1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "i915_drv.h" 39 #include "gvt.h" 40 41 #define RING_CTX_OFF(x) \ 42 offsetof(struct execlist_ring_context, x) 43 44 static void set_context_pdp_root_pointer( 45 struct execlist_ring_context *ring_context, 46 u32 pdp[8]) 47 { 48 int i; 49 50 for (i = 0; i < 8; i++) 51 ring_context->pdps[i].val = pdp[7 - i]; 52 } 53 54 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 55 { 56 struct drm_i915_gem_object *ctx_obj = 57 workload->req->hw_context->state->obj; 58 struct execlist_ring_context *shadow_ring_context; 59 struct page *page; 60 61 if (WARN_ON(!workload->shadow_mm)) 62 return; 63 64 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 65 return; 66 67 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 68 shadow_ring_context = kmap(page); 69 set_context_pdp_root_pointer(shadow_ring_context, 70 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 71 kunmap(page); 72 } 73 74 /* 75 * when populating shadow ctx from guest, we should not overrride oa related 76 * registers, so that they will not be overlapped by guest oa configs. Thus 77 * made it possible to capture oa data from host for both host and guests. 78 */ 79 static void sr_oa_regs(struct intel_vgpu_workload *workload, 80 u32 *reg_state, bool save) 81 { 82 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 83 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 84 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 85 int i = 0; 86 u32 flex_mmio[] = { 87 i915_mmio_reg_offset(EU_PERF_CNTL0), 88 i915_mmio_reg_offset(EU_PERF_CNTL1), 89 i915_mmio_reg_offset(EU_PERF_CNTL2), 90 i915_mmio_reg_offset(EU_PERF_CNTL3), 91 i915_mmio_reg_offset(EU_PERF_CNTL4), 92 i915_mmio_reg_offset(EU_PERF_CNTL5), 93 i915_mmio_reg_offset(EU_PERF_CNTL6), 94 }; 95 96 if (workload->ring_id != RCS0) 97 return; 98 99 if (save) { 100 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 101 102 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 103 u32 state_offset = ctx_flexeu0 + i * 2; 104 105 workload->flex_mmio[i] = reg_state[state_offset + 1]; 106 } 107 } else { 108 reg_state[ctx_oactxctrl] = 109 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 110 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 111 112 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 113 u32 state_offset = ctx_flexeu0 + i * 2; 114 u32 mmio = flex_mmio[i]; 115 116 reg_state[state_offset] = mmio; 117 reg_state[state_offset + 1] = workload->flex_mmio[i]; 118 } 119 } 120 } 121 122 static int populate_shadow_context(struct intel_vgpu_workload *workload) 123 { 124 struct intel_vgpu *vgpu = workload->vgpu; 125 struct intel_gvt *gvt = vgpu->gvt; 126 int ring_id = workload->ring_id; 127 struct drm_i915_gem_object *ctx_obj = 128 workload->req->hw_context->state->obj; 129 struct execlist_ring_context *shadow_ring_context; 130 struct page *page; 131 void *dst; 132 unsigned long context_gpa, context_page_num; 133 int i; 134 135 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 136 shadow_ring_context = kmap(page); 137 138 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 139 #define COPY_REG(name) \ 140 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 141 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 142 #define COPY_REG_MASKED(name) {\ 143 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 144 + RING_CTX_OFF(name.val),\ 145 &shadow_ring_context->name.val, 4);\ 146 shadow_ring_context->name.val |= 0xffff << 16;\ 147 } 148 149 COPY_REG_MASKED(ctx_ctrl); 150 COPY_REG(ctx_timestamp); 151 152 if (ring_id == RCS0) { 153 COPY_REG(bb_per_ctx_ptr); 154 COPY_REG(rcs_indirect_ctx); 155 COPY_REG(rcs_indirect_ctx_offset); 156 } 157 #undef COPY_REG 158 #undef COPY_REG_MASKED 159 160 intel_gvt_hypervisor_read_gpa(vgpu, 161 workload->ring_context_gpa + 162 sizeof(*shadow_ring_context), 163 (void *)shadow_ring_context + 164 sizeof(*shadow_ring_context), 165 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 166 167 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 168 kunmap(page); 169 170 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 171 return 0; 172 173 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 174 workload->ctx_desc.lrca); 175 176 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 177 178 context_page_num = context_page_num >> PAGE_SHIFT; 179 180 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0) 181 context_page_num = 19; 182 183 i = 2; 184 while (i < context_page_num) { 185 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 186 (u32)((workload->ctx_desc.lrca + i) << 187 I915_GTT_PAGE_SHIFT)); 188 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 189 gvt_vgpu_err("Invalid guest context descriptor\n"); 190 return -EFAULT; 191 } 192 193 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 194 dst = kmap(page); 195 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 196 I915_GTT_PAGE_SIZE); 197 kunmap(page); 198 i++; 199 } 200 return 0; 201 } 202 203 static inline bool is_gvt_request(struct i915_request *req) 204 { 205 return i915_gem_context_force_single_submission(req->gem_context); 206 } 207 208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 209 { 210 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 211 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 212 i915_reg_t reg; 213 214 reg = RING_INSTDONE(ring_base); 215 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 216 reg = RING_ACTHD(ring_base); 217 