xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 7e60e389)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_execlists_submission.h"
41 #include "gt/intel_lrc.h"
42 #include "gt/intel_ring.h"
43 
44 #include "i915_drv.h"
45 #include "i915_gem_gtt.h"
46 #include "gvt.h"
47 
48 #define RING_CTX_OFF(x) \
49 	offsetof(struct execlist_ring_context, x)
50 
51 static void set_context_pdp_root_pointer(
52 		struct execlist_ring_context *ring_context,
53 		u32 pdp[8])
54 {
55 	int i;
56 
57 	for (i = 0; i < 8; i++)
58 		ring_context->pdps[i].val = pdp[7 - i];
59 }
60 
61 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
62 {
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct intel_context *ctx = workload->req->context;
65 
66 	if (WARN_ON(!workload->shadow_mm))
67 		return;
68 
69 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70 		return;
71 
72 	shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
73 	set_context_pdp_root_pointer(shadow_ring_context,
74 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 }
76 
77 /*
78  * when populating shadow ctx from guest, we should not overrride oa related
79  * registers, so that they will not be overlapped by guest oa configs. Thus
80  * made it possible to capture oa data from host for both host and guests.
81  */
82 static void sr_oa_regs(struct intel_vgpu_workload *workload,
83 		u32 *reg_state, bool save)
84 {
85 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
86 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
87 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
88 	int i = 0;
89 	u32 flex_mmio[] = {
90 		i915_mmio_reg_offset(EU_PERF_CNTL0),
91 		i915_mmio_reg_offset(EU_PERF_CNTL1),
92 		i915_mmio_reg_offset(EU_PERF_CNTL2),
93 		i915_mmio_reg_offset(EU_PERF_CNTL3),
94 		i915_mmio_reg_offset(EU_PERF_CNTL4),
95 		i915_mmio_reg_offset(EU_PERF_CNTL5),
96 		i915_mmio_reg_offset(EU_PERF_CNTL6),
97 	};
98 
99 	if (workload->engine->id != RCS0)
100 		return;
101 
102 	if (save) {
103 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
104 
105 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
106 			u32 state_offset = ctx_flexeu0 + i * 2;
107 
108 			workload->flex_mmio[i] = reg_state[state_offset + 1];
109 		}
110 	} else {
111 		reg_state[ctx_oactxctrl] =
112 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
113 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
114 
115 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
116 			u32 state_offset = ctx_flexeu0 + i * 2;
117 			u32 mmio = flex_mmio[i];
118 
119 			reg_state[state_offset] = mmio;
120 			reg_state[state_offset + 1] = workload->flex_mmio[i];
121 		}
122 	}
123 }
124 
125 static int populate_shadow_context(struct intel_vgpu_workload *workload)
126 {
127 	struct intel_vgpu *vgpu = workload->vgpu;
128 	struct intel_gvt *gvt = vgpu->gvt;
129 	struct intel_context *ctx = workload->req->context;
130 	struct execlist_ring_context *shadow_ring_context;
131 	void *dst;
132 	void *context_base;
133 	unsigned long context_gpa, context_page_num;
134 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
135 	unsigned long gpa_size; /* size of consecutive GPAs */
136 	struct intel_vgpu_submission *s = &vgpu->submission;
137 	int i;
138 	bool skip = false;
139 	int ring_id = workload->engine->id;
140 
141 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
142 
143 	context_base = (void *) ctx->lrc_reg_state -
144 				(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
145 
146 	shadow_ring_context = (void *) ctx->lrc_reg_state;
147 
148 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
149 #define COPY_REG(name) \
150 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
151 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
152 #define COPY_REG_MASKED(name) {\
153 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
154 					      + RING_CTX_OFF(name.val),\
155 					      &shadow_ring_context->name.val, 4);\
156 		shadow_ring_context->name.val |= 0xffff << 16;\
157 	}
158 
159 	COPY_REG_MASKED(ctx_ctrl);
160 	COPY_REG(ctx_timestamp);
161 
162 	if (workload->engine->id == RCS0) {
163 		COPY_REG(bb_per_ctx_ptr);
164 		COPY_REG(rcs_indirect_ctx);
165 		COPY_REG(rcs_indirect_ctx_offset);
166 	}
167 #undef COPY_REG
168 #undef COPY_REG_MASKED
169 
170 	intel_gvt_hypervisor_read_gpa(vgpu,
171 			workload->ring_context_gpa +
172 			sizeof(*shadow_ring_context),
173 			(void *)shadow_ring_context +
174 			sizeof(*shadow_ring_context),
175 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
176 
177 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
178 
179 	gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
180 			workload->engine->name, workload->ctx_desc.lrca,
181 			workload->ctx_desc.context_id,
182 			workload->ring_context_gpa);
183 
184 	/* only need to ensure this context is not pinned/unpinned during the
185 	 * period from last submission to this this submission.
186 	 * Upon reaching this function, the currently submitted context is not
187 	 * supposed to get unpinned. If a misbehaving guest driver ever does
188 	 * this, it would corrupt itself.
