1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_pm.h" 39 #include "gt/intel_context.h" 40 #include "gt/intel_ring.h" 41 42 #include "i915_drv.h" 43 #include "i915_gem_gtt.h" 44 #include "gvt.h" 45 46 #define RING_CTX_OFF(x) \ 47 offsetof(struct execlist_ring_context, x) 48 49 static void set_context_pdp_root_pointer( 50 struct execlist_ring_context *ring_context, 51 u32 pdp[8]) 52 { 53 int i; 54 55 for (i = 0; i < 8; i++) 56 ring_context->pdps[i].val = pdp[7 - i]; 57 } 58 59 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 60 { 61 struct execlist_ring_context *shadow_ring_context; 62 struct intel_context *ctx = workload->req->context; 63 64 if (WARN_ON(!workload->shadow_mm)) 65 return; 66 67 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 68 return; 69 70 shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state; 71 set_context_pdp_root_pointer(shadow_ring_context, 72 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 73 } 74 75 /* 76 * when populating shadow ctx from guest, we should not overrride oa related 77 * registers, so that they will not be overlapped by guest oa configs. Thus 78 * made it possible to capture oa data from host for both host and guests. 79 */ 80 static void sr_oa_regs(struct intel_vgpu_workload *workload, 81 u32 *reg_state, bool save) 82 { 83 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; 84 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 85 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 86 int i = 0; 87 u32 flex_mmio[] = { 88 i915_mmio_reg_offset(EU_PERF_CNTL0), 89 i915_mmio_reg_offset(EU_PERF_CNTL1), 90 i915_mmio_reg_offset(EU_PERF_CNTL2), 91 i915_mmio_reg_offset(EU_PERF_CNTL3), 92 i915_mmio_reg_offset(EU_PERF_CNTL4), 93 i915_mmio_reg_offset(EU_PERF_CNTL5), 94 i915_mmio_reg_offset(EU_PERF_CNTL6), 95 }; 96 97 if (workload->engine->id != RCS0) 98 return; 99 100 if (save) { 101 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 102 103 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 104 u32 state_offset = ctx_flexeu0 + i * 2; 105 106 workload->flex_mmio[i] = reg_state[state_offset + 1]; 107 } 108 } else { 109 reg_state[ctx_oactxctrl] = 110 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 111 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 112 113 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 114 u32 state_offset = ctx_flexeu0 + i * 2; 115 u32 mmio = flex_mmio[i]; 116 117 reg_state[state_offset] = mmio; 118 reg_state[state_offset + 1] = workload->flex_mmio[i]; 119 } 120 } 121 } 122 123 static int populate_shadow_context(struct intel_vgpu_workload *workload) 124 { 125 struct intel_vgpu *vgpu = workload->vgpu; 126 struct intel_gvt *gvt = vgpu->gvt; 127 struct intel_context *ctx = workload->req->context; 128 struct execlist_ring_context *shadow_ring_context; 129 void *dst; 130 void *context_base; 131 unsigned long context_gpa, context_page_num; 132 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 133 unsigned long gpa_size; /* size of consecutive GPAs */ 134 struct intel_vgpu_submission *s = &vgpu->submission; 135 int i; 136 bool skip = false; 137 int ring_id = workload->engine->id; 138 139 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 140 141 context_base = (void *) ctx->lrc_reg_state - 142 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 143 144 shadow_ring_context = (void *) ctx->lrc_reg_state; 145 146 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 147 #define COPY_REG(name) \ 148 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 149 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 150 #define COPY_REG_MASKED(name) {\ 151 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 152 + RING_CTX_OFF(name.val),\ 153 &shadow_ring_context->name.val, 4);\ 154 shadow_ring_context->name.val |= 0xffff << 16;\ 155 } 156 157 COPY_REG_MASKED(ctx_ctrl); 158 COPY_REG(ctx_timestamp); 159 160 if (workload->engine->id == RCS0) { 161 COPY_REG(bb_per_ctx_ptr); 162 COPY_REG(rcs_indirect_ctx); 163 COPY_REG(rcs_indirect_ctx_offset); 164 } 165 #undef COPY_REG 166 #undef COPY_REG_MASKED 167 168 intel_gvt_hypervisor_read_gpa(vgpu, 169 workload->ring_context_gpa + 170 sizeof(*shadow_ring_context), 171 (void *)shadow_ring_context + 172 sizeof(*shadow_ring_context), 173 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 174 175 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 176 177 gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx", 178 workload->engine->name, workload->ctx_desc.lrca, 179 workload->ctx_desc.context_id, 180 workload->ring_context_gpa); 181 182 /* only need to ensure this context is not pinned/unpinned during the 183 * period from last submission to this this submission. 184 * Upon reaching this function, the currently submitted context is not 185 * supposed to get unpinned. If a misbehaving guest driver ever does 186 * this, it would corrupt itself. 187 */ 188 if (s->last_ctx[ring_id].valid && 189 (s->last_ctx[ring_id].lrca == 190 workload->ctx_desc.lrca) && 191 (s->last_ctx[ring_id].ring_context_gpa == 192 workload->ring_context_gpa)) 193 skip = true; 194 195 s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca; 196 s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa; 197 198 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip) 199 return 0; 200 201 s->last_ctx[ring_id].valid = false; 202 context_page_num = workload->engine->context_size; 203 context_page_num = context_page_num >> PAGE_SHIFT; 204 205 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0) 206 context_page_num = 19; 207 208 /* find consecutive GPAs from gma until the first inconsecutive GPA. 209 * read from the continuous GPAs into dst virtual address 210 */ 211 gpa_size = 0; 212 for (i = 2; i < context_page_num; i++) { 213 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 214 (u32)((workload->ctx_desc.lrca + i) << 215 I915_GTT_PAGE_SHIFT)); 216 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 217 gvt_vgpu_err("Invalid guest context descriptor\n"); 218 return -EFAULT; 219 } 220 221 if (gpa_size == 0) { 222 gpa_base = context_gpa; 223 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 224 } else if (context_gpa != gpa_base + gpa_size) 225 goto read; 226 227 gpa_size += I915_GTT_PAGE_SIZE; 228 229 if (i == context_page_num - 1) 230 goto read; 231 232 continue; 233 234 read: 235 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size); 