xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 867e6d38)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_execlists_submission.h"
41 #include "gt/intel_lrc.h"
42 #include "gt/intel_ring.h"
43 
44 #include "i915_drv.h"
45 #include "i915_gem_gtt.h"
46 #include "gvt.h"
47 
48 #define RING_CTX_OFF(x) \
49 	offsetof(struct execlist_ring_context, x)
50 
51 static void set_context_pdp_root_pointer(
52 		struct execlist_ring_context *ring_context,
53 		u32 pdp[8])
54 {
55 	int i;
56 
57 	for (i = 0; i < 8; i++)
58 		ring_context->pdps[i].val = pdp[7 - i];
59 }
60 
61 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
62 {
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct intel_context *ctx = workload->req->context;
65 
66 	if (WARN_ON(!workload->shadow_mm))
67 		return;
68 
69 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70 		return;
71 
72 	shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
73 	set_context_pdp_root_pointer(shadow_ring_context,
74 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 }
76 
77 /*
78  * when populating shadow ctx from guest, we should not overrride oa related
79  * registers, so that they will not be overlapped by guest oa configs. Thus
80  * made it possible to capture oa data from host for both host and guests.
81  */
82 static void sr_oa_regs(struct intel_vgpu_workload *workload,
83 		u32 *reg_state, bool save)
84 {
85 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
86 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
87 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
88 	int i = 0;
89 	u32 flex_mmio[] = {
90 		i915_mmio_reg_offset(EU_PERF_CNTL0),
91 		i915_mmio_reg_offset(EU_PERF_CNTL1),
92 		i915_mmio_reg_offset(EU_PERF_CNTL2),
93 		i915_mmio_reg_offset(EU_PERF_CNTL3),
94 		i915_mmio_reg_offset(EU_PERF_CNTL4),
95 		i915_mmio_reg_offset(EU_PERF_CNTL5),
96 		i915_mmio_reg_offset(EU_PERF_CNTL6),
97 	};
98 
99 	if (workload->engine->id != RCS0)
100 		return;
101 
102 	if (save) {
103 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
104 
105 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
106 			u32 state_offset = ctx_flexeu0 + i * 2;
107 
108 			workload->flex_mmio[i] = reg_state[state_offset + 1];
109 		}
110 	} else {
111 		reg_state[ctx_oactxctrl] =
112 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
113 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
114 
115 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
116 			u32 state_offset = ctx_flexeu0 + i * 2;
117 			u32 mmio = flex_mmio[i];
118 
119 			reg_state[state_offset] = mmio;
120 			reg_state[state_offset + 1] = workload->flex_mmio[i];
121 		}
122 	}
123 }
124 
125 static int populate_shadow_context(struct intel_vgpu_workload *workload)
126 {
127 	struct intel_vgpu *vgpu = workload->vgpu;
128 	struct intel_gvt *gvt = vgpu->gvt;
129 	struct intel_context *ctx = workload->req->context;
130 	struct execlist_ring_context *shadow_ring_context;
131 	void *dst;
132 	void *context_base;
133 	unsigned long context_gpa, context_page_num;
134 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
135 	unsigned long gpa_size; /* size of consecutive GPAs */
136 	struct intel_vgpu_submission *s = &vgpu->submission;
137 	int i;
138 	bool skip = false;
139 	int ring_id = workload->engine->id;
140 	int ret;
141 
142 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
143 
144 	context_base = (void *) ctx->lrc_reg_state -
145 				(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
146 
147 	shadow_ring_context = (void *) ctx->lrc_reg_state;
148 
149 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
150 #define COPY_REG(name) \
151 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
152 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
153 #define COPY_REG_MASKED(name) {\
154 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
155 					      + RING_CTX_OFF(name.val),\
156 					      &shadow_ring_context->name.val, 4);\
157 		shadow_ring_context->name.val |= 0xffff << 16;\
158 	}
159 
160 	COPY_REG_MASKED(ctx_ctrl);
161 	COPY_REG(ctx_timestamp);
162 
163 	if (workload->engine->id == RCS0) {
164 		COPY_REG(bb_per_ctx_ptr);
165 		COPY_REG(rcs_indirect_ctx);
166 		COPY_REG(rcs_indirect_ctx_offset);
167 	} else if (workload->engine->id == BCS0)
168 		intel_gvt_hypervisor_read_gpa(vgpu,
169 				workload->ring_context_gpa +
170 				BCS_TILE_REGISTER_VAL_OFFSET,
171 				(void *)shadow_ring_context +
172 				BCS_TILE_REGISTER_VAL_OFFSET, 4);
173 #undef COPY_REG
174 #undef COPY_REG_MASKED
175 
176 	/* don't copy Ring Context (the first 0x50 dwords),
177 	 * only copy the Engine Context part from guest
178 	 */
179 	intel_gvt_hypervisor_read_gpa(vgpu,
180 			workload->ring_context_gpa +
181 			RING_CTX_SIZE,
182 			(void *)shadow_ring_context +
183 			RING_CTX_SIZE,
184 			I915_GTT_PAGE_SIZE - RING_CTX_SIZE);
185 
186 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
187 
188 	gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
189 			workload->engine->name, workload->ctx_desc.lrca,
190 			workload->ctx_desc.context_id,
191 			workload->ring_context_gpa);
192 
193 	/* only need to ensure this context is not pinned/unpinned during the
194 	 * period from last submission to this this submission.
195 	 * Upon reaching this function, the currently submitted context is not
196 	 * supposed to get unpinned. If a misbehaving guest driver ever does
197 	 * this, it would corrupt itself.
