1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_pm.h" 39 #include "gt/intel_context.h" 40 #include "gt/intel_execlists_submission.h" 41 #include "gt/intel_lrc.h" 42 #include "gt/intel_ring.h" 43 44 #include "i915_drv.h" 45 #include "i915_gem_gtt.h" 46 #include "gvt.h" 47 48 #define RING_CTX_OFF(x) \ 49 offsetof(struct execlist_ring_context, x) 50 51 static void set_context_pdp_root_pointer( 52 struct execlist_ring_context *ring_context, 53 u32 pdp[8]) 54 { 55 int i; 56 57 for (i = 0; i < 8; i++) 58 ring_context->pdps[i].val = pdp[7 - i]; 59 } 60 61 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 62 { 63 struct execlist_ring_context *shadow_ring_context; 64 struct intel_context *ctx = workload->req->context; 65 66 if (WARN_ON(!workload->shadow_mm)) 67 return; 68 69 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 70 return; 71 72 shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state; 73 set_context_pdp_root_pointer(shadow_ring_context, 74 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 75 } 76 77 /* 78 * when populating shadow ctx from guest, we should not overrride oa related 79 * registers, so that they will not be overlapped by guest oa configs. Thus 80 * made it possible to capture oa data from host for both host and guests. 81 */ 82 static void sr_oa_regs(struct intel_vgpu_workload *workload, 83 u32 *reg_state, bool save) 84 { 85 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; 86 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 87 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 88 int i = 0; 89 u32 flex_mmio[] = { 90 i915_mmio_reg_offset(EU_PERF_CNTL0), 91 i915_mmio_reg_offset(EU_PERF_CNTL1), 92 i915_mmio_reg_offset(EU_PERF_CNTL2), 93 i915_mmio_reg_offset(EU_PERF_CNTL3), 94 i915_mmio_reg_offset(EU_PERF_CNTL4), 95 i915_mmio_reg_offset(EU_PERF_CNTL5), 96 i915_mmio_reg_offset(EU_PERF_CNTL6), 97 }; 98 99 if (workload->engine->id != RCS0) 100 return; 101 102 if (save) { 103 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 104 105 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 106 u32 state_offset = ctx_flexeu0 + i * 2; 107 108 workload->flex_mmio[i] = reg_state[state_offset + 1]; 109 } 110 } else { 111 reg_state[ctx_oactxctrl] = 112 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 113 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 114 115 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 116 u32 state_offset = ctx_flexeu0 + i * 2; 117 u32 mmio = flex_mmio[i]; 118 119 reg_state[state_offset] = mmio; 120 reg_state[state_offset + 1] = workload->flex_mmio[i]; 121 } 122 } 123 } 124 125 static int populate_shadow_context(struct intel_vgpu_workload *workload) 126 { 127 struct intel_vgpu *vgpu = workload->vgpu; 128 struct intel_gvt *gvt = vgpu->gvt; 129 struct intel_context *ctx = workload->req->context; 130 struct execlist_ring_context *shadow_ring_context; 131 void *dst; 132 void *context_base; 133 unsigned long context_gpa, context_page_num; 134 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 135 unsigned long gpa_size; /* size of consecutive GPAs */ 136 struct intel_vgpu_submission *s = &vgpu->submission; 137 int i; 138 bool skip = false; 139 int ring_id = workload->engine->id; 140 141 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 142 143 context_base = (void *) ctx->lrc_reg_state - 144 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 145 146 shadow_ring_context = (void *) ctx->lrc_reg_state; 147 148 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 149 #define COPY_REG(name) \ 150 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 151 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 152 #define COPY_REG_MASKED(name) {\ 153 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 154 + RING_CTX_OFF(name.val),\ 155 &shadow_ring_context->name.val, 4);\ 156 shadow_ring_context->name.val |= 0xffff << 16;\ 157 } 158 159 COPY_REG_MASKED(ctx_ctrl); 160 COPY_REG(ctx_timestamp); 161 162 if (workload->engine->id == RCS0) { 163 COPY_REG(bb_per_ctx_ptr); 164 COPY_REG(rcs_indirect_ctx); 165 COPY_REG(rcs_indirect_ctx_offset); 166 } 167 #undef COPY_REG 168 #undef COPY_REG_MASKED 169 170 intel_gvt_hypervisor_read_gpa(vgpu, 171 workload->ring_context_gpa + 172 sizeof(*shadow_ring_context), 173 (void *)shadow_ring_context + 174 sizeof(*shadow_ring_context), 175 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 176 177 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 178 179 gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx", 180 workload->engine->name, workload->ctx_desc.lrca, 181 workload->ctx_desc.context_id, 182 workload->ring_context_gpa); 183 184 /* only need to ensure this context is not pinned/unpinned during the 185 * period from last submission to this this submission. 186 * Upon reaching this function, the currently submitted context is not 187 * supposed to get unpinned. If a misbehaving guest driver ever does 188 * this, it would corrupt itself. 189 */ 190 if (s->last_ctx[ring_id].valid && 191 (s->last_ctx[ring_id].lrca == 192 workload->ctx_desc.lrca) && 193 (s->last_ctx[ring_id].ring_context_gpa == 194 workload->ring_context_gpa)) 195 skip = true; 196 197 s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca; 198 s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa; 199 200 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip) 201 return 0; 202 203 s->last_ctx[ring_id].valid = false; 204 context_page_num = workload->engine->context_size; 205 context_page_num = context_page_num >> PAGE_SHIFT; 206 207 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0) 208 context_page_num = 19; 209 210 /* find consecutive GPAs from gma until the first inconsecutive GPA. 211 * read from the continuous GPAs into dst virtual address 212 */ 213 gpa_size = 0; 214 for (i = 2; i < context_page_num; i++) { 215 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 216 (u32)((workload->ctx_desc.lrca + i) << 217 I915_GTT_PAGE_SHIFT)); 218 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 219 gvt_vgpu_err("Invalid guest context descriptor\n"); 220 return -EFAULT; 221 } 222 223 if (gpa_size == 0) { 224 gpa_base = context_gpa; 225 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 226 } else if (context_gpa != gpa_base + gpa_size) 227 goto read; 228 229 gpa_size += I915_GTT_PAGE_SIZE; 230 231 if (i == context_page_num - 1) 232 goto read; 233 234 continue; 