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 218 reg = RING_ACTHD_UDW(ring_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 220 } 221 222 static int shadow_context_status_change(struct notifier_block *nb, 223 unsigned long action, void *data) 224 { 225 struct i915_request *req = data; 226 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 227 shadow_ctx_notifier_block[req->engine->id]); 228 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 229 enum intel_engine_id ring_id = req->engine->id; 230 struct intel_vgpu_workload *workload; 231 unsigned long flags; 232 233 if (!is_gvt_request(req)) { 234 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 235 if (action == INTEL_CONTEXT_SCHEDULE_IN && 236 scheduler->engine_owner[ring_id]) { 237 /* Switch ring from vGPU to host. */ 238 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 239 NULL, ring_id); 240 scheduler->engine_owner[ring_id] = NULL; 241 } 242 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 243 244 return NOTIFY_OK; 245 } 246 247 workload = scheduler->current_workload[ring_id]; 248 if (unlikely(!workload)) 249 return NOTIFY_OK; 250 251 switch (action) { 252 case INTEL_CONTEXT_SCHEDULE_IN: 253 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 254 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 255 /* Switch ring from host to vGPU or vGPU to vGPU. */ 256 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 257 workload->vgpu, ring_id); 258 scheduler->engine_owner[ring_id] = workload->vgpu; 259 } else 260 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 261 ring_id, workload->vgpu->id); 262 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 263 atomic_set(&workload->shadow_ctx_active, 1); 264 break; 265 case INTEL_CONTEXT_SCHEDULE_OUT: 266 save_ring_hw_state(workload->vgpu, ring_id); 267 atomic_set(&workload->shadow_ctx_active, 0); 268 break; 269 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 270 save_ring_hw_state(workload->vgpu, ring_id); 271 break; 272 default: 273 WARN_ON(1); 274 return NOTIFY_OK; 275 } 276 wake_up(&workload->shadow_ctx_status_wq); 277 return NOTIFY_OK; 278 } 279 280 static void shadow_context_descriptor_update(struct intel_context *ce) 281 { 282 u64 desc = 0; 283 284 desc = ce->lrc_desc; 285 286 /* Update bits 0-11 of the context descriptor which includes flags 287 * like GEN8_CTX_* cached in desc_template 288 */ 289 desc &= U64_MAX << 12; 290 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1); 291 292 ce->lrc_desc = desc; 293 } 294 295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 296 { 297 struct intel_vgpu *vgpu = workload->vgpu; 298 struct i915_request *req = workload->req; 299 void *shadow_ring_buffer_va; 300 u32 *cs; 301 302 if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915) 303 || IS_COFFEELAKE(req->i915)) 304 && is_inhibit_context(req->hw_context)) 305 intel_vgpu_restore_inhibit_context(vgpu, req); 306 307 /* allocate shadow ring buffer */ 308 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 309 if (IS_ERR(cs)) { 310 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 311 workload->rb_len); 312 return PTR_ERR(cs); 313 } 314 315 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 316 317 /* get shadow ring buffer va */ 318 workload->shadow_ring_buffer_va = cs; 319 320 memcpy(cs, shadow_ring_buffer_va, 321 workload->rb_len); 322 323 cs += workload->rb_len / sizeof(u32); 324 intel_ring_advance(workload->req, cs); 325 326 return 0; 327 } 328 329 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 330 { 331 if (!wa_ctx->indirect_ctx.obj) 332 return; 333 334 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 335 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 336 337 wa_ctx->indirect_ctx.obj = NULL; 338 wa_ctx->indirect_ctx.shadow_va = NULL; 339 } 340 341 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 342 struct i915_gem_context *ctx) 343 { 344 struct intel_vgpu_mm *mm = workload->shadow_mm; 345 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; 346 int i = 0; 347 348 if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed) 349 return -1; 350 351 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 352 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0]; 353 } else { 354 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 355 px_dma(ppgtt->pdp.page_directory[i]) = 356 mm->ppgtt_mm.shadow_pdps[i]; 357 } 358 } 359 360 return 0; 361 } 362 363 static int 364 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 365 { 366 struct intel_vgpu *vgpu = workload->vgpu; 367 struct intel_vgpu_submission *s = &vgpu->submission; 368 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 369 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 370 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 371 struct i915_request *rq; 372 int ret = 0; 373 374 lockdep_assert_held(&dev_priv->drm.struct_mutex); 375 376 if (workload->req) 377 goto out; 378 379 rq = i915_request_alloc(engine, shadow_ctx); 380 if (IS_ERR(rq)) { 381 gvt_vgpu_err("fail to allocate gem request\n"); 382 ret = PTR_ERR(rq); 383 goto out; 384 } 385 workload->req = i915_request_get(rq); 386 out: 387 return ret; 388 } 389 390 /** 391 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 392 * shadow it as well, include ringbuffer,wa_ctx and ctx. 393 * @workload: an abstract entity for each execlist submission. 394 * 395 * This function is called before the workload submitting to i915, to make 396 * sure the content of the workload is valid. 