xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
49 	int i;
50 
51 	for (i = 0; i < 8; i++)
52 		pdp_pair[i].val = pdp[7 - i];
53 }
54 
55 static int populate_shadow_context(struct intel_vgpu_workload *workload)
56 {
57 	struct intel_vgpu *vgpu = workload->vgpu;
58 	struct intel_gvt *gvt = vgpu->gvt;
59 	int ring_id = workload->ring_id;
60 	struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
61 	struct drm_i915_gem_object *ctx_obj =
62 		shadow_ctx->engine[ring_id].state->obj;
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct page *page;
65 	void *dst;
66 	unsigned long context_gpa, context_page_num;
67 	int i;
68 
69 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
70 			workload->ctx_desc.lrca);
71 
72 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
73 
74 	context_page_num = context_page_num >> PAGE_SHIFT;
75 
76 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
77 		context_page_num = 19;
78 
79 	i = 2;
80 
81 	while (i < context_page_num) {
82 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
83 				(u32)((workload->ctx_desc.lrca + i) <<
84 				I915_GTT_PAGE_SHIFT));
85 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
86 			gvt_vgpu_err("Invalid guest context descriptor\n");
87 			return -EFAULT;
88 		}
89 
90 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
91 		dst = kmap(page);
92 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
93 				I915_GTT_PAGE_SIZE);
94 		kunmap(page);
95 		i++;
96 	}
97 
98 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
99 	shadow_ring_context = kmap(page);
100 
101 #define COPY_REG(name) \
102 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
103 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
104 
105 	COPY_REG(ctx_ctrl);
106 	COPY_REG(ctx_timestamp);
107 
108 	if (ring_id == RCS) {
109 		COPY_REG(bb_per_ctx_ptr);
110 		COPY_REG(rcs_indirect_ctx);
111 		COPY_REG(rcs_indirect_ctx_offset);
112 	}
113 #undef COPY_REG
114 
115 	set_context_pdp_root_pointer(shadow_ring_context,
116 				     workload->shadow_mm->shadow_page_table);
117 
118 	intel_gvt_hypervisor_read_gpa(vgpu,
119 			workload->ring_context_gpa +
120 			sizeof(*shadow_ring_context),
121 			(void *)shadow_ring_context +
122 			sizeof(*shadow_ring_context),
123 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
124 
125 	kunmap(page);
126 	return 0;
127 }
128 
129 static inline bool is_gvt_request(struct drm_i915_gem_request *req)
130 {
131 	return i915_gem_context_force_single_submission(req->ctx);
132 }
133 
134 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
135 {
136 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
137 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
138 	i915_reg_t reg;
139 
140 	reg = RING_INSTDONE(ring_base);
141 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
142 	reg = RING_ACTHD(ring_base);
143 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
144 	reg = RING_ACTHD_UDW(ring_base);
145 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
146 }
147 
148 static int shadow_context_status_change(struct notifier_block *nb,
149 		unsigned long action, void *data)
150 {
151 	struct drm_i915_gem_request *req = (struct drm_i915_gem_request *)data;
152 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
153 				shadow_ctx_notifier_block[req->engine->id]);
154 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
155 	enum intel_engine_id ring_id = req->engine->id;
156 	struct intel_vgpu_workload *workload;
157 	unsigned long flags;
158 
159 	if (!is_gvt_request(req)) {
160 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
161 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
162 		    scheduler->engine_owner[ring_id]) {
163 			/* Switch ring from vGPU to host. */
164 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
165 					      NULL, ring_id);
166 			scheduler->engine_owner[ring_id] = NULL;
167 		}
168 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
169 
170 		return NOTIFY_OK;
171 	}
172 
173 	workload = scheduler->current_workload[ring_id];
174 	if (unlikely(!workload))
175 		return NOTIFY_OK;
176 
177 	switch (action) {
178 	case INTEL_CONTEXT_SCHEDULE_IN:
179 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
180 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
