xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 852a53a0)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41 
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45 
46 #define RING_CTX_OFF(x) \
47 	offsetof(struct execlist_ring_context, x)
48 
49 static void set_context_pdp_root_pointer(
50 		struct execlist_ring_context *ring_context,
51 		u32 pdp[8])
52 {
53 	int i;
54 
55 	for (i = 0; i < 8; i++)
56 		ring_context->pdps[i].val = pdp[7 - i];
57 }
58 
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 	struct execlist_ring_context *shadow_ring_context;
62 	struct intel_context *ctx = workload->req->context;
63 
64 	if (WARN_ON(!workload->shadow_mm))
65 		return;
66 
67 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
68 		return;
69 
70 	shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
71 	set_context_pdp_root_pointer(shadow_ring_context,
72 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
73 }
74 
75 /*
76  * when populating shadow ctx from guest, we should not overrride oa related
77  * registers, so that they will not be overlapped by guest oa configs. Thus
78  * made it possible to capture oa data from host for both host and guests.
79  */
80 static void sr_oa_regs(struct intel_vgpu_workload *workload,
81 		u32 *reg_state, bool save)
82 {
83 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
84 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
85 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
86 	int i = 0;
87 	u32 flex_mmio[] = {
88 		i915_mmio_reg_offset(EU_PERF_CNTL0),
89 		i915_mmio_reg_offset(EU_PERF_CNTL1),
90 		i915_mmio_reg_offset(EU_PERF_CNTL2),
91 		i915_mmio_reg_offset(EU_PERF_CNTL3),
92 		i915_mmio_reg_offset(EU_PERF_CNTL4),
93 		i915_mmio_reg_offset(EU_PERF_CNTL5),
94 		i915_mmio_reg_offset(EU_PERF_CNTL6),
95 	};
96 
97 	if (workload->engine->id != RCS0)
98 		return;
99 
100 	if (save) {
101 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
102 
103 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
104 			u32 state_offset = ctx_flexeu0 + i * 2;
105 
106 			workload->flex_mmio[i] = reg_state[state_offset + 1];
107 		}
108 	} else {
109 		reg_state[ctx_oactxctrl] =
110 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
111 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
112 
113 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
114 			u32 state_offset = ctx_flexeu0 + i * 2;
115 			u32 mmio = flex_mmio[i];
116 
117 			reg_state[state_offset] = mmio;
118 			reg_state[state_offset + 1] = workload->flex_mmio[i];
119 		}
120 	}
121 }
122 
123 static int populate_shadow_context(struct intel_vgpu_workload *workload)
124 {
125 	struct intel_vgpu *vgpu = workload->vgpu;
126 	struct intel_gvt *gvt = vgpu->gvt;
127 	struct intel_context *ctx = workload->req->context;
128 	struct execlist_ring_context *shadow_ring_context;
129 	void *dst;
130 	void *context_base;
131 	unsigned long context_gpa, context_page_num;
132 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
133 	unsigned long gpa_size; /* size of consecutive GPAs */
134 	struct intel_vgpu_submission *s = &vgpu->submission;
135 	int i;
136 	bool skip = false;
137 	int ring_id = workload->engine->id;
138 
139 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
140 
141 	context_base = (void *) ctx->lrc_reg_state -
142 				(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
143 
144 	shadow_ring_context = (void *) ctx->lrc_reg_state;
145 
146 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
147 #define COPY_REG(name) \
148 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
150 #define COPY_REG_MASKED(name) {\
151 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
152 					      + RING_CTX_OFF(name.val),\
153 					      &shadow_ring_context->name.val, 4);\
154 		shadow_ring_context->name.val |= 0xffff << 16;\
155 	}
156 
157 	COPY_REG_MASKED(ctx_ctrl);
158 	COPY_REG(ctx_timestamp);
159 
160 	if (workload->engine->id == RCS0) {
161 		COPY_REG(bb_per_ctx_ptr);
162 		COPY_REG(rcs_indirect_ctx);
163 		COPY_REG(rcs_indirect_ctx_offset);
164 	}
165 #undef COPY_REG
166 #undef COPY_REG_MASKED
167 
168 	intel_gvt_hypervisor_read_gpa(vgpu,
169 			workload->ring_context_gpa +
170 			sizeof(*shadow_ring_context),
171 			(void *)shadow_ring_context +
172 			sizeof(*shadow_ring_context),
173 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
174 
175 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
176 
177 	gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
178 			workload->engine->name, workload->ctx_desc.lrca,
179 			workload->ctx_desc.context_id,
180 			workload->ring_context_gpa);
181 
182 	/* only need to ensure this context is not pinned/unpinned during the
183 	 * period from last submission to this this submission.
184 	 * Upon reaching this function, the currently submitted context is not
185 	 * supposed to get unpinned. If a misbehaving guest driver ever does
186 	 * this, it would corrupt itself.