198 	 */
199 	if (s->last_ctx[ring_id].valid &&
200 			(s->last_ctx[ring_id].lrca ==
201 				workload->ctx_desc.lrca) &&
202 			(s->last_ctx[ring_id].ring_context_gpa ==
203 				workload->ring_context_gpa))
204 		skip = true;
205 
206 	s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
207 	s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
208 
209 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
210 		return 0;
211 
212 	s->last_ctx[ring_id].valid = false;
213 	context_page_num = workload->engine->context_size;
214 	context_page_num = context_page_num >> PAGE_SHIFT;
215 
216 	if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
217 		context_page_num = 19;
218 
219 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
220 	 * read from the continuous GPAs into dst virtual address
221 	 */
222 	gpa_size = 0;
223 	for (i = 2; i < context_page_num; i++) {
224 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
225 				(u32)((workload->ctx_desc.lrca + i) <<
226 				I915_GTT_PAGE_SHIFT));
227 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
228 			gvt_vgpu_err("Invalid guest context descriptor\n");
229 			return -EFAULT;
230 		}
231 
232 		if (gpa_size == 0) {
233 			gpa_base = context_gpa;
234 			dst = context_base + (i << I915_GTT_PAGE_SHIFT);
235 		} else if (context_gpa != gpa_base + gpa_size)
236 			goto read;
237 
238 		gpa_size += I915_GTT_PAGE_SIZE;
239 
240 		if (i == context_page_num - 1)
241 			goto read;
242 
243 		continue;
244 
245 read:
246 		intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
247 		gpa_base = context_gpa;
248 		gpa_size = I915_GTT_PAGE_SIZE;
249 		dst = context_base + (i << I915_GTT_PAGE_SHIFT);
250 	}
251 	ret = intel_gvt_scan_engine_context(workload);
252 	if (ret) {
253 		gvt_vgpu_err("invalid cmd found in guest context pages\n");
254 		return ret;
255 	}
256 	s->last_ctx[ring_id].valid = true;
257 	return 0;
258 }
259 
260 static inline bool is_gvt_request(struct i915_request *rq)
261 {
262 	return intel_context_force_single_submission(rq->context);
263 }
264 
265 static void save_ring_hw_state(struct intel_vgpu *vgpu,
266 			       const struct intel_engine_cs *engine)
267 {
268 	struct intel_uncore *uncore = engine->uncore;
269 	i915_reg_t reg;
270 
271 	reg = RING_INSTDONE(engine->mmio_base);
272 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
273 		intel_uncore_read(uncore, reg);
274 
275 	reg = RING_ACTHD(engine->mmio_base);
276 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
277 		intel_uncore_read(uncore, reg);
278 
279 	reg = RING_ACTHD_UDW(engine->mmio_base);
280 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
281 		intel_uncore_read(uncore, reg);
282 }
283 
284 static int shadow_context_status_change(struct notifier_block *nb,
285 		unsigned long action, void *data)
286 {
287 	struct i915_request *rq = data;
288 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
289 				shadow_ctx_notifier_block[rq->engine->id]);
290 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
291 	enum intel_engine_id ring_id = rq->engine->id;
292 	struct intel_vgpu_workload *workload;
293 	unsigned long flags;
294 
295 	if (!is_gvt_request(rq)) {
296 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
297 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
298 		    scheduler->engine_owner[ring_id]) {
299 			/* Switch ring from vGPU to host. */
300 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
301 					      NULL, rq->engine);
302 			scheduler->engine_owner[ring_id] = NULL;
303 		}
304 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
305 
306 		return NOTIFY_OK;
307 	}
308 
309 	workload = scheduler->current_workload[ring_id];
310 	if (unlikely(!workload))
311 		return NOTIFY_OK;
312 
313 	switch (action) {
314 	case INTEL_CONTEXT_SCHEDULE_IN:
315 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
316 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
317 			/* Switch ring from host to vGPU or vGPU to vGPU. */
318 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
319 					      workload->vgpu, rq->engine);
320 			scheduler->engine_owner[ring_id] = workload->vgpu;
321 		} else
322 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
323 				      ring_id, workload->vgpu->id);
324 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
325 		atomic_set(&workload->shadow_ctx_active, 1);
326 		break;
327 	case INTEL_CONTEXT_SCHEDULE_OUT:
328 		save_ring_hw_state(workload->vgpu, rq->engine);
329 		atomic_set(&workload->shadow_ctx_active, 0);
330 		break;
331 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
332 		save_ring_hw_state(workload->vgpu, rq->engine);
333 		break;
334 	default:
335 		WARN_ON(1);
336 		return NOTIFY_OK;
337 	}
338 	wake_up(&workload->shadow_ctx_status_wq);
339 	return NOTIFY_OK;
340 }
341 
342 static void
343 shadow_context_descriptor_update(struct intel_context *ce,
344 				 struct intel_vgpu_workload *workload)
345 {
346 	u64 desc = ce->lrc.desc;
347 
348 	/*
349 	 * Update bits 0-11 of the context descriptor which includes flags
350 	 * like GEN8_CTX_* cached in desc_template
351 	 */
352 	desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
353 	desc |= (u64)workload->ctx_desc.addressing_mode <<
354 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
355 
356 	ce->lrc.desc = desc;
357 }
358 
359 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
360 {
361 	struct intel_vgpu *vgpu = workload->vgpu;
362 	struct i915_request *req = workload->req;
363 	void *shadow_ring_buffer_va;
364 	u32 *cs;
365 	int err;
366 
367 	if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context))
368 		intel_vgpu_restore_inhibit_context(vgpu, req);
369 
370 	/*
371 	 * To track whether a request has started on HW, we can emit a
372 	 * breadcrumb at the beginning of the request and check its
373 	 * timeline's HWSP to see if the breadcrumb has advanced past the
374 	 * start of this request. Actually, the request must have the
375 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
376 	 * scheduler might get a wrong state of it during reset. Since the
377 	 * requests from gvt always set the has_init_breadcrumb flag, here
378 	 * need to do the emit_init_breadcrumb for all the requests.
379 	 */
380 	if (req->engine->emit_init_breadcrumb) {
381 		err = req->engine->emit_init_breadcrumb(req);
382 		if (err) {
383 			gvt_vgpu_err("fail to emit init breadcrumb\n");
384 			return err;
385 		}
386 	}
387 
388 	/* allocate shadow ring buffer */
389 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
390 	if (IS_ERR(cs)) {
391 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
392 			workload->rb_len);
393 		return PTR_ERR(cs);
394 	}
395 
396 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
397 
398 	/* get shadow ring buffer va */
399 	workload->shadow_ring_buffer_va = cs;
400 
401 	memcpy(cs, shadow_ring_buffer_va,
402 			workload->rb_len);
403 
404 	cs += workload->rb_len / sizeof(u32);
405 	intel_ring_advance(workload->req, cs);
406 
407 	return 0;
408 }
409 
410 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
411 {
412 	if (!wa_ctx->indirect_ctx.obj)
413 		return;
414 
415 	i915_gem_object_lock(wa_ctx->indirect_ctx.obj, NULL);
416 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
417 	i915_gem_object_unlock(wa_ctx->indirect_ctx.obj);
418 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
419 
420 	wa_ctx->indirect_ctx.obj = NULL;
421 	wa_ctx->indirect_ctx.shadow_va = NULL;
422 }
423 
424 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
425 {
426 	struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
427 
428 	/* This is not a good idea */
429 	sg->dma_address = addr;
430 }
431 
432 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
433 					  struct intel_context *ce)
434 {
435 	struct intel_vgpu_mm *mm = workload->shadow_mm;
436 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
437 	int i = 0;
438 
439 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
440 		set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
441 	} else {
442 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
443 			struct i915_page_directory * const pd =
444 				i915_pd_entry(ppgtt->pd, i);
445 			/* skip now as current i915 ppgtt alloc won't allocate
446 			   top level pdp for non 4-level table, won't impact
447 			   shadow ppgtt. */
448 			if (!pd)
449 				break;
450 
451 			set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
452 		}
453 	}
454 }
455 
456 static int
457 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
458 {
459 	struct intel_vgpu *vgpu = workload->vgpu;
460 	struct intel_vgpu_submission *s = &vgpu->submission;
461 	struct i915_request *rq;
462 
463 	if (workload->req)
464 		return 0;
465 
466 	rq = i915_request_create(s->shadow[workload->engine->id]);
467 	if (IS_ERR(rq)) {
468 		gvt_vgpu_err("fail to allocate gem request\n");
469 		return PTR_ERR(rq);
470 	}
471 
472 	workload->req = i915_request_get(rq);
473 	return 0;
474 }
475 
476 /**
477  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
478  * shadow it as well, include ringbuffer,wa_ctx and ctx.
