX_OFF(name.val),\ 149 &shadow_ring_context->name.val, 4);\ 150 shadow_ring_context->name.val |= 0xffff << 16;\ 151 } 152 153 COPY_REG_MASKED(ctx_ctrl); 154 COPY_REG(ctx_timestamp); 155 156 if (ring_id == RCS0) { 157 COPY_REG(bb_per_ctx_ptr); 158 COPY_REG(rcs_indirect_ctx); 159 COPY_REG(rcs_indirect_ctx_offset); 160 } 161 #undef COPY_REG 162 #undef COPY_REG_MASKED 163 164 intel_gvt_hypervisor_read_gpa(vgpu, 165 workload->ring_context_gpa + 166 sizeof(*shadow_ring_context), 167 (void *)shadow_ring_context + 168 sizeof(*shadow_ring_context), 169 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 170 171 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 172 kunmap(page); 173 174 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 175 return 0; 176 177 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 178 workload->ctx_desc.lrca); 179 180 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 181 182 context_page_num = context_page_num >> PAGE_SHIFT; 183 184 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0) 185 context_page_num = 19; 186 187 i = 2; 188 while (i < context_page_num) { 189 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 190 (u32)((workload->ctx_desc.lrca + i) << 191 I915_GTT_PAGE_SHIFT)); 192 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 193 gvt_vgpu_err("Invalid guest context descriptor\n"); 194 return -EFAULT; 195 } 196 197 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 198 dst = kmap(page); 199 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 200 I915_GTT_PAGE_SIZE); 201 kunmap(page); 202 i++; 203 } 204 return 0; 205 } 206 207 static inline bool is_gvt_request(struct i915_request *req) 208 { 209 return i915_gem_context_force_single_submission(req->gem_context); 210 } 211 212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 213 { 214 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 215 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 216 i915_reg_t reg; 217 218 reg = RING_INSTDONE(ring_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 220 reg = RING_ACTHD(ring_base); 221 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 222 reg = RING_ACTHD_UDW(ring_base); 223 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 224 } 225 226 static int shadow_context_status_change(struct notifier_block *nb, 227 unsigned long action, void *data) 228 { 229 struct i915_request *req = data; 230 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 231 shadow_ctx_notifier_block[req->engine->id]); 232 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 233 enum intel_engine_id ring_id = req->engine->id; 234 struct intel_vgpu_workload *workload; 235 unsigned long flags; 236 237 if (!is_gvt_request(req)) { 238 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 239 if (action == INTEL_CONTEXT_SCHEDULE_IN && 240 scheduler->engine_owner[ring_id]) { 241 /* Switch ring from vGPU to host. */ 242 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 243 NULL, ring_id); 244 scheduler->engine_owner[ring_id] = NULL; 245 } 246 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 247 248 return NOTIFY_OK; 249 } 250 251 workload = scheduler->current_workload[ring_id]; 252 if (unlikely(!workload)) 253 return NOTIFY_OK; 254 255 switch (action) { 256 case INTEL_CONTEXT_SCHEDULE_IN: 257 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 258 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 259 /* Switch ring from host to vGPU or vGPU to vGPU. */ 260 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 261 workload->vgpu, ring_id); 262 scheduler->engine_owner[ring_id] = workload->vgpu; 263 } else 264 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 265 ring_id, workload->vgpu->id); 266 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 267 atomic_set(&workload->shadow_ctx_active, 1); 268 break; 269 case INTEL_CONTEXT_SCHEDULE_OUT: 270 save_ring_hw_state(workload->vgpu, ring_id); 271 atomic_set(&workload->shadow_ctx_active, 0); 272 break; 273 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 274 save_ring_hw_state(workload->vgpu, ring_id); 275 break; 276 default: 277 WARN_ON(1); 278 return NOTIFY_OK; 279 } 280 wake_up(&workload->shadow_ctx_status_wq); 281 return NOTIFY_OK; 282 } 283 284 static void 285 shadow_context_descriptor_update(struct intel_context *ce, 286 struct intel_vgpu_workload *workload) 287 { 288 u64 desc = ce->lrc_desc; 289 290 /* 291 * Update bits 0-11 of the context descriptor which includes flags 292 * like GEN8_CTX_* cached in desc_template 293 */ 294 desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 295 desc |= workload->ctx_desc.addressing_mode << 296 GEN8_CTX_ADDRESSING_MODE_SHIFT; 297 298 ce->lrc_desc = desc; 299 } 300 301 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 302 { 303 struct intel_vgpu *vgpu = workload->vgpu; 304 struct i915_request *req = workload->req; 305 void *shadow_ring_buffer_va; 306 u32 *cs; 307 int err; 308 309 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context)) 310 intel_vgpu_restore_inhibit_context(vgpu, req); 311 312 /* 313 * To track whether a request has started on HW, we can emit a 314 * breadcrumb at the beginning of the request and check its 315 * timeline's HWSP to see if the breadcrumb has advanced past the 316 * start of this request. Actually, the request must have the 317 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 318 * scheduler might get a wrong state of it during reset. Since the 319 * requests from gvt always set the has_init_breadcrumb flag, here 320 * need to do the emit_init_breadcrumb for all the requests. 