xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 51c7b447)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS0)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136 	shadow_ring_context = kmap(page);
137 
138 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144 					      + RING_CTX_OFF(name.val),\
145 					      &shadow_ring_context->name.val, 4);\
146 		shadow_ring_context->name.val |= 0xffff << 16;\
147 	}
148 
149 	COPY_REG_MASKED(ctx_ctrl);
150 	COPY_REG(ctx_timestamp);
151 
152 	if (ring_id == RCS0) {
153 		COPY_REG(bb_per_ctx_ptr);
154 		COPY_REG(rcs_indirect_ctx);
155 		COPY_REG(rcs_indirect_ctx_offset);
156 	}
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159 
160 	intel_gvt_hypervisor_read_gpa(vgpu,
161 			workload->ring_context_gpa +
162 			sizeof(*shadow_ring_context),
163 			(void *)shadow_ring_context +
164 			sizeof(*shadow_ring_context),
165 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168 	kunmap(page);
169 
170 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171 		return 0;
172 
173 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174 			workload->ctx_desc.lrca);
175 
176 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177 
178 	context_page_num = context_page_num >> PAGE_SHIFT;
179 
180 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
181 		context_page_num = 19;
182 
183 	i = 2;
184 	while (i < context_page_num) {
185 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186 				(u32)((workload->ctx_desc.lrca + i) <<
187 				I915_GTT_PAGE_SHIFT));
188 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189 			gvt_vgpu_err("Invalid guest context descriptor\n");
190 			return -EFAULT;
191 		}
192 
193 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194 		dst = kmap(page);
195 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196 				I915_GTT_PAGE_SIZE);
197 		kunmap(page);
198 		i++;
199 	}
200 	return 0;
201 }
202 
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205 	return i915_gem_context_force_single_submission(req->gem_context);
206 }
207 
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212 	i915_reg_t reg;
213 
214 	reg = RING_INSTDONE(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 	reg = RING_ACTHD_UDW(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221 
222 static int shadow_context_status_change(struct notifier_block *nb,
223 		unsigned long action, void *data)
224 {
225 	struct i915_request *req = data;
226 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227 				shadow_ctx_notifier_block[req->engine->id]);
228 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229 	enum intel_engine_id ring_id = req->engine->id;
230 	struct intel_vgpu_workload *workload;
231 	unsigned long flags;
232 
233 	if (!is_gvt_request(req)) {
234 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236 		    scheduler->engine_owner[ring_id]) {
237 			/* Switch ring from vGPU to host. */
238 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239 					      NULL, ring_id);
240 			scheduler->engine_owner[ring_id] = NULL;
241 		}
242 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243 
244 		return NOTIFY_OK;
245 	}
246 
247 	workload = scheduler->current_workload[ring_id];
248 	if (unlikely(!workload))
249 		return NOTIFY_OK;
250 
251 	switch (action) {
252 	case INTEL_CONTEXT_SCHEDULE_IN:
253 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255 			/* Switch ring from host to vGPU or vGPU to vGPU. */
256 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257 					      workload->vgpu, ring_id);
258 			scheduler->engine_owner[ring_id] = workload->vgpu;
259 		} else
260 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261 				      ring_id, workload->vgpu->id);
262 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263 		atomic_set(&workload->shadow_ctx_active, 1);
264 		break;
265 	case INTEL_CONTEXT_SCHEDULE_OUT:
266 		save_ring_hw_state(workload->vgpu, ring_id);
267 		atomic_set(&workload->shadow_ctx_active, 0);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		break;
272 	default:
273 		WARN_ON(1);
274 		return NOTIFY_OK;
275 	}
276 	wake_up(&workload->shadow_ctx_status_wq);
277 	return NOTIFY_OK;
278 }
279 
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282 	u64 desc = 0;
283 
284 	desc = ce->lrc_desc;
285 
286 	/* Update bits 0-11 of the context descriptor which includes flags
287 	 * like GEN8_CTX_* cached in desc_template
288 	 */
289 	desc &= U64_MAX << 12;
290 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291 
292 	ce->lrc_desc = desc;
293 }
294 
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297 	struct intel_vgpu *vgpu = workload->vgpu;
298 	struct i915_request *req = workload->req;
299 	void *shadow_ring_buffer_va;
300 	u32 *cs;
301 
302 	if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)
303 		|| IS_COFFEELAKE(req->i915))
304 		&& is_inhibit_context(req->hw_context))
305 		intel_vgpu_restore_inhibit_context(vgpu, req);
306 
307 	/* allocate shadow ring buffer */
308 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
309 	if (IS_ERR(cs)) {
310 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