479  * @workload: an abstract entity for each execlist submission.
480  *
481  * This function is called before the workload submitting to i915, to make
482  * sure the content of the workload is valid.
483  */
484 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
485 {
486 	struct intel_vgpu *vgpu = workload->vgpu;
487 	struct intel_vgpu_submission *s = &vgpu->submission;
488 	int ret;
489 
490 	lockdep_assert_held(&vgpu->vgpu_lock);
491 
492 	if (workload->shadow)
493 		return 0;
494 
495 	if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
496 		shadow_context_descriptor_update(s->shadow[workload->engine->id],
497 						 workload);
498 
499 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
500 	if (ret)
501 		return ret;
502 
503 	if (workload->engine->id == RCS0 &&
504 	    workload->wa_ctx.indirect_ctx.size) {
505 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
506 		if (ret)
507 			goto err_shadow;
508 	}
509 
510 	workload->shadow = true;
511 	return 0;
512 
513 err_shadow:
514 	release_shadow_wa_ctx(&workload->wa_ctx);
515 	return ret;
516 }
517 
518 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
519 
520 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
521 {
522 	struct intel_gvt *gvt = workload->vgpu->gvt;
523 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
524 	struct intel_vgpu_shadow_bb *bb;
525 	struct i915_gem_ww_ctx ww;
526 	int ret;
527 
528 	list_for_each_entry(bb, &workload->shadow_bb, list) {
529 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
530 		 * is only updated into ring_scan_buffer, not real ring address
531 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
532 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
533 		 * in copy_workload_to_ring_buffer.
534 		 */
535 
536 		if (bb->bb_offset)
537 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
538 				+ bb->bb_offset;
539 
540 		/*
541 		 * For non-priv bb, scan&shadow is only for
542 		 * debugging purpose, so the content of shadow bb
543 		 * is the same as original bb. Therefore,
544 		 * here, rather than switch to shadow bb's gma
545 		 * address, we directly use original batch buffer's
546 		 * gma address, and send original bb to hardware
547 		 * directly
548 		 */
549 		if (!bb->ppgtt) {
550 			i915_gem_ww_ctx_init(&ww, false);
551 retry:
552 			i915_gem_object_lock(bb->obj, &ww);
553 
554 			bb->vma = i915_gem_object_ggtt_pin_ww(bb->obj, &ww,
555 							      NULL, 0, 0, 0);
556 			if (IS_ERR(bb->vma)) {
557 				ret = PTR_ERR(bb->vma);
558 				if (ret == -EDEADLK) {
559 					ret = i915_gem_ww_ctx_backoff(&ww);
560 					if (!ret)
561 						goto retry;
562 				}
563 				goto err;
564 			}
565 
566 			/* relocate shadow batch buffer */
567 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
568 			if (gmadr_bytes == 8)
569 				bb->bb_start_cmd_va[2] = 0;
570 
571 			ret = i915_vma_move_to_active(bb->vma,
572 						      workload->req,
573 						      0);
574 			if (ret)
575 				goto err;
576 
577 			/* No one is going to touch shadow bb from now on. */
578 			i915_gem_object_flush_map(bb->obj);
579 			i915_gem_object_unlock(bb->obj);
580 		}
581 	}
582 	return 0;
583 err:
584 	i915_gem_ww_ctx_fini(&ww);
585 	release_shadow_batch_buffer(workload);
586 	return ret;
587 }
588 
589 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
590 {
591 	struct intel_vgpu_workload *workload =
592 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
593 	struct i915_request *rq = workload->req;
594 	struct execlist_ring_context *shadow_ring_context =
595 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
596 
597 	shadow_ring_context->bb_per_ctx_ptr.val =
598 		(shadow_ring_context->bb_per_ctx_ptr.val &
599 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
600 	shadow_ring_context->rcs_indirect_ctx.val =
601 		(shadow_ring_context->rcs_indirect_ctx.val &
602 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
603 }
604 
605 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
606 {
607 	struct i915_vma *vma;
608 	unsigned char *per_ctx_va =
609 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
610 		wa_ctx->indirect_ctx.size;
611 	struct i915_gem_ww_ctx ww;
612 	int ret;
613 
614 	if (wa_ctx->indirect_ctx.size == 0)
615 		return 0;
616 
617 	i915_gem_ww_ctx_init(&ww, false);
618 retry:
619 	i915_gem_object_lock(wa_ctx->indirect_ctx.obj, &ww);
620 
621 	vma = i915_gem_object_ggtt_pin_ww(wa_ctx->indirect_ctx.obj, &ww, NULL,
622 					  0, CACHELINE_BYTES, 0);
623 	if (IS_ERR(vma)) {
624 		ret = PTR_ERR(vma);
625 		if (ret == -EDEADLK) {
626 			ret = i915_gem_ww_ctx_backoff(&ww);
627 			if (!ret)
628 				goto retry;
629 		}
630 		return ret;
631 	}
632 
633 	i915_gem_object_unlock(wa_ctx->indirect_ctx.obj);
634 
635 	/* FIXME: we are not tracking our pinned VMA leaving it
636 	 * up to the core to fix up the stray pin_count upon
637 	 * free.