397 */ 398 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 399 { 400 struct intel_vgpu *vgpu = workload->vgpu; 401 struct intel_vgpu_submission *s = &vgpu->submission; 402 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 403 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 404 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 405 struct intel_context *ce; 406 int ret; 407 408 lockdep_assert_held(&dev_priv->drm.struct_mutex); 409 410 if (workload->shadow) 411 return 0; 412 413 ret = set_context_ppgtt_from_shadow(workload, shadow_ctx); 414 if (ret < 0) { 415 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 416 return ret; 417 } 418 419 /* pin shadow context by gvt even the shadow context will be pinned 420 * when i915 alloc request. That is because gvt will update the guest 421 * context from shadow context when workload is completed, and at that 422 * moment, i915 may already unpined the shadow context to make the 423 * shadow_ctx pages invalid. So gvt need to pin itself. After update 424 * the guest context, gvt can unpin the shadow_ctx safely. 425 */ 426 ce = intel_context_pin(shadow_ctx, engine); 427 if (IS_ERR(ce)) { 428 gvt_vgpu_err("fail to pin shadow context\n"); 429 return PTR_ERR(ce); 430 } 431 432 shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 433 shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode << 434 GEN8_CTX_ADDRESSING_MODE_SHIFT; 435 436 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 437 shadow_context_descriptor_update(ce); 438 439 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 440 if (ret) 441 goto err_unpin; 442 443 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) { 444 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 445 if (ret) 446 goto err_shadow; 447 } 448 449 workload->shadow = true; 450 return 0; 451 err_shadow: 452 release_shadow_wa_ctx(&workload->wa_ctx); 453 err_unpin: 454 intel_context_unpin(ce); 455 return ret; 456 } 457 458 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 459 460 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 461 { 462 struct intel_gvt *gvt = workload->vgpu->gvt; 463 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 464 struct intel_vgpu_shadow_bb *bb; 465 int ret; 466 467 list_for_each_entry(bb, &workload->shadow_bb, list) { 468 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 469 * is only updated into ring_scan_buffer, not real ring address 470 * allocated in later copy_workload_to_ring_buffer. pls be noted 471 * shadow_ring_buffer_va is now pointed to real ring buffer va 472 * in copy_workload_to_ring_buffer. 473 */ 474 475 if (bb->bb_offset) 476 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 477 + bb->bb_offset; 478 479 if (bb->ppgtt) { 480 /* for non-priv bb, scan&shadow is only for 481 * debugging purpose, so the content of shadow bb 482 * is the same as original bb. Therefore, 483 * here, rather than switch to shadow bb's gma 484 * address, we directly use original batch buffer's 485 * gma address, and send original bb to hardware 486 * directly 487 */ 488 if (bb->clflush & CLFLUSH_AFTER) { 489 drm_clflush_virt_range(bb->va, 490 bb->obj->base.size); 491 bb->clflush &= ~CLFLUSH_AFTER; 492 } 493 i915_gem_obj_finish_shmem_access(bb->obj); 494 bb->accessing = false; 495 496 } else { 497 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 498 NULL, 0, 0, 0); 499 if (IS_ERR(bb->vma)) { 500 ret = PTR_ERR(bb->vma); 501 goto err; 502 } 503 504 /* relocate shadow batch buffer */ 505 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 506 if (gmadr_bytes == 8) 507 bb->bb_start_cmd_va[2] = 0; 508 509 /* No one is going to touch shadow bb from now on. */ 510 if (bb->clflush & CLFLUSH_AFTER) { 511 drm_clflush_virt_range(bb->va, 512 bb->obj->base.size); 513 bb->clflush &= ~CLFLUSH_AFTER; 514 } 515 516 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 517 false); 518 if (ret) 519 goto err; 520 521 i915_gem_obj_finish_shmem_access(bb->obj); 522 bb->accessing = false; 523 524 ret = i915_vma_move_to_active(bb->vma, 525 workload->req, 526 0); 527 if (ret) 528 goto err; 529 } 530 } 531 return 0; 532 err: 533 release_shadow_batch_buffer(workload); 534 return ret; 535 } 536 537 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 538 { 539 struct intel_vgpu_workload *workload = 540 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 541 struct i915_request *rq = workload->req; 542 struct execlist_ring_context *shadow_ring_context = 543 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 544 545 shadow_ring_context->bb_per_ctx_ptr.val = 546 (shadow_ring_context->bb_per_ctx_ptr.val & 547 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 548 shadow_ring_context->rcs_indirect_ctx.val = 549 (shadow_ring_context->rcs_indirect_ctx.val & 550 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 551 } 552 553 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 554 { 555 struct i915_vma *vma; 556 unsigned char *per_ctx_va = 557 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 558 wa_ctx->indirect_ctx.size; 559 560 if (wa_ctx->indirect_ctx.size == 0) 561 return 0; 562 563 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 564 0, CACHELINE_BYTES, 0); 565 if (IS_ERR(vma)) 566 return PTR_ERR(vma); 567 568 /* FIXME: we are not tracking our pinned VMA leaving it 569 * up to the core to fix up the stray pin_count upon 570 * free. 571 */ 572 573 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 