1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_pm.h" 39 #include "gt/intel_context.h" 40 #include "gt/intel_ring.h" 41 42 #include "i915_drv.h" 43 #include "i915_gem_gtt.h" 44 #include "gvt.h" 45 46 #define RING_CTX_OFF(x) \ 47 offsetof(struct execlist_ring_context, x) 48 49 static void set_context_pdp_root_pointer( 50 struct execlist_ring_context *ring_context, 51 u32 pdp[8]) 52 { 53 int i; 54 55 for (i = 0; i < 8; i++) 56 ring_context->pdps[i].val = pdp[7 - i]; 57 } 58 59 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 60 { 61 struct execlist_ring_context *shadow_ring_context; 62 struct intel_context *ctx = workload->req->context; 63 64 if (WARN_ON(!workload->shadow_mm)) 65 return; 66 67 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 68 return; 69 70 shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state; 71 set_context_pdp_root_pointer(shadow_ring_context, 72 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 73 } 74 75 /* 76 * when populating shadow ctx from guest, we should not overrride oa related 77 * registers, so that they will not be overlapped by guest oa configs. Thus 78 * made it possible to capture oa data from host for both host and guests. 79 */ 80 static void sr_oa_regs(struct intel_vgpu_workload *workload, 81 u32 *reg_state, bool save) 82 { 83 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; 84 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 85 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 86 int i = 0; 87 u32 flex_mmio[] = { 88 i915_mmio_reg_offset(EU_PERF_CNTL0), 89 i915_mmio_reg_offset(EU_PERF_CNTL1), 90 i915_mmio_reg_offset(EU_PERF_CNTL2), 91 i915_mmio_reg_offset(EU_PERF_CNTL3), 92 i915_mmio_reg_offset(EU_PERF_CNTL4), 93 i915_mmio_reg_offset(EU_PERF_CNTL5), 94 i915_mmio_reg_offset(EU_PERF_CNTL6), 95 }; 96 97 if (workload->engine->id != RCS0) 98 return; 99 100 if (save) { 101 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 102 103 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 104 u32 state_offset = ctx_flexeu0 + i * 2; 105 106 workload->flex_mmio[i] = reg_state[state_offset + 1]; 107 } 108 } else { 109 reg_state[ctx_oactxctrl] = 110 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 111 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 112 113 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 114 u32 state_offset = ctx_flexeu0 + i * 2; 115 u32 mmio = flex_mmio[i]; 116 117 reg_state[state_offset] = mmio; 118 reg_state[state_offset + 1] = workload->flex_mmio[i]; 119 } 120 } 121 } 122 123 static int populate_shadow_context(struct intel_vgpu_workload *workload) 124 { 125 struct intel_vgpu *vgpu = workload->vgpu; 126 struct intel_gvt *gvt = vgpu->gvt; 127 struct intel_context *ctx = workload->req->context; 128 struct execlist_ring_context *shadow_ring_context; 129 void *dst; 130 void *context_base; 131 unsigned long context_gpa, context_page_num; 132 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 133 unsigned long gpa_size; /* size of consecutive GPAs */ 134 struct intel_vgpu_submission *s = &vgpu->submission; 135 int i; 136 bool skip = false; 137 int ring_id = workload->engine->id; 138 139 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 140 141 context_base = (void *) ctx->lrc_reg_state - 142 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 143 144 shadow_ring_context = (void *) ctx->lrc_reg_state; 145 146 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 147 #define COPY_REG(name) \ 148 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 149 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 150 #define COPY_REG_MASKED(name) {\ 151 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 152 + RING_CTX_OFF(name.val),\ 153 &shadow_ring_context->name.val, 4);\ 154 shadow_ring_context->name.val |= 0xffff << 16;\ 155 } 156 157 COPY_REG_MASKED(ctx_ctrl); 158 COPY_REG(ctx_timestamp); 159 160 if (workload->engine->id == RCS0) { 161 COPY_REG(bb_per_ctx_ptr); 162 COPY_REG(rcs_indirect_ctx); 163 COPY_REG(rcs_indirect_ctx_offset); 164 } 165 #undef COPY_REG 166 #undef COPY_REG_MASKED 167 168 intel_gvt_hypervisor_read_gpa(vgpu, 169 workload->ring_context_gpa + 170 sizeof(*shadow_ring_context), 171 (void *)shadow_ring_context + 172 sizeof(*shadow_ring_context), 173 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 174 175 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 176 177 gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx", 178 workload->engine->name, workload->ctx_desc.lrca, 179 workload->ctx_desc.context_id, 180 workload->ring_context_gpa); 181 182 /* only need to ensure this context is not pinned/unpinned during the 183 * period from last submission to this this submission. 184 * Upon reaching this function, the currently submitted context is not 185 * supposed to get unpinned. If a misbehaving guest driver ever does 186 * this, it would corrupt itself. 187 */ 188 if (s->last_ctx[ring_id].valid && 189 (s->last_ctx[ring_id].lrca == 190 workload->ctx_desc.lrca) && 191 (s->last_ctx[ring_id].ring_context_gpa == 192 workload->ring_context_gpa)) 193 skip = true; 194 195 s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca; 196 s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa; 197 198 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip) 199 return 0; 200 201 s->last_ctx[ring_id].valid = false; 202 context_page_num = workload->engine->context_size; 203 context_page_num = context_page_num >> PAGE_SHIFT; 204 205 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0) 206 context_page_num = 19; 207 208 /* find consecutive GPAs from gma until the first inconsecutive GPA. 209 * read from the continuous GPAs into dst virtual address 210 */ 211 gpa_size = 0; 212 for (i = 2; i < context_page_num; i++) { 213 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 214 (u32)((workload->ctx_desc.lrca + i) << 215 I915_GTT_PAGE_SHIFT)); 216 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 217 gvt_vgpu_err("Invalid guest context descriptor\n"); 218 return -EFAULT; 219 } 220 221 if (gpa_size == 0) { 222 gpa_base = context_gpa; 223 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 224 } else if (context_gpa != gpa_base + gpa_size) 225 goto read; 226 227 gpa_size += I915_GTT_PAGE_SIZE; 228 229 if (i == context_page_num - 1) 230 goto read; 231 232 continue; 233 234 read: 235 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size); 236 gpa_base = context_gpa; 