321 */ 322 if (req->engine->emit_init_breadcrumb) { 323 err = req->engine->emit_init_breadcrumb(req); 324 if (err) { 325 gvt_vgpu_err("fail to emit init breadcrumb\n"); 326 return err; 327 } 328 } 329 330 /* allocate shadow ring buffer */ 331 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 332 if (IS_ERR(cs)) { 333 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 334 workload->rb_len); 335 return PTR_ERR(cs); 336 } 337 338 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 339 340 /* get shadow ring buffer va */ 341 workload->shadow_ring_buffer_va = cs; 342 343 memcpy(cs, shadow_ring_buffer_va, 344 workload->rb_len); 345 346 cs += workload->rb_len / sizeof(u32); 347 intel_ring_advance(workload->req, cs); 348 349 return 0; 350 } 351 352 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 353 { 354 if (!wa_ctx->indirect_ctx.obj) 355 return; 356 357 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 358 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 359 360 wa_ctx->indirect_ctx.obj = NULL; 361 wa_ctx->indirect_ctx.shadow_va = NULL; 362 } 363 364 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 365 struct i915_gem_context *ctx) 366 { 367 struct intel_vgpu_mm *mm = workload->shadow_mm; 368 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm); 369 int i = 0; 370 371 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 372 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0]; 373 } else { 374 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 375 struct i915_page_directory * const pd = 376 i915_pd_entry(ppgtt->pd, i); 377 378 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i]; 379 } 380 } 381 } 382 383 static int 384 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 385 { 386 struct intel_vgpu *vgpu = workload->vgpu; 387 struct intel_vgpu_submission *s = &vgpu->submission; 388 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 389 struct i915_request *rq; 390 391 lockdep_assert_held(&dev_priv->drm.struct_mutex); 392 393 if (workload->req) 394 return 0; 395 396 rq = i915_request_create(s->shadow[workload->ring_id]); 397 if (IS_ERR(rq)) { 398 gvt_vgpu_err("fail to allocate gem request\n"); 399 return PTR_ERR(rq); 400 } 401 402 workload->req = i915_request_get(rq); 403 return 0; 404 } 405 406 /** 407 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 408 * shadow it as well, include ringbuffer,wa_ctx and ctx. 409 * @workload: an abstract entity for each execlist submission. 410 * 411 * This function is called before the workload submitting to i915, to make 412 * sure the content of the workload is valid. 413 */ 414 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 415 { 416 struct intel_vgpu *vgpu = workload->vgpu; 417 struct intel_vgpu_submission *s = &vgpu->submission; 418 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 419 int ret; 420 421 lockdep_assert_held(&dev_priv->drm.struct_mutex); 422 423 if (workload->shadow) 424 return 0; 425 426 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 427 shadow_context_descriptor_update(s->shadow[workload->ring_id], 428 workload); 429 430 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 431 if (ret) 432 return ret; 433 434 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) { 435 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 436 if (ret) 437 goto err_shadow; 438 } 439 440 workload->shadow = true; 441 return 0; 442 err_shadow: 443 release_shadow_wa_ctx(&workload->wa_ctx); 444 return ret; 445 } 446 447 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 448 449 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 450 { 451 struct intel_gvt *gvt = workload->vgpu->gvt; 452 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 453 struct intel_vgpu_shadow_bb *bb; 454 int ret; 455 456 list_for_each_entry(bb, &workload->shadow_bb, list) { 457 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 458 * is only updated into ring_scan_buffer, not real ring address 459 * allocated in later copy_workload_to_ring_buffer. pls be noted 460 * shadow_ring_buffer_va is now pointed to real ring buffer va 461 * in copy_workload_to_ring_buffer. 462 */ 463 464 if (bb->bb_offset) 465 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 466 + bb->bb_offset; 467 468 if (bb->ppgtt) { 469 /* for non-priv bb, scan&shadow is only for 470 * debugging purpose, so the content of shadow bb 471 * is the same as original bb. Therefore, 472 * here, rather than switch to shadow bb's gma 473 * address, we directly use original batch buffer's 474 * gma address, and send original bb to hardware 475 * directly 476 */ 477 if (bb->clflush & CLFLUSH_AFTER) { 478 drm_clflush_virt_range(bb->va, 479 bb->obj->base.size); 480 bb->clflush &= ~CLFLUSH_AFTER; 481 } 482 i915_gem_object_finish_access(bb->obj); 483 bb->accessing = false; 484 485 } else { 486 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 487 NULL, 0, 0, 0); 488 if (IS_ERR(bb->vma)) { 489 ret = PTR_ERR(bb->vma); 490 goto err; 491 } 492 493 /* relocate shadow batch buffer */ 494 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 495 if (gmadr_bytes == 8) 496 bb->bb_start_cmd_va[2] = 0; 497 498 /* No one is going to touch shadow bb from now on. */ 499 if (bb->clflush & CLFLUSH_AFTER) { 500 drm_clflush_virt_range(bb->va, 501 bb->obj->base.size); 502 bb->clflush &= ~CLFLUSH_AFTER; 503 } 504 505 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 