574 575 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 576 memset(per_ctx_va, 0, CACHELINE_BYTES); 577 578 update_wa_ctx_2_shadow_ctx(wa_ctx); 579 return 0; 580 } 581 582 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 583 { 584 struct intel_vgpu *vgpu = workload->vgpu; 585 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 586 struct intel_vgpu_shadow_bb *bb, *pos; 587 588 if (list_empty(&workload->shadow_bb)) 589 return; 590 591 bb = list_first_entry(&workload->shadow_bb, 592 struct intel_vgpu_shadow_bb, list); 593 594 mutex_lock(&dev_priv->drm.struct_mutex); 595 596 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 597 if (bb->obj) { 598 if (bb->accessing) 599 i915_gem_obj_finish_shmem_access(bb->obj); 600 601 if (bb->va && !IS_ERR(bb->va)) 602 i915_gem_object_unpin_map(bb->obj); 603 604 if (bb->vma && !IS_ERR(bb->vma)) { 605 i915_vma_unpin(bb->vma); 606 i915_vma_close(bb->vma); 607 } 608 __i915_gem_object_release_unless_active(bb->obj); 609 } 610 list_del(&bb->list); 611 kfree(bb); 612 } 613 614 mutex_unlock(&dev_priv->drm.struct_mutex); 615 } 616 617 static int prepare_workload(struct intel_vgpu_workload *workload) 618 { 619 struct intel_vgpu *vgpu = workload->vgpu; 620 int ret = 0; 621 622 ret = intel_vgpu_pin_mm(workload->shadow_mm); 623 if (ret) { 624 gvt_vgpu_err("fail to vgpu pin mm\n"); 625 return ret; 626 } 627 628 update_shadow_pdps(workload); 629 630 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 631 if (ret) { 632 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 633 goto err_unpin_mm; 634 } 635 636 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 637 if (ret) { 638 gvt_vgpu_err("fail to flush post shadow\n"); 639 goto err_unpin_mm; 640 } 641 642 ret = copy_workload_to_ring_buffer(workload); 643 if (ret) { 644 gvt_vgpu_err("fail to generate request\n"); 645 goto err_unpin_mm; 646 } 647 648 ret = prepare_shadow_batch_buffer(workload); 649 if (ret) { 650 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 651 goto err_unpin_mm; 652 } 653 654 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 655 if (ret) { 656 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 657 goto err_shadow_batch; 658 } 659 660 if (workload->prepare) { 661 ret = workload->prepare(workload); 662 if (ret) 663 goto err_shadow_wa_ctx; 664 } 665 666 return 0; 667 err_shadow_wa_ctx: 668 release_shadow_wa_ctx(&workload->wa_ctx); 669 err_shadow_batch: 670 release_shadow_batch_buffer(workload); 671 err_unpin_mm: 672 intel_vgpu_unpin_mm(workload->shadow_mm); 673 return ret; 674 } 675 676 static int dispatch_workload(struct intel_vgpu_workload *workload) 677 { 678 struct intel_vgpu *vgpu = workload->vgpu; 679 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 680 int ring_id = workload->ring_id; 681 int ret; 682 683 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 684 ring_id, workload); 685 686 mutex_lock(&vgpu->vgpu_lock); 687 mutex_lock(&dev_priv->drm.struct_mutex); 688 689 ret = intel_gvt_workload_req_alloc(workload); 690 if (ret) 691 goto err_req; 692 693 ret = intel_gvt_scan_and_shadow_workload(workload); 694 if (ret) 695 goto out; 696 697 ret = populate_shadow_context(workload); 698 if (ret) { 699 release_shadow_wa_ctx(&workload->wa_ctx); 700 goto out; 701 } 702 703 ret = prepare_workload(workload); 704 out: 705 if (!IS_ERR_OR_NULL(workload->req)) { 706 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 707 ring_id, workload->req); 708 i915_request_add(workload->req); 709 workload->dispatched = true; 710 } 711 err_req: 712 if (ret) 713 workload->status = ret; 714 mutex_unlock(&dev_priv->drm.struct_mutex); 715 mutex_unlock(&vgpu->vgpu_lock); 716 return ret; 717 } 718 719 static struct intel_vgpu_workload *pick_next_workload( 720 struct intel_gvt *gvt, int ring_id) 721 { 722 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 723 struct intel_vgpu_workload *workload = NULL; 724 725 mutex_lock(&gvt->sched_lock); 726 727 /* 728 * no current vgpu / will be scheduled out / no workload 729 * bail out 730 */ 731 if (!scheduler->current_vgpu) { 732 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 733 goto out; 734 } 735 736 if (scheduler->need_reschedule) { 737 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 738 goto out; 739 } 740 741 if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 742 goto out; 743 744 /* 745 * still have current workload, maybe the workload disptacher 746 * fail to submit it for some reason, resubmit it. 747 */ 748 if (scheduler->current_workload[ring_id]) { 749 workload = scheduler->current_workload[ring_id]; 750 gvt_dbg_sched("ring id %d still have current workload %p\n", 751 ring_id, workload); 752 goto out; 753 } 754 755 /* 756 * pick a workload as current workload 757 * once current workload is set, schedule policy routines 758 * will wait the current workload is finished when trying to 759 * schedule out a vgpu. 760 */ 761 scheduler->current_workload[ring_id] = container_of( 762 workload_q_head(scheduler->current_vgpu, ring_id)->next, 763 struct intel_vgpu_workload, list); 764 765 workload = scheduler->current_workload[ring_id]; 766 767 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 768 769 atomic_inc(&workload->vgpu->submission.running_workload_num); 770 out: 771 mutex_unlock(&gvt->sched_lock); 772 return workload; 773 } 774 775 static void update_guest_context(struct intel_vgpu_workload *workload) 776 { 777 struct i915_request *rq = workload->req; 778 