237 gpa_size = I915_GTT_PAGE_SIZE; 238 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 239 } 240 s->last_ctx[ring_id].valid = true; 241 return 0; 242 } 243 244 static inline bool is_gvt_request(struct i915_request *rq) 245 { 246 return intel_context_force_single_submission(rq->context); 247 } 248 249 static void save_ring_hw_state(struct intel_vgpu *vgpu, 250 const struct intel_engine_cs *engine) 251 { 252 struct intel_uncore *uncore = engine->uncore; 253 i915_reg_t reg; 254 255 reg = RING_INSTDONE(engine->mmio_base); 256 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 257 intel_uncore_read(uncore, reg); 258 259 reg = RING_ACTHD(engine->mmio_base); 260 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 261 intel_uncore_read(uncore, reg); 262 263 reg = RING_ACTHD_UDW(engine->mmio_base); 264 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 265 intel_uncore_read(uncore, reg); 266 } 267 268 static int shadow_context_status_change(struct notifier_block *nb, 269 unsigned long action, void *data) 270 { 271 struct i915_request *rq = data; 272 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 273 shadow_ctx_notifier_block[rq->engine->id]); 274 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 275 enum intel_engine_id ring_id = rq->engine->id; 276 struct intel_vgpu_workload *workload; 277 unsigned long flags; 278 279 if (!is_gvt_request(rq)) { 280 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 281 if (action == INTEL_CONTEXT_SCHEDULE_IN && 282 scheduler->engine_owner[ring_id]) { 283 /* Switch ring from vGPU to host. */ 284 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 285 NULL, rq->engine); 286 scheduler->engine_owner[ring_id] = NULL; 287 } 288 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 289 290 return NOTIFY_OK; 291 } 292 293 workload = scheduler->current_workload[ring_id]; 294 if (unlikely(!workload)) 295 return NOTIFY_OK; 296 297 switch (action) { 298 case INTEL_CONTEXT_SCHEDULE_IN: 299 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 300 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 301 /* Switch ring from host to vGPU or vGPU to vGPU. */ 302 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 303 workload->vgpu, rq->engine); 304 scheduler->engine_owner[ring_id] = workload->vgpu; 305 } else 306 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 307 ring_id, workload->vgpu->id); 308 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 309 atomic_set(&workload->shadow_ctx_active, 1); 310 break; 311 case INTEL_CONTEXT_SCHEDULE_OUT: 312 save_ring_hw_state(workload->vgpu, rq->engine); 313 atomic_set(&workload->shadow_ctx_active, 0); 314 break; 315 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 316 save_ring_hw_state(workload->vgpu, rq->engine); 317 break; 318 default: 319 WARN_ON(1); 320 return NOTIFY_OK; 321 } 322 wake_up(&workload->shadow_ctx_status_wq); 323 return NOTIFY_OK; 324 } 325 326 static void 327 shadow_context_descriptor_update(struct intel_context *ce, 328 struct intel_vgpu_workload *workload) 329 { 330 u64 desc = ce->lrc.desc; 331 332 /* 333 * Update bits 0-11 of the context descriptor which includes flags 334 * like GEN8_CTX_* cached in desc_template 335 */ 336 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT); 337 desc |= (u64)workload->ctx_desc.addressing_mode << 338 GEN8_CTX_ADDRESSING_MODE_SHIFT; 339 340 ce->lrc.desc = desc; 341 } 342 343 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 344 { 345 struct intel_vgpu *vgpu = workload->vgpu; 346 struct i915_request *req = workload->req; 347 void *shadow_ring_buffer_va; 348 u32 *cs; 349 int err; 350 351 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context)) 352 intel_vgpu_restore_inhibit_context(vgpu, req); 353 354 /* 355 * To track whether a request has started on HW, we can emit a 356 * breadcrumb at the beginning of the request and check its 357 * timeline's HWSP to see if the breadcrumb has advanced past the 358 * start of this request. Actually, the request must have the 359 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 360 * scheduler might get a wrong state of it during reset. Since the 361 * requests from gvt always set the has_init_breadcrumb flag, here 362 * need to do the emit_init_breadcrumb for all the requests. 363 */ 364 if (req->engine->emit_init_breadcrumb) { 365 err = req->engine->emit_init_breadcrumb(req); 366 if (err) { 367 gvt_vgpu_err("fail to emit init breadcrumb\n"); 368 return err; 369 } 370 } 371 372 /* allocate shadow ring buffer */ 373 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 374 if (IS_ERR(cs)) { 375 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 376 workload->rb_len); 377 return PTR_ERR(cs); 378 } 379 380 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 381 382 /* get shadow ring buffer va */ 383 workload->shadow_ring_buffer_va = cs; 384 385 memcpy(cs, shadow_ring_buffer_va, 386 workload->rb_len); 387 388 cs += workload->rb_len / sizeof(u32); 389 intel_ring_advance(workload->req, cs); 390 391 return 0; 392 } 393 394 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 395 { 396 if (!wa_ctx->indirect_ctx.obj) 397 return; 398 399 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 400 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 401 402 wa_ctx->indirect_ctx.obj = NULL; 403 wa_ctx->indirect_ctx.shadow_va = NULL; 404 } 405 406 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 407 struct intel_context *ce) 408 { 409 struct intel_vgpu_mm *mm = workload->shadow_mm; 410 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); 411 int i = 0; 412 413 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 414 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0]; 415 } else { 416 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 417 struct i915_page_directory * const pd = 418 i915_pd_entry(ppgtt->pd, i); 419 /* skip now as current i915 ppgtt alloc won't allocate 420 top level pdp for non 4-level table, won't impact 421 shadow ppgtt. */ 422 if (!pd) 423 break; 424 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i]; 425 } 426 } 427 } 428 429 static int 430 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 431 { 432 struct intel_vgpu *vgpu = workload->vgpu; 433 struct intel_vgpu_submission *s = &vgpu->submission; 434 struct i915_request *rq; 435 436 if (workload->req) 437 return 0; 438 439 rq = i915_request_create(s->shadow[workload->engine->id]); 440 if (IS_ERR(rq)) { 441 gvt_vgpu_err("fail to allocate gem request\n"); 442 return PTR_ERR(rq); 443 } 444 445 workload->req = i915_request_get(rq); 446 return 0; 447 } 448 449 /** 450 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 451 * shadow it as well, include ringbuffer,wa_ctx and ctx. 452 * @workload: an abstract entity for each execlist submission. 