311 			workload->rb_len);
312 		return PTR_ERR(cs);
313 	}
314 
315 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
316 
317 	/* get shadow ring buffer va */
318 	workload->shadow_ring_buffer_va = cs;
319 
320 	memcpy(cs, shadow_ring_buffer_va,
321 			workload->rb_len);
322 
323 	cs += workload->rb_len / sizeof(u32);
324 	intel_ring_advance(workload->req, cs);
325 
326 	return 0;
327 }
328 
329 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
330 {
331 	if (!wa_ctx->indirect_ctx.obj)
332 		return;
333 
334 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
335 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
336 
337 	wa_ctx->indirect_ctx.obj = NULL;
338 	wa_ctx->indirect_ctx.shadow_va = NULL;
339 }
340 
341 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
342 					 struct i915_gem_context *ctx)
343 {
344 	struct intel_vgpu_mm *mm = workload->shadow_mm;
345 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
346 	int i = 0;
347 
348 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
349 		return -1;
350 
351 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
352 		px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
353 	} else {
354 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
355 			px_dma(ppgtt->pdp.page_directory[i]) =
356 				mm->ppgtt_mm.shadow_pdps[i];
357 		}
358 	}
359 
360 	return 0;
361 }
362 
363 static int
364 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
365 {
366 	struct intel_vgpu *vgpu = workload->vgpu;
367 	struct intel_vgpu_submission *s = &vgpu->submission;
368 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
369 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
370 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
371 	struct i915_request *rq;
372 	int ret = 0;
373 
374 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
375 
376 	if (workload->req)
377 		goto out;
378 
379 	rq = i915_request_alloc(engine, shadow_ctx);
380 	if (IS_ERR(rq)) {
381 		gvt_vgpu_err("fail to allocate gem request\n");
382 		ret = PTR_ERR(rq);
383 		goto out;
384 	}
385 	workload->req = i915_request_get(rq);
386 out:
387 	return ret;
388 }
389 
390 /**
391  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
392  * shadow it as well, include ringbuffer,wa_ctx and ctx.
393  * @workload: an abstract entity for each execlist submission.
394  *
395  * This function is called before the workload submitting to i915, to make
396  * sure the content of the workload is valid.
397  */
398 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
399 {
400 	struct intel_vgpu *vgpu = workload->vgpu;
401 	struct intel_vgpu_submission *s = &vgpu->submission;
402 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
403 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
404 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
405 	struct intel_context *ce;
406 	int ret;
407 
408 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
409 
410 	if (workload->shadow)
411 		return 0;
412 
413 	ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
414 	if (ret < 0) {
415 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
416 		return ret;
417 	}
418 
419 	/* pin shadow context by gvt even the shadow context will be pinned
420 	 * when i915 alloc request. That is because gvt will update the guest
421 	 * context from shadow context when workload is completed, and at that
422 	 * moment, i915 may already unpined the shadow context to make the
423 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
424 	 * the guest context, gvt can unpin the shadow_ctx safely.
425 	 */
426 	ce = intel_context_pin(shadow_ctx, engine);
427 	if (IS_ERR(ce)) {
428 		gvt_vgpu_err("fail to pin shadow context\n");
429 		return PTR_ERR(ce);
430 	}
431 
432 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
433 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
434 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
435 
436 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
437 		shadow_context_descriptor_update(ce);
438 
439 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
440 	if (ret)
441 		goto err_unpin;
442 
443 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
444 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
445 		if (ret)
446 			goto err_shadow;
447 	}
448 
449 	workload->shadow = true;
450 	return 0;
451 err_shadow:
452 	release_shadow_wa_ctx(&workload->wa_ctx);
453 err_unpin:
454 	intel_context_unpin(ce);
455 	return ret;
456 }
457 
458 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
459 
460 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
461 {
462 	struct intel_gvt *gvt = workload->vgpu->gvt;
463 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
464 	struct intel_vgpu_shadow_bb *bb;
465 	int ret;
466 
467 	list_for_each_entry(bb, &workload->shadow_bb, list) {
468 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
469 		 * is only updated into ring_scan_buffer, not real ring address
470 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
471 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
472 		 * in copy_workload_to_ring_buffer.