struct intel_vgpu *vgpu = workload->vgpu; 779 struct intel_gvt *gvt = vgpu->gvt; 780 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 781 struct execlist_ring_context *shadow_ring_context; 782 struct page *page; 783 void *src; 784 unsigned long context_gpa, context_page_num; 785 int i; 786 787 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 788 workload->ctx_desc.lrca); 789 790 context_page_num = rq->engine->context_size; 791 context_page_num = context_page_num >> PAGE_SHIFT; 792 793 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0) 794 context_page_num = 19; 795 796 i = 2; 797 798 while (i < context_page_num) { 799 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 800 (u32)((workload->ctx_desc.lrca + i) << 801 I915_GTT_PAGE_SHIFT)); 802 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 803 gvt_vgpu_err("invalid guest context descriptor\n"); 804 return; 805 } 806 807 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 808 src = kmap(page); 809 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 810 I915_GTT_PAGE_SIZE); 811 kunmap(page); 812 i++; 813 } 814 815 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 816 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 817 818 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 819 shadow_ring_context = kmap(page); 820 821 #define COPY_REG(name) \ 822 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 823 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 824 825 COPY_REG(ctx_ctrl); 826 COPY_REG(ctx_timestamp); 827 828 #undef COPY_REG 829 830 intel_gvt_hypervisor_write_gpa(vgpu, 831 workload->ring_context_gpa + 832 sizeof(*shadow_ring_context), 833 (void *)shadow_ring_context + 834 sizeof(*shadow_ring_context), 835 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 836 837 kunmap(page); 838 } 839 840 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 841 unsigned long engine_mask) 842 { 843 struct intel_vgpu_submission *s = &vgpu->submission; 844 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 845 struct intel_engine_cs *engine; 846 struct intel_vgpu_workload *pos, *n; 847 unsigned int tmp; 848 849 /* free the unsubmited workloads in the queues. */ 850 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 851 list_for_each_entry_safe(pos, n, 852 &s->workload_q_head[engine->id], list) { 853 list_del_init(&pos->list); 854 intel_vgpu_destroy_workload(pos); 855 } 856 clear_bit(engine->id, s->shadow_ctx_desc_updated); 857 } 858 } 859 860 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 861 { 862 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 863 struct intel_vgpu_workload *workload = 864 scheduler->current_workload[ring_id]; 865 struct intel_vgpu *vgpu = workload->vgpu; 866 struct intel_vgpu_submission *s = &vgpu->submission; 867 struct i915_request *rq = workload->req; 868 int event; 869 870 mutex_lock(&vgpu->vgpu_lock); 871 mutex_lock(&gvt->sched_lock); 872 873 /* For the workload w/ request, needs to wait for the context 874 * switch to make sure request is completed. 875 * For the workload w/o request, directly complete the workload. 876 */ 877 if (rq) { 878 wait_event(workload->shadow_ctx_status_wq, 879 !atomic_read(&workload->shadow_ctx_active)); 880 881 /* If this request caused GPU hang, req->fence.error will 882 * be set to -EIO. Use -EIO to set workload status so 883 * that when this request caused GPU hang, didn't trigger 884 * context switch interrupt to guest. 885 */ 886 if (likely(workload->status == -EINPROGRESS)) { 887 if (workload->req->fence.error == -EIO) 888 workload->status = -EIO; 889 else 890 workload->status = 0; 891 } 892 893 if (!workload->status && 894 !(vgpu->resetting_eng & BIT(ring_id))) { 895 update_guest_context(workload); 896 897 for_each_set_bit(event, workload->pending_events, 898 INTEL_GVT_EVENT_MAX) 899 intel_vgpu_trigger_virtual_event(vgpu, event); 900 } 901 902 /* unpin shadow ctx as the shadow_ctx update is done */ 903 mutex_lock(&rq->i915->drm.struct_mutex); 904 intel_context_unpin(rq->hw_context); 905 mutex_unlock(&rq->i915->drm.struct_mutex); 906 907 i915_request_put(fetch_and_zero(&workload->req)); 908 } 909 910 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 911 ring_id, workload, workload->status); 912 913 scheduler->current_workload[ring_id] = NULL; 914 915 list_del_init(&workload->list); 916 917 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 918 /* if workload->status is not successful means HW GPU 919 * has occurred GPU hang or something wrong with i915/GVT, 920 * and GVT won't inject context switch interrupt to guest. 921 * So this error is a vGPU hang actually to the guest. 922 * According to this we should emunlate a vGPU hang. If 923 * there are pending workloads which are already submitted 924 * from guest, we should clean them up like HW GPU does. 925 * 926 * if it is in middle of engine resetting, the pending 927 * workloads won't be submitted to HW GPU and will be 928 * cleaned up during the resetting process later, so doing 929 * the workload clean up here doesn't have any impact. 