453 * 454 * This function is called before the workload submitting to i915, to make 455 * sure the content of the workload is valid. 456 */ 457 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 458 { 459 struct intel_vgpu *vgpu = workload->vgpu; 460 struct intel_vgpu_submission *s = &vgpu->submission; 461 int ret; 462 463 lockdep_assert_held(&vgpu->vgpu_lock); 464 465 if (workload->shadow) 466 return 0; 467 468 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated)) 469 shadow_context_descriptor_update(s->shadow[workload->engine->id], 470 workload); 471 472 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 473 if (ret) 474 return ret; 475 476 if (workload->engine->id == RCS0 && 477 workload->wa_ctx.indirect_ctx.size) { 478 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 479 if (ret) 480 goto err_shadow; 481 } 482 483 workload->shadow = true; 484 return 0; 485 486 err_shadow: 487 release_shadow_wa_ctx(&workload->wa_ctx); 488 return ret; 489 } 490 491 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 492 493 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 494 { 495 struct intel_gvt *gvt = workload->vgpu->gvt; 496 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 497 struct intel_vgpu_shadow_bb *bb; 498 int ret; 499 500 list_for_each_entry(bb, &workload->shadow_bb, list) { 501 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 502 * is only updated into ring_scan_buffer, not real ring address 503 * allocated in later copy_workload_to_ring_buffer. pls be noted 504 * shadow_ring_buffer_va is now pointed to real ring buffer va 505 * in copy_workload_to_ring_buffer. 506 */ 507 508 if (bb->bb_offset) 509 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 510 + bb->bb_offset; 511 512 if (bb->ppgtt) { 513 /* for non-priv bb, scan&shadow is only for 514 * debugging purpose, so the content of shadow bb 515 * is the same as original bb. Therefore, 516 * here, rather than switch to shadow bb's gma 517 * address, we directly use original batch buffer's 518 * gma address, and send original bb to hardware 519 * directly 520 */ 521 if (bb->clflush & CLFLUSH_AFTER) { 522 drm_clflush_virt_range(bb->va, 523 bb->obj->base.size); 524 bb->clflush &= ~CLFLUSH_AFTER; 525 } 526 i915_gem_object_finish_access(bb->obj); 527 bb->accessing = false; 528 529 } else { 530 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 531 NULL, 0, 0, 0); 532 if (IS_ERR(bb->vma)) { 533 ret = PTR_ERR(bb->vma); 534 goto err; 535 } 536 537 /* relocate shadow batch buffer */ 538 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 539 if (gmadr_bytes == 8) 540 bb->bb_start_cmd_va[2] = 0; 541 542 /* No one is going to touch shadow bb from now on. */ 543 if (bb->clflush & CLFLUSH_AFTER) { 544 drm_clflush_virt_range(bb->va, 545 bb->obj->base.size); 546 bb->clflush &= ~CLFLUSH_AFTER; 547 } 548 549 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 550 false); 551 if (ret) 552 goto err; 553 554 ret = i915_vma_move_to_active(bb->vma, 555 workload->req, 556 0); 557 if (ret) 558 goto err; 559 560 i915_gem_object_finish_access(bb->obj); 561 bb->accessing = false; 562 } 563 } 564 return 0; 565 err: 566 release_shadow_batch_buffer(workload); 567 return ret; 568 } 569 570 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 571 { 572 struct intel_vgpu_workload *workload = 573 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 574 struct i915_request *rq = workload->req; 575 struct execlist_ring_context *shadow_ring_context = 576 (struct execlist_ring_context *)rq->context->lrc_reg_state; 577 578 shadow_ring_context->bb_per_ctx_ptr.val = 579 (shadow_ring_context->bb_per_ctx_ptr.val & 580 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 581 shadow_ring_context->rcs_indirect_ctx.val = 582 (shadow_ring_context->rcs_indirect_ctx.val & 583 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 584 } 585 586 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 587 { 588 struct i915_vma *vma; 589 unsigned char *per_ctx_va = 590 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 591 wa_ctx->indirect_ctx.size; 592 593 if (wa_ctx->indirect_ctx.size == 0) 594 return 0; 595 596 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 597 0, CACHELINE_BYTES, 0); 598 if (IS_ERR(vma)) 599 return PTR_ERR(vma); 600 601 /* FIXME: we are not tracking our pinned VMA leaving it 602 * up to the core to fix up the stray pin_count upon 603 * free. 604 */ 605 606 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 607 608 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 609 memset(per_ctx_va, 0, CACHELINE_BYTES); 610 611 update_wa_ctx_2_shadow_ctx(wa_ctx); 612 return 0; 613 } 614 615 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 616 { 617 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) = 618 workload->rb_start; 619 } 620 621 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 622 { 623 struct intel_vgpu_shadow_bb *bb, *pos; 624 625 if (list_empty(&workload->shadow_bb)) 626 return; 627 628 bb = list_first_entry(&workload->shadow_bb, 629 struct intel_vgpu_shadow_bb, list); 630 631 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 632 if (bb->obj) { 633 if (bb->accessing) 634 i915_gem_object_finish_access(bb->obj); 635 636 if (bb->va && !IS_ERR(bb->va)) 637 i915_gem_object_unpin_map(bb->obj); 638 639 if (bb->vma && !IS_ERR(bb->vma)) 640 i915_vma_unpin(bb->vma); 641 642 i915_gem_object_put(bb->obj); 643 } 644 list_del(&bb->list); 645 kfree(bb); 646 } 647 } 648 649 static int 650 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload) 651 { 652 struct intel_vgpu *vgpu = workload->vgpu; 653 struct intel_vgpu_mm *m; 654 int ret = 0; 655 656 ret = intel_vgpu_pin_mm(workload->shadow_mm); 657 if (ret) { 658 gvt_vgpu_err("fail to vgpu pin mm\n"); 659 return ret; 660 } 661 662 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 663 !workload->shadow_mm->ppgtt_mm.shadowed) { 664 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 665 return -EINVAL; 666 } 667 668 if (!list_empty(&workload->lri_shadow_mm)) { 669 