189 	 */
190 	if (s->last_ctx[ring_id].valid &&
191 			(s->last_ctx[ring_id].lrca ==
192 				workload->ctx_desc.lrca) &&
193 			(s->last_ctx[ring_id].ring_context_gpa ==
194 				workload->ring_context_gpa))
195 		skip = true;
196 
197 	s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
198 	s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
199 
200 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
201 		return 0;
202 
203 	s->last_ctx[ring_id].valid = false;
204 	context_page_num = workload->engine->context_size;
205 	context_page_num = context_page_num >> PAGE_SHIFT;
206 
207 	if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
208 		context_page_num = 19;
209 
210 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
211 	 * read from the continuous GPAs into dst virtual address
212 	 */
213 	gpa_size = 0;
214 	for (i = 2; i < context_page_num; i++) {
215 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
216 				(u32)((workload->ctx_desc.lrca + i) <<
217 				I915_GTT_PAGE_SHIFT));
218 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
219 			gvt_vgpu_err("Invalid guest context descriptor\n");
220 			return -EFAULT;
221 		}
222 
223 		if (gpa_size == 0) {
224 			gpa_base = context_gpa;
225 			dst = context_base + (i << I915_GTT_PAGE_SHIFT);
226 		} else if (context_gpa != gpa_base + gpa_size)
227 			goto read;
228 
229 		gpa_size += I915_GTT_PAGE_SIZE;
230 
231 		if (i == context_page_num - 1)
232 			goto read;
233 
234 		continue;
235 
236 read:
237 		intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
238 		gpa_base = context_gpa;
239 		gpa_size = I915_GTT_PAGE_SIZE;
240 		dst = context_base + (i << I915_GTT_PAGE_SHIFT);
241 	}
242 	s->last_ctx[ring_id].valid = true;
243 	return 0;
244 }
245 
246 static inline bool is_gvt_request(struct i915_request *rq)
247 {
248 	return intel_context_force_single_submission(rq->context);
249 }
250 
251 static void save_ring_hw_state(struct intel_vgpu *vgpu,
252 			       const struct intel_engine_cs *engine)
253 {
254 	struct intel_uncore *uncore = engine->uncore;
255 	i915_reg_t reg;
256 
257 	reg = RING_INSTDONE(engine->mmio_base);
258 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
259 		intel_uncore_read(uncore, reg);
260 
261 	reg = RING_ACTHD(engine->mmio_base);
262 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
263 		intel_uncore_read(uncore, reg);
264 
265 	reg = RING_ACTHD_UDW(engine->mmio_base);
266 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
267 		intel_uncore_read(uncore, reg);
268 }
269 
270 static int shadow_context_status_change(struct notifier_block *nb,
271 		unsigned long action, void *data)
272 {
273 	struct i915_request *rq = data;
274 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
275 				shadow_ctx_notifier_block[rq->engine->id]);
276 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
277 	enum intel_engine_id ring_id = rq->engine->id;
278 	struct intel_vgpu_workload *workload;
279 	unsigned long flags;
280 
281 	if (!is_gvt_request(rq)) {
282 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
283 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
284 		    scheduler->engine_owner[ring_id]) {
285 			/* Switch ring from vGPU to host. */
286 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
287 					      NULL, rq->engine);
288 			scheduler->engine_owner[ring_id] = NULL;
289 		}
290 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
291 
292 		return NOTIFY_OK;
293 	}
294 
295 	workload = scheduler->current_workload[ring_id];
296 	if (unlikely(!workload))
297 		return NOTIFY_OK;
298 
299 	switch (action) {
300 	case INTEL_CONTEXT_SCHEDULE_IN:
301 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
302 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
303 			/* Switch ring from host to vGPU or vGPU to vGPU. */
304 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
305 					      workload->vgpu, rq->engine);
306 			scheduler->engine_owner[ring_id] = workload->vgpu;
307 		} else
308 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
309 				      ring_id, workload->vgpu->id);
310 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
311 		atomic_set(&workload->shadow_ctx_active, 1);
312 		break;
313 	case INTEL_CONTEXT_SCHEDULE_OUT:
314 		save_ring_hw_state(workload->vgpu, rq->engine);
315 		atomic_set(&workload->shadow_ctx_active, 0);
316 		break;
317 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
318 		save_ring_hw_state(workload->vgpu, rq->engine);
319 		break;
320 	default:
321 		WARN_ON(1);
322 		return NOTIFY_OK;
323 	}
324 	wake_up(&workload->shadow_ctx_status_wq);
325 	return NOTIFY_OK;
326 }
327 
328 static void
329 shadow_context_descriptor_update(struct intel_context *ce,
330 				 struct intel_vgpu_workload *workload)
331 {
332 	u64 desc = ce->lrc.desc;
333 
334 	/*
335 	 * Update bits 0-11 of the context descriptor which includes flags
336 	 * like GEN8_CTX_* cached in desc_template
337 	 */
338 	desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
339 	desc |= (u64)workload->ctx_desc.addressing_mode <<
340 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
341 
342 	ce->lrc.desc = desc;
343 }
344 
345 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
346 {
347 	struct intel_vgpu *vgpu = workload->vgpu;
348 	struct i915_request *req = workload->req;
349 	void *shadow_ring_buffer_va;
350 	u32 *cs;
351 	int err;
352 
353 	if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context))
354 		intel_vgpu_restore_inhibit_context(vgpu, req);
355 
356 	/*
357 	 * To track whether a request has started on HW, we can emit a
358 	 * breadcrumb at the beginning of the request and check its
359 	 * timeline's HWSP to see if the breadcrumb has advanced past the
360 	 * start of this request. Actually, the request must have the
361 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
362 	 * scheduler might get a wrong state of it during reset. Since the
363 	 * requests from gvt always set the has_init_breadcrumb flag, here
364 	 * need to do the emit_init_breadcrumb for all the requests.
365 	 */
366 	if (req->engine->emit_init_breadcrumb) {
367 		err = req->engine->emit_init_breadcrumb(req);
368 		if (err) {
369 			gvt_vgpu_err("fail to emit init breadcrumb\n");
370 			return err;
371 		}
372 	}
373 
374 	/* allocate shadow ring buffer */
375 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
376 	if (IS_ERR(cs)) {
377 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
378 			workload->rb_len);
379 		return PTR_ERR(cs);
380 	}
381 
382 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
383 
384 	/* get shadow ring buffer va */
385 	workload->shadow_ring_buffer_va = cs;
386 
387 	memcpy(cs, shadow_ring_buffer_va,
388 			workload->rb_len);
389 
390 	cs += workload->rb_len / sizeof(u32);
391 	intel_ring_advance(workload->req, cs);
392 
393 	return 0;
394 }
395 
396 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
397 {
398 	if (!wa_ctx->indirect_ctx.obj)
399 		return;
400 
401 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
402 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
403 
404 	wa_ctx->indirect_ctx.obj = NULL;
405 	wa_ctx->indirect_ctx.shadow_va = NULL;
406 }
407 
408 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
409 {
410 	struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
411 
412 	/* This is not a good idea */
413 	sg->dma_address = addr;
414 }
415 
416 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
417 					  struct intel_context *ce)
418 {
419 	struct intel_vgpu_mm *mm = workload->shadow_mm;
420 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
421 	int i = 0;
422 
423 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
424 		set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
425 	} else {
426 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
427 			struct i915_page_directory * const pd =
428 				i915_pd_entry(ppgtt->pd, i);
429 			/* skip now as current i915 ppgtt alloc won't allocate
430 			   top level pdp for non 4-level table, won't impact
431 			   shadow ppgtt. */
432 			if (!pd)
433 				break;
434 
435 			set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
436 		}
437 	}
438 }
439 
440 static int
441 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
442 {
443 	struct intel_vgpu *vgpu = workload->vgpu;
444 	struct intel_vgpu_submission *s = &vgpu->submission;
445 	struct i915_request *rq;
446 
447 	if (workload->req)
448 		return 0;
449 
450 	rq = i915_request_create(s->shadow[workload->engine->id]);
451 	if (IS_ERR(rq)) {
452 		gvt_vgpu_err("fail to allocate gem request\n");
453 		return PTR_ERR(rq);
454 	}
455 
456 	workload->req = i915_request_get(rq);
457 	return 0;
458 }
459 
460 /**
461  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
462  * shadow it as well, include ringbuffer,wa_ctx and ctx.