506 false); 507 if (ret) 508 goto err; 509 510 ret = i915_vma_move_to_active(bb->vma, 511 workload->req, 512 0); 513 if (ret) 514 goto err; 515 516 i915_gem_object_finish_access(bb->obj); 517 bb->accessing = false; 518 } 519 } 520 return 0; 521 err: 522 release_shadow_batch_buffer(workload); 523 return ret; 524 } 525 526 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 527 { 528 struct intel_vgpu_workload *workload = 529 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 530 struct i915_request *rq = workload->req; 531 struct execlist_ring_context *shadow_ring_context = 532 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 533 534 shadow_ring_context->bb_per_ctx_ptr.val = 535 (shadow_ring_context->bb_per_ctx_ptr.val & 536 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 537 shadow_ring_context->rcs_indirect_ctx.val = 538 (shadow_ring_context->rcs_indirect_ctx.val & 539 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 540 } 541 542 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 543 { 544 struct i915_vma *vma; 545 unsigned char *per_ctx_va = 546 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 547 wa_ctx->indirect_ctx.size; 548 549 if (wa_ctx->indirect_ctx.size == 0) 550 return 0; 551 552 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 553 0, CACHELINE_BYTES, 0); 554 if (IS_ERR(vma)) 555 return PTR_ERR(vma); 556 557 /* FIXME: we are not tracking our pinned VMA leaving it 558 * up to the core to fix up the stray pin_count upon 559 * free. 560 */ 561 562 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 563 564 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 565 memset(per_ctx_va, 0, CACHELINE_BYTES); 566 567 update_wa_ctx_2_shadow_ctx(wa_ctx); 568 return 0; 569 } 570 571 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 572 { 573 struct intel_vgpu *vgpu = workload->vgpu; 574 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 575 u32 ring_base; 576 577 ring_base = dev_priv->engine[workload->ring_id]->mmio_base; 578 vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start; 579 } 580 581 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 582 { 583 struct intel_vgpu *vgpu = workload->vgpu; 584 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 585 struct intel_vgpu_shadow_bb *bb, *pos; 586 587 if (list_empty(&workload->shadow_bb)) 588 return; 589 590 bb = list_first_entry(&workload->shadow_bb, 591 struct intel_vgpu_shadow_bb, list); 592 593 mutex_lock(&dev_priv->drm.struct_mutex); 594 595 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 596 if (bb->obj) { 597 if (bb->accessing) 598 i915_gem_object_finish_access(bb->obj); 599 600 if (bb->va && !IS_ERR(bb->va)) 601 i915_gem_object_unpin_map(bb->obj); 602 603 if (bb->vma && !IS_ERR(bb->vma)) { 604 i915_vma_unpin(bb->vma); 605 i915_vma_close(bb->vma); 606 } 607 i915_gem_object_put(bb->obj); 608 } 609 list_del(&bb->list); 610 kfree(bb); 611 } 612 613 mutex_unlock(&dev_priv->drm.struct_mutex); 614 } 615 616 static int prepare_workload(struct intel_vgpu_workload *workload) 617 { 618 struct intel_vgpu *vgpu = workload->vgpu; 619 struct intel_vgpu_submission *s = &vgpu->submission; 620 int ring = workload->ring_id; 621 int ret = 0; 622 623 ret = intel_vgpu_pin_mm(workload->shadow_mm); 624 if (ret) { 625 gvt_vgpu_err("fail to vgpu pin mm\n"); 626 return ret; 627 } 628 629 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 630 !workload->shadow_mm->ppgtt_mm.shadowed) { 631 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 632 return -EINVAL; 633 } 634 635 update_shadow_pdps(workload); 636 637 set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context); 638 639 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 640 if (ret) { 641 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 642 goto err_unpin_mm; 643 } 644 645 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 646 if (ret) { 647 gvt_vgpu_err("fail to flush post shadow\n"); 648 goto err_unpin_mm; 649 } 650 651 ret = copy_workload_to_ring_buffer(workload); 652 if (ret) { 653 gvt_vgpu_err("fail to generate request\n"); 654 goto err_unpin_mm; 655 } 656 657 ret = prepare_shadow_batch_buffer(workload); 658 if (ret) { 659 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 660 goto err_unpin_mm; 661 } 662 663 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 664 if (ret) { 665 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 666 goto err_shadow_batch; 667 } 668 669 if (workload->prepare) { 670 ret = workload->prepare(workload); 671 if (ret) 672 goto err_shadow_wa_ctx; 673 } 674 675 return 0; 676 err_shadow_wa_ctx: 677 release_shadow_wa_ctx(&workload->wa_ctx); 678 err_shadow_batch: 679 release_shadow_batch_buffer(workload); 680 err_unpin_mm: 681 intel_vgpu_unpin_mm(workload->shadow_mm); 682 return ret; 683 } 684 685 static int dispatch_workload(struct intel_vgpu_workload *workload) 686 { 687 struct intel_vgpu *vgpu = workload->vgpu; 688 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 689 struct i915_request *rq; 690 int ring_id = workload->ring_id; 691 int ret; 692 693 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 694 ring_id, workload); 695 696 mutex_lock(&vgpu->vgpu_lock); 697 mutex_lock(&dev_priv->drm.struct_mutex); 698 699 ret = intel_gvt_workload_req_alloc(workload); 700 if (ret) 701 goto err_req; 702 703 ret = intel_gvt_scan_and_shadow_workload(workload); 704 if (ret) 705 goto out; 706 707 ret = populate_shadow_context(workload); 708 if (ret) { 709 release_shadow_wa_ctx(&workload->wa_ctx); 710 goto out; 711 } 712 713 ret = prepare_workload(workload); 714 out: 715 if (ret) { 716 /* We might still need to add request with 717 * clean ctx to retire it properly.. 