list_for_each_entry(m, &workload->lri_shadow_mm, 670 ppgtt_mm.link) { 671 ret = intel_vgpu_pin_mm(m); 672 if (ret) { 673 list_for_each_entry_from_reverse(m, 674 &workload->lri_shadow_mm, 675 ppgtt_mm.link) 676 intel_vgpu_unpin_mm(m); 677 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n"); 678 break; 679 } 680 } 681 } 682 683 if (ret) 684 intel_vgpu_unpin_mm(workload->shadow_mm); 685 686 return ret; 687 } 688 689 static void 690 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload) 691 { 692 struct intel_vgpu_mm *m; 693 694 if (!list_empty(&workload->lri_shadow_mm)) { 695 list_for_each_entry(m, &workload->lri_shadow_mm, 696 ppgtt_mm.link) 697 intel_vgpu_unpin_mm(m); 698 } 699 intel_vgpu_unpin_mm(workload->shadow_mm); 700 } 701 702 static int prepare_workload(struct intel_vgpu_workload *workload) 703 { 704 struct intel_vgpu *vgpu = workload->vgpu; 705 struct intel_vgpu_submission *s = &vgpu->submission; 706 int ret = 0; 707 708 ret = intel_vgpu_shadow_mm_pin(workload); 709 if (ret) { 710 gvt_vgpu_err("fail to pin shadow mm\n"); 711 return ret; 712 } 713 714 update_shadow_pdps(workload); 715 716 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]); 717 718 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 719 if (ret) { 720 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 721 goto err_unpin_mm; 722 } 723 724 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 725 if (ret) { 726 gvt_vgpu_err("fail to flush post shadow\n"); 727 goto err_unpin_mm; 728 } 729 730 ret = copy_workload_to_ring_buffer(workload); 731 if (ret) { 732 gvt_vgpu_err("fail to generate request\n"); 733 goto err_unpin_mm; 734 } 735 736 ret = prepare_shadow_batch_buffer(workload); 737 if (ret) { 738 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 739 goto err_unpin_mm; 740 } 741 742 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 743 if (ret) { 744 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 745 goto err_shadow_batch; 746 } 747 748 if (workload->prepare) { 749 ret = workload->prepare(workload); 750 if (ret) 751 goto err_shadow_wa_ctx; 752 } 753 754 return 0; 755 err_shadow_wa_ctx: 756 release_shadow_wa_ctx(&workload->wa_ctx); 757 err_shadow_batch: 758 release_shadow_batch_buffer(workload); 759 err_unpin_mm: 760 intel_vgpu_shadow_mm_unpin(workload); 761 return ret; 762 } 763 764 static int dispatch_workload(struct intel_vgpu_workload *workload) 765 { 766 struct intel_vgpu *vgpu = workload->vgpu; 767 struct i915_request *rq; 768 int ret; 769 770 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n", 771 workload->engine->name, workload); 772 773 mutex_lock(&vgpu->vgpu_lock); 774 775 ret = intel_gvt_workload_req_alloc(workload); 776 if (ret) 777 goto err_req; 778 779 ret = intel_gvt_scan_and_shadow_workload(workload); 780 if (ret) 781 goto out; 782 783 ret = populate_shadow_context(workload); 784 if (ret) { 785 release_shadow_wa_ctx(&workload->wa_ctx); 786 goto out; 787 } 788 789 ret = prepare_workload(workload); 790 out: 791 if (ret) { 792 /* We might still need to add request with 793 * clean ctx to retire it properly.. 794 */ 795 rq = fetch_and_zero(&workload->req); 796 i915_request_put(rq); 797 } 798 799 if (!IS_ERR_OR_NULL(workload->req)) { 800 gvt_dbg_sched("ring id %s submit workload to i915 %p\n", 801 workload->engine->name, workload->req); 802 i915_request_add(workload->req); 803 workload->dispatched = true; 804 } 805 err_req: 806 if (ret) 807 workload->status = ret; 808 mutex_unlock(&vgpu->vgpu_lock); 809 return ret; 810 } 811 812 static struct intel_vgpu_workload * 813 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine) 814 { 815 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 816 struct intel_vgpu_workload *workload = NULL; 817 818 mutex_lock(&gvt->sched_lock); 819 820 /* 821 * no current vgpu / will be scheduled out / no workload 822 * bail out 823 */ 824 if (!scheduler->current_vgpu) { 825 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name); 826 goto out; 827 } 828 829 if (scheduler->need_reschedule) { 830 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name); 831 goto out; 832 } 833 834 if (!scheduler->current_vgpu->active || 835 list_empty(workload_q_head(scheduler->current_vgpu, engine))) 836 goto out; 837 838 /* 839 * still have current workload, maybe the workload disptacher 840 * fail to submit it for some reason, resubmit it. 841 */ 842 if (scheduler->current_workload[engine->id]) { 843 workload = scheduler->current_workload[engine->id]; 844 gvt_dbg_sched("ring %s still have current workload %p\n", 845 engine->name, workload); 846 goto out; 847 } 848 849 /* 850 * pick a workload as current workload 851 * once current workload is set, schedule policy routines 852 * will wait the current workload is finished when trying to 853 * schedule out a vgpu. 854 */ 855 scheduler->current_workload[engine->id] = 856 list_first_entry(workload_q_head(scheduler->current_vgpu, 857 engine), 858 struct intel_vgpu_workload, list); 859 860 workload = scheduler->current_workload[engine->id]; 861 862 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload); 863 864 atomic_inc(&workload->vgpu->submission.running_workload_num); 865 out: 866 mutex_unlock(&gvt->sched_lock); 867 return workload; 868 } 869 870 static void update_guest_pdps(struct intel_vgpu *vgpu, 871 u64 ring_context_gpa, u32 pdp[8]) 872 { 873 u64 gpa; 874 int i; 875 876 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 877 878 for (i = 0; i < 8; i++) 879 intel_gvt_hypervisor_write_gpa(vgpu, 880 gpa + i * 8, &pdp[7 - i], 4); 881 } 882 883 static __maybe_unused bool 884 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m) 885 { 886 if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 887 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32; 888 889 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) { 890 gvt_dbg_mm("4-level context ppgtt not match LRI command\n"); 891 return false; 892 } 893 return true; 894 } else { 895 /* see comment in LRI handler in cmd_parser.c */ 896 gvt_dbg_mm("invalid shadow mm type\n"); 897 return false; 898 } 899 } 900 901 static void update_guest_context(struct intel_vgpu_workload *workload) 902 { 903 struct i915_request *rq = workload->req; 904 struct intel_vgpu *vgpu = workload->vgpu; 905 struct execlist_ring_context *shadow_ring_context; 906 struct intel_context *ctx = workload->req->context; 907 void *context_base; 908 void *src; 909 unsigned long