236 gpa_base = context_gpa; 237 gpa_size = I915_GTT_PAGE_SIZE; 238 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 239 } 240 s->last_ctx[ring_id].valid = true; 241 return 0; 242 } 243 244 static inline bool is_gvt_request(struct i915_request *rq) 245 { 246 return intel_context_force_single_submission(rq->context); 247 } 248 249 static void save_ring_hw_state(struct intel_vgpu *vgpu, 250 const struct intel_engine_cs *engine) 251 { 252 struct intel_uncore *uncore = engine->uncore; 253 i915_reg_t reg; 254 255 reg = RING_INSTDONE(engine->mmio_base); 256 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 257 intel_uncore_read(uncore, reg); 258 259 reg = RING_ACTHD(engine->mmio_base); 260 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 261 intel_uncore_read(uncore, reg); 262 263 reg = RING_ACTHD_UDW(engine->mmio_base); 264 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 265 intel_uncore_read(uncore, reg); 266 } 267 268 static int shadow_context_status_change(struct notifier_block *nb, 269 unsigned long action, void *data) 270 { 271 struct i915_request *rq = data; 272 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 273 shadow_ctx_notifier_block[rq->engine->id]); 274 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 275 enum intel_engine_id ring_id = rq->engine->id; 276 struct intel_vgpu_workload *workload; 277 unsigned long flags; 278 279 if (!is_gvt_request(rq)) { 280 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 281 if (action == INTEL_CONTEXT_SCHEDULE_IN && 282 scheduler->engine_owner[ring_id]) { 283 /* Switch ring from vGPU to host. */ 284 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 285 NULL, rq->engine); 286 scheduler->engine_owner[ring_id] = NULL; 287 } 288 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 289 290 return NOTIFY_OK; 291 } 292 293 workload = scheduler->current_workload[ring_id]; 294 if (unlikely(!workload)) 295 return NOTIFY_OK; 296 297 switch (action) { 298 case INTEL_CONTEXT_SCHEDULE_IN: 299 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 300 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 301 /* Switch ring from host to vGPU or vGPU to vGPU. */ 302 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 303 workload->vgpu, rq->engine); 304 scheduler->engine_owner[ring_id] = workload->vgpu; 305 } else 306 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 307 ring_id, workload->vgpu->id); 308 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 309 atomic_set(&workload->shadow_ctx_active, 1); 310 break; 311 case INTEL_CONTEXT_SCHEDULE_OUT: 312 save_ring_hw_state(workload->vgpu, rq->engine); 313 atomic_set(&workload->shadow_ctx_active, 0); 314 break; 315 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 316 save_ring_hw_state(workload->vgpu, rq->engine); 317 break; 318 default: 319 WARN_ON(1); 320 return NOTIFY_OK; 321 } 322 wake_up(&workload->shadow_ctx_status_wq); 323 return NOTIFY_OK; 324 } 325 326 static void 327 shadow_context_descriptor_update(struct intel_context *ce, 328 struct intel_vgpu_workload *workload) 329 { 330 u64 desc = ce->lrc.desc; 331 332 /* 333 * Update bits 0-11 of the context descriptor which includes flags 334 * like GEN8_CTX_* cached in desc_template 335 */ 336 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT); 337 desc |= (u64)workload->ctx_desc.addressing_mode << 338 GEN8_CTX_ADDRESSING_MODE_SHIFT; 339 340 ce->lrc.desc = desc; 341 } 342 343 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 344 { 345 struct intel_vgpu *vgpu = workload->vgpu; 346 struct i915_request *req = workload->req; 347 void *shadow_ring_buffer_va; 348 u32 *cs; 349 int err; 350 351 if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context)) 352 intel_vgpu_restore_inhibit_context(vgpu, req); 353 354 /* 355 * To track whether a request has started on HW, we can emit a 356 * breadcrumb at the beginning of the request and check its 357 * timeline's HWSP to see if the breadcrumb has advanced past the 358 * start of this request. Actually, the request must have the 359 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 360 * scheduler might get a wrong state of it during reset. Since the 361 * requests from gvt always set the has_init_breadcrumb flag, here 362 * need to do the emit_init_breadcrumb for all the requests. 363 */ 364 if (req->engine->emit_init_breadcrumb) { 365 err = req->engine->emit_init_breadcrumb(req); 366 if (err) { 367 gvt_vgpu_err("fail to emit init breadcrumb\n"); 368 return err; 369 } 370 } 371 372 /* allocate shadow ring buffer */ 373 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 374 if (IS_ERR(cs)) { 375 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 376 workload->rb_len); 377 return PTR_ERR(cs); 378 } 379 380 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 381 382 /* get shadow ring buffer va */ 383 workload->shadow_ring_buffer_va = cs; 384 385 memcpy(cs, shadow_ring_buffer_va, 386 workload->rb_len); 387 388 cs += workload->rb_len / sizeof(u32); 389 intel_ring_advance(workload->req, cs); 390 391 return 0; 392 } 393 394 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 395 { 396 if (!wa_ctx->indirect_ctx.obj) 397 return; 398 399 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 400 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 401 402 wa_ctx->indirect_ctx.obj = NULL; 403 wa_ctx->indirect_ctx.shadow_va = NULL; 404 } 405 406 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr) 407 { 408 struct scatterlist *sg = pd->pt.base->mm.pages->sgl; 409 410 /* This is not a good idea */ 411 sg->dma_address = addr; 412 } 413 414 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 415 struct intel_context *ce) 416 { 417 struct intel_vgpu_mm *mm = workload->shadow_mm; 418 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); 419 int i = 0; 420 421 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 422 set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]); 423 } else { 424 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 425 struct i915_page_directory * const pd = 426 i915_pd_entry(ppgtt->pd, i); 427 /* skip now as current i915 ppgtt alloc won't allocate 428 top level pdp for non 4-level table, won't impact 429 shadow ppgtt. */ 430 if (!pd) 431 break; 432 433 set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]); 434 } 435 } 436 } 437 438 static int 439 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 440 { 441 struct intel_vgpu *vgpu = workload->vgpu; 442 struct intel_vgpu_submission *s = &vgpu->submission; 443 struct i915_request *rq; 444 445 if (workload->req) 446 return 0; 447 448 rq = i915_request_create(s->shadow[workload->engine->id]); 449 if (IS_ERR(rq)) { 450 gvt_vgpu_err("fail to allocate gem request\n"); 451 return PTR_ERR(rq); 452 } 453 454 workload->req = i915_request_get(rq); 455 return 0; 456 } 457 458 /** 459 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 460 * shadow it as well, include ringbuffer,wa_ctx and ctx. 461 * @workload: an abstract entity for each execlist submission. 