638 	 */
639 
640 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
641 
642 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
643 	memset(per_ctx_va, 0, CACHELINE_BYTES);
644 
645 	update_wa_ctx_2_shadow_ctx(wa_ctx);
646 	return 0;
647 }
648 
649 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
650 {
651 	vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
652 		workload->rb_start;
653 }
654 
655 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
656 {
657 	struct intel_vgpu_shadow_bb *bb, *pos;
658 
659 	if (list_empty(&workload->shadow_bb))
660 		return;
661 
662 	bb = list_first_entry(&workload->shadow_bb,
663 			struct intel_vgpu_shadow_bb, list);
664 
665 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
666 		if (bb->obj) {
667 			i915_gem_object_lock(bb->obj, NULL);
668 			if (bb->va && !IS_ERR(bb->va))
669 				i915_gem_object_unpin_map(bb->obj);
670 
671 			if (bb->vma && !IS_ERR(bb->vma))
672 				i915_vma_unpin(bb->vma);
673 
674 			i915_gem_object_unlock(bb->obj);
675 			i915_gem_object_put(bb->obj);
676 		}
677 		list_del(&bb->list);
678 		kfree(bb);
679 	}
680 }
681 
682 static int
683 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
684 {
685 	struct intel_vgpu *vgpu = workload->vgpu;
686 	struct intel_vgpu_mm *m;
687 	int ret = 0;
688 
689 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
690 	if (ret) {
691 		gvt_vgpu_err("fail to vgpu pin mm\n");
692 		return ret;
693 	}
694 
695 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
696 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
697 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
698 		return -EINVAL;
699 	}
700 
701 	if (!list_empty(&workload->lri_shadow_mm)) {
702 		list_for_each_entry(m, &workload->lri_shadow_mm,
703 				    ppgtt_mm.link) {
704 			ret = intel_vgpu_pin_mm(m);
705 			if (ret) {
706 				list_for_each_entry_from_reverse(m,
707 								 &workload->lri_shadow_mm,
708 								 ppgtt_mm.link)
709 					intel_vgpu_unpin_mm(m);
710 				gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
711 				break;
712 			}
713 		}
714 	}
715 
716 	if (ret)
717 		intel_vgpu_unpin_mm(workload->shadow_mm);
718 
719 	return ret;
720 }
721 
722 static void
723 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
724 {
725 	struct intel_vgpu_mm *m;
726 
727 	if (!list_empty(&workload->lri_shadow_mm)) {
728 		list_for_each_entry(m, &workload->lri_shadow_mm,
729 				    ppgtt_mm.link)
730 			intel_vgpu_unpin_mm(m);
731 	}
732 	intel_vgpu_unpin_mm(workload->shadow_mm);
733 }
734 
735 static int prepare_workload(struct intel_vgpu_workload *workload)
736 {
737 	struct intel_vgpu *vgpu = workload->vgpu;
738 	struct intel_vgpu_submission *s = &vgpu->submission;
739 	int ret = 0;
740 
741 	ret = intel_vgpu_shadow_mm_pin(workload);
742 	if (ret) {
743 		gvt_vgpu_err("fail to pin shadow mm\n");
744 		return ret;
745 	}
746 
747 	update_shadow_pdps(workload);
748 
749 	set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
750 
751 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
752 	if (ret) {
753 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
754 		goto err_unpin_mm;
755 	}
756 
757 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
758 	if (ret) {
759 		gvt_vgpu_err("fail to flush post shadow\n");
760 		goto err_unpin_mm;
761 	}
762 
763 	ret = copy_workload_to_ring_buffer(workload);
764 	if (ret) {
765 		gvt_vgpu_err("fail to generate request\n");
766 		goto err_unpin_mm;
767 	}
768 
769 	ret = prepare_shadow_batch_buffer(workload);
770 	if (ret) {
771 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
772 		goto err_unpin_mm;
773 	}
774 
775 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
776 	if (ret) {
777 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
778 		goto err_shadow_batch;
779 	}
780 
781 	if (workload->prepare) {
782 		ret = workload->prepare(workload);
783 		if (ret)
784 			goto err_shadow_wa_ctx;
785 	}
786 
787 	return 0;
788 err_shadow_wa_ctx:
789 	release_shadow_wa_ctx(&workload->wa_ctx);
790 err_shadow_batch:
791 	release_shadow_batch_buffer(workload);
792 err_unpin_mm:
793 	intel_vgpu_shadow_mm_unpin(workload);
794 	return ret;
795 }
796 
797 static int dispatch_workload(struct intel_vgpu_workload *workload)
798 {
799 	struct intel_vgpu *vgpu = workload->vgpu;
800 	struct i915_request *rq;
801 	int ret;
802 
803 	gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
804 		      workload->engine->name, workload);
805 
806 	mutex_lock(&vgpu->vgpu_lock);
807 
808 	ret = intel_gvt_workload_req_alloc(workload);
809 	if (ret)
810 		goto err_req;
811 
812 	ret = intel_gvt_scan_and_shadow_workload(workload);
813 	if (ret)
814 		goto out;
815 
816 	ret = populate_shadow_context(workload);
817 	if (ret) {
818 		release_shadow_wa_ctx(&workload->wa_ctx);
819 		goto out;
820 	}
821 
822 	ret = prepare_workload(workload);
823 out:
824 	if (ret) {
825 		/* We might still need to add request with
826 		 * clean ctx to retire it properly..
827 		 */
828 		rq = fetch_and_zero(&workload->req);
829 		i915_request_put(rq);
830 	}
831 
832 	if (!IS_ERR_OR_NULL(workload->req)) {
833 		gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
834 			      workload->engine->name, workload->req);
835 		i915_request_add(workload->req);
836 		workload->dispatched = true;
837 	}
838 err_req:
839 	if (ret)
840 		workload->status = ret;
841 	mutex_unlock(&vgpu->vgpu_lock);
842 	return ret;
843 }
844 
845 static struct intel_vgpu_workload *
846 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
847 {
848 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
849 	struct intel_vgpu_workload *workload = NULL;
850 
851 	mutex_lock(&gvt->sched_lock);
852 
853 	/*
854 	 * no current vgpu / will be scheduled out / no workload
855 	 * bail out
856 	 */
857 	if (!scheduler->current_vgpu) {
858 		gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
859 		goto out;
860 	}
861 
862 	if (scheduler->need_reschedule) {
863 		gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
864 		goto out;
865 	}
866 
867 	if (!scheduler->current_vgpu->active ||
868 	    list_empty(workload_q_head(scheduler->current_vgpu, engine)))
869 		goto out;
870 
871 	/*
872 	 * still have current workload, maybe the workload disptacher
873 	 * fail to submit it for some reason, resubmit it.
874 	 */
875 	if (scheduler->current_workload[engine->id]) {
876 		workload = scheduler->current_workload[engine->id];
877 		gvt_dbg_sched("ring %s still have current workload %p\n",
878 			      engine->name, workload);
879 		goto out;
880 	}
881 
882 	/*
883 	 * pick a workload as current workload
884 	 * once current workload is set, schedule policy routines
885 	 * will wait the current workload is finished when trying to
886 	 * schedule out a vgpu.