context_gpa, context_page_num; 910 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 911 unsigned long gpa_size; /* size of consecutive GPAs*/ 912 int i; 913 u32 ring_base; 914 u32 head, tail; 915 u16 wrap_count; 916 917 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 918 workload->ctx_desc.lrca); 919 920 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 921 922 head = workload->rb_head; 923 tail = workload->rb_tail; 924 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 925 926 if (tail < head) { 927 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 928 wrap_count = 0; 929 else 930 wrap_count += 1; 931 } 932 933 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 934 935 ring_base = rq->engine->mmio_base; 936 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 937 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 938 939 context_page_num = rq->engine->context_size; 940 context_page_num = context_page_num >> PAGE_SHIFT; 941 942 if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0) 943 context_page_num = 19; 944 945 context_base = (void *) ctx->lrc_reg_state - 946 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 947 948 /* find consecutive GPAs from gma until the first inconsecutive GPA. 949 * write to the consecutive GPAs from src virtual address 950 */ 951 gpa_size = 0; 952 for (i = 2; i < context_page_num; i++) { 953 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 954 (u32)((workload->ctx_desc.lrca + i) << 955 I915_GTT_PAGE_SHIFT)); 956 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 957 gvt_vgpu_err("invalid guest context descriptor\n"); 958 return; 959 } 960 961 if (gpa_size == 0) { 962 gpa_base = context_gpa; 963 src = context_base + (i << I915_GTT_PAGE_SHIFT); 964 } else if (context_gpa != gpa_base + gpa_size) 965 goto write; 966 967 gpa_size += I915_GTT_PAGE_SIZE; 968 969 if (i == context_page_num - 1) 970 goto write; 971 972 continue; 973 974 write: 975 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size); 976 gpa_base = context_gpa; 977 gpa_size = I915_GTT_PAGE_SIZE; 978 src = context_base + (i << I915_GTT_PAGE_SHIFT); 979 } 980 981 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 982 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 983 984 shadow_ring_context = (void *) ctx->lrc_reg_state; 985 986 if (!list_empty(&workload->lri_shadow_mm)) { 987 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm, 988 struct intel_vgpu_mm, 989 ppgtt_mm.link); 990 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m)); 991 update_guest_pdps(vgpu, workload->ring_context_gpa, 992 (void *)m->ppgtt_mm.guest_pdps); 993 } 994 995 #define COPY_REG(name) \ 996 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 997 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 998 999 COPY_REG(ctx_ctrl); 1000 COPY_REG(ctx_timestamp); 1001 1002 #undef COPY_REG 1003 1004 intel_gvt_hypervisor_write_gpa(vgpu, 1005 workload->ring_context_gpa + 1006 sizeof(*shadow_ring_context), 1007 (void *)shadow_ring_context + 1008 sizeof(*shadow_ring_context), 1009 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 1010 } 1011 1012 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 1013 intel_engine_mask_t engine_mask) 1014 { 1015 struct intel_vgpu_submission *s = &vgpu->submission; 1016 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1017 struct intel_engine_cs *engine; 1018 struct intel_vgpu_workload *pos, *n; 1019 intel_engine_mask_t tmp; 1020 1021 /* free the unsubmited workloads in the queues. */ 1022 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) { 1023 list_for_each_entry_safe(pos, n, 1024 &s->workload_q_head[engine->id], list) { 1025 list_del_init(&pos->list); 1026 intel_vgpu_destroy_workload(pos); 1027 } 1028 clear_bit(engine->id, s->shadow_ctx_desc_updated); 1029 } 1030 } 1031 1032 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 1033 { 1034 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1035 struct intel_vgpu_workload *workload = 1036 scheduler->current_workload[ring_id]; 1037 struct intel_vgpu *vgpu = workload->vgpu; 1038 struct intel_vgpu_submission *s = &vgpu->submission; 1039 struct i915_request *rq = workload->req; 1040 int event; 1041 1042 mutex_lock(&vgpu->vgpu_lock); 1043 mutex_lock(&gvt->sched_lock); 1044 1045 /* For the workload w/ request, needs to wait for the context 1046 * switch to make sure request is completed. 1047 * For the workload w/o request, directly complete the workload. 1048 */ 1049 if (rq) { 1050 wait_event(workload->shadow_ctx_status_wq, 1051 !atomic_read(&workload->shadow_ctx_active)); 1052 1053 /* If this request caused GPU hang, req->fence.error will 1054 * be set to -EIO. Use -EIO to set workload status so 1055 * that when this request caused GPU hang, didn't trigger 1056 * context switch interrupt to guest. 1057 */ 1058 if (likely(workload->status == -EINPROGRESS)) { 1059 if (workload->req->fence.error == -EIO) 1060 workload->status = -EIO; 1061 else 1062 workload->status = 0; 1063 } 1064 1065 if (!workload->status && 1066 !(vgpu->resetting_eng & BIT(ring_id))) { 1067 update_guest_context(workload); 1068 1069 for_each_set_bit(event, workload->pending_events, 1070 INTEL_GVT_EVENT_MAX) 1071 intel_vgpu_trigger_virtual_event(vgpu, event); 1072 } 1073 1074 i915_request_put(fetch_and_zero(&workload->req)); 1075 } 1076 1077 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 1078 ring_id, workload, workload->status); 1079 1080 scheduler->current_workload[ring_id] = NULL; 1081 1082 list_del_init(&workload->list); 1083 1084 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 1085 /* if workload->status is not successful means HW GPU 1086 * has occurred GPU hang or something wrong with i915/GVT, 1087 * and GVT won't inject context switch interrupt to guest. 1088 * So this error is a vGPU hang actually to the guest. 1089 * According to this we should emunlate a vGPU hang. If 1090 * there are pending workloads which are already submitted 1091 * from guest, we should clean them up like HW GPU does. 1092 * 1093 * if it is in middle of engine resetting, the pending 1094 * workloads won't be submitted to HW GPU and will be 1095 * cleaned up during the resetting process later, so doing 1096 * the workload clean up here doesn't have any impact. 