462 * 463 * This function is called before the workload submitting to i915, to make 464 * sure the content of the workload is valid. 465 */ 466 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 467 { 468 struct intel_vgpu *vgpu = workload->vgpu; 469 struct intel_vgpu_submission *s = &vgpu->submission; 470 int ret; 471 472 lockdep_assert_held(&vgpu->vgpu_lock); 473 474 if (workload->shadow) 475 return 0; 476 477 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated)) 478 shadow_context_descriptor_update(s->shadow[workload->engine->id], 479 workload); 480 481 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 482 if (ret) 483 return ret; 484 485 if (workload->engine->id == RCS0 && 486 workload->wa_ctx.indirect_ctx.size) { 487 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 488 if (ret) 489 goto err_shadow; 490 } 491 492 workload->shadow = true; 493 return 0; 494 495 err_shadow: 496 release_shadow_wa_ctx(&workload->wa_ctx); 497 return ret; 498 } 499 500 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 501 502 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 503 { 504 struct intel_gvt *gvt = workload->vgpu->gvt; 505 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 506 struct intel_vgpu_shadow_bb *bb; 507 int ret; 508 509 list_for_each_entry(bb, &workload->shadow_bb, list) { 510 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 511 * is only updated into ring_scan_buffer, not real ring address 512 * allocated in later copy_workload_to_ring_buffer. pls be noted 513 * shadow_ring_buffer_va is now pointed to real ring buffer va 514 * in copy_workload_to_ring_buffer. 515 */ 516 517 if (bb->bb_offset) 518 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 519 + bb->bb_offset; 520 521 /* 522 * For non-priv bb, scan&shadow is only for 523 * debugging purpose, so the content of shadow bb 524 * is the same as original bb. Therefore, 525 * here, rather than switch to shadow bb's gma 526 * address, we directly use original batch buffer's 527 * gma address, and send original bb to hardware 528 * directly 529 */ 530 if (!bb->ppgtt) { 531 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 532 NULL, 0, 0, 0); 533 if (IS_ERR(bb->vma)) { 534 ret = PTR_ERR(bb->vma); 535 goto err; 536 } 537 538 /* relocate shadow batch buffer */ 539 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 540 if (gmadr_bytes == 8) 541 bb->bb_start_cmd_va[2] = 0; 542 543 ret = i915_vma_move_to_active(bb->vma, 544 workload->req, 545 0); 546 if (ret) 547 goto err; 548 } 549 550 /* No one is going to touch shadow bb from now on. */ 551 i915_gem_object_flush_map(bb->obj); 552 } 553 return 0; 554 err: 555 release_shadow_batch_buffer(workload); 556 return ret; 557 } 558 559 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 560 { 561 struct intel_vgpu_workload *workload = 562 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 563 struct i915_request *rq = workload->req; 564 struct execlist_ring_context *shadow_ring_context = 565 (struct execlist_ring_context *)rq->context->lrc_reg_state; 566 567 shadow_ring_context->bb_per_ctx_ptr.val = 568 (shadow_ring_context->bb_per_ctx_ptr.val & 569 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 570 shadow_ring_context->rcs_indirect_ctx.val = 571 (shadow_ring_context->rcs_indirect_ctx.val & 572 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 573 } 574 575 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 576 { 577 struct i915_vma *vma; 578 unsigned char *per_ctx_va = 579 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 580 wa_ctx->indirect_ctx.size; 581 582 if (wa_ctx->indirect_ctx.size == 0) 583 return 0; 584 585 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 586 0, CACHELINE_BYTES, 0); 587 if (IS_ERR(vma)) 588 return PTR_ERR(vma); 589 590 /* FIXME: we are not tracking our pinned VMA leaving it 591 * up to the core to fix up the stray pin_count upon 592 * free. 593 */ 594 595 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 596 597 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 598 memset(per_ctx_va, 0, CACHELINE_BYTES); 599 600 update_wa_ctx_2_shadow_ctx(wa_ctx); 601 return 0; 602 } 603 604 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 605 { 606 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) = 607 workload->rb_start; 608 } 609 610 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 611 { 612 struct intel_vgpu_shadow_bb *bb, *pos; 613 614 if (list_empty(&workload->shadow_bb)) 615 return; 616 617 bb = list_first_entry(&workload->shadow_bb, 618 struct intel_vgpu_shadow_bb, list); 619 620 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 621 if (bb->obj) { 622 if (bb->va && !IS_ERR(bb->va)) 623 i915_gem_object_unpin_map(bb->obj); 624 625 if (bb->vma && !IS_ERR(bb->vma)) 626 i915_vma_unpin(bb->vma); 627 628 i915_gem_object_put(bb->obj); 629 } 630 list_del(&bb->list); 631 kfree(bb); 632 } 633 } 634 635 static int 636 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload) 637 { 638 struct intel_vgpu *vgpu = workload->vgpu; 639 struct intel_vgpu_mm *m; 640 int ret = 0; 641 642 ret = intel_vgpu_pin_mm(workload->shadow_mm); 643 if (ret) { 644 gvt_vgpu_err("fail to vgpu pin mm\n"); 645 return ret; 646 } 647 648 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 649 !workload->shadow_mm->ppgtt_mm.shadowed) { 650 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 651 return -EINVAL; 652 } 653 654 if (!list_empty(&workload->lri_shadow_mm)) { 655 list_for_each_entry(m, &workload->lri_shadow_mm, 656 ppgtt_mm.link) { 657 ret = intel_vgpu_pin_mm(m); 658 if (ret) { 659 list_for_each_entry_from_reverse(m, 660 &workload->lri_shadow_mm, 661 ppgtt_mm.link) 662 intel_vgpu_unpin_mm(m); 663 