235 236 read: 237 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size); 238 gpa_base = context_gpa; 239 gpa_size = I915_GTT_PAGE_SIZE; 240 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 241 } 242 s->last_ctx[ring_id].valid = true; 243 return 0; 244 } 245 246 static inline bool is_gvt_request(struct i915_request *rq) 247 { 248 return intel_context_force_single_submission(rq->context); 249 } 250 251 static void save_ring_hw_state(struct intel_vgpu *vgpu, 252 const struct intel_engine_cs *engine) 253 { 254 struct intel_uncore *uncore = engine->uncore; 255 i915_reg_t reg; 256 257 reg = RING_INSTDONE(engine->mmio_base); 258 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 259 intel_uncore_read(uncore, reg); 260 261 reg = RING_ACTHD(engine->mmio_base); 262 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 263 intel_uncore_read(uncore, reg); 264 265 reg = RING_ACTHD_UDW(engine->mmio_base); 266 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 267 intel_uncore_read(uncore, reg); 268 } 269 270 static int shadow_context_status_change(struct notifier_block *nb, 271 unsigned long action, void *data) 272 { 273 struct i915_request *rq = data; 274 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 275 shadow_ctx_notifier_block[rq->engine->id]); 276 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 277 enum intel_engine_id ring_id = rq->engine->id; 278 struct intel_vgpu_workload *workload; 279 unsigned long flags; 280 281 if (!is_gvt_request(rq)) { 282 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 283 if (action == INTEL_CONTEXT_SCHEDULE_IN && 284 scheduler->engine_owner[ring_id]) { 285 /* Switch ring from vGPU to host. */ 286 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 287 NULL, rq->engine); 288 scheduler->engine_owner[ring_id] = NULL; 289 } 290 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 291 292 return NOTIFY_OK; 293 } 294 295 workload = scheduler->current_workload[ring_id]; 296 if (unlikely(!workload)) 297 return NOTIFY_OK; 298 299 switch (action) { 300 case INTEL_CONTEXT_SCHEDULE_IN: 301 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 302 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 303 /* Switch ring from host to vGPU or vGPU to vGPU. */ 304 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 305 workload->vgpu, rq->engine); 306 scheduler->engine_owner[ring_id] = workload->vgpu; 307 } else 308 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 309 ring_id, workload->vgpu->id); 310 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 311 atomic_set(&workload->shadow_ctx_active, 1); 312 break; 313 case INTEL_CONTEXT_SCHEDULE_OUT: 314 save_ring_hw_state(workload->vgpu, rq->engine); 315 atomic_set(&workload->shadow_ctx_active, 0); 316 break; 317 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 318 save_ring_hw_state(workload->vgpu, rq->engine); 319 break; 320 default: 321 WARN_ON(1); 322 return NOTIFY_OK; 323 } 324 wake_up(&workload->shadow_ctx_status_wq); 325 return NOTIFY_OK; 326 } 327 328 static void 329 shadow_context_descriptor_update(struct intel_context *ce, 330 struct intel_vgpu_workload *workload) 331 { 332 u64 desc = ce->lrc.desc; 333 334 /* 335 * Update bits 0-11 of the context descriptor which includes flags 336 * like GEN8_CTX_* cached in desc_template 337 */ 338 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT); 339 desc |= (u64)workload->ctx_desc.addressing_mode << 340 GEN8_CTX_ADDRESSING_MODE_SHIFT; 341 342 ce->lrc.desc = desc; 343 } 344 345 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 346 { 347 struct intel_vgpu *vgpu = workload->vgpu; 348 struct i915_request *req = workload->req; 349 void *shadow_ring_buffer_va; 350 u32 *cs; 351 int err; 352 353 if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context)) 354 intel_vgpu_restore_inhibit_context(vgpu, req); 355 356 /* 357 * To track whether a request has started on HW, we can emit a 358 * breadcrumb at the beginning of the request and check its 359 * timeline's HWSP to see if the breadcrumb has advanced past the 360 * start of this request. Actually, the request must have the 361 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 362 * scheduler might get a wrong state of it during reset. Since the 363 * requests from gvt always set the has_init_breadcrumb flag, here 364 * need to do the emit_init_breadcrumb for all the requests. 365 */ 366 if (req->engine->emit_init_breadcrumb) { 367 err = req->engine->emit_init_breadcrumb(req); 368 if (err) { 369 gvt_vgpu_err("fail to emit init breadcrumb\n"); 370 return err; 371 } 372 } 373 374 /* allocate shadow ring buffer */ 375 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 376 if (IS_ERR(cs)) { 377 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 378 workload->rb_len); 379 return PTR_ERR(cs); 380 } 381 382 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 383 384 /* get shadow ring buffer va */ 385 workload->shadow_ring_buffer_va = cs; 386 387 memcpy(cs, shadow_ring_buffer_va, 388 workload->rb_len); 389 390 cs += workload->rb_len / sizeof(u32); 391 intel_ring_advance(workload->req, cs); 392 393 return 0; 394 } 395 396 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 397 { 398 if (!wa_ctx->indirect_ctx.obj) 399 return; 400 401 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 402 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 403 404 wa_ctx->indirect_ctx.obj = NULL; 405 wa_ctx->indirect_ctx.shadow_va = NULL; 406 } 407 408 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr) 409 { 410 struct scatterlist *sg = pd->pt.base->mm.pages->sgl; 411 412 /* This is not a good idea */ 413 sg->dma_address = addr; 414 } 415 416 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 417 struct intel_context *ce) 418 { 419 struct intel_vgpu_mm *mm = workload->shadow_mm; 420 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); 421 int i = 0; 422 423 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 424 set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]); 425 } else { 426 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 427 struct i915_page_directory * const pd = 428 i915_pd_entry(ppgtt->pd, i); 429 /* skip now as current i915 ppgtt alloc won't allocate 430 top level pdp for non 4-level table, won't impact 431 shadow ppgtt. */ 432 if (!pd) 433 break; 434 435 set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]); 436 } 437 } 438 } 439 440 static int 441 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 442 { 443 struct intel_vgpu *vgpu = workload->vgpu; 444 struct intel_vgpu_submission *s = &vgpu->submission; 445 struct i915_request *rq; 446 447 if (workload->req) 448 return 0; 449 450 rq = i915_request_create(s->shadow[workload->engine->id]); 451 if (IS_ERR(rq)) { 452 gvt_vgpu_err("fail to allocate gem request\n"); 453 return PTR_ERR(rq); 454 } 455 456 workload->req = i915_request_get(rq); 457 return 0; 458 } 459 460 /** 461 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 462 * shadow it as well, include ringbuffer,wa_ctx and ctx. 463 * @workload: an abstract entity for each execlist submission. 