187 	 */
188 	if (s->last_ctx[ring_id].valid &&
189 			(s->last_ctx[ring_id].lrca ==
190 				workload->ctx_desc.lrca) &&
191 			(s->last_ctx[ring_id].ring_context_gpa ==
192 				workload->ring_context_gpa))
193 		skip = true;
194 
195 	s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
196 	s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
197 
198 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
199 		return 0;
200 
201 	s->last_ctx[ring_id].valid = false;
202 	context_page_num = workload->engine->context_size;
203 	context_page_num = context_page_num >> PAGE_SHIFT;
204 
205 	if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
206 		context_page_num = 19;
207 
208 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
209 	 * read from the continuous GPAs into dst virtual address
210 	 */
211 	gpa_size = 0;
212 	for (i = 2; i < context_page_num; i++) {
213 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
214 				(u32)((workload->ctx_desc.lrca + i) <<
215 				I915_GTT_PAGE_SHIFT));
216 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
217 			gvt_vgpu_err("Invalid guest context descriptor\n");
218 			return -EFAULT;
219 		}
220 
221 		if (gpa_size == 0) {
222 			gpa_base = context_gpa;
223 			dst = context_base + (i << I915_GTT_PAGE_SHIFT);
224 		} else if (context_gpa != gpa_base + gpa_size)
225 			goto read;
226 
227 		gpa_size += I915_GTT_PAGE_SIZE;
228 
229 		if (i == context_page_num - 1)
230 			goto read;
231 
232 		continue;
233 
234 read:
235 		intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
236 		gpa_base = context_gpa;
237 		gpa_size = I915_GTT_PAGE_SIZE;
238 		dst = context_base + (i << I915_GTT_PAGE_SHIFT);
239 	}
240 	s->last_ctx[ring_id].valid = true;
241 	return 0;
242 }
243 
244 static inline bool is_gvt_request(struct i915_request *rq)
245 {
246 	return intel_context_force_single_submission(rq->context);
247 }
248 
249 static void save_ring_hw_state(struct intel_vgpu *vgpu,
250 			       const struct intel_engine_cs *engine)
251 {
252 	struct intel_uncore *uncore = engine->uncore;
253 	i915_reg_t reg;
254 
255 	reg = RING_INSTDONE(engine->mmio_base);
256 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
257 		intel_uncore_read(uncore, reg);
258 
259 	reg = RING_ACTHD(engine->mmio_base);
260 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
261 		intel_uncore_read(uncore, reg);
262 
263 	reg = RING_ACTHD_UDW(engine->mmio_base);
264 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
265 		intel_uncore_read(uncore, reg);
266 }
267 
268 static int shadow_context_status_change(struct notifier_block *nb,
269 		unsigned long action, void *data)
270 {
271 	struct i915_request *rq = data;
272 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
273 				shadow_ctx_notifier_block[rq->engine->id]);
274 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
275 	enum intel_engine_id ring_id = rq->engine->id;
276 	struct intel_vgpu_workload *workload;
277 	unsigned long flags;
278 
279 	if (!is_gvt_request(rq)) {
280 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
281 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
282 		    scheduler->engine_owner[ring_id]) {
283 			/* Switch ring from vGPU to host. */
284 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
285 					      NULL, rq->engine);
286 			scheduler->engine_owner[ring_id] = NULL;
287 		}
288 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
289 
290 		return NOTIFY_OK;
291 	}
292 
293 	workload = scheduler->current_workload[ring_id];
294 	if (unlikely(!workload))
295 		return NOTIFY_OK;
296 
297 	switch (action) {
298 	case INTEL_CONTEXT_SCHEDULE_IN:
299 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
300 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
301 			/* Switch ring from host to vGPU or vGPU to vGPU. */
302 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
303 					      workload->vgpu, rq->engine);
304 			scheduler->engine_owner[ring_id] = workload->vgpu;
305 		} else
306 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
307 				      ring_id, workload->vgpu->id);
308 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
309 		atomic_set(&workload->shadow_ctx_active, 1);
310 		break;
311 	case INTEL_CONTEXT_SCHEDULE_OUT:
312 		save_ring_hw_state(workload->vgpu, rq->engine);
313 		atomic_set(&workload->shadow_ctx_active, 0);
314 		break;
315 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
316 		save_ring_hw_state(workload->vgpu, rq->engine);
317 		break;
318 	default:
319 		WARN_ON(1);
320 		return NOTIFY_OK;
321 	}
322 	wake_up(&workload->shadow_ctx_status_wq);
323 	return NOTIFY_OK;
324 }
325 
326 static void
327 shadow_context_descriptor_update(struct intel_context *ce,
328 				 struct intel_vgpu_workload *workload)
329 {
330 	u64 desc = ce->lrc.desc;
331 
332 	/*
333 	 * Update bits 0-11 of the context descriptor which includes flags
334 	 * like GEN8_CTX_* cached in desc_template
335 	 */
336 	desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
337 	desc |= (u64)workload->ctx_desc.addressing_mode <<
338 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
339 
340 	ce->lrc.desc = desc;
341 }
342 
343 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
344 {
345 	struct intel_vgpu *vgpu = workload->vgpu;
346 	struct i915_request *req = workload->req;
347 	void *shadow_ring_buffer_va;
348 	u32 *cs;
349 	int err;
350 
351 	if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context))
352 		intel_vgpu_restore_inhibit_context(vgpu, req);
353 
354 	/*
355 	 * To track whether a request has started on HW, we can emit a
356 	 * breadcrumb at the beginning of the request and check its
357 	 * timeline's HWSP to see if the breadcrumb has advanced past the
358 	 * start of this request. Actually, the request must have the
359 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
360 	 * scheduler might get a wrong state of it during reset. Since the
361 	 * requests from gvt always set the has_init_breadcrumb flag, here
362 	 * need to do the emit_init_breadcrumb for all the requests.
363 	 */
364 	if (req->engine->emit_init_breadcrumb) {
365 		err = req->engine->emit_init_breadcrumb(req);
366 		if (err) {
367 			gvt_vgpu_err("fail to emit init breadcrumb\n");
368 			return err;
369 		}
370 	}
371 
372 	/* allocate shadow ring buffer */
373 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
374 	if (IS_ERR(cs)) {
375 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
376 			workload->rb_len);
377 		return PTR_ERR(cs);
378 	}
379 
380 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
381 
382 	/* get shadow ring buffer va */
383 	workload->shadow_ring_buffer_va = cs;
384 
385 	memcpy(cs, shadow_ring_buffer_va,
386 			workload->rb_len);
387 
388 	cs += workload->rb_len / sizeof(u32);
389 	intel_ring_advance(workload->req, cs);
390 
391 	return 0;
392 }
393 
394 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
395 {
396 	if (!wa_ctx->indirect_ctx.obj)
397 		return;
398 
399 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
400 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
401 
402 	wa_ctx->indirect_ctx.obj = NULL;
403 	wa_ctx->indirect_ctx.shadow_va = NULL;
404 }
405 
406 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
407 					  struct intel_context *ce)
408 {
409 	struct intel_vgpu_mm *mm = workload->shadow_mm;
410 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
411 	int i = 0;
412 
413 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
414 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
415 	} else {
416 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
417 			struct i915_page_directory * const pd =
418 				i915_pd_entry(ppgtt->pd, i);
419 			/* skip now as current i915 ppgtt alloc won't allocate
420 			   top level pdp for non 4-level table, won't impact
421 			   shadow ppgtt. */
422 			if (!pd)
423 				break;
424 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
425 		}
426 	}
427 }
428 
429 static int
430 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
431 {
432 	struct intel_vgpu *vgpu = workload->vgpu;
433 	struct intel_vgpu_submission *s = &vgpu->submission;
434 	struct i915_request *rq;
435 
436 	if (workload->req)
437 		return 0;
438 
439 	rq = i915_request_create(s->shadow[workload->engine->id]);
440 	if (IS_ERR(rq)) {
441 		gvt_vgpu_err("fail to allocate gem request\n");
442 		return PTR_ERR(rq);
443 	}
444 
445 	workload->req = i915_request_get(rq);
446 	return 0;
447 }
448 
449 /**
450  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
451  * shadow it as well, include ringbuffer,wa_ctx and ctx.