181 			/* Switch ring from host to vGPU or vGPU to vGPU. */
182 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
183 					      workload->vgpu, ring_id);
184 			scheduler->engine_owner[ring_id] = workload->vgpu;
185 		} else
186 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
187 				      ring_id, workload->vgpu->id);
188 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
189 		atomic_set(&workload->shadow_ctx_active, 1);
190 		break;
191 	case INTEL_CONTEXT_SCHEDULE_OUT:
192 		save_ring_hw_state(workload->vgpu, ring_id);
193 		atomic_set(&workload->shadow_ctx_active, 0);
194 		break;
195 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
196 		save_ring_hw_state(workload->vgpu, ring_id);
197 		break;
198 	default:
199 		WARN_ON(1);
200 		return NOTIFY_OK;
201 	}
202 	wake_up(&workload->shadow_ctx_status_wq);
203 	return NOTIFY_OK;
204 }
205 
206 static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
207 		struct intel_engine_cs *engine)
208 {
209 	struct intel_context *ce = &ctx->engine[engine->id];
210 	u64 desc = 0;
211 
212 	desc = ce->lrc_desc;
213 
214 	/* Update bits 0-11 of the context descriptor which includes flags
215 	 * like GEN8_CTX_* cached in desc_template
216 	 */
217 	desc &= U64_MAX << 12;
218 	desc |= ctx->desc_template & ((1ULL << 12) - 1);
219 
220 	ce->lrc_desc = desc;
221 }
222 
223 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
224 {
225 	struct intel_vgpu *vgpu = workload->vgpu;
226 	void *shadow_ring_buffer_va;
227 	u32 *cs;
228 
229 	/* allocate shadow ring buffer */
230 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
231 	if (IS_ERR(cs)) {
232 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
233 			workload->rb_len);
234 		return PTR_ERR(cs);
235 	}
236 
237 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
238 
239 	/* get shadow ring buffer va */
240 	workload->shadow_ring_buffer_va = cs;
241 
242 	memcpy(cs, shadow_ring_buffer_va,
243 			workload->rb_len);
244 
245 	cs += workload->rb_len / sizeof(u32);
246 	intel_ring_advance(workload->req, cs);
247 
248 	return 0;
249 }
250 
251 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
252 {
253 	if (!wa_ctx->indirect_ctx.obj)
254 		return;
255 
256 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
257 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
258 }
259 
260 /**
261  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
262  * shadow it as well, include ringbuffer,wa_ctx and ctx.
263  * @workload: an abstract entity for each execlist submission.
264  *
265  * This function is called before the workload submitting to i915, to make
266  * sure the content of the workload is valid.
267  */
268 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
269 {
270 	struct intel_vgpu *vgpu = workload->vgpu;
271 	struct intel_vgpu_submission *s = &vgpu->submission;
272 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
273 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
274 	int ring_id = workload->ring_id;
275 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
276 	struct intel_ring *ring;
277 	int ret;
278 
279 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
280 
281 	if (workload->shadowed)
282 		return 0;
283 
284 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
285 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
286 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
287 
288 	if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated))
289 		shadow_context_descriptor_update(shadow_ctx,
290 					dev_priv->engine[ring_id]);
291 
292 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
293 	if (ret)
294 		goto err_scan;
295 
296 	if ((workload->ring_id == RCS) &&
297 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
298 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
299 		if (ret)
300 			goto err_scan;
301 	}
302 
303 	/* pin shadow context by gvt even the shadow context will be pinned
304 	 * when i915 alloc request. That is because gvt will update the guest
305 	 * context from shadow context when workload is completed, and at that
306 	 * moment, i915 may already unpined the shadow context to make the
307 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
308 	 * the guest context, gvt can unpin the shadow_ctx safely.