464 * 465 * This function is called before the workload submitting to i915, to make 466 * sure the content of the workload is valid. 467 */ 468 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 469 { 470 struct intel_vgpu *vgpu = workload->vgpu; 471 struct intel_vgpu_submission *s = &vgpu->submission; 472 int ret; 473 474 lockdep_assert_held(&vgpu->vgpu_lock); 475 476 if (workload->shadow) 477 return 0; 478 479 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated)) 480 shadow_context_descriptor_update(s->shadow[workload->engine->id], 481 workload); 482 483 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 484 if (ret) 485 return ret; 486 487 if (workload->engine->id == RCS0 && 488 workload->wa_ctx.indirect_ctx.size) { 489 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 490 if (ret) 491 goto err_shadow; 492 } 493 494 workload->shadow = true; 495 return 0; 496 497 err_shadow: 498 release_shadow_wa_ctx(&workload->wa_ctx); 499 return ret; 500 } 501 502 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 503 504 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 505 { 506 struct intel_gvt *gvt = workload->vgpu->gvt; 507 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 508 struct intel_vgpu_shadow_bb *bb; 509 int ret; 510 511 list_for_each_entry(bb, &workload->shadow_bb, list) { 512 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 513 * is only updated into ring_scan_buffer, not real ring address 514 * allocated in later copy_workload_to_ring_buffer. pls be noted 515 * shadow_ring_buffer_va is now pointed to real ring buffer va 516 * in copy_workload_to_ring_buffer. 517 */ 518 519 if (bb->bb_offset) 520 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 521 + bb->bb_offset; 522 523 /* 524 * For non-priv bb, scan&shadow is only for 525 * debugging purpose, so the content of shadow bb 526 * is the same as original bb. Therefore, 527 * here, rather than switch to shadow bb's gma 528 * address, we directly use original batch buffer's 529 * gma address, and send original bb to hardware 530 * directly 531 */ 532 if (!bb->ppgtt) { 533 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 534 NULL, 0, 0, 0); 535 if (IS_ERR(bb->vma)) { 536 ret = PTR_ERR(bb->vma); 537 goto err; 538 } 539 540 /* relocate shadow batch buffer */ 541 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 542 if (gmadr_bytes == 8) 543 bb->bb_start_cmd_va[2] = 0; 544 545 ret = i915_vma_move_to_active(bb->vma, 546 workload->req, 547 0); 548 if (ret) 549 goto err; 550 } 551 552 /* No one is going to touch shadow bb from now on. */ 553 i915_gem_object_flush_map(bb->obj); 554 } 555 return 0; 556 err: 557 release_shadow_batch_buffer(workload); 558 return ret; 559 } 560 561 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 562 { 563 struct intel_vgpu_workload *workload = 564 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 565 struct i915_request *rq = workload->req; 566 struct execlist_ring_context *shadow_ring_context = 567 (struct execlist_ring_context *)rq->context->lrc_reg_state; 568 569 shadow_ring_context->bb_per_ctx_ptr.val = 570 (shadow_ring_context->bb_per_ctx_ptr.val & 571 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 572 shadow_ring_context->rcs_indirect_ctx.val = 573 (shadow_ring_context->rcs_indirect_ctx.val & 574 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 575 } 576 577 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 578 { 579 struct i915_vma *vma; 580 unsigned char *per_ctx_va = 581 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 582 wa_ctx->indirect_ctx.size; 583 584 if (wa_ctx->indirect_ctx.size == 0) 585 return 0; 586 587 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 588 0, CACHELINE_BYTES, 0); 589 if (IS_ERR(vma)) 590 return PTR_ERR(vma); 591 592 /* FIXME: we are not tracking our pinned VMA leaving it 593 * up to the core to fix up the stray pin_count upon 594 * free. 595 */ 596 597 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 598 599 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 600 memset(per_ctx_va, 0, CACHELINE_BYTES); 601 602 update_wa_ctx_2_shadow_ctx(wa_ctx); 603 return 0; 604 } 605 606 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 607 { 608 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) = 609 workload->rb_start; 610 } 611 612 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 613 { 614 struct intel_vgpu_shadow_bb *bb, *pos; 615 616 if (list_empty(&workload->shadow_bb)) 617 return; 618 619 bb = list_first_entry(&workload->shadow_bb, 620 struct intel_vgpu_shadow_bb, list); 621 622 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 623 if (bb->obj) { 624 if (bb->va && !IS_ERR(bb->va)) 625 i915_gem_object_unpin_map(bb->obj); 626 627 if (bb->vma && !IS_ERR(bb->vma)) 628 i915_vma_unpin(bb->vma); 629 630 i915_gem_object_put(bb->obj); 631 } 632 list_del(&bb->list); 633 kfree(bb); 634 } 635 } 636 637 static int 638 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload) 639 { 640 struct intel_vgpu *vgpu = workload->vgpu; 641 struct intel_vgpu_mm *m; 642 int ret = 0; 643 644 ret = intel_vgpu_pin_mm(workload->shadow_mm); 645 if (ret) { 646 gvt_vgpu_err("fail to vgpu pin mm\n"); 647 return ret; 648 } 649 650 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 651 !workload->shadow_mm->ppgtt_mm.shadowed) { 652 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 653 return -EINVAL; 654 } 655 656 if (!list_empty(&workload->lri_shadow_mm)) { 657 list_for_each_entry(m, &workload->lri_shadow_mm, 658 ppgtt_mm.link) { 659 ret = intel_vgpu_pin_mm(m); 660 if (ret) { 661 list_for_each_entry_from_reverse(m, 662 &workload->lri_shadow_mm, 663 ppgtt_mm.link) 664 