452  * @workload: an abstract entity for each execlist submission.
453  *
454  * This function is called before the workload submitting to i915, to make
455  * sure the content of the workload is valid.
456  */
457 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
458 {
459 	struct intel_vgpu *vgpu = workload->vgpu;
460 	struct intel_vgpu_submission *s = &vgpu->submission;
461 	int ret;
462 
463 	lockdep_assert_held(&vgpu->vgpu_lock);
464 
465 	if (workload->shadow)
466 		return 0;
467 
468 	if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
469 		shadow_context_descriptor_update(s->shadow[workload->engine->id],
470 						 workload);
471 
472 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
473 	if (ret)
474 		return ret;
475 
476 	if (workload->engine->id == RCS0 &&
477 	    workload->wa_ctx.indirect_ctx.size) {
478 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
479 		if (ret)
480 			goto err_shadow;
481 	}
482 
483 	workload->shadow = true;
484 	return 0;
485 
486 err_shadow:
487 	release_shadow_wa_ctx(&workload->wa_ctx);
488 	return ret;
489 }
490 
491 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
492 
493 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
494 {
495 	struct intel_gvt *gvt = workload->vgpu->gvt;
496 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
497 	struct intel_vgpu_shadow_bb *bb;
498 	int ret;
499 
500 	list_for_each_entry(bb, &workload->shadow_bb, list) {
501 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
502 		 * is only updated into ring_scan_buffer, not real ring address
503 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
504 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
505 		 * in copy_workload_to_ring_buffer.
506 		 */
507 
508 		if (bb->bb_offset)
509 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
510 				+ bb->bb_offset;
511 
512 		/*
513 		 * For non-priv bb, scan&shadow is only for
514 		 * debugging purpose, so the content of shadow bb
515 		 * is the same as original bb. Therefore,
516 		 * here, rather than switch to shadow bb's gma
517 		 * address, we directly use original batch buffer's
518 		 * gma address, and send original bb to hardware
519 		 * directly
520 		 */
521 		if (!bb->ppgtt) {
522 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
523 							   NULL, 0, 0, 0);
524 			if (IS_ERR(bb->vma)) {
525 				ret = PTR_ERR(bb->vma);
526 				goto err;
527 			}
528 
529 			/* relocate shadow batch buffer */
530 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
531 			if (gmadr_bytes == 8)
532 				bb->bb_start_cmd_va[2] = 0;
533 
534 			ret = i915_vma_move_to_active(bb->vma,
535 						      workload->req,
536 						      0);
537 			if (ret)
538 				goto err;
539 		}
540 
541 		/* No one is going to touch shadow bb from now on. */
542 		i915_gem_object_flush_map(bb->obj);
543 	}
544 	return 0;
545 err:
546 	release_shadow_batch_buffer(workload);
547 	return ret;
548 }
549 
550 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
551 {
552 	struct intel_vgpu_workload *workload =
553 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
554 	struct i915_request *rq = workload->req;
555 	struct execlist_ring_context *shadow_ring_context =
556 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
557 
558 	shadow_ring_context->bb_per_ctx_ptr.val =
559 		(shadow_ring_context->bb_per_ctx_ptr.val &
560 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
561 	shadow_ring_context->rcs_indirect_ctx.val =
562 		(shadow_ring_context->rcs_indirect_ctx.val &
563 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
564 }
565 
566 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
567 {
568 	struct i915_vma *vma;
569 	unsigned char *per_ctx_va =
570 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
571 		wa_ctx->indirect_ctx.size;
572 
573 	if (wa_ctx->indirect_ctx.size == 0)
574 		return 0;
575 
576 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
577 				       0, CACHELINE_BYTES, 0);
578 	if (IS_ERR(vma))
579 		return PTR_ERR(vma);
580 
581 	/* FIXME: we are not tracking our pinned VMA leaving it
582 	 * up to the core to fix up the stray pin_count upon
583 	 * free.
584 	 */
585 
586 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
587 
588 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
589 	memset(per_ctx_va, 0, CACHELINE_BYTES);
590 
591 	update_wa_ctx_2_shadow_ctx(wa_ctx);
592 	return 0;
593 }
594 
595 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
596 {
597 	vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
598 		workload->rb_start;
599 }
600 
601 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
602 {
603 	struct intel_vgpu_shadow_bb *bb, *pos;
604 
605 	if (list_empty(&workload->shadow_bb))
606 		return;
607 
608 	bb = list_first_entry(&workload->shadow_bb,
609 			struct intel_vgpu_shadow_bb, list);
610 
611 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
612 		if (bb->obj) {
613 			if (bb->va && !IS_ERR(bb->va))
614 				i915_gem_object_unpin_map(bb->obj);
615 
616 			if (bb->vma && !IS_ERR(bb->vma))
617 				i915_vma_unpin(bb->vma);
618 
619 			i915_gem_object_put(bb->obj);
620 		}
621 		list_del(&bb->list);
622 		kfree(bb);
623 	}
624 }
625 
626 static int
627 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
628 {
629 	struct intel_vgpu *vgpu = workload->vgpu;
630 	struct intel_vgpu_mm *m;
631 	int ret = 0;
632 
633 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
634 	if (ret) {
635 		gvt_vgpu_err("fail to vgpu pin mm\n");
636 		return ret;
637 	}
638 
639 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
640 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
641 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
642 		return -EINVAL;
643 	}
644 
645 	if (!list_empty(&workload->lri_shadow_mm)) {
646 		list_for_each_entry(m, &workload->lri_shadow_mm,
647 				    ppgtt_mm.link) {
648 			ret = intel_vgpu_pin_mm(m);
649 			if (ret) {
650 				list_for_each_entry_from_reverse(m,
651 								 &workload->lri_shadow_mm,
652 								 ppgtt_mm.link)
653 					intel_vgpu_unpin_mm(m);
654 				gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
655 				break;
656 			}
657 		}
658 	}
659 
660 	if (ret)
661 		intel_vgpu_unpin_mm(workload->shadow_mm);
662 
663 	return ret;
664 }
665 
666 static void
667 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
668 {