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n"); 664 break; 665 } 666 } 667 } 668 669 if (ret) 670 intel_vgpu_unpin_mm(workload->shadow_mm); 671 672 return ret; 673 } 674 675 static void 676 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload) 677 { 678 struct intel_vgpu_mm *m; 679 680 if (!list_empty(&workload->lri_shadow_mm)) { 681 list_for_each_entry(m, &workload->lri_shadow_mm, 682 ppgtt_mm.link) 683 intel_vgpu_unpin_mm(m); 684 } 685 intel_vgpu_unpin_mm(workload->shadow_mm); 686 } 687 688 static int prepare_workload(struct intel_vgpu_workload *workload) 689 { 690 struct intel_vgpu *vgpu = workload->vgpu; 691 struct intel_vgpu_submission *s = &vgpu->submission; 692 int ret = 0; 693 694 ret = intel_vgpu_shadow_mm_pin(workload); 695 if (ret) { 696 gvt_vgpu_err("fail to pin shadow mm\n"); 697 return ret; 698 } 699 700 update_shadow_pdps(workload); 701 702 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]); 703 704 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 705 if (ret) { 706 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 707 goto err_unpin_mm; 708 } 709 710 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 711 if (ret) { 712 gvt_vgpu_err("fail to flush post shadow\n"); 713 goto err_unpin_mm; 714 } 715 716 ret = copy_workload_to_ring_buffer(workload); 717 if (ret) { 718 gvt_vgpu_err("fail to generate request\n"); 719 goto err_unpin_mm; 720 } 721 722 ret = prepare_shadow_batch_buffer(workload); 723 if (ret) { 724 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 725 goto err_unpin_mm; 726 } 727 728 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 729 if (ret) { 730 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 731 goto err_shadow_batch; 732 } 733 734 if (workload->prepare) { 735 ret = workload->prepare(workload); 736 if (ret) 737 goto err_shadow_wa_ctx; 738 } 739 740 return 0; 741 err_shadow_wa_ctx: 742 release_shadow_wa_ctx(&workload->wa_ctx); 743 err_shadow_batch: 744 release_shadow_batch_buffer(workload); 745 err_unpin_mm: 746 intel_vgpu_shadow_mm_unpin(workload); 747 return ret; 748 } 749 750 static int dispatch_workload(struct intel_vgpu_workload *workload) 751 { 752 struct intel_vgpu *vgpu = workload->vgpu; 753 struct i915_request *rq; 754 int ret; 755 756 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n", 757 workload->engine->name, workload); 758 759 mutex_lock(&vgpu->vgpu_lock); 760 761 ret = intel_gvt_workload_req_alloc(workload); 762 if (ret) 763 goto err_req; 764 765 ret = intel_gvt_scan_and_shadow_workload(workload); 766 if (ret) 767 goto out; 768 769 ret = populate_shadow_context(workload); 770 if (ret) { 771 release_shadow_wa_ctx(&workload->wa_ctx); 772 goto out; 773 } 774 775 ret = prepare_workload(workload); 776 out: 777 if (ret) { 778 /* We might still need to add request with 779 * clean ctx to retire it properly.. 780 */ 781 rq = fetch_and_zero(&workload->req); 782 i915_request_put(rq); 783 } 784 785 if (!IS_ERR_OR_NULL(workload->req)) { 786 gvt_dbg_sched("ring id %s submit workload to i915 %p\n", 787 workload->engine->name, workload->req); 788 i915_request_add(workload->req); 789 workload->dispatched = true; 790 } 791 err_req: 792 if (ret) 793 workload->status = ret; 794 mutex_unlock(&vgpu->vgpu_lock); 795 return ret; 796 } 797 798 static struct intel_vgpu_workload * 799 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine) 800 { 801 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 802 struct intel_vgpu_workload *workload = NULL; 803 804 mutex_lock(&gvt->sched_lock); 805 806 /* 807 * no current vgpu / will be scheduled out / no workload 808 * bail out 809 */ 810 if (!scheduler->current_vgpu) { 811 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name); 812 goto out; 813 } 814 815 if (scheduler->need_reschedule) { 816 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name); 817 goto out; 818 } 819 820 if (!scheduler->current_vgpu->active || 821 list_empty(workload_q_head(scheduler->current_vgpu, engine))) 822 goto out; 823 824 /* 825 * still have current workload, maybe the workload disptacher 826 * fail to submit it for some reason, resubmit it. 827 */ 828 if (scheduler->current_workload[engine->id]) { 829 workload = scheduler->current_workload[engine->id]; 830 gvt_dbg_sched("ring %s still have current workload %p\n", 831 engine->name, workload); 832 goto out; 833 } 834 835 /* 836 * pick a workload as current workload 837 * once current workload is set, schedule policy routines 838 * will wait the current workload is finished when trying to 839 * schedule out a vgpu. 840 */ 841 scheduler->current_workload[engine->id] = 842 list_first_entry(workload_q_head(scheduler->current_vgpu, 843 engine), 844 struct intel_vgpu_workload, list); 845 846 workload = scheduler->current_workload[engine->id]; 847 848 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload); 849 850 atomic_inc(&workload->vgpu->submission.running_workload_num); 851 out: 852 mutex_unlock(&gvt->sched_lock); 853 return workload; 854 } 855 856 static void update_guest_pdps(struct intel_vgpu *vgpu, 857 u64 ring_context_gpa, u32 pdp[8]) 858 { 859 u64 gpa; 860 int i; 861 862 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 863 864 for (i = 0; i < 8; i++) 865 intel_gvt_hypervisor_write_gpa(vgpu, 866 gpa + i * 8, &pdp[7 - i], 4); 867 } 868 869 static __maybe_unused bool 870 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m) 871 { 872 if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 873 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32; 874 875 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) { 876 gvt_dbg_mm("4-level context ppgtt not match LRI command\n"); 877 return false; 878 } 879 return true; 880 } else { 881 /* see comment in LRI handler in cmd_parser.c */ 882 gvt_dbg_mm("invalid shadow mm type\n"); 883 return false; 884 } 885 } 886 887 static void update_guest_context(struct intel_vgpu_workload *workload) 888 { 889 struct i915_request *rq = workload->req; 890 struct intel_vgpu *vgpu = workload->vgpu; 891 struct execlist_ring_context *shadow_ring_context; 892 struct intel_context *ctx = workload->req->context; 893 void *context_base; 894 void *src; 895 unsigned long context_gpa, context_page_num; 896 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 897 unsigned long gpa_size; /* size of consecutive GPAs*/ 898 int i; 899 u32 ring_base; 900 u32 head, tail; 901 u16 wrap_count; 