intel_vgpu_unpin_mm(m); 665 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n"); 666 break; 667 } 668 } 669 } 670 671 if (ret) 672 intel_vgpu_unpin_mm(workload->shadow_mm); 673 674 return ret; 675 } 676 677 static void 678 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload) 679 { 680 struct intel_vgpu_mm *m; 681 682 if (!list_empty(&workload->lri_shadow_mm)) { 683 list_for_each_entry(m, &workload->lri_shadow_mm, 684 ppgtt_mm.link) 685 intel_vgpu_unpin_mm(m); 686 } 687 intel_vgpu_unpin_mm(workload->shadow_mm); 688 } 689 690 static int prepare_workload(struct intel_vgpu_workload *workload) 691 { 692 struct intel_vgpu *vgpu = workload->vgpu; 693 struct intel_vgpu_submission *s = &vgpu->submission; 694 int ret = 0; 695 696 ret = intel_vgpu_shadow_mm_pin(workload); 697 if (ret) { 698 gvt_vgpu_err("fail to pin shadow mm\n"); 699 return ret; 700 } 701 702 update_shadow_pdps(workload); 703 704 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]); 705 706 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 707 if (ret) { 708 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 709 goto err_unpin_mm; 710 } 711 712 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 713 if (ret) { 714 gvt_vgpu_err("fail to flush post shadow\n"); 715 goto err_unpin_mm; 716 } 717 718 ret = copy_workload_to_ring_buffer(workload); 719 if (ret) { 720 gvt_vgpu_err("fail to generate request\n"); 721 goto err_unpin_mm; 722 } 723 724 ret = prepare_shadow_batch_buffer(workload); 725 if (ret) { 726 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 727 goto err_unpin_mm; 728 } 729 730 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 731 if (ret) { 732 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 733 goto err_shadow_batch; 734 } 735 736 if (workload->prepare) { 737 ret = workload->prepare(workload); 738 if (ret) 739 goto err_shadow_wa_ctx; 740 } 741 742 return 0; 743 err_shadow_wa_ctx: 744 release_shadow_wa_ctx(&workload->wa_ctx); 745 err_shadow_batch: 746 release_shadow_batch_buffer(workload); 747 err_unpin_mm: 748 intel_vgpu_shadow_mm_unpin(workload); 749 return ret; 750 } 751 752 static int dispatch_workload(struct intel_vgpu_workload *workload) 753 { 754 struct intel_vgpu *vgpu = workload->vgpu; 755 struct i915_request *rq; 756 int ret; 757 758 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n", 759 workload->engine->name, workload); 760 761 mutex_lock(&vgpu->vgpu_lock); 762 763 ret = intel_gvt_workload_req_alloc(workload); 764 if (ret) 765 goto err_req; 766 767 ret = intel_gvt_scan_and_shadow_workload(workload); 768 if (ret) 769 goto out; 770 771 ret = populate_shadow_context(workload); 772 if (ret) { 773 release_shadow_wa_ctx(&workload->wa_ctx); 774 goto out; 775 } 776 777 ret = prepare_workload(workload); 778 out: 779 if (ret) { 780 /* We might still need to add request with 781 * clean ctx to retire it properly.. 782 */ 783 rq = fetch_and_zero(&workload->req); 784 i915_request_put(rq); 785 } 786 787 if (!IS_ERR_OR_NULL(workload->req)) { 788 gvt_dbg_sched("ring id %s submit workload to i915 %p\n", 789 workload->engine->name, workload->req); 790 i915_request_add(workload->req); 791 workload->dispatched = true; 792 } 793 err_req: 794 if (ret) 795 workload->status = ret; 796 mutex_unlock(&vgpu->vgpu_lock); 797 return ret; 798 } 799 800 static struct intel_vgpu_workload * 801 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine) 802 { 803 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 804 struct intel_vgpu_workload *workload = NULL; 805 806 mutex_lock(&gvt->sched_lock); 807 808 /* 809 * no current vgpu / will be scheduled out / no workload 810 * bail out 811 */ 812 if (!scheduler->current_vgpu) { 813 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name); 814 goto out; 815 } 816 817 if (scheduler->need_reschedule) { 818 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name); 819 goto out; 820 } 821 822 if (!scheduler->current_vgpu->active || 823 list_empty(workload_q_head(scheduler->current_vgpu, engine))) 824 goto out; 825 826 /* 827 * still have current workload, maybe the workload disptacher 828 * fail to submit it for some reason, resubmit it. 829 */ 830 if (scheduler->current_workload[engine->id]) { 831 workload = scheduler->current_workload[engine->id]; 832 gvt_dbg_sched("ring %s still have current workload %p\n", 833 engine->name, workload); 834 goto out; 835 } 836 837 /* 838 * pick a workload as current workload 839 * once current workload is set, schedule policy routines 840 * will wait the current workload is finished when trying to 841 * schedule out a vgpu. 842 */ 843 scheduler->current_workload[engine->id] = 844 list_first_entry(workload_q_head(scheduler->current_vgpu, 845 engine), 846 struct intel_vgpu_workload, list); 847 848 workload = scheduler->current_workload[engine->id]; 849 850 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload); 851 852 atomic_inc(&workload->vgpu->submission.running_workload_num); 853 out: 854 mutex_unlock(&gvt->sched_lock); 855 return workload; 856 } 857 858 static void update_guest_pdps(struct intel_vgpu *vgpu, 859 u64 ring_context_gpa, u32 pdp[8]) 860 { 861 u64 gpa; 862 int i; 863 864 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 865 866 for (i = 0; i < 8; i++) 867 intel_gvt_hypervisor_write_gpa(vgpu, 868 gpa + i * 8, &pdp[7 - i], 4); 869 } 870 871 static __maybe_unused bool 872 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m) 873 { 874 if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 875 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32; 876 877 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) { 878 gvt_dbg_mm("4-level context ppgtt not match LRI command\n"); 879 return false; 880 } 881 return true; 882 } else { 883 /* see comment in LRI handler in cmd_parser.c */ 884 gvt_dbg_mm("invalid shadow mm type\n"); 885 return false; 886 } 887 } 888 889 static void update_guest_context(struct intel_vgpu_workload *workload) 890 { 891 struct i915_request *rq = workload->req; 892 struct intel_vgpu *vgpu = workload->vgpu; 893 struct execlist_ring_context *shadow_ring_context; 894 struct intel_context *ctx = workload->req->context; 895 void *context_base; 896 void *src; 897 unsigned long context_gpa, context_page_num; 898 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 899 unsigned long gpa_size; /* size of consecutive GPAs*/ 900 int i; 901 u32 ring_base; 