669 	struct intel_vgpu_mm *m;
670 
671 	if (!list_empty(&workload->lri_shadow_mm)) {
672 		list_for_each_entry(m, &workload->lri_shadow_mm,
673 				    ppgtt_mm.link)
674 			intel_vgpu_unpin_mm(m);
675 	}
676 	intel_vgpu_unpin_mm(workload->shadow_mm);
677 }
678 
679 static int prepare_workload(struct intel_vgpu_workload *workload)
680 {
681 	struct intel_vgpu *vgpu = workload->vgpu;
682 	struct intel_vgpu_submission *s = &vgpu->submission;
683 	int ret = 0;
684 
685 	ret = intel_vgpu_shadow_mm_pin(workload);
686 	if (ret) {
687 		gvt_vgpu_err("fail to pin shadow mm\n");
688 		return ret;
689 	}
690 
691 	update_shadow_pdps(workload);
692 
693 	set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
694 
695 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
696 	if (ret) {
697 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
698 		goto err_unpin_mm;
699 	}
700 
701 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
702 	if (ret) {
703 		gvt_vgpu_err("fail to flush post shadow\n");
704 		goto err_unpin_mm;
705 	}
706 
707 	ret = copy_workload_to_ring_buffer(workload);
708 	if (ret) {
709 		gvt_vgpu_err("fail to generate request\n");
710 		goto err_unpin_mm;
711 	}
712 
713 	ret = prepare_shadow_batch_buffer(workload);
714 	if (ret) {
715 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
716 		goto err_unpin_mm;
717 	}
718 
719 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
720 	if (ret) {
721 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
722 		goto err_shadow_batch;
723 	}
724 
725 	if (workload->prepare) {
726 		ret = workload->prepare(workload);
727 		if (ret)
728 			goto err_shadow_wa_ctx;
729 	}
730 
731 	return 0;
732 err_shadow_wa_ctx:
733 	release_shadow_wa_ctx(&workload->wa_ctx);
734 err_shadow_batch:
735 	release_shadow_batch_buffer(workload);
736 err_unpin_mm:
737 	intel_vgpu_shadow_mm_unpin(workload);
738 	return ret;
739 }
740 
741 static int dispatch_workload(struct intel_vgpu_workload *workload)
742 {
743 	struct intel_vgpu *vgpu = workload->vgpu;
744 	struct i915_request *rq;
745 	int ret;
746 
747 	gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
748 		      workload->engine->name, workload);
749 
750 	mutex_lock(&vgpu->vgpu_lock);
751 
752 	ret = intel_gvt_workload_req_alloc(workload);
753 	if (ret)
754 		goto err_req;
755 
756 	ret = intel_gvt_scan_and_shadow_workload(workload);
757 	if (ret)
758 		goto out;
759 
760 	ret = populate_shadow_context(workload);
761 	if (ret) {
762 		release_shadow_wa_ctx(&workload->wa_ctx);
763 		goto out;
764 	}
765 
766 	ret = prepare_workload(workload);
767 out:
768 	if (ret) {
769 		/* We might still need to add request with
770 		 * clean ctx to retire it properly..
771 		 */
772 		rq = fetch_and_zero(&workload->req);
773 		i915_request_put(rq);
774 	}
775 
776 	if (!IS_ERR_OR_NULL(workload->req)) {
777 		gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
778 			      workload->engine->name, workload->req);
779 		i915_request_add(workload->req);
780 		workload->dispatched = true;
781 	}
782 err_req:
783 	if (ret)
784 		workload->status = ret;
785 	mutex_unlock(&vgpu->vgpu_lock);
786 	return ret;
787 }
788 
789 static struct intel_vgpu_workload *
790 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
791 {
792 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
793 	struct intel_vgpu_workload *workload = NULL;
794 
795 	mutex_lock(&gvt->sched_lock);
796 
797 	/*
798 	 * no current vgpu / will be scheduled out / no workload
799 	 * bail out
800 	 */
801 	if (!scheduler->current_vgpu) {
802 		gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
803 		goto out;
804 	}
805 
806 	if (scheduler->need_reschedule) {
807 		gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
808 		goto out;
809 	}
810 
811 	if (!scheduler->current_vgpu->active ||
812 	    list_empty(workload_q_head(scheduler->current_vgpu, engine)))
813 		goto out;
814 
815 	/*
816 	 * still have current workload, maybe the workload disptacher
817 	 * fail to submit it for some reason, resubmit it.
818 	 */
819 	if (scheduler->current_workload[engine->id]) {
820 		workload = scheduler->current_workload[engine->id];
821 		gvt_dbg_sched("ring %s still have current workload %p\n",
822 			      engine->name, workload);
823 		goto out;
824 	}
825 
826 	/*
827 	 * pick a workload as current workload
828 	 * once current workload is set, schedule policy routines
829 	 * will wait the current workload is finished when trying to
830 	 * schedule out a vgpu.
831 	 */
832 	scheduler->current_workload[engine->id] =
833 		list_first_entry(workload_q_head(scheduler->current_vgpu,
834 						 engine),
835 				 struct intel_vgpu_workload, list);
836 
837 	workload = scheduler->current_workload[engine->id];
838 
839 	gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
840 
841 	atomic_inc(&workload->vgpu->submission.running_workload_num);
842 out:
843 	mutex_unlock(&gvt->sched_lock);
844 	return workload;
845 }
846 
847 static void update_guest_pdps(struct intel_vgpu *vgpu,
848 			      u64 ring_context_gpa, u32 pdp[8])
849 {
850 	u64 gpa;
851 	int i;
852 
853 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
854 
855 	for (i = 0; i < 8; i++)
856 		intel_gvt_hypervisor_write_gpa(vgpu,
857 				gpa + i * 8, &pdp[7 - i], 4);
858 }
859 
860 static __maybe_unused bool
861 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
862 {
863 	if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
864 		u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
865 
866 		if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
867 			gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
868 			return false;
869 		}
870 		return true;
871 	} else {
872 		/* see comment in LRI handler in cmd_parser.c */
873 		gvt_dbg_mm("invalid shadow mm type\n");
874 		return false;
875 	}
876 }
877 
878 static void update_guest_context(struct intel_vgpu_workload *workload)
879 {
880 	struct i915_request *rq = workload->req;
881 	struct intel_vgpu *vgpu = workload->vgpu;
882 	struct execlist_ring_context *shadow_ring_context;
883 	struct intel_context *ctx = workload->req->context;
884 	void *context_base;
885 	void *src;
886 	unsigned long context_gpa, context_page_num;
887 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
888 	unsigned long gpa_size; /* size of consecutive GPAs*/
889 	int i;
890 	u32 ring_base;