309 	 */
310 	ring = engine->context_pin(engine, shadow_ctx);
311 	if (IS_ERR(ring)) {
312 		ret = PTR_ERR(ring);
313 		gvt_vgpu_err("fail to pin shadow context\n");
314 		goto err_shadow;
315 	}
316 
317 	ret = populate_shadow_context(workload);
318 	if (ret)
319 		goto err_unpin;
320 	workload->shadowed = true;
321 	return 0;
322 
323 err_unpin:
324 	engine->context_unpin(engine, shadow_ctx);
325 err_shadow:
326 	release_shadow_wa_ctx(&workload->wa_ctx);
327 err_scan:
328 	return ret;
329 }
330 
331 static int intel_gvt_generate_request(struct intel_vgpu_workload *workload)
332 {
333 	int ring_id = workload->ring_id;
334 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
335 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
336 	struct drm_i915_gem_request *rq;
337 	struct intel_vgpu *vgpu = workload->vgpu;
338 	struct intel_vgpu_submission *s = &vgpu->submission;
339 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
340 	int ret;
341 
342 	rq = i915_gem_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
343 	if (IS_ERR(rq)) {
344 		gvt_vgpu_err("fail to allocate gem request\n");
345 		ret = PTR_ERR(rq);
346 		goto err_unpin;
347 	}
348 
349 	gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
350 
351 	workload->req = i915_gem_request_get(rq);
352 	ret = copy_workload_to_ring_buffer(workload);
353 	if (ret)
354 		goto err_unpin;
355 	return 0;
356 
357 err_unpin:
358 	engine->context_unpin(engine, shadow_ctx);
359 	release_shadow_wa_ctx(&workload->wa_ctx);
360 	return ret;
361 }
362 
363 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
364 
365 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
366 {
367 	struct intel_gvt *gvt = workload->vgpu->gvt;
368 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
369 	struct intel_vgpu_shadow_bb *bb;
370 	int ret;
371 
372 	list_for_each_entry(bb, &workload->shadow_bb, list) {
373 		bb->vma = i915_gem_object_ggtt_pin(bb->obj, NULL, 0, 0, 0);
374 		if (IS_ERR(bb->vma)) {
375 			ret = PTR_ERR(bb->vma);
376 			goto err;
377 		}
378 
379 		/* relocate shadow batch buffer */
380 		bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
381 		if (gmadr_bytes == 8)
382 			bb->bb_start_cmd_va[2] = 0;
383 
384 		/* No one is going to touch shadow bb from now on. */
385 		if (bb->clflush & CLFLUSH_AFTER) {
386 			drm_clflush_virt_range(bb->va, bb->obj->base.size);
387 			bb->clflush &= ~CLFLUSH_AFTER;
388 		}
389 
390 		ret = i915_gem_object_set_to_gtt_domain(bb->obj, false);
391 		if (ret)
392 			goto err;
393 
394 		i915_gem_obj_finish_shmem_access(bb->obj);
395 		bb->accessing = false;
396 
397 		i915_vma_move_to_active(bb->vma, workload->req, 0);
398 	}
399 	return 0;
400 err:
401 	release_shadow_batch_buffer(workload);
402 	return ret;
403 }
404 
405 static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
406 {
407 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
408 					struct intel_vgpu_workload,
409 					wa_ctx);
410 	int ring_id = workload->ring_id;
411 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
412 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
413 	struct drm_i915_gem_object *ctx_obj =
414 		shadow_ctx->engine[ring_id].state->obj;
415 	struct execlist_ring_context *shadow_ring_context;
416 	struct page *page;
417 
418 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
419 	shadow_ring_context = kmap_atomic(page);
420 
421 	shadow_ring_context->bb_per_ctx_ptr.val =
422 		(shadow_ring_context->bb_per_ctx_ptr.val &
423 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
424 	shadow_ring_context->rcs_indirect_ctx.val =
425 		(shadow_ring_context->rcs_indirect_ctx.val &
426 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
427 
428 	kunmap_atomic(shadow_ring_context);
429 	return 0;
430 }
431 
432 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
433 {
434 	struct i915_vma *vma;
435 	unsigned char *per_ctx_va =
436 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
437 		wa_ctx->indirect_ctx.size;
438 
439 	if (wa_ctx->indirect_ctx.size == 0)
440 		return 0;
441 
442 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
443 				       0, CACHELINE_BYTES, 0);
444 	if (IS_ERR(vma))
445 		return PTR_ERR(vma);
446 
447 	/* FIXME: we are not tracking our pinned VMA leaving it
448 	 * up to the core to fix up the stray pin_count upon
449 	 * free.