902 u32 head, tail; 903 u16 wrap_count; 904 905 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 906 workload->ctx_desc.lrca); 907 908 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 909 910 head = workload->rb_head; 911 tail = workload->rb_tail; 912 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 913 914 if (tail < head) { 915 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 916 wrap_count = 0; 917 else 918 wrap_count += 1; 919 } 920 921 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 922 923 ring_base = rq->engine->mmio_base; 924 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 925 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 926 927 context_page_num = rq->engine->context_size; 928 context_page_num = context_page_num >> PAGE_SHIFT; 929 930 if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0) 931 context_page_num = 19; 932 933 context_base = (void *) ctx->lrc_reg_state - 934 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 935 936 /* find consecutive GPAs from gma until the first inconsecutive GPA. 937 * write to the consecutive GPAs from src virtual address 938 */ 939 gpa_size = 0; 940 for (i = 2; i < context_page_num; i++) { 941 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 942 (u32)((workload->ctx_desc.lrca + i) << 943 I915_GTT_PAGE_SHIFT)); 944 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 945 gvt_vgpu_err("invalid guest context descriptor\n"); 946 return; 947 } 948 949 if (gpa_size == 0) { 950 gpa_base = context_gpa; 951 src = context_base + (i << I915_GTT_PAGE_SHIFT); 952 } else if (context_gpa != gpa_base + gpa_size) 953 goto write; 954 955 gpa_size += I915_GTT_PAGE_SIZE; 956 957 if (i == context_page_num - 1) 958 goto write; 959 960 continue; 961 962 write: 963 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size); 964 gpa_base = context_gpa; 965 gpa_size = I915_GTT_PAGE_SIZE; 966 src = context_base + (i << I915_GTT_PAGE_SHIFT); 967 } 968 969 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 970 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 971 972 shadow_ring_context = (void *) ctx->lrc_reg_state; 973 974 if (!list_empty(&workload->lri_shadow_mm)) { 975 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm, 976 struct intel_vgpu_mm, 977 ppgtt_mm.link); 978 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m)); 979 update_guest_pdps(vgpu, workload->ring_context_gpa, 980 (void *)m->ppgtt_mm.guest_pdps); 981 } 982 983 #define COPY_REG(name) \ 984 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 985 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 986 987 COPY_REG(ctx_ctrl); 988 COPY_REG(ctx_timestamp); 989 990 #undef COPY_REG 991 992 intel_gvt_hypervisor_write_gpa(vgpu, 993 workload->ring_context_gpa + 994 sizeof(*shadow_ring_context), 995 (void *)shadow_ring_context + 996 sizeof(*shadow_ring_context), 997 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 998 } 999 1000 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 1001 intel_engine_mask_t engine_mask) 1002 { 1003 struct intel_vgpu_submission *s = &vgpu->submission; 1004 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1005 struct intel_engine_cs *engine; 1006 struct intel_vgpu_workload *pos, *n; 1007 intel_engine_mask_t tmp; 1008 1009 /* free the unsubmited workloads in the queues. */ 1010 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) { 1011 list_for_each_entry_safe(pos, n, 1012 &s->workload_q_head[engine->id], list) { 1013 list_del_init(&pos->list); 1014 intel_vgpu_destroy_workload(pos); 1015 } 1016 clear_bit(engine->id, s->shadow_ctx_desc_updated); 1017 } 1018 } 1019 1020 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 1021 { 1022 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1023 struct intel_vgpu_workload *workload = 1024 scheduler->current_workload[ring_id]; 1025 struct intel_vgpu *vgpu = workload->vgpu; 1026 struct intel_vgpu_submission *s = &vgpu->submission; 1027 struct i915_request *rq = workload->req; 1028 int event; 1029 1030 mutex_lock(&vgpu->vgpu_lock); 1031 mutex_lock(&gvt->sched_lock); 1032 1033 /* For the workload w/ request, needs to wait for the context 1034 * switch to make sure request is completed. 1035 * For the workload w/o request, directly complete the workload. 1036 */ 1037 if (rq) { 1038 wait_event(workload->shadow_ctx_status_wq, 1039 !atomic_read(&workload->shadow_ctx_active)); 1040 1041 /* If this request caused GPU hang, req->fence.error will 1042 * be set to -EIO. Use -EIO to set workload status so 1043 * that when this request caused GPU hang, didn't trigger 1044 * context switch interrupt to guest. 1045 */ 1046 if (likely(workload->status == -EINPROGRESS)) { 1047 if (workload->req->fence.error == -EIO) 1048 workload->status = -EIO; 1049 else 1050 workload->status = 0; 1051 } 1052 1053 if (!workload->status && 1054 !(vgpu->resetting_eng & BIT(ring_id))) { 1055 update_guest_context(workload); 1056 1057 for_each_set_bit(event, workload->pending_events, 1058 INTEL_GVT_EVENT_MAX) 1059 intel_vgpu_trigger_virtual_event(vgpu, event); 1060 } 1061 1062 i915_request_put(fetch_and_zero(&workload->req)); 1063 } 1064 1065 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 1066 ring_id, workload, workload->status); 1067 1068 scheduler->current_workload[ring_id] = NULL; 1069 1070 list_del_init(&workload->list); 1071 1072 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 1073 /* if workload->status is not successful means HW GPU 1074 * has occurred GPU hang or something wrong with i915/GVT, 1075 * and GVT won't inject context switch interrupt to guest. 1076 * So this error is a vGPU hang actually to the guest. 1077 * According to this we should emunlate a vGPU hang. If 1078 * there are pending workloads which are already submitted 1079 * from guest, we should clean them up like HW GPU does. 1080 * 1081 * if it is in middle of engine resetting, the pending 1082 * workloads won't be submitted to HW GPU and will be 1083 * cleaned up during the resetting process later, so doing 1084 * the workload clean up here doesn't have any impact. 