902 903 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 904 workload->ctx_desc.lrca); 905 906 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 907 908 head = workload->rb_head; 909 tail = workload->rb_tail; 910 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 911 912 if (tail < head) { 913 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 914 wrap_count = 0; 915 else 916 wrap_count += 1; 917 } 918 919 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 920 921 ring_base = rq->engine->mmio_base; 922 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 923 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 924 925 context_page_num = rq->engine->context_size; 926 context_page_num = context_page_num >> PAGE_SHIFT; 927 928 if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0) 929 context_page_num = 19; 930 931 context_base = (void *) ctx->lrc_reg_state - 932 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 933 934 /* find consecutive GPAs from gma until the first inconsecutive GPA. 935 * write to the consecutive GPAs from src virtual address 936 */ 937 gpa_size = 0; 938 for (i = 2; i < context_page_num; i++) { 939 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 940 (u32)((workload->ctx_desc.lrca + i) << 941 I915_GTT_PAGE_SHIFT)); 942 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 943 gvt_vgpu_err("invalid guest context descriptor\n"); 944 return; 945 } 946 947 if (gpa_size == 0) { 948 gpa_base = context_gpa; 949 src = context_base + (i << I915_GTT_PAGE_SHIFT); 950 } else if (context_gpa != gpa_base + gpa_size) 951 goto write; 952 953 gpa_size += I915_GTT_PAGE_SIZE; 954 955 if (i == context_page_num - 1) 956 goto write; 957 958 continue; 959 960 write: 961 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size); 962 gpa_base = context_gpa; 963 gpa_size = I915_GTT_PAGE_SIZE; 964 src = context_base + (i << I915_GTT_PAGE_SHIFT); 965 } 966 967 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 968 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 969 970 shadow_ring_context = (void *) ctx->lrc_reg_state; 971 972 if (!list_empty(&workload->lri_shadow_mm)) { 973 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm, 974 struct intel_vgpu_mm, 975 ppgtt_mm.link); 976 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m)); 977 update_guest_pdps(vgpu, workload->ring_context_gpa, 978 (void *)m->ppgtt_mm.guest_pdps); 979 } 980 981 #define COPY_REG(name) \ 982 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 983 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 984 985 COPY_REG(ctx_ctrl); 986 COPY_REG(ctx_timestamp); 987 988 #undef COPY_REG 989 990 intel_gvt_hypervisor_write_gpa(vgpu, 991 workload->ring_context_gpa + 992 sizeof(*shadow_ring_context), 993 (void *)shadow_ring_context + 994 sizeof(*shadow_ring_context), 995 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 996 } 997 998 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 999 intel_engine_mask_t engine_mask) 1000 { 1001 struct intel_vgpu_submission *s = &vgpu->submission; 1002 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1003 struct intel_engine_cs *engine; 1004 struct intel_vgpu_workload *pos, *n; 1005 intel_engine_mask_t tmp; 1006 1007 /* free the unsubmited workloads in the queues. */ 1008 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) { 1009 list_for_each_entry_safe(pos, n, 1010 &s->workload_q_head[engine->id], list) { 1011 list_del_init(&pos->list); 1012 intel_vgpu_destroy_workload(pos); 1013 } 1014 clear_bit(engine->id, s->shadow_ctx_desc_updated); 1015 } 1016 } 1017 1018 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 1019 { 1020 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1021 struct intel_vgpu_workload *workload = 1022 scheduler->current_workload[ring_id]; 1023 struct intel_vgpu *vgpu = workload->vgpu; 1024 struct intel_vgpu_submission *s = &vgpu->submission; 1025 struct i915_request *rq = workload->req; 1026 int event; 1027 1028 mutex_lock(&vgpu->vgpu_lock); 1029 mutex_lock(&gvt->sched_lock); 1030 1031 /* For the workload w/ request, needs to wait for the context 1032 * switch to make sure request is completed. 1033 * For the workload w/o request, directly complete the workload. 1034 */ 1035 if (rq) { 1036 wait_event(workload->shadow_ctx_status_wq, 1037 !atomic_read(&workload->shadow_ctx_active)); 1038 1039 /* If this request caused GPU hang, req->fence.error will 1040 * be set to -EIO. Use -EIO to set workload status so 1041 * that when this request caused GPU hang, didn't trigger 1042 * context switch interrupt to guest. 1043 */ 1044 if (likely(workload->status == -EINPROGRESS)) { 1045 if (workload->req->fence.error == -EIO) 1046 workload->status = -EIO; 1047 else 1048 workload->status = 0; 1049 } 1050 1051 if (!workload->status && 1052 !(vgpu->resetting_eng & BIT(ring_id))) { 1053 update_guest_context(workload); 1054 1055 for_each_set_bit(event, workload->pending_events, 1056 INTEL_GVT_EVENT_MAX) 1057 intel_vgpu_trigger_virtual_event(vgpu, event); 1058 } 1059 1060 i915_request_put(fetch_and_zero(&workload->req)); 1061 } 1062 1063 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 1064 ring_id, workload, workload->status); 1065 1066 scheduler->current_workload[ring_id] = NULL; 1067 1068 list_del_init(&workload->list); 1069 1070 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 1071 /* if workload->status is not successful means HW GPU 1072 * has occurred GPU hang or something wrong with i915/GVT, 1073 * and GVT won't inject context switch interrupt to guest. 1074 * So this error is a vGPU hang actually to the guest. 1075 * According to this we should emunlate a vGPU hang. If 1076 * there are pending workloads which are already submitted 1077 * from guest, we should clean them up like HW GPU does. 1078 * 1079 * if it is in middle of engine resetting, the pending 1080 * workloads won't be submitted to HW GPU and will be 1081 * cleaned up during the resetting process later, so doing 1082 * the workload clean up here doesn't have any impact. 