473 		 */
474 
475 		if (bb->bb_offset)
476 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
477 				+ bb->bb_offset;
478 
479 		if (bb->ppgtt) {
480 			/* for non-priv bb, scan&shadow is only for
481 			 * debugging purpose, so the content of shadow bb
482 			 * is the same as original bb. Therefore,
483 			 * here, rather than switch to shadow bb's gma
484 			 * address, we directly use original batch buffer's
485 			 * gma address, and send original bb to hardware
486 			 * directly
487 			 */
488 			if (bb->clflush & CLFLUSH_AFTER) {
489 				drm_clflush_virt_range(bb->va,
490 						bb->obj->base.size);
491 				bb->clflush &= ~CLFLUSH_AFTER;
492 			}
493 			i915_gem_obj_finish_shmem_access(bb->obj);
494 			bb->accessing = false;
495 
496 		} else {
497 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
498 					NULL, 0, 0, 0);
499 			if (IS_ERR(bb->vma)) {
500 				ret = PTR_ERR(bb->vma);
501 				goto err;
502 			}
503 
504 			/* relocate shadow batch buffer */
505 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
506 			if (gmadr_bytes == 8)
507 				bb->bb_start_cmd_va[2] = 0;
508 
509 			/* No one is going to touch shadow bb from now on. */
510 			if (bb->clflush & CLFLUSH_AFTER) {
511 				drm_clflush_virt_range(bb->va,
512 						bb->obj->base.size);
513 				bb->clflush &= ~CLFLUSH_AFTER;
514 			}
515 
516 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
517 					false);
518 			if (ret)
519 				goto err;
520 
521 			i915_gem_obj_finish_shmem_access(bb->obj);
522 			bb->accessing = false;
523 
524 			ret = i915_vma_move_to_active(bb->vma,
525 						      workload->req,
526 						      0);
527 			if (ret)
528 				goto err;
529 		}
530 	}
531 	return 0;
532 err:
533 	release_shadow_batch_buffer(workload);
534 	return ret;
535 }
536 
537 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
538 {
539 	struct intel_vgpu_workload *workload =
540 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
541 	struct i915_request *rq = workload->req;
542 	struct execlist_ring_context *shadow_ring_context =
543 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
544 
545 	shadow_ring_context->bb_per_ctx_ptr.val =
546 		(shadow_ring_context->bb_per_ctx_ptr.val &
547 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
548 	shadow_ring_context->rcs_indirect_ctx.val =
549 		(shadow_ring_context->rcs_indirect_ctx.val &
550 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
551 }
552 
553 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
554 {
555 	struct i915_vma *vma;
556 	unsigned char *per_ctx_va =
557 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
558 		wa_ctx->indirect_ctx.size;
559 
560 	if (wa_ctx->indirect_ctx.size == 0)
561 		return 0;
562 
563 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
564 				       0, CACHELINE_BYTES, 0);
565 	if (IS_ERR(vma))
566 		return PTR_ERR(vma);
567 
568 	/* FIXME: we are not tracking our pinned VMA leaving it
569 	 * up to the core to fix up the stray pin_count upon
570 	 * free.
571 	 */
572 
573 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
574 
575 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
576 	memset(per_ctx_va, 0, CACHELINE_BYTES);
577 
578 	update_wa_ctx_2_shadow_ctx(wa_ctx);
579 	return 0;
580 }
581 
582 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
583 {
584 	struct intel_vgpu *vgpu = workload->vgpu;
585 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
586 	struct intel_vgpu_shadow_bb *bb, *pos;
587 
588 	if (list_empty(&workload->shadow_bb))
589 		return;
590 
591 	bb = list_first_entry(&workload->shadow_bb,
592 			struct intel_vgpu_shadow_bb, list);
593 
594 	mutex_lock(&dev_priv->drm.struct_mutex);
595 
596 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
597 		if (bb->obj) {
598 			if (bb->accessing)
599 				i915_gem_obj_finish_shmem_access(bb->obj);
600 
601 			if (bb->va && !IS_ERR(bb->va))
602 				i915_gem_object_unpin_map(bb->obj);
603 
604 			if (bb->vma && !IS_ERR(bb->vma)) {
605 				i915_vma_unpin(bb->vma);
606 				i915_vma_close(bb->vma);
607 			}
608 			__i915_gem_object_release_unless_active(bb->obj);
609 		}
610 		list_del(&bb->list);
611 		kfree(bb);
612 	}
613 
614 	mutex_unlock(&dev_priv->drm.struct_mutex);
615 }
616 
617 static int prepare_workload(struct intel_vgpu_workload *workload)
618 {
619 	struct intel_vgpu *vgpu = workload->vgpu;
620 	int ret = 0;
621 
622 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
623 	if (ret) {
624 		gvt_vgpu_err("fail to vgpu pin mm\n");
625 		return ret;
626 	}
627 
628 	update_shadow_pdps(workload);
629 
630 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
631 	if (ret) {
632 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
633 		goto err_unpin_mm;
634 	}
635 
636 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
637 	if (ret) {
638 		gvt_vgpu_err("fail to flush post shadow\n");
639 		goto err_unpin_mm;
640 	}
641 
642 	ret = copy_workload_to_ring_buffer(workload);
643 	if (ret) {
644 		gvt_vgpu_err("fail to generate request\n");
645 		goto err_unpin_mm;
646 	}
647 
648 	ret = prepare_shadow_batch_buffer(workload);
649 	if (ret) {
650 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
651 		goto err_unpin_mm;
652 	}
653 
654 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
655 	if (ret) {
656 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
657 		goto err_shadow_batch;
658 	}
659 
660 	if (workload->prepare) {
661 		ret = workload->prepare(workload);
662 		if (ret)
663 			goto err_shadow_wa_ctx;
664 	}
665 
666 	return 0;
667 err_shadow_wa_ctx:
668 	release_shadow_wa_ctx(&workload->wa_ctx);
669 err_shadow_batch:
670 	release_shadow_batch_buffer(workload);
671 err_unpin_mm:
672 	intel_vgpu_unpin_mm(workload->shadow_mm);
673 	return ret;
674 }
675 
676 static int dispatch_workload(struct intel_vgpu_workload *workload)
677 {
678 	struct intel_vgpu *vgpu = workload->vgpu;
679 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