887 	 */
888 	scheduler->current_workload[engine->id] =
889 		list_first_entry(workload_q_head(scheduler->current_vgpu,
890 						 engine),
891 				 struct intel_vgpu_workload, list);
892 
893 	workload = scheduler->current_workload[engine->id];
894 
895 	gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
896 
897 	atomic_inc(&workload->vgpu->submission.running_workload_num);
898 out:
899 	mutex_unlock(&gvt->sched_lock);
900 	return workload;
901 }
902 
903 static void update_guest_pdps(struct intel_vgpu *vgpu,
904 			      u64 ring_context_gpa, u32 pdp[8])
905 {
906 	u64 gpa;
907 	int i;
908 
909 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
910 
911 	for (i = 0; i < 8; i++)
912 		intel_gvt_hypervisor_write_gpa(vgpu,
913 				gpa + i * 8, &pdp[7 - i], 4);
914 }
915 
916 static __maybe_unused bool
917 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
918 {
919 	if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
920 		u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
921 
922 		if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
923 			gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
924 			return false;
925 		}
926 		return true;
927 	} else {
928 		/* see comment in LRI handler in cmd_parser.c */
929 		gvt_dbg_mm("invalid shadow mm type\n");
930 		return false;
931 	}
932 }
933 
934 static void update_guest_context(struct intel_vgpu_workload *workload)
935 {
936 	struct i915_request *rq = workload->req;
937 	struct intel_vgpu *vgpu = workload->vgpu;
938 	struct execlist_ring_context *shadow_ring_context;
939 	struct intel_context *ctx = workload->req->context;
940 	void *context_base;
941 	void *src;
942 	unsigned long context_gpa, context_page_num;
943 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
944 	unsigned long gpa_size; /* size of consecutive GPAs*/
945 	int i;
946 	u32 ring_base;
947 	u32 head, tail;
948 	u16 wrap_count;
949 
950 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
951 		      workload->ctx_desc.lrca);
952 
953 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
954 
955 	head = workload->rb_head;
956 	tail = workload->rb_tail;
957 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
958 
959 	if (tail < head) {
960 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
961 			wrap_count = 0;
962 		else
963 			wrap_count += 1;
964 	}
965 
966 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
967 
968 	ring_base = rq->engine->mmio_base;
969 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
970 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
971 
972 	context_page_num = rq->engine->context_size;
973 	context_page_num = context_page_num >> PAGE_SHIFT;
974 
975 	if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0)
976 		context_page_num = 19;
977 
978 	context_base = (void *) ctx->lrc_reg_state -
979 			(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
980 
981 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
982 	 * write to the consecutive GPAs from src virtual address
983 	 */
984 	gpa_size = 0;
985 	for (i = 2; i < context_page_num; i++) {
986 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
987 				(u32)((workload->ctx_desc.lrca + i) <<
988 					I915_GTT_PAGE_SHIFT));
989 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
990 			gvt_vgpu_err("invalid guest context descriptor\n");
991 			return;
992 		}
993 
994 		if (gpa_size == 0) {
995 			gpa_base = context_gpa;
996 			src = context_base + (i << I915_GTT_PAGE_SHIFT);
997 		} else if (context_gpa != gpa_base + gpa_size)
998 			goto write;
999 
1000 		gpa_size += I915_GTT_PAGE_SIZE;
1001 
1002 		if (i == context_page_num - 1)
1003 			goto write;
1004 
1005 		continue;
1006 
1007 write:
1008 		intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
1009 		gpa_base = context_gpa;
1010 		gpa_size = I915_GTT_PAGE_SIZE;
1011 		src = context_base + (i << I915_GTT_PAGE_SHIFT);
1012 	}
1013 
1014 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
1015 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
1016 
1017 	shadow_ring_context = (void *) ctx->lrc_reg_state;
1018 
1019 	if (!list_empty(&workload->lri_shadow_mm)) {
1020 		struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
1021 							  struct intel_vgpu_mm,
1022 							  ppgtt_mm.link);
1023 		GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
1024 		update_guest_pdps(vgpu, workload->ring_context_gpa,
1025 				  (void *)m->ppgtt_mm.guest_pdps);
1026 	}
1027 
1028 #define COPY_REG(name) \
1029 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
1030 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
1031 
1032 	COPY_REG(ctx_ctrl);
1033 	COPY_REG(ctx_timestamp);
1034 
1035 #undef COPY_REG
1036 
1037 	intel_gvt_hypervisor_write_gpa(vgpu,
1038 			workload->ring_context_gpa +
1039 			sizeof(*shadow_ring_context),
1040 			(void *)shadow_ring_context +
1041 			sizeof(*shadow_ring_context),
1042 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
1043 }
1044 
1045 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
1046 				intel_engine_mask_t engine_mask)
1047 {
1048 	struct intel_vgpu_submission *s = &vgpu->submission;
1049 	struct intel_engine_cs *engine;
1050 	struct intel_vgpu_workload *pos, *n;
1051 	intel_engine_mask_t tmp;
1052 
1053 	/* free the unsubmited workloads in the queues. */
1054 	for_each_engine_masked(engine, vgpu->gvt->gt, engine_mask, tmp) {
1055 		list_for_each_entry_safe(pos, n,
1056 			&s->workload_q_head[engine->id], list) {
1057 			list_del_init(&pos->list);
1058 			intel_vgpu_destroy_workload(pos);
1059 		}
1060 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
1061 	}
1062 }
1063 
1064 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1065 {
1066 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1067 	struct intel_vgpu_workload *workload =
1068 		scheduler->current_workload[ring_id];
1069 	struct intel_vgpu *vgpu = workload->vgpu;
1070 	struct intel_vgpu_submission *s = &vgpu->submission;
1071 	struct i915_request *rq = workload->req;
1072 	int event;
1073 
1074 	mutex_lock(&vgpu->vgpu_lock);
1075 	mutex_lock(&gvt->sched_lock);
1076 
1077 	/* For the workload w/ request, needs to wait for the context
1078 	 * switch to make sure request is completed.
1079 	 * For the workload w/o request, directly complete the workload.
1080 	 */
1081 	if (rq) {
1082 		wait_event(workload->shadow_ctx_status_wq,
1083 			   !atomic_read(&workload->shadow_ctx_active));
1084 
1085 		/* If this request caused GPU hang, req->fence.error will
1086 		 * be set to -EIO. Use -EIO to set workload status so
1087 		 * that when this request caused GPU hang, didn't trigger
1088 		 * context switch interrupt to guest.
1089 		 */
1090 		if (likely(workload->status == -EINPROGRESS)) {
1091 			if (workload->req->fence.error == -EIO)
1092 				workload->status = -EIO;
1093 			else
1094 				workload->status = 0;
1095 		}
1096 
1097 		if (!workload->status &&
1098 		    !(vgpu->resetting_eng & BIT(ring_id))) {
1099 			update_guest_context(workload);
1100 
1101 			for_each_set_bit(event, workload->pending_events,
1102 					 INTEL_GVT_EVENT_MAX)
1103 				intel_vgpu_trigger_virtual_event(vgpu, event);
1104 		}
1105 
1106 		i915_request_put(fetch_and_zero(&workload->req));
1107 	}
1108 
1109 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1110 			ring_id, workload, workload->status);
1111 
1112 	scheduler->current_workload[ring_id] = NULL;
1113 
1114 	list_del_init(&workload->list);
1115 
1116 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1117 		/* if workload->status is not successful means HW GPU
1118 		 * has occurred GPU hang or something wrong with i915/GVT,
1119 		 * and GVT won't inject context switch interrupt to guest.
1120 		 * So this error is a vGPU hang actually to the guest.
1121 		 * According to this we should emunlate a vGPU hang. If
1122 		 * there are pending workloads which are already submitted
1123 		 * from guest, we should clean them up like HW GPU does.