718 */ 719 rq = fetch_and_zero(&workload->req); 720 i915_request_put(rq); 721 } 722 723 if (!IS_ERR_OR_NULL(workload->req)) { 724 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 725 ring_id, workload->req); 726 i915_request_add(workload->req); 727 workload->dispatched = true; 728 } 729 err_req: 730 if (ret) 731 workload->status = ret; 732 mutex_unlock(&dev_priv->drm.struct_mutex); 733 mutex_unlock(&vgpu->vgpu_lock); 734 return ret; 735 } 736 737 static struct intel_vgpu_workload *pick_next_workload( 738 struct intel_gvt *gvt, int ring_id) 739 { 740 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 741 struct intel_vgpu_workload *workload = NULL; 742 743 mutex_lock(&gvt->sched_lock); 744 745 /* 746 * no current vgpu / will be scheduled out / no workload 747 * bail out 748 */ 749 if (!scheduler->current_vgpu) { 750 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 751 goto out; 752 } 753 754 if (scheduler->need_reschedule) { 755 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 756 goto out; 757 } 758 759 if (!scheduler->current_vgpu->active || 760 list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 761 goto out; 762 763 /* 764 * still have current workload, maybe the workload disptacher 765 * fail to submit it for some reason, resubmit it. 766 */ 767 if (scheduler->current_workload[ring_id]) { 768 workload = scheduler->current_workload[ring_id]; 769 gvt_dbg_sched("ring id %d still have current workload %p\n", 770 ring_id, workload); 771 goto out; 772 } 773 774 /* 775 * pick a workload as current workload 776 * once current workload is set, schedule policy routines 777 * will wait the current workload is finished when trying to 778 * schedule out a vgpu. 779 */ 780 scheduler->current_workload[ring_id] = container_of( 781 workload_q_head(scheduler->current_vgpu, ring_id)->next, 782 struct intel_vgpu_workload, list); 783 784 workload = scheduler->current_workload[ring_id]; 785 786 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 787 788 atomic_inc(&workload->vgpu->submission.running_workload_num); 789 out: 790 mutex_unlock(&gvt->sched_lock); 791 return workload; 792 } 793 794 static void update_guest_context(struct intel_vgpu_workload *workload) 795 { 796 struct i915_request *rq = workload->req; 797 struct intel_vgpu *vgpu = workload->vgpu; 798 struct intel_gvt *gvt = vgpu->gvt; 799 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 800 struct execlist_ring_context *shadow_ring_context; 801 struct page *page; 802 void *src; 803 unsigned long context_gpa, context_page_num; 804 int i; 805 struct drm_i915_private *dev_priv = gvt->dev_priv; 806 u32 ring_base; 807 u32 head, tail; 808 u16 wrap_count; 809 810 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 811 workload->ctx_desc.lrca); 812 813 head = workload->rb_head; 814 tail = workload->rb_tail; 815 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 816 817 if (tail < head) { 818 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 819 wrap_count = 0; 820 else 821 wrap_count += 1; 822 } 823 824 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 825 826 ring_base = dev_priv->engine[workload->ring_id]->mmio_base; 827 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 828 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 829 830 context_page_num = rq->engine->context_size; 831 context_page_num = context_page_num >> PAGE_SHIFT; 832 833 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0) 834 context_page_num = 19; 835 836 i = 2; 837 838 while (i < context_page_num) { 839 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 840 (u32)((workload->ctx_desc.lrca + i) << 841 I915_GTT_PAGE_SHIFT)); 842 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 843 gvt_vgpu_err("invalid guest context descriptor\n"); 844 return; 845 } 846 847 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 848 src = kmap(page); 849 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 850 I915_GTT_PAGE_SIZE); 851 kunmap(page); 852 i++; 853 } 854 855 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 856 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 857 858 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 859 shadow_ring_context = kmap(page); 860 861 #define COPY_REG(name) \ 862 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 863 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 864 865 COPY_REG(ctx_ctrl); 866 COPY_REG(ctx_timestamp); 867 868 #undef COPY_REG 869 870 intel_gvt_hypervisor_write_gpa(vgpu, 871 workload->ring_context_gpa + 872 sizeof(*shadow_ring_context), 873 (void *)shadow_ring_context + 874 sizeof(*shadow_ring_context), 875 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 876 877 kunmap(page); 878 } 879 880 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 881 intel_engine_mask_t engine_mask) 882 { 883 struct intel_vgpu_submission *s = &vgpu->submission; 884 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 885 struct intel_engine_cs *engine; 886 struct intel_vgpu_workload *pos, *n; 887 intel_engine_mask_t tmp; 888 889 /* free the unsubmited workloads in the queues. */ 890 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 891 list_for_each_entry_safe(pos, n, 892 &s->workload_q_head[engine->id], list) { 893 list_del_init(&pos->list); 894 intel_vgpu_destroy_workload(pos); 895 } 896 clear_bit(engine->id, s->shadow_ctx_desc_updated); 897 } 898 } 899 900 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 901 { 902 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 903 struct intel_vgpu_workload *workload = 904 scheduler->current_workload[ring_id]; 905 struct intel_vgpu *vgpu = workload->vgpu; 906 struct intel_vgpu_submission *s = &vgpu->submission; 907 struct i915_request *rq = workload->req; 908 int event; 909 910 mutex_lock(&vgpu->vgpu_lock); 911 mutex_lock(&gvt->sched_lock); 912 913 /* For the workload w/ request, needs to wait for the context 914 * switch to make sure request is completed. 