930 **/ 931 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 932 } 933 934 workload->complete(workload); 935 936 atomic_dec(&s->running_workload_num); 937 wake_up(&scheduler->workload_complete_wq); 938 939 if (gvt->scheduler.need_reschedule) 940 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 941 942 mutex_unlock(&gvt->sched_lock); 943 mutex_unlock(&vgpu->vgpu_lock); 944 } 945 946 struct workload_thread_param { 947 struct intel_gvt *gvt; 948 int ring_id; 949 }; 950 951 static int workload_thread(void *priv) 952 { 953 struct workload_thread_param *p = (struct workload_thread_param *)priv; 954 struct intel_gvt *gvt = p->gvt; 955 int ring_id = p->ring_id; 956 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 957 struct intel_vgpu_workload *workload = NULL; 958 struct intel_vgpu *vgpu = NULL; 959 int ret; 960 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9); 961 DEFINE_WAIT_FUNC(wait, woken_wake_function); 962 963 kfree(p); 964 965 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 966 967 while (!kthread_should_stop()) { 968 add_wait_queue(&scheduler->waitq[ring_id], &wait); 969 do { 970 workload = pick_next_workload(gvt, ring_id); 971 if (workload) 972 break; 973 wait_woken(&wait, TASK_INTERRUPTIBLE, 974 MAX_SCHEDULE_TIMEOUT); 975 } while (!kthread_should_stop()); 976 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 977 978 if (!workload) 979 break; 980 981 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 982 workload->ring_id, workload, 983 workload->vgpu->id); 984 985 intel_runtime_pm_get(gvt->dev_priv); 986 987 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 988 workload->ring_id, workload); 989 990 if (need_force_wake) 991 intel_uncore_forcewake_get(&gvt->dev_priv->uncore, 992 FORCEWAKE_ALL); 993 994 ret = dispatch_workload(workload); 995 996 if (ret) { 997 vgpu = workload->vgpu; 998 gvt_vgpu_err("fail to dispatch workload, skip\n"); 999 goto complete; 1000 } 1001 1002 gvt_dbg_sched("ring id %d wait workload %p\n", 1003 workload->ring_id, workload); 1004 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1005 1006 complete: 1007 gvt_dbg_sched("will complete workload %p, status: %d\n", 1008 workload, workload->status); 1009 1010 complete_current_workload(gvt, ring_id); 1011 1012 if (need_force_wake) 1013 intel_uncore_forcewake_put(&gvt->dev_priv->uncore, 1014 FORCEWAKE_ALL); 1015 1016 intel_runtime_pm_put_unchecked(gvt->dev_priv); 1017 if (ret && (vgpu_is_vm_unhealthy(ret))) 1018 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1019 } 1020 return 0; 1021 } 1022 1023 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1024 { 1025 struct intel_vgpu_submission *s = &vgpu->submission; 1026 struct intel_gvt *gvt = vgpu->gvt; 1027 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1028 1029 if (atomic_read(&s->running_workload_num)) { 1030 gvt_dbg_sched("wait vgpu idle\n"); 1031 1032 wait_event(scheduler->workload_complete_wq, 1033 !atomic_read(&s->running_workload_num)); 1034 } 1035 } 1036 1037 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1038 { 1039 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1040 struct intel_engine_cs *engine; 1041 enum intel_engine_id i; 1042 1043 gvt_dbg_core("clean workload scheduler\n"); 1044 1045 for_each_engine(engine, gvt->dev_priv, i) { 1046 atomic_notifier_chain_unregister( 1047 &engine->context_status_notifier, 1048 &gvt->shadow_ctx_notifier_block[i]); 1049 kthread_stop(scheduler->thread[i]); 1050 } 1051 } 1052 1053 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1054 { 1055 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1056 struct workload_thread_param *param = NULL; 1057 struct intel_engine_cs *engine; 1058 enum intel_engine_id i; 1059 int ret; 1060 1061 gvt_dbg_core("init workload scheduler\n"); 1062 1063 init_waitqueue_head(&scheduler->workload_complete_wq); 1064 1065 for_each_engine(engine, gvt->dev_priv, i) { 1066 init_waitqueue_head(&scheduler->waitq[i]); 1067 1068 param = kzalloc(sizeof(*param), GFP_KERNEL); 1069 if (!param) { 1070 ret = -ENOMEM; 1071 goto err; 1072 } 1073 1074 param->gvt = gvt; 1075 param->ring_id = i; 1076 1077 scheduler->thread[i] = kthread_run(workload_thread, param, 1078 "gvt workload %d", i); 1079 if (IS_ERR(scheduler->thread[i])) { 1080 gvt_err("fail to create workload thread\n"); 1081 ret = PTR_ERR(scheduler->thread[i]); 1082 goto err; 1083 } 1084 1085 gvt->shadow_ctx_notifier_block[i].notifier_call = 1086 shadow_context_status_change; 1087 atomic_notifier_chain_register(&engine->context_status_notifier, 1088 &gvt->shadow_ctx_notifier_block[i]); 1089 } 1090 return 0; 1091 err: 1092 intel_gvt_clean_workload_scheduler(gvt); 1093 kfree(param); 1094 param = NULL; 1095 return ret; 1096 } 1097 1098 static void 1099 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s) 1100 { 1101 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1102 int i; 1103 1104 if (i915_vm_is_4lvl(&i915_ppgtt->vm)) { 1105 px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4; 1106 } else { 1107 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1108 px_dma(i915_ppgtt->pdp.page_directory[i]) = 1109 s->i915_context_pdps[i]; 1110 } 1111 } 1112 1113 /** 1114 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1115 * @vgpu: a vGPU 1116 * 1117 * This function is called when a vGPU is being destroyed. 1118 * 1119 */ 1120 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1121 { 1122 struct intel_vgpu_submission *s = &vgpu->submission; 1123 1124 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1125 i915_context_ppgtt_root_restore(s); 1126 i915_gem_context_put(s->shadow_ctx); 1127 kmem_cache_destroy(s->workloads); 1128 } 1129 1130 1131 /** 1132 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1133 * @vgpu: a vGPU 1134 * @engine_mask: engines expected to be reset 1135 * 1136 * This function is called when a vGPU is being destroyed. 