463  * @workload: an abstract entity for each execlist submission.
464  *
465  * This function is called before the workload submitting to i915, to make
466  * sure the content of the workload is valid.
467  */
468 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
469 {
470 	struct intel_vgpu *vgpu = workload->vgpu;
471 	struct intel_vgpu_submission *s = &vgpu->submission;
472 	int ret;
473 
474 	lockdep_assert_held(&vgpu->vgpu_lock);
475 
476 	if (workload->shadow)
477 		return 0;
478 
479 	if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
480 		shadow_context_descriptor_update(s->shadow[workload->engine->id],
481 						 workload);
482 
483 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
484 	if (ret)
485 		return ret;
486 
487 	if (workload->engine->id == RCS0 &&
488 	    workload->wa_ctx.indirect_ctx.size) {
489 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
490 		if (ret)
491 			goto err_shadow;
492 	}
493 
494 	workload->shadow = true;
495 	return 0;
496 
497 err_shadow:
498 	release_shadow_wa_ctx(&workload->wa_ctx);
499 	return ret;
500 }
501 
502 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
503 
504 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
505 {
506 	struct intel_gvt *gvt = workload->vgpu->gvt;
507 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
508 	struct intel_vgpu_shadow_bb *bb;
509 	int ret;
510 
511 	list_for_each_entry(bb, &workload->shadow_bb, list) {
512 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
513 		 * is only updated into ring_scan_buffer, not real ring address
514 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
515 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
516 		 * in copy_workload_to_ring_buffer.
517 		 */
518 
519 		if (bb->bb_offset)
520 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
521 				+ bb->bb_offset;
522 
523 		/*
524 		 * For non-priv bb, scan&shadow is only for
525 		 * debugging purpose, so the content of shadow bb
526 		 * is the same as original bb. Therefore,
527 		 * here, rather than switch to shadow bb's gma
528 		 * address, we directly use original batch buffer's
529 		 * gma address, and send original bb to hardware
530 		 * directly
531 		 */
532 		if (!bb->ppgtt) {
533 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
534 							   NULL, 0, 0, 0);
535 			if (IS_ERR(bb->vma)) {
536 				ret = PTR_ERR(bb->vma);
537 				goto err;
538 			}
539 
540 			/* relocate shadow batch buffer */
541 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
542 			if (gmadr_bytes == 8)
543 				bb->bb_start_cmd_va[2] = 0;
544 
545 			ret = i915_vma_move_to_active(bb->vma,
546 						      workload->req,
547 						      0);
548 			if (ret)
549 				goto err;
550 		}
551 
552 		/* No one is going to touch shadow bb from now on. */
553 		i915_gem_object_flush_map(bb->obj);
554 	}
555 	return 0;
556 err:
557 	release_shadow_batch_buffer(workload);
558 	return ret;
559 }
560 
561 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
562 {
563 	struct intel_vgpu_workload *workload =
564 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
565 	struct i915_request *rq = workload->req;
566 	struct execlist_ring_context *shadow_ring_context =
567 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
568 
569 	shadow_ring_context->bb_per_ctx_ptr.val =
570 		(shadow_ring_context->bb_per_ctx_ptr.val &
571 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
572 	shadow_ring_context->rcs_indirect_ctx.val =
573 		(shadow_ring_context->rcs_indirect_ctx.val &
574 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
575 }
576 
577 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
578 {
579 	struct i915_vma *vma;
580 	unsigned char *per_ctx_va =
581 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
582 		wa_ctx->indirect_ctx.size;
583 
584 	if (wa_ctx->indirect_ctx.size == 0)
585 		return 0;
586 
587 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
588 				       0, CACHELINE_BYTES, 0);
589 	if (IS_ERR(vma))
590 		return PTR_ERR(vma);
591 
592 	/* FIXME: we are not tracking our pinned VMA leaving it
593 	 * up to the core to fix up the stray pin_count upon
594 	 * free.
595 	 */
596 
597 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
598 
599 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
600 	memset(per_ctx_va, 0, CACHELINE_BYTES);
601 
602 	update_wa_ctx_2_shadow_ctx(wa_ctx);
603 	return 0;
604 }
605 
606 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
607 {
608 	vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
609 		workload->rb_start;
610 }
611 
612 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
613 {
614 	struct intel_vgpu_shadow_bb *bb, *pos;
615 
616 	if (list_empty(&workload->shadow_bb))
617 		return;
618 
619 	bb = list_first_entry(&workload->shadow_bb,
620 			struct intel_vgpu_shadow_bb, list);
621 
622 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
623 		if (bb->obj) {
624 			if (bb->va && !IS_ERR(bb->va))
625 				i915_gem_object_unpin_map(bb->obj);
626 
627 			if (bb->vma && !IS_ERR(bb->vma))
628 				i915_vma_unpin(bb->vma);
629 
630 			i915_gem_object_put(bb->obj);
631 		}
632 		list_del(&bb->list);
633 		kfree(bb);
634 	}
635 }
636 
637 static int
638 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
639 {
640 	struct intel_vgpu *vgpu = workload->vgpu;
641 	struct intel_vgpu_mm *m;
642 	int ret = 0;
643 
644 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
645 	if (ret) {
646 		gvt_vgpu_err("fail to vgpu pin mm\n");
647 		return ret;
648 	}
649 
650 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
651 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
652 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
653 		return -EINVAL;
654 	}
655 
656 	if (!list_empty(&workload->lri_shadow_mm)) {
657 		list_for_each_entry(m, &workload->lri_shadow_mm,
658 				    ppgtt_mm.link) {
659 			ret = intel_vgpu_pin_mm(m);
660 			if (ret) {
661 				list_for_each_entry_from_reverse(m,
662 								 &workload->lri_shadow_mm,
663 								 ppgtt_mm.link)
664 					intel_vgpu_unpin_mm(m);
665 				gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
666 				break;
667 			}
668 		}
669 	}
670 
671 	if (ret)
672 		intel_vgpu_unpin_mm(workload->shadow_mm);
673 
674 	return ret;
675 }
676 
677 static void
678 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
679 {