1085 **/ 1086 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 1087 } 1088 1089 workload->complete(workload); 1090 1091 intel_vgpu_shadow_mm_unpin(workload); 1092 intel_vgpu_destroy_workload(workload); 1093 1094 atomic_dec(&s->running_workload_num); 1095 wake_up(&scheduler->workload_complete_wq); 1096 1097 if (gvt->scheduler.need_reschedule) 1098 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 1099 1100 mutex_unlock(&gvt->sched_lock); 1101 mutex_unlock(&vgpu->vgpu_lock); 1102 } 1103 1104 static int workload_thread(void *arg) 1105 { 1106 struct intel_engine_cs *engine = arg; 1107 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9; 1108 struct intel_gvt *gvt = engine->i915->gvt; 1109 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1110 struct intel_vgpu_workload *workload = NULL; 1111 struct intel_vgpu *vgpu = NULL; 1112 int ret; 1113 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1114 1115 gvt_dbg_core("workload thread for ring %s started\n", engine->name); 1116 1117 while (!kthread_should_stop()) { 1118 intel_wakeref_t wakeref; 1119 1120 add_wait_queue(&scheduler->waitq[engine->id], &wait); 1121 do { 1122 workload = pick_next_workload(gvt, engine); 1123 if (workload) 1124 break; 1125 wait_woken(&wait, TASK_INTERRUPTIBLE, 1126 MAX_SCHEDULE_TIMEOUT); 1127 } while (!kthread_should_stop()); 1128 remove_wait_queue(&scheduler->waitq[engine->id], &wait); 1129 1130 if (!workload) 1131 break; 1132 1133 gvt_dbg_sched("ring %s next workload %p vgpu %d\n", 1134 engine->name, workload, 1135 workload->vgpu->id); 1136 1137 wakeref = intel_runtime_pm_get(engine->uncore->rpm); 1138 1139 gvt_dbg_sched("ring %s will dispatch workload %p\n", 1140 engine->name, workload); 1141 1142 if (need_force_wake) 1143 intel_uncore_forcewake_get(engine->uncore, 1144 FORCEWAKE_ALL); 1145 /* 1146 * Update the vReg of the vGPU which submitted this 1147 * workload. The vGPU may use these registers for checking 1148 * the context state. The value comes from GPU commands 1149 * in this workload. 1150 */ 1151 update_vreg_in_ctx(workload); 1152 1153 ret = dispatch_workload(workload); 1154 1155 if (ret) { 1156 vgpu = workload->vgpu; 1157 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1158 goto complete; 1159 } 1160 1161 gvt_dbg_sched("ring %s wait workload %p\n", 1162 engine->name, workload); 1163 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1164 1165 complete: 1166 gvt_dbg_sched("will complete workload %p, status: %d\n", 1167 workload, workload->status); 1168 1169 complete_current_workload(gvt, engine->id); 1170 1171 if (need_force_wake) 1172 intel_uncore_forcewake_put(engine->uncore, 1173 FORCEWAKE_ALL); 1174 1175 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1176 if (ret && (vgpu_is_vm_unhealthy(ret))) 1177 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1178 } 1179 return 0; 1180 } 1181 1182 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1183 { 1184 struct intel_vgpu_submission *s = &vgpu->submission; 1185 struct intel_gvt *gvt = vgpu->gvt; 1186 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1187 1188 if (atomic_read(&s->running_workload_num)) { 1189 gvt_dbg_sched("wait vgpu idle\n"); 1190 1191 wait_event(scheduler->workload_complete_wq, 1192 !atomic_read(&s->running_workload_num)); 1193 } 1194 } 1195 1196 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1197 { 1198 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1199 struct intel_engine_cs *engine; 1200 enum intel_engine_id i; 1201 1202 gvt_dbg_core("clean workload scheduler\n"); 1203 1204 for_each_engine(engine, gvt->gt, i) { 1205 atomic_notifier_chain_unregister( 1206 &engine->context_status_notifier, 1207 &gvt->shadow_ctx_notifier_block[i]); 1208 kthread_stop(scheduler->thread[i]); 1209 } 1210 } 1211 1212 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1213 { 1214 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1215 struct intel_engine_cs *engine; 1216 enum intel_engine_id i; 1217 int ret; 1218 1219 gvt_dbg_core("init workload scheduler\n"); 1220 1221 init_waitqueue_head(&scheduler->workload_complete_wq); 1222 1223 for_each_engine(engine, gvt->gt, i) { 1224 init_waitqueue_head(&scheduler->waitq[i]); 1225 1226 scheduler->thread[i] = kthread_run(workload_thread, engine, 1227 "gvt:%s", engine->name); 1228 if (IS_ERR(scheduler->thread[i])) { 1229 gvt_err("fail to create workload thread\n"); 1230 ret = PTR_ERR(scheduler->thread[i]); 1231 goto err; 1232 } 1233 1234 gvt->shadow_ctx_notifier_block[i].notifier_call = 1235 shadow_context_status_change; 1236 atomic_notifier_chain_register(&engine->context_status_notifier, 1237 &gvt->shadow_ctx_notifier_block[i]); 1238 } 1239 1240 return 0; 1241 1242 err: 1243 intel_gvt_clean_workload_scheduler(gvt); 1244 return ret; 1245 } 1246 1247 static void 1248 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1249 struct i915_ppgtt *ppgtt) 1250 { 1251 int i; 1252 1253 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1254 set_dma_address(ppgtt->pd, s->i915_context_pml4); 1255 } else { 1256 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1257 struct i915_page_directory * const pd = 1258 i915_pd_entry(ppgtt->pd, i); 1259 1260 set_dma_address(pd, s->i915_context_pdps[i]); 1261 } 1262 } 1263 } 1264 1265 /** 1266 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1267 * @vgpu: a vGPU 1268 * 1269 * This function is called when a vGPU is being destroyed. 1270 * 1271 */ 1272 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1273 { 1274 struct intel_vgpu_submission *s = &vgpu->submission; 1275 struct intel_engine_cs *engine; 1276 enum intel_engine_id id; 1277 1278 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1279 1280 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1281 for_each_engine(engine, vgpu->gvt->gt, id) 1282 intel_context_put(s->shadow[id]); 1283 1284 kmem_cache_destroy(s->workloads); 1285 } 1286 1287 1288 /** 1289 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1290 * @vgpu: a vGPU 1291 * @engine_mask: engines expected to be reset 1292 * 1293 * This function is called when a vGPU is being destroyed. 1294 * 1295 */ 1296 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1297 intel_engine_mask_t engine_mask) 1298 { 1299 struct intel_vgpu_submission *s = &vgpu->submission; 1300 1301 if (!s->active) 1302 return; 1303 1304 intel_vgpu_clean_workloads(vgpu, engine_mask); 1305 s->ops->reset(vgpu, engine_mask); 1306 } 1307 1308 static void 1309 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1310 struct i915_ppgtt *ppgtt) 1311 { 1312 int i; 1313 1314 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1315 s->i915_context_pml4 = px_dma(ppgtt->pd); 1316 } else { 1317 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1318 struct i915_page_directory * const pd = 1319 i915_pd_entry(ppgtt->pd, i); 1320 1321 s->i915_context_pdps[i] = px_dma(pd); 1322 } 1323 } 1324 } 1325 1326 /** 1327 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1328 * @vgpu: a vGPU 1329 * 1330 * This function is called when a vGPU is being created. 