1083 **/ 1084 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 1085 } 1086 1087 workload->complete(workload); 1088 1089 intel_vgpu_shadow_mm_unpin(workload); 1090 intel_vgpu_destroy_workload(workload); 1091 1092 atomic_dec(&s->running_workload_num); 1093 wake_up(&scheduler->workload_complete_wq); 1094 1095 if (gvt->scheduler.need_reschedule) 1096 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 1097 1098 mutex_unlock(&gvt->sched_lock); 1099 mutex_unlock(&vgpu->vgpu_lock); 1100 } 1101 1102 static int workload_thread(void *arg) 1103 { 1104 struct intel_engine_cs *engine = arg; 1105 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9; 1106 struct intel_gvt *gvt = engine->i915->gvt; 1107 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1108 struct intel_vgpu_workload *workload = NULL; 1109 struct intel_vgpu *vgpu = NULL; 1110 int ret; 1111 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1112 1113 gvt_dbg_core("workload thread for ring %s started\n", engine->name); 1114 1115 while (!kthread_should_stop()) { 1116 intel_wakeref_t wakeref; 1117 1118 add_wait_queue(&scheduler->waitq[engine->id], &wait); 1119 do { 1120 workload = pick_next_workload(gvt, engine); 1121 if (workload) 1122 break; 1123 wait_woken(&wait, TASK_INTERRUPTIBLE, 1124 MAX_SCHEDULE_TIMEOUT); 1125 } while (!kthread_should_stop()); 1126 remove_wait_queue(&scheduler->waitq[engine->id], &wait); 1127 1128 if (!workload) 1129 break; 1130 1131 gvt_dbg_sched("ring %s next workload %p vgpu %d\n", 1132 engine->name, workload, 1133 workload->vgpu->id); 1134 1135 wakeref = intel_runtime_pm_get(engine->uncore->rpm); 1136 1137 gvt_dbg_sched("ring %s will dispatch workload %p\n", 1138 engine->name, workload); 1139 1140 if (need_force_wake) 1141 intel_uncore_forcewake_get(engine->uncore, 1142 FORCEWAKE_ALL); 1143 /* 1144 * Update the vReg of the vGPU which submitted this 1145 * workload. The vGPU may use these registers for checking 1146 * the context state. The value comes from GPU commands 1147 * in this workload. 1148 */ 1149 update_vreg_in_ctx(workload); 1150 1151 ret = dispatch_workload(workload); 1152 1153 if (ret) { 1154 vgpu = workload->vgpu; 1155 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1156 goto complete; 1157 } 1158 1159 gvt_dbg_sched("ring %s wait workload %p\n", 1160 engine->name, workload); 1161 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1162 1163 complete: 1164 gvt_dbg_sched("will complete workload %p, status: %d\n", 1165 workload, workload->status); 1166 1167 complete_current_workload(gvt, engine->id); 1168 1169 if (need_force_wake) 1170 intel_uncore_forcewake_put(engine->uncore, 1171 FORCEWAKE_ALL); 1172 1173 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1174 if (ret && (vgpu_is_vm_unhealthy(ret))) 1175 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1176 } 1177 return 0; 1178 } 1179 1180 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1181 { 1182 struct intel_vgpu_submission *s = &vgpu->submission; 1183 struct intel_gvt *gvt = vgpu->gvt; 1184 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1185 1186 if (atomic_read(&s->running_workload_num)) { 1187 gvt_dbg_sched("wait vgpu idle\n"); 1188 1189 wait_event(scheduler->workload_complete_wq, 1190 !atomic_read(&s->running_workload_num)); 1191 } 1192 } 1193 1194 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1195 { 1196 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1197 struct intel_engine_cs *engine; 1198 enum intel_engine_id i; 1199 1200 gvt_dbg_core("clean workload scheduler\n"); 1201 1202 for_each_engine(engine, gvt->gt, i) { 1203 atomic_notifier_chain_unregister( 1204 &engine->context_status_notifier, 1205 &gvt->shadow_ctx_notifier_block[i]); 1206 kthread_stop(scheduler->thread[i]); 1207 } 1208 } 1209 1210 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1211 { 1212 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1213 struct intel_engine_cs *engine; 1214 enum intel_engine_id i; 1215 int ret; 1216 1217 gvt_dbg_core("init workload scheduler\n"); 1218 1219 init_waitqueue_head(&scheduler->workload_complete_wq); 1220 1221 for_each_engine(engine, gvt->gt, i) { 1222 init_waitqueue_head(&scheduler->waitq[i]); 1223 1224 scheduler->thread[i] = kthread_run(workload_thread, engine, 1225 "gvt:%s", engine->name); 1226 if (IS_ERR(scheduler->thread[i])) { 1227 gvt_err("fail to create workload thread\n"); 1228 ret = PTR_ERR(scheduler->thread[i]); 1229 goto err; 1230 } 1231 1232 gvt->shadow_ctx_notifier_block[i].notifier_call = 1233 shadow_context_status_change; 1234 atomic_notifier_chain_register(&engine->context_status_notifier, 1235 &gvt->shadow_ctx_notifier_block[i]); 1236 } 1237 1238 return 0; 1239 1240 err: 1241 intel_gvt_clean_workload_scheduler(gvt); 1242 return ret; 1243 } 1244 1245 static void 1246 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1247 struct i915_ppgtt *ppgtt) 1248 { 1249 int i; 1250 1251 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1252 set_dma_address(ppgtt->pd, s->i915_context_pml4); 1253 } else { 1254 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1255 struct i915_page_directory * const pd = 1256 i915_pd_entry(ppgtt->pd, i); 1257 1258 set_dma_address(pd, s->i915_context_pdps[i]); 1259 } 1260 } 1261 } 1262 1263 /** 1264 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1265 * @vgpu: a vGPU 1266 * 1267 * This function is called when a vGPU is being destroyed. 1268 * 1269 */ 1270 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1271 { 1272 struct intel_vgpu_submission *s = &vgpu->submission; 1273 struct intel_engine_cs *engine; 1274 enum intel_engine_id id; 1275 1276 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1277 1278 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1279 for_each_engine(engine, vgpu->gvt->gt, id) 1280 intel_context_put(s->shadow[id]); 1281 1282 kmem_cache_destroy(s->workloads); 1283 } 1284 1285 1286 /** 1287 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1288 * @vgpu: a vGPU 1289 * @engine_mask: engines expected to be reset 1290 * 1291 * This function is called when a vGPU is being destroyed. 1292 * 1293 */ 1294 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1295 intel_engine_mask_t engine_mask) 1296 { 1297 struct intel_vgpu_submission *s = &vgpu->submission; 1298 1299 if (!s->active) 1300 return; 1301 1302 intel_vgpu_clean_workloads(vgpu, engine_mask); 1303 s->ops->reset(vgpu, engine_mask); 1304 } 1305 1306 static void 1307 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1308 struct i915_ppgtt *ppgtt) 1309 { 1310 int i; 1311 1312 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1313 s->i915_context_pml4 = px_dma(ppgtt->pd); 1314 } else { 1315 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1316 struct i915_page_directory * const pd = 1317 i915_pd_entry(ppgtt->pd, i); 1318 1319 s->i915_context_pdps[i] = px_dma(pd); 1320 } 1321 } 1322 } 1323 1324 /** 1325 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1326 * @vgpu: a vGPU 1327 * 1328 * This function is called when a vGPU is being created. 