680 	struct intel_vgpu_mm *m;
681 
682 	if (!list_empty(&workload->lri_shadow_mm)) {
683 		list_for_each_entry(m, &workload->lri_shadow_mm,
684 				    ppgtt_mm.link)
685 			intel_vgpu_unpin_mm(m);
686 	}
687 	intel_vgpu_unpin_mm(workload->shadow_mm);
688 }
689 
690 static int prepare_workload(struct intel_vgpu_workload *workload)
691 {
692 	struct intel_vgpu *vgpu = workload->vgpu;
693 	struct intel_vgpu_submission *s = &vgpu->submission;
694 	int ret = 0;
695 
696 	ret = intel_vgpu_shadow_mm_pin(workload);
697 	if (ret) {
698 		gvt_vgpu_err("fail to pin shadow mm\n");
699 		return ret;
700 	}
701 
702 	update_shadow_pdps(workload);
703 
704 	set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
705 
706 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
707 	if (ret) {
708 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
709 		goto err_unpin_mm;
710 	}
711 
712 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
713 	if (ret) {
714 		gvt_vgpu_err("fail to flush post shadow\n");
715 		goto err_unpin_mm;
716 	}
717 
718 	ret = copy_workload_to_ring_buffer(workload);
719 	if (ret) {
720 		gvt_vgpu_err("fail to generate request\n");
721 		goto err_unpin_mm;
722 	}
723 
724 	ret = prepare_shadow_batch_buffer(workload);
725 	if (ret) {
726 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
727 		goto err_unpin_mm;
728 	}
729 
730 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
731 	if (ret) {
732 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
733 		goto err_shadow_batch;
734 	}
735 
736 	if (workload->prepare) {
737 		ret = workload->prepare(workload);
738 		if (ret)
739 			goto err_shadow_wa_ctx;
740 	}
741 
742 	return 0;
743 err_shadow_wa_ctx:
744 	release_shadow_wa_ctx(&workload->wa_ctx);
745 err_shadow_batch:
746 	release_shadow_batch_buffer(workload);
747 err_unpin_mm:
748 	intel_vgpu_shadow_mm_unpin(workload);
749 	return ret;
750 }
751 
752 static int dispatch_workload(struct intel_vgpu_workload *workload)
753 {
754 	struct intel_vgpu *vgpu = workload->vgpu;
755 	struct i915_request *rq;
756 	int ret;
757 
758 	gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
759 		      workload->engine->name, workload);
760 
761 	mutex_lock(&vgpu->vgpu_lock);
762 
763 	ret = intel_gvt_workload_req_alloc(workload);
764 	if (ret)
765 		goto err_req;
766 
767 	ret = intel_gvt_scan_and_shadow_workload(workload);
768 	if (ret)
769 		goto out;
770 
771 	ret = populate_shadow_context(workload);
772 	if (ret) {
773 		release_shadow_wa_ctx(&workload->wa_ctx);
774 		goto out;
775 	}
776 
777 	ret = prepare_workload(workload);
778 out:
779 	if (ret) {
780 		/* We might still need to add request with
781 		 * clean ctx to retire it properly..
782 		 */
783 		rq = fetch_and_zero(&workload->req);
784 		i915_request_put(rq);
785 	}
786 
787 	if (!IS_ERR_OR_NULL(workload->req)) {
788 		gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
789 			      workload->engine->name, workload->req);
790 		i915_request_add(workload->req);
791 		workload->dispatched = true;
792 	}
793 err_req:
794 	if (ret)
795 		workload->status = ret;
796 	mutex_unlock(&vgpu->vgpu_lock);
797 	return ret;
798 }
799 
800 static struct intel_vgpu_workload *
801 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
802 {
803 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
804 	struct intel_vgpu_workload *workload = NULL;
805 
806 	mutex_lock(&gvt->sched_lock);
807 
808 	/*
809 	 * no current vgpu / will be scheduled out / no workload
810 	 * bail out
811 	 */
812 	if (!scheduler->current_vgpu) {
813 		gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
814 		goto out;
815 	}
816 
817 	if (scheduler->need_reschedule) {
818 		gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
819 		goto out;
820 	}
821 
822 	if (!scheduler->current_vgpu->active ||
823 	    list_empty(workload_q_head(scheduler->current_vgpu, engine)))
824 		goto out;
825 
826 	/*
827 	 * still have current workload, maybe the workload disptacher
828 	 * fail to submit it for some reason, resubmit it.
829 	 */
830 	if (scheduler->current_workload[engine->id]) {
831 		workload = scheduler->current_workload[engine->id];
832 		gvt_dbg_sched("ring %s still have current workload %p\n",
833 			      engine->name, workload);
834 		goto out;
835 	}
836 
837 	/*
838 	 * pick a workload as current workload
839 	 * once current workload is set, schedule policy routines
840 	 * will wait the current workload is finished when trying to
841 	 * schedule out a vgpu.
842 	 */
843 	scheduler->current_workload[engine->id] =
844 		list_first_entry(workload_q_head(scheduler->current_vgpu,
845 						 engine),
846 				 struct intel_vgpu_workload, list);
847 
848 	workload = scheduler->current_workload[engine->id];
849 
850 	gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
851 
852 	atomic_inc(&workload->vgpu->submission.running_workload_num);
853 out:
854 	mutex_unlock(&gvt->sched_lock);
855 	return workload;
856 }
857 
858 static void update_guest_pdps(struct intel_vgpu *vgpu,
859 			      u64 ring_context_gpa, u32 pdp[8])
860 {
861 	u64 gpa;
862 	int i;
863 
864 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
865 
866 	for (i = 0; i < 8; i++)
867 		intel_gvt_hypervisor_write_gpa(vgpu,
868 				gpa + i * 8, &pdp[7 - i], 4);
869 }
870 
871 static __maybe_unused bool
872 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
873 {
874 	if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
875 		u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
876 
877 		if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
878 			gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
879 			return false;
880 		}
881 		return true;
882 	} else {
883 		/* see comment in LRI handler in cmd_parser.c */
884 		gvt_dbg_mm("invalid shadow mm type\n");
885 		return false;
886 	}
887 }
888 
889 static void update_guest_context(struct intel_vgpu_workload *workload)
890 {
891 	struct i915_request *rq = workload->req;
892 	struct intel_vgpu *vgpu = workload->vgpu;
893 	struct execlist_ring_context *shadow_ring_context;
894 	struct intel_context *ctx = workload->req->context;
895 	void *context_base;
896 	void *src;
897 	unsigned long context_gpa, context_page_num;
898 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
899 	unsigned long gpa_size; /* size of consecutive GPAs*/
900 	int i;
901 	u32 ring_base;