680 	int ring_id = workload->ring_id;
681 	int ret;
682 
683 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
684 		ring_id, workload);
685 
686 	mutex_lock(&vgpu->vgpu_lock);
687 	mutex_lock(&dev_priv->drm.struct_mutex);
688 
689 	ret = intel_gvt_workload_req_alloc(workload);
690 	if (ret)
691 		goto err_req;
692 
693 	ret = intel_gvt_scan_and_shadow_workload(workload);
694 	if (ret)
695 		goto out;
696 
697 	ret = populate_shadow_context(workload);
698 	if (ret) {
699 		release_shadow_wa_ctx(&workload->wa_ctx);
700 		goto out;
701 	}
702 
703 	ret = prepare_workload(workload);
704 out:
705 	if (!IS_ERR_OR_NULL(workload->req)) {
706 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
707 				ring_id, workload->req);
708 		i915_request_add(workload->req);
709 		workload->dispatched = true;
710 	}
711 err_req:
712 	if (ret)
713 		workload->status = ret;
714 	mutex_unlock(&dev_priv->drm.struct_mutex);
715 	mutex_unlock(&vgpu->vgpu_lock);
716 	return ret;
717 }
718 
719 static struct intel_vgpu_workload *pick_next_workload(
720 		struct intel_gvt *gvt, int ring_id)
721 {
722 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
723 	struct intel_vgpu_workload *workload = NULL;
724 
725 	mutex_lock(&gvt->sched_lock);
726 
727 	/*
728 	 * no current vgpu / will be scheduled out / no workload
729 	 * bail out
730 	 */
731 	if (!scheduler->current_vgpu) {
732 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
733 		goto out;
734 	}
735 
736 	if (scheduler->need_reschedule) {
737 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
738 		goto out;
739 	}
740 
741 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
742 		goto out;
743 
744 	/*
745 	 * still have current workload, maybe the workload disptacher
746 	 * fail to submit it for some reason, resubmit it.
747 	 */
748 	if (scheduler->current_workload[ring_id]) {
749 		workload = scheduler->current_workload[ring_id];
750 		gvt_dbg_sched("ring id %d still have current workload %p\n",
751 				ring_id, workload);
752 		goto out;
753 	}
754 
755 	/*
756 	 * pick a workload as current workload
757 	 * once current workload is set, schedule policy routines
758 	 * will wait the current workload is finished when trying to
759 	 * schedule out a vgpu.
760 	 */
761 	scheduler->current_workload[ring_id] = container_of(
762 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
763 			struct intel_vgpu_workload, list);
764 
765 	workload = scheduler->current_workload[ring_id];
766 
767 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
768 
769 	atomic_inc(&workload->vgpu->submission.running_workload_num);
770 out:
771 	mutex_unlock(&gvt->sched_lock);
772 	return workload;
773 }
774 
775 static void update_guest_context(struct intel_vgpu_workload *workload)
776 {
777 	struct i915_request *rq = workload->req;
778 	struct intel_vgpu *vgpu = workload->vgpu;
779 	struct intel_gvt *gvt = vgpu->gvt;
780 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
781 	struct execlist_ring_context *shadow_ring_context;
782 	struct page *page;
783 	void *src;
784 	unsigned long context_gpa, context_page_num;
785 	int i;
786 
787 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
788 		      workload->ctx_desc.lrca);
789 
790 	context_page_num = rq->engine->context_size;
791 	context_page_num = context_page_num >> PAGE_SHIFT;
792 
793 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
794 		context_page_num = 19;
795 
796 	i = 2;
797 
798 	while (i < context_page_num) {
799 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
800 				(u32)((workload->ctx_desc.lrca + i) <<
801 					I915_GTT_PAGE_SHIFT));
802 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
803 			gvt_vgpu_err("invalid guest context descriptor\n");
804 			return;
805 		}
806 
807 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
808 		src = kmap(page);
809 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
810 				I915_GTT_PAGE_SIZE);
811 		kunmap(page);
812 		i++;
813 	}
814 
815 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
816 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
817 
818 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
819 	shadow_ring_context = kmap(page);
820 
821 #define COPY_REG(name) \
822 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
823 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
824 
825 	COPY_REG(ctx_ctrl);
826 	COPY_REG(ctx_timestamp);
827 
828 #undef COPY_REG
829 
830 	intel_gvt_hypervisor_write_gpa(vgpu,
831 			workload->ring_context_gpa +
832 			sizeof(*shadow_ring_context),
833 			(void *)shadow_ring_context +
834 			sizeof(*shadow_ring_context),
835 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
836 
837 	kunmap(page);
838 }
839 
840 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
841 				unsigned long engine_mask)
842 {
843 	struct intel_vgpu_submission *s = &vgpu->submission;
844 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
845 	struct intel_engine_cs *engine;
846 	struct intel_vgpu_workload *pos, *n;
847 	unsigned int tmp;
848 
849 	/* free the unsubmited workloads in the queues. */
850 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
851 		list_for_each_entry_safe(pos, n,
852 			&s->workload_q_head[engine->id], list) {
853 			list_del_init(&pos->list);
854 			intel_vgpu_destroy_workload(pos);
855 		}
856 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
857 	}
858 }
859 
860 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
861 {
862 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
863 	struct intel_vgpu_workload *workload =
864 		scheduler->current_workload[ring_id];
865 	struct intel_vgpu *vgpu = workload->vgpu;
866 	struct intel_vgpu_submission *s = &vgpu->submission;
867 	struct i915_request *rq = workload->req;
868 	int event;
869 
870 	mutex_lock(&vgpu->vgpu_lock);
871 	mutex_lock(&gvt->sched_lock);
872 
873 	/* For the workload w/ request, needs to wait for the context
874 	 * switch to make sure request is completed.