1137 * 1138 */ 1139 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1140 unsigned long engine_mask) 1141 { 1142 struct intel_vgpu_submission *s = &vgpu->submission; 1143 1144 if (!s->active) 1145 return; 1146 1147 intel_vgpu_clean_workloads(vgpu, engine_mask); 1148 s->ops->reset(vgpu, engine_mask); 1149 } 1150 1151 static void 1152 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s) 1153 { 1154 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1155 int i; 1156 1157 if (i915_vm_is_4lvl(&i915_ppgtt->vm)) 1158 s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4); 1159 else { 1160 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1161 s->i915_context_pdps[i] = 1162 px_dma(i915_ppgtt->pdp.page_directory[i]); 1163 } 1164 } 1165 1166 /** 1167 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1168 * @vgpu: a vGPU 1169 * 1170 * This function is called when a vGPU is being created. 1171 * 1172 * Returns: 1173 * Zero on success, negative error code if failed. 1174 * 1175 */ 1176 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1177 { 1178 struct intel_vgpu_submission *s = &vgpu->submission; 1179 enum intel_engine_id i; 1180 struct intel_engine_cs *engine; 1181 int ret; 1182 1183 s->shadow_ctx = i915_gem_context_create_gvt( 1184 &vgpu->gvt->dev_priv->drm); 1185 if (IS_ERR(s->shadow_ctx)) 1186 return PTR_ERR(s->shadow_ctx); 1187 1188 i915_context_ppgtt_root_save(s); 1189 1190 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1191 1192 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1193 sizeof(struct intel_vgpu_workload), 0, 1194 SLAB_HWCACHE_ALIGN, 1195 offsetof(struct intel_vgpu_workload, rb_tail), 1196 sizeof_field(struct intel_vgpu_workload, rb_tail), 1197 NULL); 1198 1199 if (!s->workloads) { 1200 ret = -ENOMEM; 1201 goto out_shadow_ctx; 1202 } 1203 1204 for_each_engine(engine, vgpu->gvt->dev_priv, i) 1205 INIT_LIST_HEAD(&s->workload_q_head[i]); 1206 1207 atomic_set(&s->running_workload_num, 0); 1208 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1209 1210 return 0; 1211 1212 out_shadow_ctx: 1213 i915_gem_context_put(s->shadow_ctx); 1214 return ret; 1215 } 1216 1217 /** 1218 * intel_vgpu_select_submission_ops - select virtual submission interface 1219 * @vgpu: a vGPU 1220 * @engine_mask: either ALL_ENGINES or target engine mask 1221 * @interface: expected vGPU virtual submission interface 1222 * 1223 * This function is called when guest configures submission interface. 1224 * 1225 * Returns: 1226 * Zero on success, negative error code if failed. 1227 * 1228 */ 1229 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1230 unsigned long engine_mask, 1231 unsigned int interface) 1232 { 1233 struct intel_vgpu_submission *s = &vgpu->submission; 1234 const struct intel_vgpu_submission_ops *ops[] = { 1235 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1236 &intel_vgpu_execlist_submission_ops, 1237 }; 1238 int ret; 1239 1240 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1241 return -EINVAL; 1242 1243 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1244 return -EINVAL; 1245 1246 if (s->active) 1247 s->ops->clean(vgpu, engine_mask); 1248 1249 if (interface == 0) { 1250 s->ops = NULL; 1251 s->virtual_submission_interface = 0; 1252 s->active = false; 1253 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1254 return 0; 1255 } 1256 1257 ret = ops[interface]->init(vgpu, engine_mask); 1258 if (ret) 1259 return ret; 1260 1261 s->ops = ops[interface]; 1262 s->virtual_submission_interface = interface; 1263 s->active = true; 1264 1265 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1266 vgpu->id, s->ops->name); 1267 1268 return 0; 1269 } 1270 1271 /** 1272 * intel_vgpu_destroy_workload - destroy a vGPU workload 1273 * @workload: workload to destroy 1274 * 1275 * This function is called when destroy a vGPU workload. 1276 * 1277 */ 1278 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1279 { 1280 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1281 1282 release_shadow_batch_buffer(workload); 1283 release_shadow_wa_ctx(&workload->wa_ctx); 1284 1285 if (workload->shadow_mm) 1286 intel_vgpu_mm_put(workload->shadow_mm); 1287 1288 kmem_cache_free(s->workloads, workload); 1289 } 1290 1291 static struct intel_vgpu_workload * 1292 alloc_workload(struct intel_vgpu *vgpu) 1293 { 1294 struct intel_vgpu_submission *s = &vgpu->submission; 1295 struct intel_vgpu_workload *workload; 1296 1297 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1298 if (!workload) 1299 return ERR_PTR(-ENOMEM); 1300 1301 INIT_LIST_HEAD(&workload->list); 1302 INIT_LIST_HEAD(&workload->shadow_bb); 1303 1304 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1305 atomic_set(&workload->shadow_ctx_active, 0); 1306 1307 workload->status = -EINPROGRESS; 1308 workload->vgpu = vgpu; 1309 1310 return workload; 1311 } 1312 1313 #define RING_CTX_OFF(x) \ 1314 offsetof(struct execlist_ring_context, x) 1315 1316 static void read_guest_pdps(struct intel_vgpu *vgpu, 1317 u64 ring_context_gpa, u32 pdp[8]) 1318 { 1319 u64 gpa; 1320 int i; 1321 1322 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1323 1324 for (i = 0; i < 8; i++) 1325 intel_gvt_hypervisor_read_gpa(vgpu, 1326 gpa + i * 8, &pdp[7 - i], 4); 1327 } 1328 1329 static int prepare_mm(struct intel_vgpu_workload *workload) 1330 { 1331 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1332 struct intel_vgpu_mm *mm; 1333 struct intel_vgpu *vgpu = workload->vgpu; 1334 intel_gvt_gtt_type_t