902 	u32 head, tail;
903 	u16 wrap_count;
904 
905 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
906 		      workload->ctx_desc.lrca);
907 
908 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
909 
910 	head = workload->rb_head;
911 	tail = workload->rb_tail;
912 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
913 
914 	if (tail < head) {
915 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
916 			wrap_count = 0;
917 		else
918 			wrap_count += 1;
919 	}
920 
921 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
922 
923 	ring_base = rq->engine->mmio_base;
924 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
925 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
926 
927 	context_page_num = rq->engine->context_size;
928 	context_page_num = context_page_num >> PAGE_SHIFT;
929 
930 	if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0)
931 		context_page_num = 19;
932 
933 	context_base = (void *) ctx->lrc_reg_state -
934 			(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
935 
936 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
937 	 * write to the consecutive GPAs from src virtual address
938 	 */
939 	gpa_size = 0;
940 	for (i = 2; i < context_page_num; i++) {
941 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
942 				(u32)((workload->ctx_desc.lrca + i) <<
943 					I915_GTT_PAGE_SHIFT));
944 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
945 			gvt_vgpu_err("invalid guest context descriptor\n");
946 			return;
947 		}
948 
949 		if (gpa_size == 0) {
950 			gpa_base = context_gpa;
951 			src = context_base + (i << I915_GTT_PAGE_SHIFT);
952 		} else if (context_gpa != gpa_base + gpa_size)
953 			goto write;
954 
955 		gpa_size += I915_GTT_PAGE_SIZE;
956 
957 		if (i == context_page_num - 1)
958 			goto write;
959 
960 		continue;
961 
962 write:
963 		intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
964 		gpa_base = context_gpa;
965 		gpa_size = I915_GTT_PAGE_SIZE;
966 		src = context_base + (i << I915_GTT_PAGE_SHIFT);
967 	}
968 
969 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
970 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
971 
972 	shadow_ring_context = (void *) ctx->lrc_reg_state;
973 
974 	if (!list_empty(&workload->lri_shadow_mm)) {
975 		struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
976 							  struct intel_vgpu_mm,
977 							  ppgtt_mm.link);
978 		GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
979 		update_guest_pdps(vgpu, workload->ring_context_gpa,
980 				  (void *)m->ppgtt_mm.guest_pdps);
981 	}
982 
983 #define COPY_REG(name) \
984 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
985 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
986 
987 	COPY_REG(ctx_ctrl);
988 	COPY_REG(ctx_timestamp);
989 
990 #undef COPY_REG
991 
992 	intel_gvt_hypervisor_write_gpa(vgpu,
993 			workload->ring_context_gpa +
994 			sizeof(*shadow_ring_context),
995 			(void *)shadow_ring_context +
996 			sizeof(*shadow_ring_context),
997 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
998 }
999 
1000 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
1001 				intel_engine_mask_t engine_mask)
1002 {
1003 	struct intel_vgpu_submission *s = &vgpu->submission;
1004 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1005 	struct intel_engine_cs *engine;
1006 	struct intel_vgpu_workload *pos, *n;
1007 	intel_engine_mask_t tmp;
1008 
1009 	/* free the unsubmited workloads in the queues. */
1010 	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
1011 		list_for_each_entry_safe(pos, n,
1012 			&s->workload_q_head[engine->id], list) {
1013 			list_del_init(&pos->list);
1014 			intel_vgpu_destroy_workload(pos);
1015 		}
1016 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
1017 	}
1018 }
1019 
1020 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1021 {
1022 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1023 	struct intel_vgpu_workload *workload =
1024 		scheduler->current_workload[ring_id];
1025 	struct intel_vgpu *vgpu = workload->vgpu;
1026 	struct intel_vgpu_submission *s = &vgpu->submission;
1027 	struct i915_request *rq = workload->req;
1028 	int event;
1029 
1030 	mutex_lock(&vgpu->vgpu_lock);
1031 	mutex_lock(&gvt->sched_lock);
1032 
1033 	/* For the workload w/ request, needs to wait for the context
1034 	 * switch to make sure request is completed.
1035 	 * For the workload w/o request, directly complete the workload.
1036 	 */
1037 	if (rq) {
1038 		wait_event(workload->shadow_ctx_status_wq,
1039 			   !atomic_read(&workload->shadow_ctx_active));
1040 
1041 		/* If this request caused GPU hang, req->fence.error will
1042 		 * be set to -EIO. Use -EIO to set workload status so
1043 		 * that when this request caused GPU hang, didn't trigger
1044 		 * context switch interrupt to guest.
1045 		 */
1046 		if (likely(workload->status == -EINPROGRESS)) {
1047 			if (workload->req->fence.error == -EIO)
1048 				workload->status = -EIO;
1049 			else
1050 				workload->status = 0;
1051 		}
1052 
1053 		if (!workload->status &&
1054 		    !(vgpu->resetting_eng & BIT(ring_id))) {
1055 			update_guest_context(workload);
1056 
1057 			for_each_set_bit(event, workload->pending_events,
1058 					 INTEL_GVT_EVENT_MAX)
1059 				intel_vgpu_trigger_virtual_event(vgpu, event);
1060 		}
1061 
1062 		i915_request_put(fetch_and_zero(&workload->req));
1063 	}
1064 
1065 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1066 			ring_id, workload, workload->status);
1067 
1068 	scheduler->current_workload[ring_id] = NULL;
1069 
1070 	list_del_init(&workload->list);
1071 
1072 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1073 		/* if workload->status is not successful means HW GPU
1074 		 * has occurred GPU hang or something wrong with i915/GVT,
1075 		 * and GVT won't inject context switch interrupt to guest.
1076 		 * So this error is a vGPU hang actually to the guest.
1077 		 * According to this we should emunlate a vGPU hang. If
1078 		 * there are pending workloads which are already submitted
1079 		 * from guest, we should clean them up like HW GPU does.
1080 		 *
1081 		 * if it is in middle of engine resetting, the pending
1082 		 * workloads won't be submitted to HW GPU and will be
1083 		 * cleaned up during the resetting process later, so doing
1084 		 * the workload clean up here doesn't have any impact.