1097 **/ 1098 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 1099 } 1100 1101 workload->complete(workload); 1102 1103 intel_vgpu_shadow_mm_unpin(workload); 1104 intel_vgpu_destroy_workload(workload); 1105 1106 atomic_dec(&s->running_workload_num); 1107 wake_up(&scheduler->workload_complete_wq); 1108 1109 if (gvt->scheduler.need_reschedule) 1110 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 1111 1112 mutex_unlock(&gvt->sched_lock); 1113 mutex_unlock(&vgpu->vgpu_lock); 1114 } 1115 1116 static int workload_thread(void *arg) 1117 { 1118 struct intel_engine_cs *engine = arg; 1119 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9; 1120 struct intel_gvt *gvt = engine->i915->gvt; 1121 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1122 struct intel_vgpu_workload *workload = NULL; 1123 struct intel_vgpu *vgpu = NULL; 1124 int ret; 1125 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1126 1127 gvt_dbg_core("workload thread for ring %s started\n", engine->name); 1128 1129 while (!kthread_should_stop()) { 1130 intel_wakeref_t wakeref; 1131 1132 add_wait_queue(&scheduler->waitq[engine->id], &wait); 1133 do { 1134 workload = pick_next_workload(gvt, engine); 1135 if (workload) 1136 break; 1137 wait_woken(&wait, TASK_INTERRUPTIBLE, 1138 MAX_SCHEDULE_TIMEOUT); 1139 } while (!kthread_should_stop()); 1140 remove_wait_queue(&scheduler->waitq[engine->id], &wait); 1141 1142 if (!workload) 1143 break; 1144 1145 gvt_dbg_sched("ring %s next workload %p vgpu %d\n", 1146 engine->name, workload, 1147 workload->vgpu->id); 1148 1149 wakeref = intel_runtime_pm_get(engine->uncore->rpm); 1150 1151 gvt_dbg_sched("ring %s will dispatch workload %p\n", 1152 engine->name, workload); 1153 1154 if (need_force_wake) 1155 intel_uncore_forcewake_get(engine->uncore, 1156 FORCEWAKE_ALL); 1157 /* 1158 * Update the vReg of the vGPU which submitted this 1159 * workload. The vGPU may use these registers for checking 1160 * the context state. The value comes from GPU commands 1161 * in this workload. 1162 */ 1163 update_vreg_in_ctx(workload); 1164 1165 ret = dispatch_workload(workload); 1166 1167 if (ret) { 1168 vgpu = workload->vgpu; 1169 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1170 goto complete; 1171 } 1172 1173 gvt_dbg_sched("ring %s wait workload %p\n", 1174 engine->name, workload); 1175 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1176 1177 complete: 1178 gvt_dbg_sched("will complete workload %p, status: %d\n", 1179 workload, workload->status); 1180 1181 complete_current_workload(gvt, engine->id); 1182 1183 if (need_force_wake) 1184 intel_uncore_forcewake_put(engine->uncore, 1185 FORCEWAKE_ALL); 1186 1187 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1188 if (ret && (vgpu_is_vm_unhealthy(ret))) 1189 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1190 } 1191 return 0; 1192 } 1193 1194 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1195 { 1196 struct intel_vgpu_submission *s = &vgpu->submission; 1197 struct intel_gvt *gvt = vgpu->gvt; 1198 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1199 1200 if (atomic_read(&s->running_workload_num)) { 1201 gvt_dbg_sched("wait vgpu idle\n"); 1202 1203 wait_event(scheduler->workload_complete_wq, 1204 !atomic_read(&s->running_workload_num)); 1205 } 1206 } 1207 1208 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1209 { 1210 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1211 struct intel_engine_cs *engine; 1212 enum intel_engine_id i; 1213 1214 gvt_dbg_core("clean workload scheduler\n"); 1215 1216 for_each_engine(engine, gvt->gt, i) { 1217 atomic_notifier_chain_unregister( 1218 &engine->context_status_notifier, 1219 &gvt->shadow_ctx_notifier_block[i]); 1220 kthread_stop(scheduler->thread[i]); 1221 } 1222 } 1223 1224 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1225 { 1226 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1227 struct intel_engine_cs *engine; 1228 enum intel_engine_id i; 1229 int ret; 1230 1231 gvt_dbg_core("init workload scheduler\n"); 1232 1233 init_waitqueue_head(&scheduler->workload_complete_wq); 1234 1235 for_each_engine(engine, gvt->gt, i) { 1236 init_waitqueue_head(&scheduler->waitq[i]); 1237 1238 scheduler->thread[i] = kthread_run(workload_thread, engine, 1239 "gvt:%s", engine->name); 1240 if (IS_ERR(scheduler->thread[i])) { 1241 gvt_err("fail to create workload thread\n"); 1242 ret = PTR_ERR(scheduler->thread[i]); 1243 goto err; 1244 } 1245 1246 gvt->shadow_ctx_notifier_block[i].notifier_call = 1247 shadow_context_status_change; 1248 atomic_notifier_chain_register(&engine->context_status_notifier, 1249 &gvt->shadow_ctx_notifier_block[i]); 1250 } 1251 1252 return 0; 1253 1254 err: 1255 intel_gvt_clean_workload_scheduler(gvt); 1256 return ret; 1257 } 1258 1259 static void 1260 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1261 struct i915_ppgtt *ppgtt) 1262 { 1263 int i; 1264 1265 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1266 px_dma(ppgtt->pd) = s->i915_context_pml4; 1267 } else { 1268 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1269 struct i915_page_directory * const pd = 1270 i915_pd_entry(ppgtt->pd, i); 1271 1272 px_dma(pd) = s->i915_context_pdps[i]; 1273 } 1274 } 1275 } 1276 1277 /** 1278 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1279 * @vgpu: a vGPU 1280 * 1281 * This function is called when a vGPU is being destroyed. 1282 * 1283 */ 1284 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1285 { 1286 struct intel_vgpu_submission *s = &vgpu->submission; 1287 struct intel_engine_cs *engine; 1288 enum intel_engine_id id; 1289 1290 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1291 1292 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1293 for_each_engine(engine, vgpu->gvt->gt, id) 1294 intel_context_unpin(s->shadow[id]); 1295 1296 kmem_cache_destroy(s->workloads); 1297 } 1298 1299 1300 /** 1301 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1302 * @vgpu: a vGPU 1303 * @engine_mask: engines expected to be reset 1304 * 1305 * This function is called when a vGPU is being destroyed. 1306 * 1307 */ 1308 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1309 intel_engine_mask_t engine_mask) 1310 { 1311 struct intel_vgpu_submission *s = &vgpu->submission; 1312 1313 if (!s->active) 1314 return; 1315 1316 intel_vgpu_clean_workloads(vgpu, engine_mask); 1317 s->ops->reset(vgpu, engine_mask); 1318 } 1319 1320 static void 1321 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1322 struct i915_ppgtt *ppgtt) 1323 { 1324 int i; 1325 1326 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1327 s->i915_context_pml4 = px_dma(ppgtt->pd); 1328 } else { 1329 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1330 struct i915_page_directory * const pd = 1331 i915_pd_entry(ppgtt->pd, i); 1332 1333 s->i915_context_pdps[i] = px_dma(pd); 1334 } 1335 } 1336 } 1337 1338 /** 1339 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1340 * @vgpu: a vGPU 1341 * 1342 * This function is called when a vGPU is being created. 