875 	 * For the workload w/o request, directly complete the workload.
876 	 */
877 	if (rq) {
878 		wait_event(workload->shadow_ctx_status_wq,
879 			   !atomic_read(&workload->shadow_ctx_active));
880 
881 		/* If this request caused GPU hang, req->fence.error will
882 		 * be set to -EIO. Use -EIO to set workload status so
883 		 * that when this request caused GPU hang, didn't trigger
884 		 * context switch interrupt to guest.
885 		 */
886 		if (likely(workload->status == -EINPROGRESS)) {
887 			if (workload->req->fence.error == -EIO)
888 				workload->status = -EIO;
889 			else
890 				workload->status = 0;
891 		}
892 
893 		if (!workload->status &&
894 		    !(vgpu->resetting_eng & BIT(ring_id))) {
895 			update_guest_context(workload);
896 
897 			for_each_set_bit(event, workload->pending_events,
898 					 INTEL_GVT_EVENT_MAX)
899 				intel_vgpu_trigger_virtual_event(vgpu, event);
900 		}
901 
902 		/* unpin shadow ctx as the shadow_ctx update is done */
903 		mutex_lock(&rq->i915->drm.struct_mutex);
904 		intel_context_unpin(rq->hw_context);
905 		mutex_unlock(&rq->i915->drm.struct_mutex);
906 
907 		i915_request_put(fetch_and_zero(&workload->req));
908 	}
909 
910 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
911 			ring_id, workload, workload->status);
912 
913 	scheduler->current_workload[ring_id] = NULL;
914 
915 	list_del_init(&workload->list);
916 
917 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
918 		/* if workload->status is not successful means HW GPU
919 		 * has occurred GPU hang or something wrong with i915/GVT,
920 		 * and GVT won't inject context switch interrupt to guest.
921 		 * So this error is a vGPU hang actually to the guest.
922 		 * According to this we should emunlate a vGPU hang. If
923 		 * there are pending workloads which are already submitted
924 		 * from guest, we should clean them up like HW GPU does.
925 		 *
926 		 * if it is in middle of engine resetting, the pending
927 		 * workloads won't be submitted to HW GPU and will be
928 		 * cleaned up during the resetting process later, so doing
929 		 * the workload clean up here doesn't have any impact.
930 		 **/
931 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
932 	}
933 
934 	workload->complete(workload);
935 
936 	atomic_dec(&s->running_workload_num);
937 	wake_up(&scheduler->workload_complete_wq);
938 
939 	if (gvt->scheduler.need_reschedule)
940 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
941 
942 	mutex_unlock(&gvt->sched_lock);
943 	mutex_unlock(&vgpu->vgpu_lock);
944 }
945 
946 struct workload_thread_param {
947 	struct intel_gvt *gvt;
948 	int ring_id;
949 };
950 
951 static int workload_thread(void *priv)
952 {
953 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
954 	struct intel_gvt *gvt = p->gvt;
955 	int ring_id = p->ring_id;
956 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
957 	struct intel_vgpu_workload *workload = NULL;
958 	struct intel_vgpu *vgpu = NULL;
959 	int ret;
960 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
961 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
962 
963 	kfree(p);
964 
965 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
966 
967 	while (!kthread_should_stop()) {
968 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
969 		do {
970 			workload = pick_next_workload(gvt, ring_id);
971 			if (workload)
972 				break;
973 			wait_woken(&wait, TASK_INTERRUPTIBLE,
974 				   MAX_SCHEDULE_TIMEOUT);
975 		} while (!kthread_should_stop());
976 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
977 
978 		if (!workload)
979 			break;
980 
981 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
982 				workload->ring_id, workload,
983 				workload->vgpu->id);
984 
985 		intel_runtime_pm_get(gvt->dev_priv);
986 
987 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
988 				workload->ring_id, workload);
989 
990 		if (need_force_wake)
991 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
992 					FORCEWAKE_ALL);
993 
994 		ret = dispatch_workload(workload);
995 
996 		if (ret) {
997 			vgpu = workload->vgpu;
998 			gvt_vgpu_err("fail to dispatch workload, skip\n");
999 			goto complete;
1000 		}
1001 
1002 		gvt_dbg_sched("ring id %d wait workload %p\n",
1003 				workload->ring_id, workload);
1004 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1005 
1006 complete:
1007 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1008 				workload, workload->status);
1009 
1010 		complete_current_workload(gvt, ring_id);
1011 
1012 		if (need_force_wake)
1013 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1014 					FORCEWAKE_ALL);