1331 * 1332 * Returns: 1333 * Zero on success, negative error code if failed. 1334 * 1335 */ 1336 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1337 { 1338 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1339 struct intel_vgpu_submission *s = &vgpu->submission; 1340 struct intel_engine_cs *engine; 1341 struct i915_ppgtt *ppgtt; 1342 enum intel_engine_id i; 1343 int ret; 1344 1345 ppgtt = i915_ppgtt_create(&i915->gt); 1346 if (IS_ERR(ppgtt)) 1347 return PTR_ERR(ppgtt); 1348 1349 i915_context_ppgtt_root_save(s, ppgtt); 1350 1351 for_each_engine(engine, vgpu->gvt->gt, i) { 1352 struct intel_context *ce; 1353 1354 INIT_LIST_HEAD(&s->workload_q_head[i]); 1355 s->shadow[i] = ERR_PTR(-EINVAL); 1356 1357 ce = intel_context_create(engine); 1358 if (IS_ERR(ce)) { 1359 ret = PTR_ERR(ce); 1360 goto out_shadow_ctx; 1361 } 1362 1363 i915_vm_put(ce->vm); 1364 ce->vm = i915_vm_get(&ppgtt->vm); 1365 intel_context_set_single_submission(ce); 1366 1367 /* Max ring buffer size */ 1368 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) { 1369 const unsigned int ring_size = 512 * SZ_4K; 1370 1371 ce->ring = __intel_context_ring_size(ring_size); 1372 } 1373 1374 s->shadow[i] = ce; 1375 } 1376 1377 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1378 1379 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1380 sizeof(struct intel_vgpu_workload), 0, 1381 SLAB_HWCACHE_ALIGN, 1382 offsetof(struct intel_vgpu_workload, rb_tail), 1383 sizeof_field(struct intel_vgpu_workload, rb_tail), 1384 NULL); 1385 1386 if (!s->workloads) { 1387 ret = -ENOMEM; 1388 goto out_shadow_ctx; 1389 } 1390 1391 atomic_set(&s->running_workload_num, 0); 1392 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1393 1394 memset(s->last_ctx, 0, sizeof(s->last_ctx)); 1395 1396 i915_vm_put(&ppgtt->vm); 1397 return 0; 1398 1399 out_shadow_ctx: 1400 i915_context_ppgtt_root_restore(s, ppgtt); 1401 for_each_engine(engine, vgpu->gvt->gt, i) { 1402 if (IS_ERR(s->shadow[i])) 1403 break; 1404 1405 intel_context_put(s->shadow[i]); 1406 } 1407 i915_vm_put(&ppgtt->vm); 1408 return ret; 1409 } 1410 1411 /** 1412 * intel_vgpu_select_submission_ops - select virtual submission interface 1413 * @vgpu: a vGPU 1414 * @engine_mask: either ALL_ENGINES or target engine mask 1415 * @interface: expected vGPU virtual submission interface 1416 * 1417 * This function is called when guest configures submission interface. 1418 * 1419 * Returns: 1420 * Zero on success, negative error code if failed. 1421 * 1422 */ 1423 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1424 intel_engine_mask_t engine_mask, 1425 unsigned int interface) 1426 { 1427 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1428 struct intel_vgpu_submission *s = &vgpu->submission; 1429 const struct intel_vgpu_submission_ops *ops[] = { 1430 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1431 &intel_vgpu_execlist_submission_ops, 1432 }; 1433 int ret; 1434 1435 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops))) 1436 return -EINVAL; 1437 1438 if (drm_WARN_ON(&i915->drm, 1439 interface == 0 && engine_mask != ALL_ENGINES)) 1440 return -EINVAL; 1441 1442 if (s->active) 1443 s->ops->clean(vgpu, engine_mask); 1444 1445 if (interface == 0) { 1446 s->ops = NULL; 1447 s->virtual_submission_interface = 0; 1448 s->active = false; 1449 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1450 return 0; 1451 } 1452 1453 ret = ops[interface]->init(vgpu, engine_mask); 1454 if (ret) 1455 return ret; 1456 1457 s->ops = ops[interface]; 1458 s->virtual_submission_interface = interface; 1459 s->active = true; 1460 1461 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1462 vgpu->id, s->ops->name); 1463 1464 return 0; 1465 } 1466 1467 /** 1468 * intel_vgpu_destroy_workload - destroy a vGPU workload 1469 * @workload: workload to destroy 1470 * 1471 * This function is called when destroy a vGPU workload. 1472 * 1473 */ 1474 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1475 { 1476 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1477 1478 intel_context_unpin(s->shadow[workload->engine->id]); 1479 release_shadow_batch_buffer(workload); 1480 release_shadow_wa_ctx(&workload->wa_ctx); 1481 1482 if (!list_empty(&workload->lri_shadow_mm)) { 1483 struct intel_vgpu_mm *m, *mm; 1484 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm, 1485 ppgtt_mm.link) { 1486 list_del(&m->ppgtt_mm.link); 1487 intel_vgpu_mm_put(m); 1488 } 1489 } 1490 1491 GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm)); 1492 if (workload->shadow_mm) 1493 intel_vgpu_mm_put(workload->shadow_mm); 1494 1495 kmem_cache_free(s->workloads, workload); 1496 } 1497 1498 static struct intel_vgpu_workload * 1499 alloc_workload(struct intel_vgpu *vgpu) 1500 { 1501 struct intel_vgpu_submission *s = &vgpu->submission; 1502 struct intel_vgpu_workload *workload; 1503 1504 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1505 if (!workload) 1506 return ERR_PTR(-ENOMEM); 1507 1508 INIT_LIST_HEAD(&workload->list); 1509 INIT_LIST_HEAD(&workload->shadow_bb); 1510 INIT_LIST_HEAD(&workload->lri_shadow_mm); 1511 1512 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1513 atomic_set(&workload->shadow_ctx_active, 0); 1514 1515 workload->status = -EINPROGRESS; 1516 workload->vgpu = vgpu; 1517 1518 return workload; 1519 } 1520 1521 #define RING_CTX_OFF(x) \ 1522 offsetof(struct execlist_ring_context, x) 1523 1524 static void read_guest_pdps(struct intel_vgpu *vgpu, 1525 u64 ring_context_gpa, u32 pdp[8]) 1526 { 1527 u64 gpa; 1528 int i; 1529 1530 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1531 1532 for (i = 0; i < 8; i++) 1533 intel_gvt_hypervisor_read_gpa(vgpu, 1534 gpa + i * 8, &pdp[7 - i], 4); 1535 } 1536 1537 static int prepare_mm(struct intel_vgpu_workload *workload) 1538 { 1539 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1540 struct intel_vgpu_mm *mm; 1541 struct intel_vgpu *vgpu = workload->vgpu; 1542 enum intel_gvt_gtt_type root_entry_type; 1543 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1544 1545 switch (desc->addressing_mode) { 1546 case 1: /* legacy 32-bit */ 1547 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1548 break; 1549 case 3: /* legacy 64-bit */ 1550 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1551 break; 1552 default: 1553 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1554 return -EINVAL; 1555 } 1556 1557 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1558 1559 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1560 if (IS_ERR(mm)) 1561 return PTR_ERR(mm); 1562 1563 workload->shadow_mm = mm; 1564 return 0; 1565 } 1566 1567 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1568 ((a)->lrca == (b)->lrca)) 1569 1570 /** 1571 * intel_vgpu_create_workload - create a vGPU workload 1572 * @vgpu: a vGPU 1573 * @engine: the engine 1574 * @desc: a guest context descriptor 1575 * 1576 * This function is called when creating a vGPU workload. 