1329 * 1330 * Returns: 1331 * Zero on success, negative error code if failed. 1332 * 1333 */ 1334 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1335 { 1336 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1337 struct intel_vgpu_submission *s = &vgpu->submission; 1338 struct intel_engine_cs *engine; 1339 struct i915_ppgtt *ppgtt; 1340 enum intel_engine_id i; 1341 int ret; 1342 1343 ppgtt = i915_ppgtt_create(&i915->gt); 1344 if (IS_ERR(ppgtt)) 1345 return PTR_ERR(ppgtt); 1346 1347 i915_context_ppgtt_root_save(s, ppgtt); 1348 1349 for_each_engine(engine, vgpu->gvt->gt, i) { 1350 struct intel_context *ce; 1351 1352 INIT_LIST_HEAD(&s->workload_q_head[i]); 1353 s->shadow[i] = ERR_PTR(-EINVAL); 1354 1355 ce = intel_context_create(engine); 1356 if (IS_ERR(ce)) { 1357 ret = PTR_ERR(ce); 1358 goto out_shadow_ctx; 1359 } 1360 1361 i915_vm_put(ce->vm); 1362 ce->vm = i915_vm_get(&ppgtt->vm); 1363 intel_context_set_single_submission(ce); 1364 1365 /* Max ring buffer size */ 1366 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) { 1367 const unsigned int ring_size = 512 * SZ_4K; 1368 1369 ce->ring = __intel_context_ring_size(ring_size); 1370 } 1371 1372 s->shadow[i] = ce; 1373 } 1374 1375 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1376 1377 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1378 sizeof(struct intel_vgpu_workload), 0, 1379 SLAB_HWCACHE_ALIGN, 1380 offsetof(struct intel_vgpu_workload, rb_tail), 1381 sizeof_field(struct intel_vgpu_workload, rb_tail), 1382 NULL); 1383 1384 if (!s->workloads) { 1385 ret = -ENOMEM; 1386 goto out_shadow_ctx; 1387 } 1388 1389 atomic_set(&s->running_workload_num, 0); 1390 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1391 1392 memset(s->last_ctx, 0, sizeof(s->last_ctx)); 1393 1394 i915_vm_put(&ppgtt->vm); 1395 return 0; 1396 1397 out_shadow_ctx: 1398 i915_context_ppgtt_root_restore(s, ppgtt); 1399 for_each_engine(engine, vgpu->gvt->gt, i) { 1400 if (IS_ERR(s->shadow[i])) 1401 break; 1402 1403 intel_context_put(s->shadow[i]); 1404 } 1405 i915_vm_put(&ppgtt->vm); 1406 return ret; 1407 } 1408 1409 /** 1410 * intel_vgpu_select_submission_ops - select virtual submission interface 1411 * @vgpu: a vGPU 1412 * @engine_mask: either ALL_ENGINES or target engine mask 1413 * @interface: expected vGPU virtual submission interface 1414 * 1415 * This function is called when guest configures submission interface. 1416 * 1417 * Returns: 1418 * Zero on success, negative error code if failed. 1419 * 1420 */ 1421 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1422 intel_engine_mask_t engine_mask, 1423 unsigned int interface) 1424 { 1425 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1426 struct intel_vgpu_submission *s = &vgpu->submission; 1427 const struct intel_vgpu_submission_ops *ops[] = { 1428 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1429 &intel_vgpu_execlist_submission_ops, 1430 }; 1431 int ret; 1432 1433 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops))) 1434 return -EINVAL; 1435 1436 if (drm_WARN_ON(&i915->drm, 1437 interface == 0 && engine_mask != ALL_ENGINES)) 1438 return -EINVAL; 1439 1440 if (s->active) 1441 s->ops->clean(vgpu, engine_mask); 1442 1443 if (interface == 0) { 1444 s->ops = NULL; 1445 s->virtual_submission_interface = 0; 1446 s->active = false; 1447 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1448 return 0; 1449 } 1450 1451 ret = ops[interface]->init(vgpu, engine_mask); 1452 if (ret) 1453 return ret; 1454 1455 s->ops = ops[interface]; 1456 s->virtual_submission_interface = interface; 1457 s->active = true; 1458 1459 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1460 vgpu->id, s->ops->name); 1461 1462 return 0; 1463 } 1464 1465 /** 1466 * intel_vgpu_destroy_workload - destroy a vGPU workload 1467 * @workload: workload to destroy 1468 * 1469 * This function is called when destroy a vGPU workload. 1470 * 1471 */ 1472 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1473 { 1474 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1475 1476 intel_context_unpin(s->shadow[workload->engine->id]); 1477 release_shadow_batch_buffer(workload); 1478 release_shadow_wa_ctx(&workload->wa_ctx); 1479 1480 if (!list_empty(&workload->lri_shadow_mm)) { 1481 struct intel_vgpu_mm *m, *mm; 1482 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm, 1483 ppgtt_mm.link) { 1484 list_del(&m->ppgtt_mm.link); 1485 intel_vgpu_mm_put(m); 1486 } 1487 } 1488 1489 GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm)); 1490 if (workload->shadow_mm) 1491 intel_vgpu_mm_put(workload->shadow_mm); 1492 1493 kmem_cache_free(s->workloads, workload); 1494 } 1495 1496 static struct intel_vgpu_workload * 1497 alloc_workload(struct intel_vgpu *vgpu) 1498 { 1499 struct intel_vgpu_submission *s = &vgpu->submission; 1500 struct intel_vgpu_workload *workload; 1501 1502 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1503 if (!workload) 1504 return ERR_PTR(-ENOMEM); 1505 1506 INIT_LIST_HEAD(&workload->list); 1507 INIT_LIST_HEAD(&workload->shadow_bb); 1508 INIT_LIST_HEAD(&workload->lri_shadow_mm); 1509 1510 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1511 atomic_set(&workload->shadow_ctx_active, 0); 1512 1513 workload->status = -EINPROGRESS; 1514 workload->vgpu = vgpu; 1515 1516 return workload; 1517 } 1518 1519 #define RING_CTX_OFF(x) \ 1520 offsetof(struct execlist_ring_context, x) 1521 1522 static void read_guest_pdps(struct intel_vgpu *vgpu, 1523 u64 ring_context_gpa, u32 pdp[8]) 1524 { 1525 u64 gpa; 1526 int i; 1527 1528 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1529 1530 for (i = 0; i < 8; i++) 1531 intel_gvt_hypervisor_read_gpa(vgpu, 1532 gpa + i * 8, &pdp[7 - i], 4); 1533 } 1534 1535 static int prepare_mm(struct intel_vgpu_workload *workload) 1536 { 1537 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1538 struct intel_vgpu_mm *mm; 1539 struct intel_vgpu *vgpu = workload->vgpu; 1540 enum intel_gvt_gtt_type root_entry_type; 1541 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1542 1543 switch (desc->addressing_mode) { 1544 case 1: /* legacy 32-bit */ 1545 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1546 break; 1547 case 3: /* legacy 64-bit */ 1548 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1549 break; 1550 default: 1551 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1552 return -EINVAL; 1553 } 1554 1555 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1556 1557 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1558 if (IS_ERR(mm)) 1559 return PTR_ERR(mm); 1560 1561 workload->shadow_mm = mm; 1562 return 0; 1563 } 1564 1565 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1566 ((a)->lrca == (b)->lrca)) 1567 1568 /** 1569 * intel_vgpu_create_workload - create a vGPU workload 1570 * @vgpu: a vGPU 1571 * @engine: the engine 1572 * @desc: a guest context descriptor 1573 * 1574 * This function is called when creating a vGPU workload. 