915 * For the workload w/o request, directly complete the workload. 916 */ 917 if (rq) { 918 wait_event(workload->shadow_ctx_status_wq, 919 !atomic_read(&workload->shadow_ctx_active)); 920 921 /* If this request caused GPU hang, req->fence.error will 922 * be set to -EIO. Use -EIO to set workload status so 923 * that when this request caused GPU hang, didn't trigger 924 * context switch interrupt to guest. 925 */ 926 if (likely(workload->status == -EINPROGRESS)) { 927 if (workload->req->fence.error == -EIO) 928 workload->status = -EIO; 929 else 930 workload->status = 0; 931 } 932 933 if (!workload->status && 934 !(vgpu->resetting_eng & BIT(ring_id))) { 935 update_guest_context(workload); 936 937 for_each_set_bit(event, workload->pending_events, 938 INTEL_GVT_EVENT_MAX) 939 intel_vgpu_trigger_virtual_event(vgpu, event); 940 } 941 942 i915_request_put(fetch_and_zero(&workload->req)); 943 } 944 945 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 946 ring_id, workload, workload->status); 947 948 scheduler->current_workload[ring_id] = NULL; 949 950 list_del_init(&workload->list); 951 952 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 953 /* if workload->status is not successful means HW GPU 954 * has occurred GPU hang or something wrong with i915/GVT, 955 * and GVT won't inject context switch interrupt to guest. 956 * So this error is a vGPU hang actually to the guest. 957 * According to this we should emunlate a vGPU hang. If 958 * there are pending workloads which are already submitted 959 * from guest, we should clean them up like HW GPU does. 960 * 961 * if it is in middle of engine resetting, the pending 962 * workloads won't be submitted to HW GPU and will be 963 * cleaned up during the resetting process later, so doing 964 * the workload clean up here doesn't have any impact. 965 **/ 966 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 967 } 968 969 workload->complete(workload); 970 971 atomic_dec(&s->running_workload_num); 972 wake_up(&scheduler->workload_complete_wq); 973 974 if (gvt->scheduler.need_reschedule) 975 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 976 977 mutex_unlock(&gvt->sched_lock); 978 mutex_unlock(&vgpu->vgpu_lock); 979 } 980 981 struct workload_thread_param { 982 struct intel_gvt *gvt; 983 int ring_id; 984 }; 985 986 static int workload_thread(void *priv) 987 { 988 struct workload_thread_param *p = (struct workload_thread_param *)priv; 989 struct intel_gvt *gvt = p->gvt; 990 int ring_id = p->ring_id; 991 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 992 struct intel_vgpu_workload *workload = NULL; 993 struct intel_vgpu *vgpu = NULL; 994 int ret; 995 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9); 996 DEFINE_WAIT_FUNC(wait, woken_wake_function); 997 struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm; 998 999 kfree(p); 1000 1001 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 1002 1003 while (!kthread_should_stop()) { 1004 add_wait_queue(&scheduler->waitq[ring_id], &wait); 1005 do { 1006 workload = pick_next_workload(gvt, ring_id); 1007 if (workload) 1008 break; 1009 wait_woken(&wait, TASK_INTERRUPTIBLE, 1010 MAX_SCHEDULE_TIMEOUT); 1011 } while (!kthread_should_stop()); 1012 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 1013 1014 if (!workload) 1015 break; 1016 1017 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 1018 workload->ring_id, workload, 1019 workload->vgpu->id); 1020 1021 intel_runtime_pm_get(rpm); 1022 1023 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 1024 workload->ring_id, workload); 1025 1026 if (need_force_wake) 1027 intel_uncore_forcewake_get(&gvt->dev_priv->uncore, 1028 FORCEWAKE_ALL); 1029 /* 1030 * Update the vReg of the vGPU which submitted this 1031 * workload. The vGPU may use these registers for checking 1032 * the context state. The value comes from GPU commands 1033 * in this workload. 1034 */ 1035 update_vreg_in_ctx(workload); 1036 1037 ret = dispatch_workload(workload); 1038 1039 if (ret) { 1040 vgpu = workload->vgpu; 1041 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1042 goto complete; 1043 } 1044 1045 gvt_dbg_sched("ring id %d wait workload %p\n", 1046 workload->ring_id, workload); 1047 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1048 1049 complete: 1050 gvt_dbg_sched("will complete workload %p, status: %d\n", 1051 workload, workload->status); 1052 1053 complete_current_workload(gvt, ring_id); 1054 1055 if (need_force_wake) 1056 intel_uncore_forcewake_put(&gvt->dev_priv->uncore, 1057 FORCEWAKE_ALL); 1058 1059 intel_runtime_pm_put_unchecked(rpm); 1060 if (ret && (vgpu_is_vm_unhealthy(ret))) 1061 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1062 } 1063 return 0; 1064 } 1065 1066 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1067 { 1068 struct intel_vgpu_submission *s = &vgpu->submission; 1069 struct intel_gvt *gvt = vgpu->gvt; 1070 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1071 1072 if (atomic_read(&s->running_workload_num)) { 1073 gvt_dbg_sched("wait vgpu idle\n"); 1074 1075 wait_event(scheduler->workload_complete_wq, 1076 !atomic_read(&s->running_workload_num)); 1077 } 1078 } 1079 1080 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1081 { 1082 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1083 struct intel_engine_cs *engine; 1084 enum intel_engine_id i; 1085 1086 gvt_dbg_core("clean workload scheduler\n"); 1087 1088 for_each_engine(engine, gvt->dev_priv, i) { 1089 atomic_notifier_chain_unregister( 1090 &engine->context_status_notifier, 1091 &gvt->shadow_ctx_notifier_block[i]); 1092 kthread_stop(scheduler->thread[i]); 1093 } 1094 } 1095 1096 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1097 { 1098 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1099 struct workload_thread_param *param = NULL; 1100 struct intel_engine_cs *engine; 1101 enum intel_engine_id i; 1102 int ret; 1103 1104 gvt_dbg_core("init workload scheduler\n"); 1105 1106 init_waitqueue_head(&scheduler->workload_complete_wq); 1107 1108 for_each_engine(engine, gvt->dev_priv, i) { 1109 init_waitqueue_head(&scheduler->waitq[i]); 1110 1111 param = kzalloc(sizeof(*param), GFP_KERNEL); 1112 if (!param) { 1113 ret = -ENOMEM; 1114 goto err; 1115 } 1116 1117 param->gvt = gvt; 1118 param->ring_id = i; 1119 1120 scheduler->thread[i] = kthread_run(workload_thread, param, 1121 "gvt workload %d", i); 1122 if (IS_ERR(scheduler->thread[i])) { 1123 gvt_err("fail to create workload thread\n"); 1124 ret = PTR_ERR(scheduler->thread[i]); 1125 goto err; 1126 } 1127 1128 gvt->shadow_ctx_notifier_block[i].notifier_call = 1129 shadow_context_status_change; 1130 atomic_notifier_chain_register(&engine->context_status_notifier, 1131 &gvt->shadow_ctx_notifier_block[i]); 1132 } 1133 return 0; 1134 err: 1135 intel_gvt_clean_workload_scheduler(gvt); 1136 kfree(param); 1137 param = NULL; 1138 return ret; 1139 } 1140 1141 static void 1142 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1143 struct i915_ppgtt *ppgtt) 1144 { 1145 int i; 1146 1147 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1148 px_dma(ppgtt->pd) = s->i915_context_pml4; 1149 } else { 1150 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1151 struct i915_page_directory * const pd = 1152 i915_pd_entry(ppgtt->pd, i); 1153 1154 px_dma(pd) = s->i915_context_pdps[i]; 1155 } 1156 } 1157 } 1158 1159 /** 1160 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1161 * @vgpu: a vGPU 1162 * 1163 * This function is called when a vGPU is being destroyed. 1164 * 1165 */ 1166 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1167 { 1168 struct intel_vgpu_submission *s = &vgpu->submission; 1169 struct intel_engine_cs *engine; 1170 enum intel_engine_id id; 1171 1172 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1173 1174 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1175 for_each_engine(engine, vgpu->gvt->dev_priv, id) 1176 intel_context_unpin(s->shadow[id]); 1177 1178 kmem_cache_destroy(s->workloads); 1179 } 1180 1181 1182 /** 1183 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1184 * @vgpu: a vGPU 1185 * @engine_mask: engines expected to be reset 1186 * 1187 * This function is called when a vGPU is being destroyed. 1188 * 1189 */ 1190 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1191 intel_engine_mask_t engine_mask) 1192 { 1193 struct intel_vgpu_submission *s = &vgpu->submission; 1194 1195 if (!s->active) 1196 return; 1197 1198 intel_vgpu_clean_workloads(vgpu, engine_mask); 1199 s->ops->reset(vgpu, engine_mask); 1200 } 1201 1202 static void 1203 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1204 struct i915_ppgtt *ppgtt) 1205 { 1206 int i; 1207 1208 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1209 s->i915_context_pml4 = px_dma(ppgtt->pd); 1210 } else { 1211 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1212 struct i915_page_directory * const pd = 1213 i915_pd_entry(ppgtt->pd, i); 1214 1215 s->i915_context_pdps[i] = px_dma(pd); 1216 } 1217 } 1218 } 1219 1220 /** 1221 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1222 * @vgpu: a vGPU 1223 * 1224 * This function is called when a vGPU is being created. 1225 * 1226 * Returns: 1227 * Zero on success, negative error code if failed. 1228 * 1229 */ 1230 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1231 { 1232 struct drm_i915_private *i915 = vgpu->gvt->dev_priv; 1233 struct intel_vgpu_submission *s = &vgpu->submission; 1234 struct intel_engine_cs *engine; 1235 struct i915_gem_context *ctx; 1236 enum intel_engine_id i; 1237 int ret; 1238 1239 mutex_lock(&i915->drm.struct_mutex); 1240 1241 ctx = i915_gem_context_create_kernel(i915, I915_PRIORITY_MAX); 1242 if (IS_ERR(ctx)) { 1243 ret = PTR_ERR(ctx); 1244 goto out_unlock; 1245 } 1246 1247 i915_gem_context_set_force_single_submission(ctx); 1248 1249 i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm)); 1250 1251 for_each_engine(engine, i915, i) { 1252 struct intel_context *ce; 1253 1254 INIT_LIST_HEAD(&s->workload_q_head[i]); 1255 s->shadow[i] = ERR_PTR(-EINVAL); 1256 1257 ce = intel_context_create(ctx, engine); 1258 if (IS_ERR(ce)) { 1259 ret = PTR_ERR(ce); 1260 goto out_shadow_ctx; 1261 } 1262 1263 if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */ 1264 const unsigned int ring_size = 512 * SZ_4K; 1265 1266 ce->ring = __intel_context_ring_size(ring_size); 