1085 		 **/
1086 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1087 	}
1088 
1089 	workload->complete(workload);
1090 
1091 	intel_vgpu_shadow_mm_unpin(workload);
1092 	intel_vgpu_destroy_workload(workload);
1093 
1094 	atomic_dec(&s->running_workload_num);
1095 	wake_up(&scheduler->workload_complete_wq);
1096 
1097 	if (gvt->scheduler.need_reschedule)
1098 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1099 
1100 	mutex_unlock(&gvt->sched_lock);
1101 	mutex_unlock(&vgpu->vgpu_lock);
1102 }
1103 
1104 static int workload_thread(void *arg)
1105 {
1106 	struct intel_engine_cs *engine = arg;
1107 	const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1108 	struct intel_gvt *gvt = engine->i915->gvt;
1109 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1110 	struct intel_vgpu_workload *workload = NULL;
1111 	struct intel_vgpu *vgpu = NULL;
1112 	int ret;
1113 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1114 
1115 	gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1116 
1117 	while (!kthread_should_stop()) {
1118 		intel_wakeref_t wakeref;
1119 
1120 		add_wait_queue(&scheduler->waitq[engine->id], &wait);
1121 		do {
1122 			workload = pick_next_workload(gvt, engine);
1123 			if (workload)
1124 				break;
1125 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1126 				   MAX_SCHEDULE_TIMEOUT);
1127 		} while (!kthread_should_stop());
1128 		remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1129 
1130 		if (!workload)
1131 			break;
1132 
1133 		gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1134 			      engine->name, workload,
1135 			      workload->vgpu->id);
1136 
1137 		wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1138 
1139 		gvt_dbg_sched("ring %s will dispatch workload %p\n",
1140 			      engine->name, workload);
1141 
1142 		if (need_force_wake)
1143 			intel_uncore_forcewake_get(engine->uncore,
1144 						   FORCEWAKE_ALL);
1145 		/*
1146 		 * Update the vReg of the vGPU which submitted this
1147 		 * workload. The vGPU may use these registers for checking
1148 		 * the context state. The value comes from GPU commands
1149 		 * in this workload.
1150 		 */
1151 		update_vreg_in_ctx(workload);
1152 
1153 		ret = dispatch_workload(workload);
1154 
1155 		if (ret) {
1156 			vgpu = workload->vgpu;
1157 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1158 			goto complete;
1159 		}
1160 
1161 		gvt_dbg_sched("ring %s wait workload %p\n",
1162 			      engine->name, workload);
1163 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1164 
1165 complete:
1166 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1167 			      workload, workload->status);
1168 
1169 		complete_current_workload(gvt, engine->id);
1170 
1171 		if (need_force_wake)
1172 			intel_uncore_forcewake_put(engine->uncore,
1173 						   FORCEWAKE_ALL);
1174 
1175 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1176 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1177 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1178 	}
1179 	return 0;
1180 }
1181 
1182 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1183 {
1184 	struct intel_vgpu_submission *s = &vgpu->submission;
1185 	struct intel_gvt *gvt = vgpu->gvt;
1186 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1187 
1188 	if (atomic_read(&s->running_workload_num)) {
1189 		gvt_dbg_sched("wait vgpu idle\n");
1190 
1191 		wait_event(scheduler->workload_complete_wq,
1192 				!atomic_read(&s->running_workload_num));
1193 	}
1194 }
1195 
1196 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1197 {
1198 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1199 	struct intel_engine_cs *engine;
1200 	enum intel_engine_id i;
1201 
1202 	gvt_dbg_core("clean workload scheduler\n");
1203 
1204 	for_each_engine(engine, gvt->gt, i) {
1205 		atomic_notifier_chain_unregister(
1206 					&engine->context_status_notifier,
1207 					&gvt->shadow_ctx_notifier_block[i]);
1208 		kthread_stop(scheduler->thread[i]);
1209 	}
1210 }
1211 
1212 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1213 {
1214 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1215 	struct intel_engine_cs *engine;
1216 	enum intel_engine_id i;
1217 	int ret;
1218 
1219 	gvt_dbg_core("init workload scheduler\n");
1220 
1221 	init_waitqueue_head(&scheduler->workload_complete_wq);
1222 
1223 	for_each_engine(engine, gvt->gt, i) {
1224 		init_waitqueue_head(&scheduler->waitq[i]);
1225 
1226 		scheduler->thread[i] = kthread_run(workload_thread, engine,
1227 						   "gvt:%s", engine->name);
1228 		if (IS_ERR(scheduler->thread[i])) {
1229 			gvt_err("fail to create workload thread\n");
1230 			ret = PTR_ERR(scheduler->thread[i]);
1231 			goto err;
1232 		}
1233 
1234 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1235 					shadow_context_status_change;
1236 		atomic_notifier_chain_register(&engine->context_status_notifier,
1237 					&gvt->shadow_ctx_notifier_block[i]);
1238 	}
1239 
1240 	return 0;
1241 
1242 err:
1243 	intel_gvt_clean_workload_scheduler(gvt);
1244 	return ret;
1245 }
1246 
1247 static void
1248 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1249 				struct i915_ppgtt *ppgtt)
1250 {
1251 	int i;
1252 
1253 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1254 		set_dma_address(ppgtt->pd, s->i915_context_pml4);
1255 	} else {
1256 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1257 			struct i915_page_directory * const pd =
1258 				i915_pd_entry(ppgtt->pd, i);
1259 
1260 			set_dma_address(pd, s->i915_context_pdps[i]);
1261 		}
1262 	}
1263 }
1264 
1265 /**
1266  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1267  * @vgpu: a vGPU
1268  *
1269  * This function is called when a vGPU is being destroyed.
1270  *
1271  */
1272 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1273 {
1274 	struct intel_vgpu_submission *s = &vgpu->submission;
1275 	struct intel_engine_cs *engine;
1276 	enum intel_engine_id id;
1277 
1278 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1279 
1280 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1281 	for_each_engine(engine, vgpu->gvt->gt, id)
1282 		intel_context_put(s->shadow[id]);
1283 
1284 	kmem_cache_destroy(s->workloads);
1285 }
1286 
1287 
1288 /**
1289  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1290  * @vgpu: a vGPU
1291  * @engine_mask: engines expected to be reset
1292  *
1293  * This function is called when a vGPU is being destroyed.
1294  *
1295  */
1296 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1297 				 intel_engine_mask_t engine_mask)
1298 {
1299 	struct intel_vgpu_submission *s = &vgpu->submission;
1300 
1301 	if (!s->active)
1302 		return;
1303 
1304 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1305 	s->ops->reset(vgpu, engine_mask);
1306 }
1307 
1308 static void
1309 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1310 			     struct i915_ppgtt *ppgtt)
1311 {
1312 	int i;
1313 
1314 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1315 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1316 	} else {
1317 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1318 			struct i915_page_directory * const pd =
1319 				i915_pd_entry(ppgtt->pd, i);
1320 
1321 			s->i915_context_pdps[i] = px_dma(pd);
1322 		}
1323 	}
1324 }
1325 
1326 /**
1327  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1328  * @vgpu: a vGPU
1329  *
1330  * This function is called when a vGPU is being created.
1331  *
1332  * Returns:
1333  * Zero on success, negative error code if failed.