1124 		 *
1125 		 * if it is in middle of engine resetting, the pending
1126 		 * workloads won't be submitted to HW GPU and will be
1127 		 * cleaned up during the resetting process later, so doing
1128 		 * the workload clean up here doesn't have any impact.
1129 		 **/
1130 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1131 	}
1132 
1133 	workload->complete(workload);
1134 
1135 	intel_vgpu_shadow_mm_unpin(workload);
1136 	intel_vgpu_destroy_workload(workload);
1137 
1138 	atomic_dec(&s->running_workload_num);
1139 	wake_up(&scheduler->workload_complete_wq);
1140 
1141 	if (gvt->scheduler.need_reschedule)
1142 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1143 
1144 	mutex_unlock(&gvt->sched_lock);
1145 	mutex_unlock(&vgpu->vgpu_lock);
1146 }
1147 
1148 static int workload_thread(void *arg)
1149 {
1150 	struct intel_engine_cs *engine = arg;
1151 	const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1152 	struct intel_gvt *gvt = engine->i915->gvt;
1153 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1154 	struct intel_vgpu_workload *workload = NULL;
1155 	struct intel_vgpu *vgpu = NULL;
1156 	int ret;
1157 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1158 
1159 	gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1160 
1161 	while (!kthread_should_stop()) {
1162 		intel_wakeref_t wakeref;
1163 
1164 		add_wait_queue(&scheduler->waitq[engine->id], &wait);
1165 		do {
1166 			workload = pick_next_workload(gvt, engine);
1167 			if (workload)
1168 				break;
1169 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1170 				   MAX_SCHEDULE_TIMEOUT);
1171 		} while (!kthread_should_stop());
1172 		remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1173 
1174 		if (!workload)
1175 			break;
1176 
1177 		gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1178 			      engine->name, workload,
1179 			      workload->vgpu->id);
1180 
1181 		wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1182 
1183 		gvt_dbg_sched("ring %s will dispatch workload %p\n",
1184 			      engine->name, workload);
1185 
1186 		if (need_force_wake)
1187 			intel_uncore_forcewake_get(engine->uncore,
1188 						   FORCEWAKE_ALL);
1189 		/*
1190 		 * Update the vReg of the vGPU which submitted this
1191 		 * workload. The vGPU may use these registers for checking
1192 		 * the context state. The value comes from GPU commands
1193 		 * in this workload.
1194 		 */
1195 		update_vreg_in_ctx(workload);
1196 
1197 		ret = dispatch_workload(workload);
1198 
1199 		if (ret) {
1200 			vgpu = workload->vgpu;
1201 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1202 			goto complete;
1203 		}
1204 
1205 		gvt_dbg_sched("ring %s wait workload %p\n",
1206 			      engine->name, workload);
1207 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1208 
1209 complete:
1210 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1211 			      workload, workload->status);
1212 
1213 		complete_current_workload(gvt, engine->id);
1214 
1215 		if (need_force_wake)
1216 			intel_uncore_forcewake_put(engine->uncore,
1217 						   FORCEWAKE_ALL);
1218 
1219 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1220 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1221 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1222 	}
1223 	return 0;
1224 }
1225 
1226 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1227 {
1228 	struct intel_vgpu_submission *s = &vgpu->submission;
1229 	struct intel_gvt *gvt = vgpu->gvt;
1230 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1231 
1232 	if (atomic_read(&s->running_workload_num)) {
1233 		gvt_dbg_sched("wait vgpu idle\n");
1234 
1235 		wait_event(scheduler->workload_complete_wq,
1236 				!atomic_read(&s->running_workload_num));
1237 	}
1238 }
1239 
1240 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1241 {
1242 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1243 	struct intel_engine_cs *engine;
1244 	enum intel_engine_id i;
1245 
1246 	gvt_dbg_core("clean workload scheduler\n");
1247 
1248 	for_each_engine(engine, gvt->gt, i) {
1249 		atomic_notifier_chain_unregister(
1250 					&engine->context_status_notifier,
1251 					&gvt->shadow_ctx_notifier_block[i]);
1252 		kthread_stop(scheduler->thread[i]);
1253 	}
1254 }
1255 
1256 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1257 {
1258 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1259 	struct intel_engine_cs *engine;
1260 	enum intel_engine_id i;
1261 	int ret;
1262 
1263 	gvt_dbg_core("init workload scheduler\n");
1264 
1265 	init_waitqueue_head(&scheduler->workload_complete_wq);
1266 
1267 	for_each_engine(engine, gvt->gt, i) {
1268 		init_waitqueue_head(&scheduler->waitq[i]);
1269 
1270 		scheduler->thread[i] = kthread_run(workload_thread, engine,
1271 						   "gvt:%s", engine->name);
1272 		if (IS_ERR(scheduler->thread[i])) {
1273 			gvt_err("fail to create workload thread\n");
1274 			ret = PTR_ERR(scheduler->thread[i]);
1275 			goto err;
1276 		}
1277 
1278 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1279 					shadow_context_status_change;
1280 		atomic_notifier_chain_register(&engine->context_status_notifier,
1281 					&gvt->shadow_ctx_notifier_block[i]);
1282 	}
1283 
1284 	return 0;
1285 
1286 err:
1287 	intel_gvt_clean_workload_scheduler(gvt);
1288 	return ret;
1289 }
1290 
1291 static void
1292 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1293 				struct i915_ppgtt *ppgtt)
1294 {
1295 	int i;
1296 
1297 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1298 		set_dma_address(ppgtt->pd, s->i915_context_pml4);
1299 	} else {
1300 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1301 			struct i915_page_directory * const pd =
1302 				i915_pd_entry(ppgtt->pd, i);
1303 
1304 			set_dma_address(pd, s->i915_context_pdps[i]);
1305 		}
1306 	}
1307 }
1308 
1309 /**
1310  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1311  * @vgpu: a vGPU
1312  *
1313  * This function is called when a vGPU is being destroyed.
1314  *
1315  */
1316 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1317 {
1318 	struct intel_vgpu_submission *s = &vgpu->submission;
1319 	struct intel_engine_cs *engine;
1320 	enum intel_engine_id id;
1321 
1322 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1323 
1324 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1325 	for_each_engine(engine, vgpu->gvt->gt, id)
1326 		intel_context_put(s->shadow[id]);
1327 
1328 	kmem_cache_destroy(s->workloads);
1329 }
1330 
1331 
1332 /**
1333  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1334  * @vgpu: a vGPU
1335  * @engine_mask: engines expected to be reset
1336  *
1337  * This function is called when a vGPU is being destroyed.