1267 } 1268 1269 ret = intel_context_pin(ce); 1270 intel_context_put(ce); 1271 if (ret) 1272 goto out_shadow_ctx; 1273 1274 s->shadow[i] = ce; 1275 } 1276 1277 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1278 1279 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1280 sizeof(struct intel_vgpu_workload), 0, 1281 SLAB_HWCACHE_ALIGN, 1282 offsetof(struct intel_vgpu_workload, rb_tail), 1283 sizeof_field(struct intel_vgpu_workload, rb_tail), 1284 NULL); 1285 1286 if (!s->workloads) { 1287 ret = -ENOMEM; 1288 goto out_shadow_ctx; 1289 } 1290 1291 atomic_set(&s->running_workload_num, 0); 1292 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1293 1294 i915_gem_context_put(ctx); 1295 mutex_unlock(&i915->drm.struct_mutex); 1296 return 0; 1297 1298 out_shadow_ctx: 1299 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm)); 1300 for_each_engine(engine, i915, i) { 1301 if (IS_ERR(s->shadow[i])) 1302 break; 1303 1304 intel_context_unpin(s->shadow[i]); 1305 intel_context_put(s->shadow[i]); 1306 } 1307 i915_gem_context_put(ctx); 1308 out_unlock: 1309 mutex_unlock(&i915->drm.struct_mutex); 1310 return ret; 1311 } 1312 1313 /** 1314 * intel_vgpu_select_submission_ops - select virtual submission interface 1315 * @vgpu: a vGPU 1316 * @engine_mask: either ALL_ENGINES or target engine mask 1317 * @interface: expected vGPU virtual submission interface 1318 * 1319 * This function is called when guest configures submission interface. 1320 * 1321 * Returns: 1322 * Zero on success, negative error code if failed. 1323 * 1324 */ 1325 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1326 intel_engine_mask_t engine_mask, 1327 unsigned int interface) 1328 { 1329 struct intel_vgpu_submission *s = &vgpu->submission; 1330 const struct intel_vgpu_submission_ops *ops[] = { 1331 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1332 &intel_vgpu_execlist_submission_ops, 1333 }; 1334 int ret; 1335 1336 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1337 return -EINVAL; 1338 1339 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1340 return -EINVAL; 1341 1342 if (s->active) 1343 s->ops->clean(vgpu, engine_mask); 1344 1345 if (interface == 0) { 1346 s->ops = NULL; 1347 s->virtual_submission_interface = 0; 1348 s->active = false; 1349 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1350 return 0; 1351 } 1352 1353 ret = ops[interface]->init(vgpu, engine_mask); 1354 if (ret) 1355 return ret; 1356 1357 s->ops = ops[interface]; 1358 s->virtual_submission_interface = interface; 1359 s->active = true; 1360 1361 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1362 vgpu->id, s->ops->name); 1363 1364 return 0; 1365 } 1366 1367 /** 1368 * intel_vgpu_destroy_workload - destroy a vGPU workload 1369 * @workload: workload to destroy 1370 * 1371 * This function is called when destroy a vGPU workload. 1372 * 1373 */ 1374 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1375 { 1376 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1377 1378 release_shadow_batch_buffer(workload); 1379 release_shadow_wa_ctx(&workload->wa_ctx); 1380 1381 if (workload->shadow_mm) 1382 intel_vgpu_mm_put(workload->shadow_mm); 1383 1384 kmem_cache_free(s->workloads, workload); 1385 } 1386 1387 static struct intel_vgpu_workload * 1388 alloc_workload(struct intel_vgpu *vgpu) 1389 { 1390 struct intel_vgpu_submission *s = &vgpu->submission; 1391 struct intel_vgpu_workload *workload; 1392 1393 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1394 if (!workload) 1395 return ERR_PTR(-ENOMEM); 1396 1397 INIT_LIST_HEAD(&workload->list); 1398 INIT_LIST_HEAD(&workload->shadow_bb); 1399 1400 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1401 atomic_set(&workload->shadow_ctx_active, 0); 1402 1403 workload->status = -EINPROGRESS; 1404 workload->vgpu = vgpu; 1405 1406 return workload; 1407 } 1408 1409 #define RING_CTX_OFF(x) \ 1410 offsetof(struct execlist_ring_context, x) 1411 1412 static void read_guest_pdps(struct intel_vgpu *vgpu, 1413 u64 ring_context_gpa, u32 pdp[8]) 1414 { 1415 u64 gpa; 1416 int i; 1417 1418 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1419 1420 for (i = 0; i < 8; i++) 1421 intel_gvt_hypervisor_read_gpa(vgpu, 1422 gpa + i * 8, &pdp[7 - i], 4); 1423 } 1424 1425 static int prepare_mm(struct intel_vgpu_workload *workload) 1426 { 1427 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1428 struct intel_vgpu_mm *mm; 1429 struct intel_vgpu *vgpu = workload->vgpu; 1430 enum intel_gvt_gtt_type root_entry_type; 1431 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1432 1433 switch (desc->addressing_mode) { 1434 case 1: /* legacy 32-bit */ 1435 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1436 break; 1437 case 3: /* legacy 64-bit */ 1438 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1439 break; 1440 default: 1441 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1442 return -EINVAL; 1443 } 1444 1445 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1446 1447 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1448 if (IS_ERR(mm)) 1449 return PTR_ERR(mm); 1450 1451 workload->shadow_mm = mm; 1452 return 0; 1453 } 1454 1455 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1456 ((a)->lrca == (b)->lrca)) 1457 1458 /** 1459 * intel_vgpu_create_workload - create a vGPU workload 1460 * @vgpu: a vGPU 1461 * @ring_id: ring index 1462 * @desc: a guest context descriptor 1463 * 1464 * This function is called when creating a vGPU workload. 