891 	u32 head, tail;
892 	u16 wrap_count;
893 
894 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
895 		      workload->ctx_desc.lrca);
896 
897 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
898 
899 	head = workload->rb_head;
900 	tail = workload->rb_tail;
901 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
902 
903 	if (tail < head) {
904 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
905 			wrap_count = 0;
906 		else
907 			wrap_count += 1;
908 	}
909 
910 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
911 
912 	ring_base = rq->engine->mmio_base;
913 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
914 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
915 
916 	context_page_num = rq->engine->context_size;
917 	context_page_num = context_page_num >> PAGE_SHIFT;
918 
919 	if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0)
920 		context_page_num = 19;
921 
922 	context_base = (void *) ctx->lrc_reg_state -
923 			(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
924 
925 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
926 	 * write to the consecutive GPAs from src virtual address
927 	 */
928 	gpa_size = 0;
929 	for (i = 2; i < context_page_num; i++) {
930 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
931 				(u32)((workload->ctx_desc.lrca + i) <<
932 					I915_GTT_PAGE_SHIFT));
933 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
934 			gvt_vgpu_err("invalid guest context descriptor\n");
935 			return;
936 		}
937 
938 		if (gpa_size == 0) {
939 			gpa_base = context_gpa;
940 			src = context_base + (i << I915_GTT_PAGE_SHIFT);
941 		} else if (context_gpa != gpa_base + gpa_size)
942 			goto write;
943 
944 		gpa_size += I915_GTT_PAGE_SIZE;
945 
946 		if (i == context_page_num - 1)
947 			goto write;
948 
949 		continue;
950 
951 write:
952 		intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
953 		gpa_base = context_gpa;
954 		gpa_size = I915_GTT_PAGE_SIZE;
955 		src = context_base + (i << I915_GTT_PAGE_SHIFT);
956 	}
957 
958 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
959 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
960 
961 	shadow_ring_context = (void *) ctx->lrc_reg_state;
962 
963 	if (!list_empty(&workload->lri_shadow_mm)) {
964 		struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
965 							  struct intel_vgpu_mm,
966 							  ppgtt_mm.link);
967 		GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
968 		update_guest_pdps(vgpu, workload->ring_context_gpa,
969 				  (void *)m->ppgtt_mm.guest_pdps);
970 	}
971 
972 #define COPY_REG(name) \
973 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
974 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
975 
976 	COPY_REG(ctx_ctrl);
977 	COPY_REG(ctx_timestamp);
978 
979 #undef COPY_REG
980 
981 	intel_gvt_hypervisor_write_gpa(vgpu,
982 			workload->ring_context_gpa +
983 			sizeof(*shadow_ring_context),
984 			(void *)shadow_ring_context +
985 			sizeof(*shadow_ring_context),
986 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
987 }
988 
989 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
990 				intel_engine_mask_t engine_mask)
991 {
992 	struct intel_vgpu_submission *s = &vgpu->submission;
993 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
994 	struct intel_engine_cs *engine;
995 	struct intel_vgpu_workload *pos, *n;
996 	intel_engine_mask_t tmp;
997 
998 	/* free the unsubmited workloads in the queues. */
999 	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
1000 		list_for_each_entry_safe(pos, n,
1001 			&s->workload_q_head[engine->id], list) {
1002 			list_del_init(&pos->list);
1003 			intel_vgpu_destroy_workload(pos);
1004 		}
1005 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
1006 	}
1007 }
1008 
1009 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1010 {
1011 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1012 	struct intel_vgpu_workload *workload =
1013 		scheduler->current_workload[ring_id];
1014 	struct intel_vgpu *vgpu = workload->vgpu;
1015 	struct intel_vgpu_submission *s = &vgpu->submission;
1016 	struct i915_request *rq = workload->req;
1017 	int event;
1018 
1019 	mutex_lock(&vgpu->vgpu_lock);
1020 	mutex_lock(&gvt->sched_lock);
1021 
1022 	/* For the workload w/ request, needs to wait for the context
1023 	 * switch to make sure request is completed.
1024 	 * For the workload w/o request, directly complete the workload.
1025 	 */
1026 	if (rq) {
1027 		wait_event(workload->shadow_ctx_status_wq,
1028 			   !atomic_read(&workload->shadow_ctx_active));
1029 
1030 		/* If this request caused GPU hang, req->fence.error will
1031 		 * be set to -EIO. Use -EIO to set workload status so
1032 		 * that when this request caused GPU hang, didn't trigger
1033 		 * context switch interrupt to guest.
1034 		 */
1035 		if (likely(workload->status == -EINPROGRESS)) {
1036 			if (workload->req->fence.error == -EIO)
1037 				workload->status = -EIO;
1038 			else
1039 				workload->status = 0;
1040 		}
1041 
1042 		if (!workload->status &&
1043 		    !(vgpu->resetting_eng & BIT(ring_id))) {
1044 			update_guest_context(workload);
1045 
1046 			for_each_set_bit(event, workload->pending_events,
1047 					 INTEL_GVT_EVENT_MAX)
1048 				intel_vgpu_trigger_virtual_event(vgpu, event);
1049 		}
1050 
1051 		i915_request_put(fetch_and_zero(&workload->req));
1052 	}
1053 
1054 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1055 			ring_id, workload, workload->status);
1056 
1057 	scheduler->current_workload[ring_id] = NULL;
1058 
1059 	list_del_init(&workload->list);
1060 
1061 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1062 		/* if workload->status is not successful means HW GPU
1063 		 * has occurred GPU hang or something wrong with i915/GVT,
1064 		 * and GVT won't inject context switch interrupt to guest.
1065 		 * So this error is a vGPU hang actually to the guest.
1066 		 * According to this we should emunlate a vGPU hang. If
1067 		 * there are pending workloads which are already submitted
1068 		 * from guest, we should clean them up like HW GPU does.
1069 		 *
1070 		 * if it is in middle of engine resetting, the pending
1071 		 * workloads won't be submitted to HW GPU and will be
1072 		 * cleaned up during the resetting process later, so doing
1073 		 * the workload clean up here doesn't have any impact.