1338  *
1339  */
1340 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1341 				 intel_engine_mask_t engine_mask)
1342 {
1343 	struct intel_vgpu_submission *s = &vgpu->submission;
1344 
1345 	if (!s->active)
1346 		return;
1347 
1348 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1349 	s->ops->reset(vgpu, engine_mask);
1350 }
1351 
1352 static void
1353 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1354 			     struct i915_ppgtt *ppgtt)
1355 {
1356 	int i;
1357 
1358 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1359 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1360 	} else {
1361 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1362 			struct i915_page_directory * const pd =
1363 				i915_pd_entry(ppgtt->pd, i);
1364 
1365 			s->i915_context_pdps[i] = px_dma(pd);
1366 		}
1367 	}
1368 }
1369 
1370 /**
1371  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1372  * @vgpu: a vGPU
1373  *
1374  * This function is called when a vGPU is being created.
1375  *
1376  * Returns:
1377  * Zero on success, negative error code if failed.
1378  *
1379  */
1380 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1381 {
1382 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1383 	struct intel_vgpu_submission *s = &vgpu->submission;
1384 	struct intel_engine_cs *engine;
1385 	struct i915_ppgtt *ppgtt;
1386 	enum intel_engine_id i;
1387 	int ret;
1388 
1389 	ppgtt = i915_ppgtt_create(&i915->gt);
1390 	if (IS_ERR(ppgtt))
1391 		return PTR_ERR(ppgtt);
1392 
1393 	i915_context_ppgtt_root_save(s, ppgtt);
1394 
1395 	for_each_engine(engine, vgpu->gvt->gt, i) {
1396 		struct intel_context *ce;
1397 
1398 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1399 		s->shadow[i] = ERR_PTR(-EINVAL);
1400 
1401 		ce = intel_context_create(engine);
1402 		if (IS_ERR(ce)) {
1403 			ret = PTR_ERR(ce);
1404 			goto out_shadow_ctx;
1405 		}
1406 
1407 		i915_vm_put(ce->vm);
1408 		ce->vm = i915_vm_get(&ppgtt->vm);
1409 		intel_context_set_single_submission(ce);
1410 
1411 		/* Max ring buffer size */
1412 		if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1413 			const unsigned int ring_size = 512 * SZ_4K;
1414 
1415 			ce->ring = __intel_context_ring_size(ring_size);
1416 		}
1417 
1418 		s->shadow[i] = ce;
1419 	}
1420 
1421 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1422 
1423 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1424 						  sizeof(struct intel_vgpu_workload), 0,
1425 						  SLAB_HWCACHE_ALIGN,
1426 						  offsetof(struct intel_vgpu_workload, rb_tail),
1427 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1428 						  NULL);
1429 
1430 	if (!s->workloads) {
1431 		ret = -ENOMEM;
1432 		goto out_shadow_ctx;
1433 	}
1434 
1435 	atomic_set(&s->running_workload_num, 0);
1436 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1437 
1438 	memset(s->last_ctx, 0, sizeof(s->last_ctx));
1439 
1440 	i915_vm_put(&ppgtt->vm);
1441 	return 0;
1442 
1443 out_shadow_ctx:
1444 	i915_context_ppgtt_root_restore(s, ppgtt);
1445 	for_each_engine(engine, vgpu->gvt->gt, i) {
1446 		if (IS_ERR(s->shadow[i]))
1447 			break;
1448 
1449 		intel_context_put(s->shadow[i]);
1450 	}
1451 	i915_vm_put(&ppgtt->vm);
1452 	return ret;
1453 }
1454 
1455 /**
1456  * intel_vgpu_select_submission_ops - select virtual submission interface
1457  * @vgpu: a vGPU
1458  * @engine_mask: either ALL_ENGINES or target engine mask
1459  * @interface: expected vGPU virtual submission interface
1460  *
1461  * This function is called when guest configures submission interface.
1462  *
1463  * Returns:
1464  * Zero on success, negative error code if failed.
1465  *
1466  */
1467 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1468 				     intel_engine_mask_t engine_mask,
1469 				     unsigned int interface)
1470 {
1471 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1472 	struct intel_vgpu_submission *s = &vgpu->submission;
1473 	const struct intel_vgpu_submission_ops *ops[] = {
1474 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1475 			&intel_vgpu_execlist_submission_ops,
1476 	};
1477 	int ret;
1478 
1479 	if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1480 		return -EINVAL;
1481 
1482 	if (drm_WARN_ON(&i915->drm,
1483 			interface == 0 && engine_mask != ALL_ENGINES))
1484 		return -EINVAL;
1485 
1486 	if (s->active)
1487 		s->ops->clean(vgpu, engine_mask);
1488 
1489 	if (interface == 0) {
1490 		s->ops = NULL;
1491 		s->virtual_submission_interface = 0;
1492 		s->active = false;
1493 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1494 		return 0;
1495 	}
1496 
1497 	ret = ops[interface]->init(vgpu, engine_mask);
1498 	if (ret)
1499 		return ret;
1500 
1501 	s->ops = ops[interface];
1502 	s->virtual_submission_interface = interface;
1503 	s->active = true;
1504 
1505 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1506 			vgpu->id, s->ops->name);
1507 
1508 	return 0;
1509 }
1510 
1511 /**
1512  * intel_vgpu_destroy_workload - destroy a vGPU workload
1513  * @workload: workload to destroy
1514  *
1515  * This function is called when destroy a vGPU workload.
1516  *
1517  */
1518 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1519 {
1520 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1521 
1522 	intel_context_unpin(s->shadow[workload->engine->id]);
1523 	release_shadow_batch_buffer(workload);
1524 	release_shadow_wa_ctx(&workload->wa_ctx);
1525 
1526 	if (!list_empty(&workload->lri_shadow_mm)) {
1527 		struct intel_vgpu_mm *m, *mm;
1528 		list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1529 					 ppgtt_mm.link) {
1530 			list_del(&m->ppgtt_mm.link);
1531 			intel_vgpu_mm_put(m);
1532 		}
1533 	}
1534 
1535 	GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1536 	if (workload->shadow_mm)
1537 		intel_vgpu_mm_put(workload->shadow_mm);
1538 
1539 	kmem_cache_free(s->workloads, workload);
1540 }
1541 
1542 static struct intel_vgpu_workload *
1543 alloc_workload(struct intel_vgpu *vgpu)
1544 {
1545 	struct intel_vgpu_submission *s = &vgpu->submission;
1546 	struct intel_vgpu_workload *workload;
1547 
1548 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1549 	if (!workload)
1550 		return ERR_PTR(-ENOMEM);
1551 
1552 	INIT_LIST_HEAD(&workload->list);
1553 	INIT_LIST_HEAD(&workload->shadow_bb);
1554 	INIT_LIST_HEAD(&workload->lri_shadow_mm);
1555 
1556 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1557 	atomic_set(&workload->shadow_ctx_active, 0);
1558 
1559 	workload->status = -EINPROGRESS;
1560 	workload->vgpu = vgpu;
1561 
1562 	return workload;
1563 }
1564 
1565 #define RING_CTX_OFF(x) \
1566 	offsetof(struct execlist_ring_context, x)
1567 
1568 static void read_guest_pdps(struct intel_vgpu *vgpu,
1569 		u64 ring_context_gpa, u32 pdp[8])
1570 {
1571 	u64 gpa;
1572 	int i;
1573 
1574 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1575 
1576 	for (i = 0; i < 8; i++)
1577 		intel_gvt_hypervisor_read_gpa(vgpu,
1578 				gpa + i * 8, &pdp[7 - i], 4);
1579 }
1580 
1581 static int prepare_mm(struct intel_vgpu_workload *workload)
1582 {
1583 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1584 	struct intel_vgpu_mm *mm;
1585 	struct intel_vgpu *vgpu = workload->vgpu;
1586 	enum intel_gvt_gtt_type root_entry_type;
1587 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1588 
1589 	switch (desc->addressing_mode) {
1590 	case 1: /* legacy 32-bit */
1591 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1592 		break;
1593 	case 3: /* legacy 64-bit */
1594 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1595 		break;
1596 	default:
1597 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1598 		return -EINVAL;
1599 	}
1600 
1601 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1602 
1603 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1604 	if (IS_ERR(mm))
1605 		return PTR_ERR(mm);
1606 
1607 	workload->shadow_mm = mm;
1608 	return 0;
1609 }
1610 
1611 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1612 		((a)->lrca == (b)->lrca))
1613 
1614 /**
1615  * intel_vgpu_create_workload - create a vGPU workload
1616  * @vgpu: a vGPU
1617  * @engine: the engine
1618  * @desc: a guest context descriptor
1619  *
1620  * This function is called when creating a vGPU workload.