1334  *
1335  */
1336 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1337 {
1338 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1339 	struct intel_vgpu_submission *s = &vgpu->submission;
1340 	struct intel_engine_cs *engine;
1341 	struct i915_ppgtt *ppgtt;
1342 	enum intel_engine_id i;
1343 	int ret;
1344 
1345 	ppgtt = i915_ppgtt_create(&i915->gt);
1346 	if (IS_ERR(ppgtt))
1347 		return PTR_ERR(ppgtt);
1348 
1349 	i915_context_ppgtt_root_save(s, ppgtt);
1350 
1351 	for_each_engine(engine, vgpu->gvt->gt, i) {
1352 		struct intel_context *ce;
1353 
1354 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1355 		s->shadow[i] = ERR_PTR(-EINVAL);
1356 
1357 		ce = intel_context_create(engine);
1358 		if (IS_ERR(ce)) {
1359 			ret = PTR_ERR(ce);
1360 			goto out_shadow_ctx;
1361 		}
1362 
1363 		i915_vm_put(ce->vm);
1364 		ce->vm = i915_vm_get(&ppgtt->vm);
1365 		intel_context_set_single_submission(ce);
1366 
1367 		/* Max ring buffer size */
1368 		if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1369 			const unsigned int ring_size = 512 * SZ_4K;
1370 
1371 			ce->ring = __intel_context_ring_size(ring_size);
1372 		}
1373 
1374 		s->shadow[i] = ce;
1375 	}
1376 
1377 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1378 
1379 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1380 						  sizeof(struct intel_vgpu_workload), 0,
1381 						  SLAB_HWCACHE_ALIGN,
1382 						  offsetof(struct intel_vgpu_workload, rb_tail),
1383 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1384 						  NULL);
1385 
1386 	if (!s->workloads) {
1387 		ret = -ENOMEM;
1388 		goto out_shadow_ctx;
1389 	}
1390 
1391 	atomic_set(&s->running_workload_num, 0);
1392 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1393 
1394 	memset(s->last_ctx, 0, sizeof(s->last_ctx));
1395 
1396 	i915_vm_put(&ppgtt->vm);
1397 	return 0;
1398 
1399 out_shadow_ctx:
1400 	i915_context_ppgtt_root_restore(s, ppgtt);
1401 	for_each_engine(engine, vgpu->gvt->gt, i) {
1402 		if (IS_ERR(s->shadow[i]))
1403 			break;
1404 
1405 		intel_context_put(s->shadow[i]);
1406 	}
1407 	i915_vm_put(&ppgtt->vm);
1408 	return ret;
1409 }
1410 
1411 /**
1412  * intel_vgpu_select_submission_ops - select virtual submission interface
1413  * @vgpu: a vGPU
1414  * @engine_mask: either ALL_ENGINES or target engine mask
1415  * @interface: expected vGPU virtual submission interface
1416  *
1417  * This function is called when guest configures submission interface.
1418  *
1419  * Returns:
1420  * Zero on success, negative error code if failed.
1421  *
1422  */
1423 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1424 				     intel_engine_mask_t engine_mask,
1425 				     unsigned int interface)
1426 {
1427 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1428 	struct intel_vgpu_submission *s = &vgpu->submission;
1429 	const struct intel_vgpu_submission_ops *ops[] = {
1430 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1431 			&intel_vgpu_execlist_submission_ops,
1432 	};
1433 	int ret;
1434 
1435 	if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1436 		return -EINVAL;
1437 
1438 	if (drm_WARN_ON(&i915->drm,
1439 			interface == 0 && engine_mask != ALL_ENGINES))
1440 		return -EINVAL;
1441 
1442 	if (s->active)
1443 		s->ops->clean(vgpu, engine_mask);
1444 
1445 	if (interface == 0) {
1446 		s->ops = NULL;
1447 		s->virtual_submission_interface = 0;
1448 		s->active = false;
1449 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1450 		return 0;
1451 	}
1452 
1453 	ret = ops[interface]->init(vgpu, engine_mask);
1454 	if (ret)
1455 		return ret;
1456 
1457 	s->ops = ops[interface];
1458 	s->virtual_submission_interface = interface;
1459 	s->active = true;
1460 
1461 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1462 			vgpu->id, s->ops->name);
1463 
1464 	return 0;
1465 }
1466 
1467 /**
1468  * intel_vgpu_destroy_workload - destroy a vGPU workload
1469  * @workload: workload to destroy
1470  *
1471  * This function is called when destroy a vGPU workload.
1472  *
1473  */
1474 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1475 {
1476 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1477 
1478 	intel_context_unpin(s->shadow[workload->engine->id]);
1479 	release_shadow_batch_buffer(workload);
1480 	release_shadow_wa_ctx(&workload->wa_ctx);
1481 
1482 	if (!list_empty(&workload->lri_shadow_mm)) {
1483 		struct intel_vgpu_mm *m, *mm;
1484 		list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1485 					 ppgtt_mm.link) {
1486 			list_del(&m->ppgtt_mm.link);
1487 			intel_vgpu_mm_put(m);
1488 		}
1489 	}
1490 
1491 	GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1492 	if (workload->shadow_mm)
1493 		intel_vgpu_mm_put(workload->shadow_mm);
1494 
1495 	kmem_cache_free(s->workloads, workload);
1496 }
1497 
1498 static struct intel_vgpu_workload *
1499 alloc_workload(struct intel_vgpu *vgpu)
1500 {
1501 	struct intel_vgpu_submission *s = &vgpu->submission;
1502 	struct intel_vgpu_workload *workload;
1503 
1504 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1505 	if (!workload)
1506 		return ERR_PTR(-ENOMEM);
1507 
1508 	INIT_LIST_HEAD(&workload->list);
1509 	INIT_LIST_HEAD(&workload->shadow_bb);
1510 	INIT_LIST_HEAD(&workload->lri_shadow_mm);
1511 
1512 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1513 	atomic_set(&workload->shadow_ctx_active, 0);
1514 
1515 	workload->status = -EINPROGRESS;
1516 	workload->vgpu = vgpu;
1517 
1518 	return workload;
1519 }
1520 
1521 #define RING_CTX_OFF(x) \
1522 	offsetof(struct execlist_ring_context, x)
1523 
1524 static void read_guest_pdps(struct intel_vgpu *vgpu,
1525 		u64 ring_context_gpa, u32 pdp[8])
1526 {
1527 	u64 gpa;
1528 	int i;
1529 
1530 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1531 
1532 	for (i = 0; i < 8; i++)
1533 		intel_gvt_hypervisor_read_gpa(vgpu,
1534 				gpa + i * 8, &pdp[7 - i], 4);
1535 }
1536 
1537 static int prepare_mm(struct intel_vgpu_workload *workload)
1538 {
1539 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1540 	struct intel_vgpu_mm *mm;
1541 	struct intel_vgpu *vgpu = workload->vgpu;
1542 	enum intel_gvt_gtt_type root_entry_type;
1543 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1544 
1545 	switch (desc->addressing_mode) {
1546 	case 1: /* legacy 32-bit */
1547 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1548 		break;
1549 	case 3: /* legacy 64-bit */
1550 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1551 		break;
1552 	default:
1553 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1554 		return -EINVAL;
1555 	}
1556 
1557 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1558 
1559 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1560 	if (IS_ERR(mm))
1561 		return PTR_ERR(mm);
1562 
1563 	workload->shadow_mm = mm;
1564 	return 0;
1565 }
1566 
1567 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1568 		((a)->lrca == (b)->lrca))
1569 
1570 /**
1571  * intel_vgpu_create_workload - create a vGPU workload
1572  * @vgpu: a vGPU
1573  * @engine: the engine
1574  * @desc: a guest context descriptor
1575  *
1576  * This function is called when creating a vGPU workload.