1074 		 **/
1075 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1076 	}
1077 
1078 	workload->complete(workload);
1079 
1080 	intel_vgpu_shadow_mm_unpin(workload);
1081 	intel_vgpu_destroy_workload(workload);
1082 
1083 	atomic_dec(&s->running_workload_num);
1084 	wake_up(&scheduler->workload_complete_wq);
1085 
1086 	if (gvt->scheduler.need_reschedule)
1087 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1088 
1089 	mutex_unlock(&gvt->sched_lock);
1090 	mutex_unlock(&vgpu->vgpu_lock);
1091 }
1092 
1093 static int workload_thread(void *arg)
1094 {
1095 	struct intel_engine_cs *engine = arg;
1096 	const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1097 	struct intel_gvt *gvt = engine->i915->gvt;
1098 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1099 	struct intel_vgpu_workload *workload = NULL;
1100 	struct intel_vgpu *vgpu = NULL;
1101 	int ret;
1102 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1103 
1104 	gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1105 
1106 	while (!kthread_should_stop()) {
1107 		intel_wakeref_t wakeref;
1108 
1109 		add_wait_queue(&scheduler->waitq[engine->id], &wait);
1110 		do {
1111 			workload = pick_next_workload(gvt, engine);
1112 			if (workload)
1113 				break;
1114 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1115 				   MAX_SCHEDULE_TIMEOUT);
1116 		} while (!kthread_should_stop());
1117 		remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1118 
1119 		if (!workload)
1120 			break;
1121 
1122 		gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1123 			      engine->name, workload,
1124 			      workload->vgpu->id);
1125 
1126 		wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1127 
1128 		gvt_dbg_sched("ring %s will dispatch workload %p\n",
1129 			      engine->name, workload);
1130 
1131 		if (need_force_wake)
1132 			intel_uncore_forcewake_get(engine->uncore,
1133 						   FORCEWAKE_ALL);
1134 		/*
1135 		 * Update the vReg of the vGPU which submitted this
1136 		 * workload. The vGPU may use these registers for checking
1137 		 * the context state. The value comes from GPU commands
1138 		 * in this workload.
1139 		 */
1140 		update_vreg_in_ctx(workload);
1141 
1142 		ret = dispatch_workload(workload);
1143 
1144 		if (ret) {
1145 			vgpu = workload->vgpu;
1146 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1147 			goto complete;
1148 		}
1149 
1150 		gvt_dbg_sched("ring %s wait workload %p\n",
1151 			      engine->name, workload);
1152 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1153 
1154 complete:
1155 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1156 			      workload, workload->status);
1157 
1158 		complete_current_workload(gvt, engine->id);
1159 
1160 		if (need_force_wake)
1161 			intel_uncore_forcewake_put(engine->uncore,
1162 						   FORCEWAKE_ALL);
1163 
1164 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1165 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1166 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1167 	}
1168 	return 0;
1169 }
1170 
1171 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1172 {
1173 	struct intel_vgpu_submission *s = &vgpu->submission;
1174 	struct intel_gvt *gvt = vgpu->gvt;
1175 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1176 
1177 	if (atomic_read(&s->running_workload_num)) {
1178 		gvt_dbg_sched("wait vgpu idle\n");
1179 
1180 		wait_event(scheduler->workload_complete_wq,
1181 				!atomic_read(&s->running_workload_num));
1182 	}
1183 }
1184 
1185 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1186 {
1187 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1188 	struct intel_engine_cs *engine;
1189 	enum intel_engine_id i;
1190 
1191 	gvt_dbg_core("clean workload scheduler\n");
1192 
1193 	for_each_engine(engine, gvt->gt, i) {
1194 		atomic_notifier_chain_unregister(
1195 					&engine->context_status_notifier,
1196 					&gvt->shadow_ctx_notifier_block[i]);
1197 		kthread_stop(scheduler->thread[i]);
1198 	}
1199 }
1200 
1201 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1202 {
1203 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1204 	struct intel_engine_cs *engine;
1205 	enum intel_engine_id i;
1206 	int ret;
1207 
1208 	gvt_dbg_core("init workload scheduler\n");
1209 
1210 	init_waitqueue_head(&scheduler->workload_complete_wq);
1211 
1212 	for_each_engine(engine, gvt->gt, i) {
1213 		init_waitqueue_head(&scheduler->waitq[i]);
1214 
1215 		scheduler->thread[i] = kthread_run(workload_thread, engine,
1216 						   "gvt:%s", engine->name);
1217 		if (IS_ERR(scheduler->thread[i])) {
1218 			gvt_err("fail to create workload thread\n");
1219 			ret = PTR_ERR(scheduler->thread[i]);
1220 			goto err;
1221 		}
1222 
1223 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1224 					shadow_context_status_change;
1225 		atomic_notifier_chain_register(&engine->context_status_notifier,
1226 					&gvt->shadow_ctx_notifier_block[i]);
1227 	}
1228 
1229 	return 0;
1230 
1231 err:
1232 	intel_gvt_clean_workload_scheduler(gvt);
1233 	return ret;
1234 }
1235 
1236 static void
1237 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1238 				struct i915_ppgtt *ppgtt)
1239 {
1240 	int i;
1241 
1242 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1243 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1244 	} else {
1245 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1246 			struct i915_page_directory * const pd =
1247 				i915_pd_entry(ppgtt->pd, i);
1248 
1249 			px_dma(pd) = s->i915_context_pdps[i];
1250 		}
1251 	}
1252 }
1253 
1254 /**
1255  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1256  * @vgpu: a vGPU
1257  *
1258  * This function is called when a vGPU is being destroyed.
1259  *
1260  */
1261 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1262 {
1263 	struct intel_vgpu_submission *s = &vgpu->submission;
1264 	struct intel_engine_cs *engine;
1265 	enum intel_engine_id id;
1266 
1267 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1268 
1269 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1270 	for_each_engine(engine, vgpu->gvt->gt, id)
1271 		intel_context_unpin(s->shadow[id]);
1272 
1273 	kmem_cache_destroy(s->workloads);
1274 }
1275 
1276 
1277 /**
1278  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1279  * @vgpu: a vGPU
1280  * @engine_mask: engines expected to be reset
1281  *
1282  * This function is called when a vGPU is being destroyed.
1283  *
1284  */
1285 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1286 				 intel_engine_mask_t engine_mask)
1287 {
1288 	struct intel_vgpu_submission *s = &vgpu->submission;
1289 
1290 	if (!s->active)
1291 		return;
1292 
1293 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1294 	s->ops->reset(vgpu, engine_mask);
1295 }
1296 
1297 static void
1298 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1299 			     struct i915_ppgtt *ppgtt)
1300 {
1301 	int i;
1302 
1303 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1304 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1305 	} else {
1306 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1307 			struct i915_page_directory * const pd =
1308 				i915_pd_entry(ppgtt->pd, i);
1309 
1310 			s->i915_context_pdps[i] = px_dma(pd);
1311 		}
1312 	}
1313 }
1314 
1315 /**
1316  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1317  * @vgpu: a vGPU
1318  *
1319  * This function is called when a vGPU is being created.
1320  *
1321  * Returns:
1322  * Zero on success, negative error code if failed.