root_entry_type; 1335 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1336 1337 switch (desc->addressing_mode) { 1338 case 1: /* legacy 32-bit */ 1339 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1340 break; 1341 case 3: /* legacy 64-bit */ 1342 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1343 break; 1344 default: 1345 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1346 return -EINVAL; 1347 } 1348 1349 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1350 1351 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1352 if (IS_ERR(mm)) 1353 return PTR_ERR(mm); 1354 1355 workload->shadow_mm = mm; 1356 return 0; 1357 } 1358 1359 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1360 ((a)->lrca == (b)->lrca)) 1361 1362 #define get_last_workload(q) \ 1363 (list_empty(q) ? NULL : container_of(q->prev, \ 1364 struct intel_vgpu_workload, list)) 1365 /** 1366 * intel_vgpu_create_workload - create a vGPU workload 1367 * @vgpu: a vGPU 1368 * @ring_id: ring index 1369 * @desc: a guest context descriptor 1370 * 1371 * This function is called when creating a vGPU workload. 1372 * 1373 * Returns: 1374 * struct intel_vgpu_workload * on success, negative error code in 1375 * pointer if failed. 1376 * 1377 */ 1378 struct intel_vgpu_workload * 1379 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1380 struct execlist_ctx_descriptor_format *desc) 1381 { 1382 struct intel_vgpu_submission *s = &vgpu->submission; 1383 struct list_head *q = workload_q_head(vgpu, ring_id); 1384 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1385 struct intel_vgpu_workload *workload = NULL; 1386 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1387 u64 ring_context_gpa; 1388 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1389 int ret; 1390 1391 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1392 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1393 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1394 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1395 return ERR_PTR(-EINVAL); 1396 } 1397 1398 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1399 RING_CTX_OFF(ring_header.val), &head, 4); 1400 1401 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1402 RING_CTX_OFF(ring_tail.val), &tail, 4); 1403 1404 head &= RB_HEAD_OFF_MASK; 1405 tail &= RB_TAIL_OFF_MASK; 1406 1407 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1408 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1409 gvt_dbg_el("ctx head %x real head %lx\n", head, 1410 last_workload->rb_tail); 1411 /* 1412 * cannot use guest context head pointer here, 1413 * as it might not be updated at this time 1414 */ 1415 head = last_workload->rb_tail; 1416 } 1417 1418 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1419 1420 /* record some ring buffer register values for scan and shadow */ 1421 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1422 RING_CTX_OFF(rb_start.val), &start, 4); 1423 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1424 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1425 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1426 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1427 1428 workload = alloc_workload(vgpu); 1429 if (IS_ERR(workload)) 1430 return workload; 1431 1432 workload->ring_id = ring_id; 1433 workload->ctx_desc = *desc; 1434 workload->ring_context_gpa = ring_context_gpa; 1435 workload->rb_head = head; 1436 workload->rb_tail = tail; 1437 workload->rb_start = start; 1438 workload->rb_ctl = ctl; 1439 1440 if (ring_id == RCS0) { 1441 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1442 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1443 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1444 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1445 1446 workload->wa_ctx.indirect_ctx.guest_gma = 1447 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1448 workload->wa_ctx.indirect_ctx.size = 1449 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1450 CACHELINE_BYTES; 1451 workload->wa_ctx.per_ctx.guest_gma = 1452 per_ctx & PER_CTX_ADDR_MASK; 1453 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1454 } 1455 1456 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1457 workload, ring_id, head, tail, start, ctl); 1458 1459 ret = prepare_mm(workload); 1460 if (ret) { 1461 kmem_cache_free(s->workloads, workload); 1462 return ERR_PTR(ret); 1463 } 1464 1465 /* Only scan and shadow the first workload in the queue 1466 * as there is only one pre-allocated buf-obj for shadow. 1467 */ 1468 if (list_empty(workload_q_head(vgpu, ring_id))) { 1469 intel_runtime_pm_get(dev_priv); 1470 mutex_lock(&dev_priv->drm.struct_mutex); 1471 ret = intel_gvt_scan_and_shadow_workload(workload); 1472 mutex_unlock(&dev_priv->drm.struct_mutex); 1473 intel_runtime_pm_put_unchecked(dev_priv); 1474 } 1475 1476 if (ret && (vgpu_is_vm_unhealthy(ret))) { 1477 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1478 intel_vgpu_destroy_workload(workload); 1479 return ERR_PTR(ret); 1480 } 1481 1482 return workload; 1483 } 1484 1485 /** 1486 * intel_vgpu_queue_workload - Qeue a vGPU workload 1487 * @workload: the workload to queue in 1488 */ 1489 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1490 { 1491 list_add_tail(&workload->list, 1492 workload_q_head(workload->vgpu, workload->ring_id)); 1493 intel_gvt_kick_schedule(workload->vgpu->gvt); 1494 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1495 } 1496