1343 * 1344 * Returns: 1345 * Zero on success, negative error code if failed. 1346 * 1347 */ 1348 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1349 { 1350 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1351 struct intel_vgpu_submission *s = &vgpu->submission; 1352 struct intel_engine_cs *engine; 1353 struct i915_ppgtt *ppgtt; 1354 enum intel_engine_id i; 1355 int ret; 1356 1357 ppgtt = i915_ppgtt_create(&i915->gt); 1358 if (IS_ERR(ppgtt)) 1359 return PTR_ERR(ppgtt); 1360 1361 i915_context_ppgtt_root_save(s, ppgtt); 1362 1363 for_each_engine(engine, vgpu->gvt->gt, i) { 1364 struct intel_context *ce; 1365 1366 INIT_LIST_HEAD(&s->workload_q_head[i]); 1367 s->shadow[i] = ERR_PTR(-EINVAL); 1368 1369 ce = intel_context_create(engine); 1370 if (IS_ERR(ce)) { 1371 ret = PTR_ERR(ce); 1372 goto out_shadow_ctx; 1373 } 1374 1375 i915_vm_put(ce->vm); 1376 ce->vm = i915_vm_get(&ppgtt->vm); 1377 intel_context_set_single_submission(ce); 1378 1379 /* Max ring buffer size */ 1380 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) { 1381 const unsigned int ring_size = 512 * SZ_4K; 1382 1383 ce->ring = __intel_context_ring_size(ring_size); 1384 } 1385 1386 ret = intel_context_pin(ce); 1387 intel_context_put(ce); 1388 if (ret) 1389 goto out_shadow_ctx; 1390 1391 s->shadow[i] = ce; 1392 } 1393 1394 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1395 1396 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1397 sizeof(struct intel_vgpu_workload), 0, 1398 SLAB_HWCACHE_ALIGN, 1399 offsetof(struct intel_vgpu_workload, rb_tail), 1400 sizeof_field(struct intel_vgpu_workload, rb_tail), 1401 NULL); 1402 1403 if (!s->workloads) { 1404 ret = -ENOMEM; 1405 goto out_shadow_ctx; 1406 } 1407 1408 atomic_set(&s->running_workload_num, 0); 1409 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1410 1411 memset(s->last_ctx, 0, sizeof(s->last_ctx)); 1412 1413 i915_vm_put(&ppgtt->vm); 1414 return 0; 1415 1416 out_shadow_ctx: 1417 i915_context_ppgtt_root_restore(s, ppgtt); 1418 for_each_engine(engine, vgpu->gvt->gt, i) { 1419 if (IS_ERR(s->shadow[i])) 1420 break; 1421 1422 intel_context_unpin(s->shadow[i]); 1423 intel_context_put(s->shadow[i]); 1424 } 1425 i915_vm_put(&ppgtt->vm); 1426 return ret; 1427 } 1428 1429 /** 1430 * intel_vgpu_select_submission_ops - select virtual submission interface 1431 * @vgpu: a vGPU 1432 * @engine_mask: either ALL_ENGINES or target engine mask 1433 * @interface: expected vGPU virtual submission interface 1434 * 1435 * This function is called when guest configures submission interface. 1436 * 1437 * Returns: 1438 * Zero on success, negative error code if failed. 1439 * 1440 */ 1441 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1442 intel_engine_mask_t engine_mask, 1443 unsigned int interface) 1444 { 1445 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1446 struct intel_vgpu_submission *s = &vgpu->submission; 1447 const struct intel_vgpu_submission_ops *ops[] = { 1448 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1449 &intel_vgpu_execlist_submission_ops, 1450 }; 1451 int ret; 1452 1453 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops))) 1454 return -EINVAL; 1455 1456 if (drm_WARN_ON(&i915->drm, 1457 interface == 0 && engine_mask != ALL_ENGINES)) 1458 return -EINVAL; 1459 1460 if (s->active) 1461 s->ops->clean(vgpu, engine_mask); 1462 1463 if (interface == 0) { 1464 s->ops = NULL; 1465 s->virtual_submission_interface = 0; 1466 s->active = false; 1467 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1468 return 0; 1469 } 1470 1471 ret = ops[interface]->init(vgpu, engine_mask); 1472 if (ret) 1473 return ret; 1474 1475 s->ops = ops[interface]; 1476 s->virtual_submission_interface = interface; 1477 s->active = true; 1478 1479 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1480 vgpu->id, s->ops->name); 1481 1482 return 0; 1483 } 1484 1485 /** 1486 * intel_vgpu_destroy_workload - destroy a vGPU workload 1487 * @workload: workload to destroy 1488 * 1489 * This function is called when destroy a vGPU workload. 1490 * 1491 */ 1492 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1493 { 1494 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1495 1496 release_shadow_batch_buffer(workload); 1497 release_shadow_wa_ctx(&workload->wa_ctx); 1498 1499 if (!list_empty(&workload->lri_shadow_mm)) { 1500 struct intel_vgpu_mm *m, *mm; 1501 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm, 1502 ppgtt_mm.link) { 1503 list_del(&m->ppgtt_mm.link); 1504 intel_vgpu_mm_put(m); 1505 } 1506 } 1507 1508 GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm)); 1509 if (workload->shadow_mm) 1510 intel_vgpu_mm_put(workload->shadow_mm); 1511 1512 kmem_cache_free(s->workloads, workload); 1513 } 1514 1515 static struct intel_vgpu_workload * 1516 alloc_workload(struct intel_vgpu *vgpu) 1517 { 1518 struct intel_vgpu_submission *s = &vgpu->submission; 1519 struct intel_vgpu_workload *workload; 1520 1521 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1522 if (!workload) 1523 return ERR_PTR(-ENOMEM); 1524 1525 INIT_LIST_HEAD(&workload->list); 1526 INIT_LIST_HEAD(&workload->shadow_bb); 1527 INIT_LIST_HEAD(&workload->lri_shadow_mm); 1528 1529 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1530 atomic_set(&workload->shadow_ctx_active, 0); 1531 1532 workload->status = -EINPROGRESS; 1533 workload->vgpu = vgpu; 1534 1535 return workload; 1536 } 1537 1538 #define RING_CTX_OFF(x) \ 1539 offsetof(struct execlist_ring_context, x) 1540 1541 static void read_guest_pdps(struct intel_vgpu *vgpu, 1542 u64 ring_context_gpa, u32 pdp[8]) 1543 { 1544 u64 gpa; 1545 int i; 1546 1547 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1548 1549 for (i = 0; i < 8; i++) 1550 intel_gvt_hypervisor_read_gpa(vgpu, 1551 gpa + i * 8, &pdp[7 - i], 4); 1552 } 1553 1554 static int prepare_mm(struct intel_vgpu_workload *workload) 1555 { 1556 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1557 struct intel_vgpu_mm *mm; 1558 