1575 * 1576 * Returns: 1577 * struct intel_vgpu_workload * on success, negative error code in 1578 * pointer if failed. 1579 * 1580 */ 1581 struct intel_vgpu_workload * 1582 intel_vgpu_create_workload(struct intel_vgpu *vgpu, 1583 const struct intel_engine_cs *engine, 1584 struct execlist_ctx_descriptor_format *desc) 1585 { 1586 struct intel_vgpu_submission *s = &vgpu->submission; 1587 struct list_head *q = workload_q_head(vgpu, engine); 1588 struct intel_vgpu_workload *last_workload = NULL; 1589 struct intel_vgpu_workload *workload = NULL; 1590 u64 ring_context_gpa; 1591 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1592 u32 guest_head; 1593 int ret; 1594 1595 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1596 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1597 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1598 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1599 return ERR_PTR(-EINVAL); 1600 } 1601 1602 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1603 RING_CTX_OFF(ring_header.val), &head, 4); 1604 1605 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1606 RING_CTX_OFF(ring_tail.val), &tail, 4); 1607 1608 guest_head = head; 1609 1610 head &= RB_HEAD_OFF_MASK; 1611 tail &= RB_TAIL_OFF_MASK; 1612 1613 list_for_each_entry_reverse(last_workload, q, list) { 1614 1615 if (same_context(&last_workload->ctx_desc, desc)) { 1616 gvt_dbg_el("ring %s cur workload == last\n", 1617 engine->name); 1618 gvt_dbg_el("ctx head %x real head %lx\n", head, 1619 last_workload->rb_tail); 1620 /* 1621 * cannot use guest context head pointer here, 1622 * as it might not be updated at this time 1623 */ 1624 head = last_workload->rb_tail; 1625 break; 1626 } 1627 } 1628 1629 gvt_dbg_el("ring %s begin a new workload\n", engine->name); 1630 1631 /* record some ring buffer register values for scan and shadow */ 1632 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1633 RING_CTX_OFF(rb_start.val), &start, 4); 1634 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1635 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1636 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1637 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1638 1639 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1640 _RING_CTL_BUF_SIZE(ctl))) { 1641 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1642 return ERR_PTR(-EINVAL); 1643 } 1644 1645 workload = alloc_workload(vgpu); 1646 if (IS_ERR(workload)) 1647 return workload; 1648 1649 workload->engine = engine; 1650 workload->ctx_desc = *desc; 1651 workload->ring_context_gpa = ring_context_gpa; 1652 workload->rb_head = head; 1653 workload->guest_rb_head = guest_head; 1654 workload->rb_tail = tail; 1655 workload->rb_start = start; 1656 workload->rb_ctl = ctl; 1657 1658 if (engine->id == RCS0) { 1659 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1660 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1661 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1662 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1663 1664 workload->wa_ctx.indirect_ctx.guest_gma = 1665 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1666 workload->wa_ctx.indirect_ctx.size = 1667 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1668 CACHELINE_BYTES; 1669 1670 if (workload->wa_ctx.indirect_ctx.size != 0) { 1671 if (!intel_gvt_ggtt_validate_range(vgpu, 1672 workload->wa_ctx.indirect_ctx.guest_gma, 1673 workload->wa_ctx.indirect_ctx.size)) { 1674 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1675 workload->wa_ctx.indirect_ctx.guest_gma); 1676 kmem_cache_free(s->workloads, workload); 1677 return ERR_PTR(-EINVAL); 1678 } 1679 } 1680 1681 workload->wa_ctx.per_ctx.guest_gma = 1682 per_ctx & PER_CTX_ADDR_MASK; 1683 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1684 if (workload->wa_ctx.per_ctx.valid) { 1685 if (!intel_gvt_ggtt_validate_range(vgpu, 1686 workload->wa_ctx.per_ctx.guest_gma, 1687 CACHELINE_BYTES)) { 1688 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1689 workload->wa_ctx.per_ctx.guest_gma); 1690 kmem_cache_free(s->workloads, workload); 1691 return ERR_PTR(-EINVAL); 1692 } 1693 } 1694 } 1695 1696 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n", 1697 workload, engine->name, head, tail, start, ctl); 1698 1699 ret = prepare_mm(workload); 1700 if (ret) { 1701 kmem_cache_free(s->workloads, workload); 1702 return ERR_PTR(ret); 1703 } 1704 1705 /* Only scan and shadow the first workload in the queue 1706 * as there is only one pre-allocated buf-obj for shadow. 1707 */ 1708 if (list_empty(q)) { 1709 intel_wakeref_t wakeref; 1710 1711 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref) 1712 ret = intel_gvt_scan_and_shadow_workload(workload); 1713 } 1714 1715 if (ret) { 1716 if (vgpu_is_vm_unhealthy(ret)) 1717 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1718 intel_vgpu_destroy_workload(workload); 1719 return ERR_PTR(ret); 1720 } 1721 1722 ret = intel_context_pin(s->shadow[engine->id]); 1723 if (ret) { 1724 intel_vgpu_destroy_workload(workload); 1725 return ERR_PTR(ret); 1726 } 1727 1728 return workload; 1729 } 1730 1731 /** 1732 * intel_vgpu_queue_workload - Qeue a vGPU workload 1733 * @workload: the workload to queue in 1734 */ 1735 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1736 { 1737 list_add_tail(&workload->list, 1738 workload_q_head(workload->vgpu, workload->engine)); 1739 intel_gvt_kick_schedule(workload->vgpu->gvt); 1740 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]); 1741 } 1742