1577 * 1578 * Returns: 1579 * struct intel_vgpu_workload * on success, negative error code in 1580 * pointer if failed. 1581 * 1582 */ 1583 struct intel_vgpu_workload * 1584 intel_vgpu_create_workload(struct intel_vgpu *vgpu, 1585 const struct intel_engine_cs *engine, 1586 struct execlist_ctx_descriptor_format *desc) 1587 { 1588 struct intel_vgpu_submission *s = &vgpu->submission; 1589 struct list_head *q = workload_q_head(vgpu, engine); 1590 struct intel_vgpu_workload *last_workload = NULL; 1591 struct intel_vgpu_workload *workload = NULL; 1592 u64 ring_context_gpa; 1593 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1594 u32 guest_head; 1595 int ret; 1596 1597 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1598 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1599 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1600 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1601 return ERR_PTR(-EINVAL); 1602 } 1603 1604 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1605 RING_CTX_OFF(ring_header.val), &head, 4); 1606 1607 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1608 RING_CTX_OFF(ring_tail.val), &tail, 4); 1609 1610 guest_head = head; 1611 1612 head &= RB_HEAD_OFF_MASK; 1613 tail &= RB_TAIL_OFF_MASK; 1614 1615 list_for_each_entry_reverse(last_workload, q, list) { 1616 1617 if (same_context(&last_workload->ctx_desc, desc)) { 1618 gvt_dbg_el("ring %s cur workload == last\n", 1619 engine->name); 1620 gvt_dbg_el("ctx head %x real head %lx\n", head, 1621 last_workload->rb_tail); 1622 /* 1623 * cannot use guest context head pointer here, 1624 * as it might not be updated at this time 1625 */ 1626 head = last_workload->rb_tail; 1627 break; 1628 } 1629 } 1630 1631 gvt_dbg_el("ring %s begin a new workload\n", engine->name); 1632 1633 /* record some ring buffer register values for scan and shadow */ 1634 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1635 RING_CTX_OFF(rb_start.val), &start, 4); 1636 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1637 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1638 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1639 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1640 1641 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1642 _RING_CTL_BUF_SIZE(ctl))) { 1643 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1644 return ERR_PTR(-EINVAL); 1645 } 1646 1647 workload = alloc_workload(vgpu); 1648 if (IS_ERR(workload)) 1649 return workload; 1650 1651 workload->engine = engine; 1652 workload->ctx_desc = *desc; 1653 workload->ring_context_gpa = ring_context_gpa; 1654 workload->rb_head = head; 1655 workload->guest_rb_head = guest_head; 1656 workload->rb_tail = tail; 1657 workload->rb_start = start; 1658 workload->rb_ctl = ctl; 1659 1660 if (engine->id == RCS0) { 1661 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1662 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1663 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1664 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1665 1666 workload->wa_ctx.indirect_ctx.guest_gma = 1667 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1668 workload->wa_ctx.indirect_ctx.size = 1669 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1670 CACHELINE_BYTES; 1671 1672 if (workload->wa_ctx.indirect_ctx.size != 0) { 1673 if (!intel_gvt_ggtt_validate_range(vgpu, 1674 workload->wa_ctx.indirect_ctx.guest_gma, 1675 workload->wa_ctx.indirect_ctx.size)) { 1676 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1677 workload->wa_ctx.indirect_ctx.guest_gma); 1678 kmem_cache_free(s->workloads, workload); 1679 return ERR_PTR(-EINVAL); 1680 } 1681 } 1682 1683 workload->wa_ctx.per_ctx.guest_gma = 1684 per_ctx & PER_CTX_ADDR_MASK; 1685 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1686 if (workload->wa_ctx.per_ctx.valid) { 1687 if (!intel_gvt_ggtt_validate_range(vgpu, 1688 workload->wa_ctx.per_ctx.guest_gma, 1689 CACHELINE_BYTES)) { 1690 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1691 workload->wa_ctx.per_ctx.guest_gma); 1692 kmem_cache_free(s->workloads, workload); 1693 return ERR_PTR(-EINVAL); 1694 } 1695 } 1696 } 1697 1698 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n", 1699 workload, engine->name, head, tail, start, ctl); 1700 1701 ret = prepare_mm(workload); 1702 if (ret) { 1703 kmem_cache_free(s->workloads, workload); 1704 return ERR_PTR(ret); 1705 } 1706 1707 /* Only scan and shadow the first workload in the queue 1708 * as there is only one pre-allocated buf-obj for shadow. 1709 */ 1710 if (list_empty(q)) { 1711 intel_wakeref_t wakeref; 1712 1713 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref) 1714 ret = intel_gvt_scan_and_shadow_workload(workload); 1715 } 1716 1717 if (ret) { 1718 if (vgpu_is_vm_unhealthy(ret)) 1719 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1720 intel_vgpu_destroy_workload(workload); 1721 return ERR_PTR(ret); 1722 } 1723 1724 ret = intel_context_pin(s->shadow[engine->id]); 1725 if (ret) { 1726 intel_vgpu_destroy_workload(workload); 1727 return ERR_PTR(ret); 1728 } 1729 1730 return workload; 1731 } 1732 1733 /** 1734 * intel_vgpu_queue_workload - Qeue a vGPU workload 1735 * @workload: the workload to queue in 1736 */ 1737 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1738 { 1739 list_add_tail(&workload->list, 1740 workload_q_head(workload->vgpu, workload->engine)); 1741 intel_gvt_kick_schedule(workload->vgpu->gvt); 1742 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]); 1743 } 1744