1621  *
1622  * Returns:
1623  * struct intel_vgpu_workload * on success, negative error code in
1624  * pointer if failed.
1625  *
1626  */
1627 struct intel_vgpu_workload *
1628 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1629 			   const struct intel_engine_cs *engine,
1630 			   struct execlist_ctx_descriptor_format *desc)
1631 {
1632 	struct intel_vgpu_submission *s = &vgpu->submission;
1633 	struct list_head *q = workload_q_head(vgpu, engine);
1634 	struct intel_vgpu_workload *last_workload = NULL;
1635 	struct intel_vgpu_workload *workload = NULL;
1636 	u64 ring_context_gpa;
1637 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1638 	u32 guest_head;
1639 	int ret;
1640 
1641 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1642 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1643 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1644 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1645 		return ERR_PTR(-EINVAL);
1646 	}
1647 
1648 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1649 			RING_CTX_OFF(ring_header.val), &head, 4);
1650 
1651 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1652 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1653 
1654 	guest_head = head;
1655 
1656 	head &= RB_HEAD_OFF_MASK;
1657 	tail &= RB_TAIL_OFF_MASK;
1658 
1659 	list_for_each_entry_reverse(last_workload, q, list) {
1660 
1661 		if (same_context(&last_workload->ctx_desc, desc)) {
1662 			gvt_dbg_el("ring %s cur workload == last\n",
1663 				   engine->name);
1664 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1665 				   last_workload->rb_tail);
1666 			/*
1667 			 * cannot use guest context head pointer here,
1668 			 * as it might not be updated at this time
1669 			 */
1670 			head = last_workload->rb_tail;
1671 			break;
1672 		}
1673 	}
1674 
1675 	gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1676 
1677 	/* record some ring buffer register values for scan and shadow */
1678 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1679 			RING_CTX_OFF(rb_start.val), &start, 4);
1680 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1681 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1682 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1683 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1684 
1685 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1686 				_RING_CTL_BUF_SIZE(ctl))) {
1687 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1688 		return ERR_PTR(-EINVAL);
1689 	}
1690 
1691 	workload = alloc_workload(vgpu);
1692 	if (IS_ERR(workload))
1693 		return workload;
1694 
1695 	workload->engine = engine;
1696 	workload->ctx_desc = *desc;
1697 	workload->ring_context_gpa = ring_context_gpa;
1698 	workload->rb_head = head;
1699 	workload->guest_rb_head = guest_head;
1700 	workload->rb_tail = tail;
1701 	workload->rb_start = start;
1702 	workload->rb_ctl = ctl;
1703 
1704 	if (engine->id == RCS0) {
1705 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1706 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1707 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1708 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1709 
1710 		workload->wa_ctx.indirect_ctx.guest_gma =
1711 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1712 		workload->wa_ctx.indirect_ctx.size =
1713 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1714 			CACHELINE_BYTES;
1715 
1716 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1717 			if (!intel_gvt_ggtt_validate_range(vgpu,
1718 				workload->wa_ctx.indirect_ctx.guest_gma,
1719 				workload->wa_ctx.indirect_ctx.size)) {
1720 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1721 				    workload->wa_ctx.indirect_ctx.guest_gma);
1722 				kmem_cache_free(s->workloads, workload);
1723 				return ERR_PTR(-EINVAL);
1724 			}
1725 		}
1726 
1727 		workload->wa_ctx.per_ctx.guest_gma =
1728 			per_ctx & PER_CTX_ADDR_MASK;
1729 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1730 		if (workload->wa_ctx.per_ctx.valid) {
1731 			if (!intel_gvt_ggtt_validate_range(vgpu,
1732 				workload->wa_ctx.per_ctx.guest_gma,
1733 				CACHELINE_BYTES)) {
1734 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1735 					workload->wa_ctx.per_ctx.guest_gma);
1736 				kmem_cache_free(s->workloads, workload);
1737 				return ERR_PTR(-EINVAL);
1738 			}
1739 		}
1740 	}
1741 
1742 	gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1743 		   workload, engine->name, head, tail, start, ctl);
1744 
1745 	ret = prepare_mm(workload);
1746 	if (ret) {
1747 		kmem_cache_free(s->workloads, workload);
1748 		return ERR_PTR(ret);
1749 	}
1750 
1751 	/* Only scan and shadow the first workload in the queue
1752 	 * as there is only one pre-allocated buf-obj for shadow.
1753 	 */
1754 	if (list_empty(q)) {
1755 		intel_wakeref_t wakeref;
1756 
1757 		with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1758 			ret = intel_gvt_scan_and_shadow_workload(workload);
1759 	}
1760 
1761 	if (ret) {
1762 		if (vgpu_is_vm_unhealthy(ret))
1763 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1764 		intel_vgpu_destroy_workload(workload);
1765 		return ERR_PTR(ret);
1766 	}
1767 
1768 	ret = intel_context_pin(s->shadow[engine->id]);
1769 	if (ret) {
1770 		intel_vgpu_destroy_workload(workload);
1771 		return ERR_PTR(ret);
1772 	}
1773 
1774 	return workload;
1775 }
1776 
1777 /**
1778  * intel_vgpu_queue_workload - Qeue a vGPU workload
1779  * @workload: the workload to queue in
1780  */
1781 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1782 {
1783 	list_add_tail(&workload->list,
1784 		      workload_q_head(workload->vgpu, workload->engine));
1785 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1786 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1787 }
1788