1577  *
1578  * Returns:
1579  * struct intel_vgpu_workload * on success, negative error code in
1580  * pointer if failed.
1581  *
1582  */
1583 struct intel_vgpu_workload *
1584 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1585 			   const struct intel_engine_cs *engine,
1586 			   struct execlist_ctx_descriptor_format *desc)
1587 {
1588 	struct intel_vgpu_submission *s = &vgpu->submission;
1589 	struct list_head *q = workload_q_head(vgpu, engine);
1590 	struct intel_vgpu_workload *last_workload = NULL;
1591 	struct intel_vgpu_workload *workload = NULL;
1592 	u64 ring_context_gpa;
1593 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1594 	u32 guest_head;
1595 	int ret;
1596 
1597 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1598 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1599 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1600 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1601 		return ERR_PTR(-EINVAL);
1602 	}
1603 
1604 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1605 			RING_CTX_OFF(ring_header.val), &head, 4);
1606 
1607 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1608 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1609 
1610 	guest_head = head;
1611 
1612 	head &= RB_HEAD_OFF_MASK;
1613 	tail &= RB_TAIL_OFF_MASK;
1614 
1615 	list_for_each_entry_reverse(last_workload, q, list) {
1616 
1617 		if (same_context(&last_workload->ctx_desc, desc)) {
1618 			gvt_dbg_el("ring %s cur workload == last\n",
1619 				   engine->name);
1620 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1621 				   last_workload->rb_tail);
1622 			/*
1623 			 * cannot use guest context head pointer here,
1624 			 * as it might not be updated at this time
1625 			 */
1626 			head = last_workload->rb_tail;
1627 			break;
1628 		}
1629 	}
1630 
1631 	gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1632 
1633 	/* record some ring buffer register values for scan and shadow */
1634 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1635 			RING_CTX_OFF(rb_start.val), &start, 4);
1636 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1637 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1638 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1639 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1640 
1641 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1642 				_RING_CTL_BUF_SIZE(ctl))) {
1643 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1644 		return ERR_PTR(-EINVAL);
1645 	}
1646 
1647 	workload = alloc_workload(vgpu);
1648 	if (IS_ERR(workload))
1649 		return workload;
1650 
1651 	workload->engine = engine;
1652 	workload->ctx_desc = *desc;
1653 	workload->ring_context_gpa = ring_context_gpa;
1654 	workload->rb_head = head;
1655 	workload->guest_rb_head = guest_head;
1656 	workload->rb_tail = tail;
1657 	workload->rb_start = start;
1658 	workload->rb_ctl = ctl;
1659 
1660 	if (engine->id == RCS0) {
1661 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1662 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1663 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1664 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1665 
1666 		workload->wa_ctx.indirect_ctx.guest_gma =
1667 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1668 		workload->wa_ctx.indirect_ctx.size =
1669 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1670 			CACHELINE_BYTES;
1671 
1672 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1673 			if (!intel_gvt_ggtt_validate_range(vgpu,
1674 				workload->wa_ctx.indirect_ctx.guest_gma,
1675 				workload->wa_ctx.indirect_ctx.size)) {
1676 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1677 				    workload->wa_ctx.indirect_ctx.guest_gma);
1678 				kmem_cache_free(s->workloads, workload);
1679 				return ERR_PTR(-EINVAL);
1680 			}
1681 		}
1682 
1683 		workload->wa_ctx.per_ctx.guest_gma =
1684 			per_ctx & PER_CTX_ADDR_MASK;
1685 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1686 		if (workload->wa_ctx.per_ctx.valid) {
1687 			if (!intel_gvt_ggtt_validate_range(vgpu,
1688 				workload->wa_ctx.per_ctx.guest_gma,
1689 				CACHELINE_BYTES)) {
1690 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1691 					workload->wa_ctx.per_ctx.guest_gma);
1692 				kmem_cache_free(s->workloads, workload);
1693 				return ERR_PTR(-EINVAL);
1694 			}
1695 		}
1696 	}
1697 
1698 	gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1699 		   workload, engine->name, head, tail, start, ctl);
1700 
1701 	ret = prepare_mm(workload);
1702 	if (ret) {
1703 		kmem_cache_free(s->workloads, workload);
1704 		return ERR_PTR(ret);
1705 	}
1706 
1707 	/* Only scan and shadow the first workload in the queue
1708 	 * as there is only one pre-allocated buf-obj for shadow.
1709 	 */
1710 	if (list_empty(q)) {
1711 		intel_wakeref_t wakeref;
1712 
1713 		with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1714 			ret = intel_gvt_scan_and_shadow_workload(workload);
1715 	}
1716 
1717 	if (ret) {
1718 		if (vgpu_is_vm_unhealthy(ret))
1719 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1720 		intel_vgpu_destroy_workload(workload);
1721 		return ERR_PTR(ret);
1722 	}
1723 
1724 	ret = intel_context_pin(s->shadow[engine->id]);
1725 	if (ret) {
1726 		intel_vgpu_destroy_workload(workload);
1727 		return ERR_PTR(ret);
1728 	}
1729 
1730 	return workload;
1731 }
1732 
1733 /**
1734  * intel_vgpu_queue_workload - Qeue a vGPU workload
1735  * @workload: the workload to queue in
1736  */
1737 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1738 {
1739 	list_add_tail(&workload->list,
1740 		      workload_q_head(workload->vgpu, workload->engine));
1741 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1742 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1743 }
1744