1465 * 1466 * Returns: 1467 * struct intel_vgpu_workload * on success, negative error code in 1468 * pointer if failed. 1469 * 1470 */ 1471 struct intel_vgpu_workload * 1472 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1473 struct execlist_ctx_descriptor_format *desc) 1474 { 1475 struct intel_vgpu_submission *s = &vgpu->submission; 1476 struct list_head *q = workload_q_head(vgpu, ring_id); 1477 struct intel_vgpu_workload *last_workload = NULL; 1478 struct intel_vgpu_workload *workload = NULL; 1479 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1480 u64 ring_context_gpa; 1481 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1482 u32 guest_head; 1483 int ret; 1484 1485 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1486 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1487 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1488 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1489 return ERR_PTR(-EINVAL); 1490 } 1491 1492 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1493 RING_CTX_OFF(ring_header.val), &head, 4); 1494 1495 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1496 RING_CTX_OFF(ring_tail.val), &tail, 4); 1497 1498 guest_head = head; 1499 1500 head &= RB_HEAD_OFF_MASK; 1501 tail &= RB_TAIL_OFF_MASK; 1502 1503 list_for_each_entry_reverse(last_workload, q, list) { 1504 1505 if (same_context(&last_workload->ctx_desc, desc)) { 1506 gvt_dbg_el("ring id %d cur workload == last\n", 1507 ring_id); 1508 gvt_dbg_el("ctx head %x real head %lx\n", head, 1509 last_workload->rb_tail); 1510 /* 1511 * cannot use guest context head pointer here, 1512 * as it might not be updated at this time 1513 */ 1514 head = last_workload->rb_tail; 1515 break; 1516 } 1517 } 1518 1519 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1520 1521 /* record some ring buffer register values for scan and shadow */ 1522 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1523 RING_CTX_OFF(rb_start.val), &start, 4); 1524 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1525 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1526 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1527 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1528 1529 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1530 _RING_CTL_BUF_SIZE(ctl))) { 1531 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1532 return ERR_PTR(-EINVAL); 1533 } 1534 1535 workload = alloc_workload(vgpu); 1536 if (IS_ERR(workload)) 1537 return workload; 1538 1539 workload->ring_id = ring_id; 1540 workload->ctx_desc = *desc; 1541 workload->ring_context_gpa = ring_context_gpa; 1542 workload->rb_head = head; 1543 workload->guest_rb_head = guest_head; 1544 workload->rb_tail = tail; 1545 workload->rb_start = start; 1546 workload->rb_ctl = ctl; 1547 1548 if (ring_id == RCS0) { 1549 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1550 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1551 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1552 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1553 1554 workload->wa_ctx.indirect_ctx.guest_gma = 1555 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1556 workload->wa_ctx.indirect_ctx.size = 1557 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1558 CACHELINE_BYTES; 1559 1560 if (workload->wa_ctx.indirect_ctx.size != 0) { 1561 if (!intel_gvt_ggtt_validate_range(vgpu, 1562 workload->wa_ctx.indirect_ctx.guest_gma, 1563 workload->wa_ctx.indirect_ctx.size)) { 1564 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1565 workload->wa_ctx.indirect_ctx.guest_gma); 1566 kmem_cache_free(s->workloads, workload); 1567 return ERR_PTR(-EINVAL); 1568 } 1569 } 1570 1571 workload->wa_ctx.per_ctx.guest_gma = 1572 per_ctx & PER_CTX_ADDR_MASK; 1573 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1574 if (workload->wa_ctx.per_ctx.valid) { 1575 if (!intel_gvt_ggtt_validate_range(vgpu, 1576 workload->wa_ctx.per_ctx.guest_gma, 1577 CACHELINE_BYTES)) { 1578 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1579 workload->wa_ctx.per_ctx.guest_gma); 1580 kmem_cache_free(s->workloads, workload); 1581 return ERR_PTR(-EINVAL); 1582 } 1583 } 1584 } 1585 1586 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1587 workload, ring_id, head, tail, start, ctl); 1588 1589 ret = prepare_mm(workload); 1590 if (ret) { 1591 kmem_cache_free(s->workloads, workload); 1592 return ERR_PTR(ret); 1593 } 1594 1595 /* Only scan and shadow the first workload in the queue 1596 * as there is only one pre-allocated buf-obj for shadow. 1597 */ 1598 if (list_empty(workload_q_head(vgpu, ring_id))) { 1599 intel_runtime_pm_get(&dev_priv->runtime_pm); 1600 mutex_lock(&dev_priv->drm.struct_mutex); 1601 ret = intel_gvt_scan_and_shadow_workload(workload); 1602 mutex_unlock(&dev_priv->drm.struct_mutex); 1603 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm); 1604 } 1605 1606 if (ret) { 1607 if (vgpu_is_vm_unhealthy(ret)) 1608 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1609 intel_vgpu_destroy_workload(workload); 1610 return ERR_PTR(ret); 1611 } 1612 1613 return workload; 1614 } 1615 1616 /** 1617 * intel_vgpu_queue_workload - Qeue a vGPU workload 1618 * @workload: the workload to queue in 1619 */ 1620 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1621 { 1622 list_add_tail(&workload->list, 1623 workload_q_head(workload->vgpu, workload->ring_id)); 1624 intel_gvt_kick_schedule(workload->vgpu->gvt); 1625 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1626 } 1627