1015 
1016 		intel_runtime_pm_put_unchecked(gvt->dev_priv);
1017 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1018 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1019 	}
1020 	return 0;
1021 }
1022 
1023 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1024 {
1025 	struct intel_vgpu_submission *s = &vgpu->submission;
1026 	struct intel_gvt *gvt = vgpu->gvt;
1027 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1028 
1029 	if (atomic_read(&s->running_workload_num)) {
1030 		gvt_dbg_sched("wait vgpu idle\n");
1031 
1032 		wait_event(scheduler->workload_complete_wq,
1033 				!atomic_read(&s->running_workload_num));
1034 	}
1035 }
1036 
1037 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1038 {
1039 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1040 	struct intel_engine_cs *engine;
1041 	enum intel_engine_id i;
1042 
1043 	gvt_dbg_core("clean workload scheduler\n");
1044 
1045 	for_each_engine(engine, gvt->dev_priv, i) {
1046 		atomic_notifier_chain_unregister(
1047 					&engine->context_status_notifier,
1048 					&gvt->shadow_ctx_notifier_block[i]);
1049 		kthread_stop(scheduler->thread[i]);
1050 	}
1051 }
1052 
1053 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1054 {
1055 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1056 	struct workload_thread_param *param = NULL;
1057 	struct intel_engine_cs *engine;
1058 	enum intel_engine_id i;
1059 	int ret;
1060 
1061 	gvt_dbg_core("init workload scheduler\n");
1062 
1063 	init_waitqueue_head(&scheduler->workload_complete_wq);
1064 
1065 	for_each_engine(engine, gvt->dev_priv, i) {
1066 		init_waitqueue_head(&scheduler->waitq[i]);
1067 
1068 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1069 		if (!param) {
1070 			ret = -ENOMEM;
1071 			goto err;
1072 		}
1073 
1074 		param->gvt = gvt;
1075 		param->ring_id = i;
1076 
1077 		scheduler->thread[i] = kthread_run(workload_thread, param,
1078 			"gvt workload %d", i);
1079 		if (IS_ERR(scheduler->thread[i])) {
1080 			gvt_err("fail to create workload thread\n");
1081 			ret = PTR_ERR(scheduler->thread[i]);
1082 			goto err;
1083 		}
1084 
1085 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1086 					shadow_context_status_change;
1087 		atomic_notifier_chain_register(&engine->context_status_notifier,
1088 					&gvt->shadow_ctx_notifier_block[i]);
1089 	}
1090 	return 0;
1091 err:
1092 	intel_gvt_clean_workload_scheduler(gvt);
1093 	kfree(param);
1094 	param = NULL;
1095 	return ret;
1096 }
1097 
1098 static void
1099 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1100 {
1101 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1102 	int i;
1103 
1104 	if (i915_vm_is_4lvl(&i915_ppgtt->vm)) {
1105 		px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1106 	} else {
1107 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1108 			px_dma(i915_ppgtt->pdp.page_directory[i]) =
1109 						s->i915_context_pdps[i];
1110 	}
1111 }
1112 
1113 /**
1114  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1115  * @vgpu: a vGPU
1116  *
1117  * This function is called when a vGPU is being destroyed.
1118  *
1119  */
1120 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1121 {
1122 	struct intel_vgpu_submission *s = &vgpu->submission;
1123 
1124 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1125 	i915_context_ppgtt_root_restore(s);
1126 	i915_gem_context_put(s->shadow_ctx);
1127 	kmem_cache_destroy(s->workloads);
1128 }
1129 
1130 
1131 /**
1132  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1133  * @vgpu: a vGPU
1134  * @engine_mask: engines expected to be reset
1135  *
1136  * This function is called when a vGPU is being destroyed.
1137  *
1138  */
1139 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1140 		unsigned long engine_mask)
1141 {
1142 	struct intel_vgpu_submission *s = &vgpu->submission;
1143 
1144 	if (!s->active)
1145 		return;
1146 
1147 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1148 	s->ops->reset(vgpu, engine_mask);
1149 }
1150 
1151 static void
1152 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1153 {
1154 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1155 	int i;
1156 
1157 	if (i915_vm_is_4lvl(&i915_ppgtt->vm))
1158 		s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1159 	else {
1160 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1161 			s->i915_context_pdps[i] =
1162 				px_dma(i915_ppgtt->pdp.page_directory[i]);
1163 	}
1164 }
1165 
1166 /**
1167  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1168  * @vgpu: a vGPU
1169  *
1170  * This function is called when a vGPU is being created.