1323  *
1324  */
1325 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1326 {
1327 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1328 	struct intel_vgpu_submission *s = &vgpu->submission;
1329 	struct intel_engine_cs *engine;
1330 	struct i915_ppgtt *ppgtt;
1331 	enum intel_engine_id i;
1332 	int ret;
1333 
1334 	ppgtt = i915_ppgtt_create(&i915->gt);
1335 	if (IS_ERR(ppgtt))
1336 		return PTR_ERR(ppgtt);
1337 
1338 	i915_context_ppgtt_root_save(s, ppgtt);
1339 
1340 	for_each_engine(engine, vgpu->gvt->gt, i) {
1341 		struct intel_context *ce;
1342 
1343 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1344 		s->shadow[i] = ERR_PTR(-EINVAL);
1345 
1346 		ce = intel_context_create(engine);
1347 		if (IS_ERR(ce)) {
1348 			ret = PTR_ERR(ce);
1349 			goto out_shadow_ctx;
1350 		}
1351 
1352 		i915_vm_put(ce->vm);
1353 		ce->vm = i915_vm_get(&ppgtt->vm);
1354 		intel_context_set_single_submission(ce);
1355 
1356 		/* Max ring buffer size */
1357 		if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1358 			const unsigned int ring_size = 512 * SZ_4K;
1359 
1360 			ce->ring = __intel_context_ring_size(ring_size);
1361 		}
1362 
1363 		ret = intel_context_pin(ce);
1364 		intel_context_put(ce);
1365 		if (ret)
1366 			goto out_shadow_ctx;
1367 
1368 		s->shadow[i] = ce;
1369 	}
1370 
1371 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1372 
1373 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1374 						  sizeof(struct intel_vgpu_workload), 0,
1375 						  SLAB_HWCACHE_ALIGN,
1376 						  offsetof(struct intel_vgpu_workload, rb_tail),
1377 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1378 						  NULL);
1379 
1380 	if (!s->workloads) {
1381 		ret = -ENOMEM;
1382 		goto out_shadow_ctx;
1383 	}
1384 
1385 	atomic_set(&s->running_workload_num, 0);
1386 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1387 
1388 	memset(s->last_ctx, 0, sizeof(s->last_ctx));
1389 
1390 	i915_vm_put(&ppgtt->vm);
1391 	return 0;
1392 
1393 out_shadow_ctx:
1394 	i915_context_ppgtt_root_restore(s, ppgtt);
1395 	for_each_engine(engine, vgpu->gvt->gt, i) {
1396 		if (IS_ERR(s->shadow[i]))
1397 			break;
1398 
1399 		intel_context_unpin(s->shadow[i]);
1400 		intel_context_put(s->shadow[i]);
1401 	}
1402 	i915_vm_put(&ppgtt->vm);
1403 	return ret;
1404 }
1405 
1406 /**
1407  * intel_vgpu_select_submission_ops - select virtual submission interface
1408  * @vgpu: a vGPU
1409  * @engine_mask: either ALL_ENGINES or target engine mask
1410  * @interface: expected vGPU virtual submission interface
1411  *
1412  * This function is called when guest configures submission interface.
1413  *
1414  * Returns:
1415  * Zero on success, negative error code if failed.
1416  *
1417  */
1418 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1419 				     intel_engine_mask_t engine_mask,
1420 				     unsigned int interface)
1421 {
1422 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1423 	struct intel_vgpu_submission *s = &vgpu->submission;
1424 	const struct intel_vgpu_submission_ops *ops[] = {
1425 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1426 			&intel_vgpu_execlist_submission_ops,
1427 	};
1428 	int ret;
1429 
1430 	if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1431 		return -EINVAL;
1432 
1433 	if (drm_WARN_ON(&i915->drm,
1434 			interface == 0 && engine_mask != ALL_ENGINES))
1435 		return -EINVAL;
1436 
1437 	if (s->active)
1438 		s->ops->clean(vgpu, engine_mask);
1439 
1440 	if (interface == 0) {
1441 		s->ops = NULL;
1442 		s->virtual_submission_interface = 0;
1443 		s->active = false;
1444 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1445 		return 0;
1446 	}
1447 
1448 	ret = ops[interface]->init(vgpu, engine_mask);
1449 	if (ret)
1450 		return ret;
1451 
1452 	s->ops = ops[interface];
1453 	s->virtual_submission_interface = interface;
1454 	s->active = true;
1455 
1456 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1457 			vgpu->id, s->ops->name);
1458 
1459 	return 0;
1460 }
1461 
1462 /**
1463  * intel_vgpu_destroy_workload - destroy a vGPU workload
1464  * @workload: workload to destroy
1465  *
1466  * This function is called when destroy a vGPU workload.
1467  *
1468  */
1469 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1470 {
1471 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1472 
1473 	release_shadow_batch_buffer(workload);
1474 	release_shadow_wa_ctx(&workload->wa_ctx);
1475 
1476 	if (!list_empty(&workload->lri_shadow_mm)) {
1477 		struct intel_vgpu_mm *m, *mm;
1478 		list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1479 					 ppgtt_mm.link) {
1480 			list_del(&m->ppgtt_mm.link);
1481 			intel_vgpu_mm_put(m);
1482 		}
1483 	}
1484 
1485 	GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1486 	if (workload->shadow_mm)
1487 		intel_vgpu_mm_put(workload->shadow_mm);
1488 
1489 	kmem_cache_free(s->workloads, workload);
1490 }
1491 
1492 static struct intel_vgpu_workload *
1493 alloc_workload(struct intel_vgpu *vgpu)
1494 {
1495 	struct intel_vgpu_submission *s = &vgpu->submission;
1496 	struct intel_vgpu_workload *workload;
1497 
1498 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1499 	if (!workload)
1500 		return ERR_PTR(-ENOMEM);
1501 
1502 	INIT_LIST_HEAD(&workload->list);
1503 	INIT_LIST_HEAD(&workload->shadow_bb);
1504 	INIT_LIST_HEAD(&workload->lri_shadow_mm);
1505 
1506 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1507 	atomic_set(&workload->shadow_ctx_active, 0);
1508 
1509 	workload->status = -EINPROGRESS;
1510 	workload->vgpu = vgpu;
1511 
1512 	return workload;
1513 }
1514 
1515 #define RING_CTX_OFF(x) \
1516 	offsetof(struct execlist_ring_context, x)
1517 
1518 static void read_guest_pdps(struct intel_vgpu *vgpu,
1519 		u64 ring_context_gpa, u32 pdp[8])
1520 {
1521 	u64 gpa;
1522 	int i;
1523 
1524 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1525 
1526 	for (i = 0; i < 8; i++)
1527 		intel_gvt_hypervisor_read_gpa(vgpu,
1528 				gpa + i * 8, &pdp[7 - i], 4);
1529 }
1530 
1531 static int prepare_mm(struct intel_vgpu_workload *workload)
1532 {
1533 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1534 	struct intel_vgpu_mm *mm;
1535 	struct intel_vgpu *vgpu = workload->vgpu;
1536 	enum intel_gvt_gtt_type root_entry_type;
1537 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1538 
1539 	switch (desc->addressing_mode) {
1540 	case 1: /* legacy 32-bit */
1541 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1542 		break;
1543 	case 3: /* legacy 64-bit */
1544 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1545 		break;
1546 	default:
1547 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1548 		return -EINVAL;
1549 	}
1550 
1551 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1552 
1553 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1554 	if (IS_ERR(mm))
1555 		return PTR_ERR(mm);
1556 
1557 	workload->shadow_mm = mm;
1558 	return 0;
1559 }
1560 
1561 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1562 		((a)->lrca == (b)->lrca))
1563 
1564 /**
1565  * intel_vgpu_create_workload - create a vGPU workload
1566  * @vgpu: a vGPU
1567  * @engine: the engine
1568  * @desc: a guest context descriptor
1569  *
1570  * This function is called when creating a vGPU workload.