struct intel_vgpu *vgpu = workload->vgpu; 1559 enum intel_gvt_gtt_type root_entry_type; 1560 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1561 1562 switch (desc->addressing_mode) { 1563 case 1: /* legacy 32-bit */ 1564 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1565 break; 1566 case 3: /* legacy 64-bit */ 1567 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1568 break; 1569 default: 1570 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1571 return -EINVAL; 1572 } 1573 1574 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1575 1576 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1577 if (IS_ERR(mm)) 1578 return PTR_ERR(mm); 1579 1580 workload->shadow_mm = mm; 1581 return 0; 1582 } 1583 1584 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1585 ((a)->lrca == (b)->lrca)) 1586 1587 /** 1588 * intel_vgpu_create_workload - create a vGPU workload 1589 * @vgpu: a vGPU 1590 * @engine: the engine 1591 * @desc: a guest context descriptor 1592 * 1593 * This function is called when creating a vGPU workload. 1594 * 1595 * Returns: 1596 * struct intel_vgpu_workload * on success, negative error code in 1597 * pointer if failed. 1598 * 1599 */ 1600 struct intel_vgpu_workload * 1601 intel_vgpu_create_workload(struct intel_vgpu *vgpu, 1602 const struct intel_engine_cs *engine, 1603 struct execlist_ctx_descriptor_format *desc) 1604 { 1605 struct intel_vgpu_submission *s = &vgpu->submission; 1606 struct list_head *q = workload_q_head(vgpu, engine); 1607 struct intel_vgpu_workload *last_workload = NULL; 1608 struct intel_vgpu_workload *workload = NULL; 1609 u64 ring_context_gpa; 1610 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1611 u32 guest_head; 1612 int ret; 1613 1614 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1615 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1616 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1617 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1618 return ERR_PTR(-EINVAL); 1619 } 1620 1621 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1622 RING_CTX_OFF(ring_header.val), &head, 4); 1623 1624 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1625 RING_CTX_OFF(ring_tail.val), &tail, 4); 1626 1627 guest_head = head; 1628 1629 head &= RB_HEAD_OFF_MASK; 1630 tail &= RB_TAIL_OFF_MASK; 1631 1632 list_for_each_entry_reverse(last_workload, q, list) { 1633 1634 if (same_context(&last_workload->ctx_desc, desc)) { 1635 gvt_dbg_el("ring %s cur workload == last\n", 1636 engine->name); 1637 gvt_dbg_el("ctx head %x real head %lx\n", head, 1638 last_workload->rb_tail); 1639 /* 1640 * cannot use guest context head pointer here, 1641 * as it might not be updated at this time 1642 */ 1643 head = last_workload->rb_tail; 1644 break; 1645 } 1646 } 1647 1648 gvt_dbg_el("ring %s begin a new workload\n", engine->name); 1649 1650 /* record some ring buffer register values for scan and shadow */ 1651 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1652 RING_CTX_OFF(rb_start.val), &start, 4); 1653 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1654 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1655 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1656 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1657 1658 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1659 _RING_CTL_BUF_SIZE(ctl))) { 1660 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1661 return ERR_PTR(-EINVAL); 1662 } 1663 1664 workload = alloc_workload(vgpu); 1665 if (IS_ERR(workload)) 1666 return workload; 1667 1668 workload->engine = engine; 1669 workload->ctx_desc = *desc; 1670 workload->ring_context_gpa = ring_context_gpa; 1671 workload->rb_head = head; 1672 workload->guest_rb_head = guest_head; 1673 workload->rb_tail = tail; 1674 workload->rb_start = start; 1675 workload->rb_ctl = ctl; 1676 1677 if (engine->id == RCS0) { 1678 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1679 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1680 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1681 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1682 1683 workload->wa_ctx.indirect_ctx.guest_gma = 1684 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1685 workload->wa_ctx.indirect_ctx.size = 1686 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1687 CACHELINE_BYTES; 1688 1689 if (workload->wa_ctx.indirect_ctx.size != 0) { 1690 if (!intel_gvt_ggtt_validate_range(vgpu, 1691 workload->wa_ctx.indirect_ctx.guest_gma, 1692 workload->wa_ctx.indirect_ctx.size)) { 1693 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1694 workload->wa_ctx.indirect_ctx.guest_gma); 1695 kmem_cache_free(s->workloads, workload); 1696 return ERR_PTR(-EINVAL); 1697 } 1698 } 1699 1700 workload->wa_ctx.per_ctx.guest_gma = 1701 per_ctx & PER_CTX_ADDR_MASK; 1702 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1703 if (workload->wa_ctx.per_ctx.valid) { 1704 if (!intel_gvt_ggtt_validate_range(vgpu, 1705 workload->wa_ctx.per_ctx.guest_gma, 1706 CACHELINE_BYTES)) { 1707 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1708 workload->wa_ctx.per_ctx.guest_gma); 1709 kmem_cache_free(s->workloads, workload); 1710 return ERR_PTR(-EINVAL); 1711 } 1712 } 1713 } 1714 1715 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n", 1716 workload, engine->name, head, tail, start, ctl); 1717 1718 ret = prepare_mm(workload); 1719 if (ret) { 1720 kmem_cache_free(s->workloads, workload); 1721 return ERR_PTR(ret); 1722 } 1723 1724 /* Only scan and shadow the first workload in the queue 1725 * as there is only one pre-allocated buf-obj for shadow. 1726 */ 1727 if (list_empty(q)) { 1728 intel_wakeref_t wakeref; 1729 1730 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref) 1731 ret = intel_gvt_scan_and_shadow_workload(workload); 1732 } 1733 1734 if (ret) { 1735 if (vgpu_is_vm_unhealthy(ret)) 1736 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1737 intel_vgpu_destroy_workload(workload); 1738 return ERR_PTR(ret); 1739 } 1740 1741 return workload; 1742 } 1743 1744 /** 1745 * intel_vgpu_queue_workload - Qeue a vGPU workload 1746 * @workload: the workload to queue in 1747 */ 1748 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1749 { 1750 list_add_tail(&workload->list, 1751 workload_q_head(workload->vgpu, workload->engine)); 1752 intel_gvt_kick_schedule(workload->vgpu->gvt); 1753 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]); 1754 } 1755