1171  *
1172  * Returns:
1173  * Zero on success, negative error code if failed.
1174  *
1175  */
1176 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1177 {
1178 	struct intel_vgpu_submission *s = &vgpu->submission;
1179 	enum intel_engine_id i;
1180 	struct intel_engine_cs *engine;
1181 	int ret;
1182 
1183 	s->shadow_ctx = i915_gem_context_create_gvt(
1184 			&vgpu->gvt->dev_priv->drm);
1185 	if (IS_ERR(s->shadow_ctx))
1186 		return PTR_ERR(s->shadow_ctx);
1187 
1188 	i915_context_ppgtt_root_save(s);
1189 
1190 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1191 
1192 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1193 						  sizeof(struct intel_vgpu_workload), 0,
1194 						  SLAB_HWCACHE_ALIGN,
1195 						  offsetof(struct intel_vgpu_workload, rb_tail),
1196 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1197 						  NULL);
1198 
1199 	if (!s->workloads) {
1200 		ret = -ENOMEM;
1201 		goto out_shadow_ctx;
1202 	}
1203 
1204 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1205 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1206 
1207 	atomic_set(&s->running_workload_num, 0);
1208 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1209 
1210 	return 0;
1211 
1212 out_shadow_ctx:
1213 	i915_gem_context_put(s->shadow_ctx);
1214 	return ret;
1215 }
1216 
1217 /**
1218  * intel_vgpu_select_submission_ops - select virtual submission interface
1219  * @vgpu: a vGPU
1220  * @engine_mask: either ALL_ENGINES or target engine mask
1221  * @interface: expected vGPU virtual submission interface
1222  *
1223  * This function is called when guest configures submission interface.
1224  *
1225  * Returns:
1226  * Zero on success, negative error code if failed.
1227  *
1228  */
1229 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1230 				     unsigned long engine_mask,
1231 				     unsigned int interface)
1232 {
1233 	struct intel_vgpu_submission *s = &vgpu->submission;
1234 	const struct intel_vgpu_submission_ops *ops[] = {
1235 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1236 			&intel_vgpu_execlist_submission_ops,
1237 	};
1238 	int ret;
1239 
1240 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1241 		return -EINVAL;
1242 
1243 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1244 		return -EINVAL;
1245 
1246 	if (s->active)
1247 		s->ops->clean(vgpu, engine_mask);
1248 
1249 	if (interface == 0) {
1250 		s->ops = NULL;
1251 		s->virtual_submission_interface = 0;
1252 		s->active = false;
1253 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1254 		return 0;
1255 	}
1256 
1257 	ret = ops[interface]->init(vgpu, engine_mask);
1258 	if (ret)
1259 		return ret;
1260 
1261 	s->ops = ops[interface];
1262 	s->virtual_submission_interface = interface;
1263 	s->active = true;
1264 
1265 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1266 			vgpu->id, s->ops->name);
1267 
1268 	return 0;
1269 }
1270 
1271 /**
1272  * intel_vgpu_destroy_workload - destroy a vGPU workload
1273  * @workload: workload to destroy
1274  *
1275  * This function is called when destroy a vGPU workload.
1276  *
1277  */
1278 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1279 {
1280 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1281 
1282 	release_shadow_batch_buffer(workload);
1283 	release_shadow_wa_ctx(&workload->wa_ctx);
1284 
1285 	if (workload->shadow_mm)
1286 		intel_vgpu_mm_put(workload->shadow_mm);
1287 
1288 	kmem_cache_free(s->workloads, workload);
1289 }
1290 
1291 static struct intel_vgpu_workload *
1292 alloc_workload(struct intel_vgpu *vgpu)
1293 {
1294 	struct intel_vgpu_submission *s = &vgpu->submission;
1295 	struct intel_vgpu_workload *workload;
1296 
1297 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1298 	if (!workload)
1299 		return ERR_PTR(-ENOMEM);
1300 
1301 	INIT_LIST_HEAD(&workload->list);
1302 	INIT_LIST_HEAD(&workload->shadow_bb);
1303 
1304 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1305 	atomic_set(&workload->shadow_ctx_active, 0);
1306 
1307 	workload->status = -EINPROGRESS;
1308 	workload->vgpu = vgpu;
1309 
1310 	return workload;
1311 }
1312 
1313 #define RING_CTX_OFF(x) \
1314 	offsetof(struct execlist_ring_context, x)
1315 
1316 static void read_guest_pdps(struct intel_vgpu *vgpu,
1317 		u64 ring_context_gpa, u32 pdp[8])
1318 {
1319 	u64 gpa;
1320 	int i;
1321 
1322 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1323 
1324 	for (i = 0; i < 8; i++)
1325 		intel_gvt_hypervisor_read_gpa(vgpu,
1326 				gpa + i * 8, &pdp[7 - i], 4);
1327 }
1328 
1329 static int prepare_mm(struct intel_vgpu_workload *workload)
1330 {
1331 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1332 	struct intel_vgpu_mm *mm;
1333 	struct intel_vgpu *vgpu = workload->vgpu;
1334 	intel_gvt_gtt_type_t root_entry_type;
1335 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1336 
1337 	switch (desc->addressing_mode) {
1338 	case 1: /* legacy 32-bit */
1339 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1340 		break;
1341 	case 3: /* legacy 64-bit */
1342 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1343 		break;
1344 	default:
1345 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1346 		return -EINVAL;
1347 	}
1348 
1349 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1350 
1351 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1352 	if (IS_ERR(mm))
1353 		return PTR_ERR(mm);
1354 
1355 	workload->shadow_mm = mm;
1356 	return 0;
1357 }
1358 
1359 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1360 		((a)->lrca == (b)->lrca))
1361 
1362 #define get_last_workload(q) \
1363 	(list_empty(q) ? NULL : container_of(q->prev, \
1364 	struct intel_vgpu_workload, list))
1365 /**
1366  * intel_vgpu_create_workload - create a vGPU workload
1367  * @vgpu: a vGPU
1368  * @ring_id: ring index
1369  * @desc: a guest context descriptor
1370  *
1371  * This function is called when creating a vGPU workload.