1571  *
1572  * Returns:
1573  * struct intel_vgpu_workload * on success, negative error code in
1574  * pointer if failed.
1575  *
1576  */
1577 struct intel_vgpu_workload *
1578 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1579 			   const struct intel_engine_cs *engine,
1580 			   struct execlist_ctx_descriptor_format *desc)
1581 {
1582 	struct intel_vgpu_submission *s = &vgpu->submission;
1583 	struct list_head *q = workload_q_head(vgpu, engine);
1584 	struct intel_vgpu_workload *last_workload = NULL;
1585 	struct intel_vgpu_workload *workload = NULL;
1586 	u64 ring_context_gpa;
1587 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1588 	u32 guest_head;
1589 	int ret;
1590 
1591 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1592 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1593 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1594 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1595 		return ERR_PTR(-EINVAL);
1596 	}
1597 
1598 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1599 			RING_CTX_OFF(ring_header.val), &head, 4);
1600 
1601 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1602 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1603 
1604 	guest_head = head;
1605 
1606 	head &= RB_HEAD_OFF_MASK;
1607 	tail &= RB_TAIL_OFF_MASK;
1608 
1609 	list_for_each_entry_reverse(last_workload, q, list) {
1610 
1611 		if (same_context(&last_workload->ctx_desc, desc)) {
1612 			gvt_dbg_el("ring %s cur workload == last\n",
1613 				   engine->name);
1614 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1615 				   last_workload->rb_tail);
1616 			/*
1617 			 * cannot use guest context head pointer here,
1618 			 * as it might not be updated at this time
1619 			 */
1620 			head = last_workload->rb_tail;
1621 			break;
1622 		}
1623 	}
1624 
1625 	gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1626 
1627 	/* record some ring buffer register values for scan and shadow */
1628 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1629 			RING_CTX_OFF(rb_start.val), &start, 4);
1630 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1631 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1632 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1633 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1634 
1635 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1636 				_RING_CTL_BUF_SIZE(ctl))) {
1637 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1638 		return ERR_PTR(-EINVAL);
1639 	}
1640 
1641 	workload = alloc_workload(vgpu);
1642 	if (IS_ERR(workload))
1643 		return workload;
1644 
1645 	workload->engine = engine;
1646 	workload->ctx_desc = *desc;
1647 	workload->ring_context_gpa = ring_context_gpa;
1648 	workload->rb_head = head;
1649 	workload->guest_rb_head = guest_head;
1650 	workload->rb_tail = tail;
1651 	workload->rb_start = start;
1652 	workload->rb_ctl = ctl;
1653 
1654 	if (engine->id == RCS0) {
1655 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1656 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1657 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1658 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1659 
1660 		workload->wa_ctx.indirect_ctx.guest_gma =
1661 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1662 		workload->wa_ctx.indirect_ctx.size =
1663 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1664 			CACHELINE_BYTES;
1665 
1666 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1667 			if (!intel_gvt_ggtt_validate_range(vgpu,
1668 				workload->wa_ctx.indirect_ctx.guest_gma,
1669 				workload->wa_ctx.indirect_ctx.size)) {
1670 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1671 				    workload->wa_ctx.indirect_ctx.guest_gma);
1672 				kmem_cache_free(s->workloads, workload);
1673 				return ERR_PTR(-EINVAL);
1674 			}
1675 		}
1676 
1677 		workload->wa_ctx.per_ctx.guest_gma =
1678 			per_ctx & PER_CTX_ADDR_MASK;
1679 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1680 		if (workload->wa_ctx.per_ctx.valid) {
1681 			if (!intel_gvt_ggtt_validate_range(vgpu,
1682 				workload->wa_ctx.per_ctx.guest_gma,
1683 				CACHELINE_BYTES)) {
1684 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1685 					workload->wa_ctx.per_ctx.guest_gma);
1686 				kmem_cache_free(s->workloads, workload);
1687 				return ERR_PTR(-EINVAL);
1688 			}
1689 		}
1690 	}
1691 
1692 	gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1693 		   workload, engine->name, head, tail, start, ctl);
1694 
1695 	ret = prepare_mm(workload);
1696 	if (ret) {
1697 		kmem_cache_free(s->workloads, workload);
1698 		return ERR_PTR(ret);
1699 	}
1700 
1701 	/* Only scan and shadow the first workload in the queue
1702 	 * as there is only one pre-allocated buf-obj for shadow.
1703 	 */
1704 	if (list_empty(q)) {
1705 		intel_wakeref_t wakeref;
1706 
1707 		with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1708 			ret = intel_gvt_scan_and_shadow_workload(workload);
1709 	}
1710 
1711 	if (ret) {
1712 		if (vgpu_is_vm_unhealthy(ret))
1713 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1714 		intel_vgpu_destroy_workload(workload);
1715 		return ERR_PTR(ret);
1716 	}
1717 
1718 	return workload;
1719 }
1720 
1721 /**
1722  * intel_vgpu_queue_workload - Qeue a vGPU workload
1723  * @workload: the workload to queue in
1724  */
1725 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1726 {
1727 	list_add_tail(&workload->list,
1728 		      workload_q_head(workload->vgpu, workload->engine));
1729 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1730 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1731 }
1732