1372  *
1373  * Returns:
1374  * struct intel_vgpu_workload * on success, negative error code in
1375  * pointer if failed.
1376  *
1377  */
1378 struct intel_vgpu_workload *
1379 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1380 			   struct execlist_ctx_descriptor_format *desc)
1381 {
1382 	struct intel_vgpu_submission *s = &vgpu->submission;
1383 	struct list_head *q = workload_q_head(vgpu, ring_id);
1384 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1385 	struct intel_vgpu_workload *workload = NULL;
1386 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1387 	u64 ring_context_gpa;
1388 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1389 	int ret;
1390 
1391 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1392 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1393 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1394 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1395 		return ERR_PTR(-EINVAL);
1396 	}
1397 
1398 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1399 			RING_CTX_OFF(ring_header.val), &head, 4);
1400 
1401 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1402 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1403 
1404 	head &= RB_HEAD_OFF_MASK;
1405 	tail &= RB_TAIL_OFF_MASK;
1406 
1407 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1408 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1409 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1410 				last_workload->rb_tail);
1411 		/*
1412 		 * cannot use guest context head pointer here,
1413 		 * as it might not be updated at this time
1414 		 */
1415 		head = last_workload->rb_tail;
1416 	}
1417 
1418 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1419 
1420 	/* record some ring buffer register values for scan and shadow */
1421 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1422 			RING_CTX_OFF(rb_start.val), &start, 4);
1423 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1424 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1425 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1426 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1427 
1428 	workload = alloc_workload(vgpu);
1429 	if (IS_ERR(workload))
1430 		return workload;
1431 
1432 	workload->ring_id = ring_id;
1433 	workload->ctx_desc = *desc;
1434 	workload->ring_context_gpa = ring_context_gpa;
1435 	workload->rb_head = head;
1436 	workload->rb_tail = tail;
1437 	workload->rb_start = start;
1438 	workload->rb_ctl = ctl;
1439 
1440 	if (ring_id == RCS0) {
1441 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1442 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1443 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1444 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1445 
1446 		workload->wa_ctx.indirect_ctx.guest_gma =
1447 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1448 		workload->wa_ctx.indirect_ctx.size =
1449 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1450 			CACHELINE_BYTES;
1451 		workload->wa_ctx.per_ctx.guest_gma =
1452 			per_ctx & PER_CTX_ADDR_MASK;
1453 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1454 	}
1455 
1456 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1457 			workload, ring_id, head, tail, start, ctl);
1458 
1459 	ret = prepare_mm(workload);
1460 	if (ret) {
1461 		kmem_cache_free(s->workloads, workload);
1462 		return ERR_PTR(ret);
1463 	}
1464 
1465 	/* Only scan and shadow the first workload in the queue
1466 	 * as there is only one pre-allocated buf-obj for shadow.
1467 	 */
1468 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1469 		intel_runtime_pm_get(dev_priv);
1470 		mutex_lock(&dev_priv->drm.struct_mutex);
1471 		ret = intel_gvt_scan_and_shadow_workload(workload);
1472 		mutex_unlock(&dev_priv->drm.struct_mutex);
1473 		intel_runtime_pm_put_unchecked(dev_priv);
1474 	}
1475 
1476 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1477 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1478 		intel_vgpu_destroy_workload(workload);
1479 		return ERR_PTR(ret);
1480 	}
1481 
1482 	return workload;
1483 }
1484 
1485 /**
1486  * intel_vgpu_queue_workload - Qeue a vGPU workload
1487  * @workload: the workload to queue in
1488  */
1489 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1490 {
1491 	list_add_tail(&workload->list,
1492 		workload_q_head(workload->vgpu, workload->ring_id));
1493 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1494 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1495 }
1496