450 	 */
451 
452 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
453 
454 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
455 	memset(per_ctx_va, 0, CACHELINE_BYTES);
456 
457 	update_wa_ctx_2_shadow_ctx(wa_ctx);
458 	return 0;
459 }
460 
461 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
462 {
463 	struct intel_vgpu *vgpu = workload->vgpu;
464 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
465 	struct intel_vgpu_shadow_bb *bb, *pos;
466 
467 	if (list_empty(&workload->shadow_bb))
468 		return;
469 
470 	bb = list_first_entry(&workload->shadow_bb,
471 			struct intel_vgpu_shadow_bb, list);
472 
473 	mutex_lock(&dev_priv->drm.struct_mutex);
474 
475 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
476 		if (bb->obj) {
477 			if (bb->accessing)
478 				i915_gem_obj_finish_shmem_access(bb->obj);
479 
480 			if (bb->va && !IS_ERR(bb->va))
481 				i915_gem_object_unpin_map(bb->obj);
482 
483 			if (bb->vma && !IS_ERR(bb->vma)) {
484 				i915_vma_unpin(bb->vma);
485 				i915_vma_close(bb->vma);
486 			}
487 			__i915_gem_object_release_unless_active(bb->obj);
488 		}
489 		list_del(&bb->list);
490 		kfree(bb);
491 	}
492 
493 	mutex_unlock(&dev_priv->drm.struct_mutex);
494 }
495 
496 static int prepare_workload(struct intel_vgpu_workload *workload)
497 {
498 	struct intel_vgpu *vgpu = workload->vgpu;
499 	int ret = 0;
500 
501 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
502 	if (ret) {
503 		gvt_vgpu_err("fail to vgpu pin mm\n");
504 		return ret;
505 	}
506 
507 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
508 	if (ret) {
509 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
510 		goto err_unpin_mm;
511 	}
512 
513 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
514 	if (ret) {
515 		gvt_vgpu_err("fail to flush post shadow\n");
516 		goto err_unpin_mm;
517 	}
518 
519 	ret = intel_gvt_generate_request(workload);
520 	if (ret) {
521 		gvt_vgpu_err("fail to generate request\n");
522 		goto err_unpin_mm;
523 	}
524 
525 	ret = prepare_shadow_batch_buffer(workload);
526 	if (ret) {
527 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
528 		goto err_unpin_mm;
529 	}
530 
531 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
532 	if (ret) {
533 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
534 		goto err_shadow_batch;
535 	}
536 
537 	if (workload->prepare) {
538 		ret = workload->prepare(workload);
539 		if (ret)
540 			goto err_shadow_wa_ctx;
541 	}
542 
543 	return 0;
544 err_shadow_wa_ctx:
545 	release_shadow_wa_ctx(&workload->wa_ctx);
546 err_shadow_batch:
547 	release_shadow_batch_buffer(workload);
548 err_unpin_mm:
549 	intel_vgpu_unpin_mm(workload->shadow_mm);
550 	return ret;
551 }
552 
553 static int dispatch_workload(struct intel_vgpu_workload *workload)
554 {
555 	struct intel_vgpu *vgpu = workload->vgpu;
556 	struct intel_vgpu_submission *s = &vgpu->submission;
557 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
558 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
559 	int ring_id = workload->ring_id;
560 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
561 	int ret = 0;
562 
563 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
564 		ring_id, workload);
565 
566 	mutex_lock(&dev_priv->drm.struct_mutex);
567 
568 	ret = intel_gvt_scan_and_shadow_workload(workload);
569 	if (ret)
570 		goto out;
571 
572 	ret = prepare_workload(workload);
573 	if (ret) {
574 		engine->context_unpin(engine, shadow_ctx);
575 		goto out;
576 	}
577 
578 out:
579 	if (ret)
580 		workload->status = ret;
581 
582 	if (!IS_ERR_OR_NULL(workload->req)) {
583 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
584 				ring_id, workload->req);
585 		i915_add_request(workload->req);
586 		workload->dispatched = true;
587 	}
588 
589 	mutex_unlock(&dev_priv->drm.struct_mutex);
590 	return ret;
591 }
592 
593 static struct intel_vgpu_workload *pick_next_workload(
594 		struct intel_gvt *gvt, int ring_id)
595 {
596 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
597 	struct intel_vgpu_workload *workload = NULL;
598 
599 	mutex_lock(&gvt->lock);
600 
601 	/*
602 	 * no current vgpu / will be scheduled out / no workload
603 	 * bail out
604 	 */
605 	if (!scheduler->current_vgpu) {
606 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
607 		goto out;
608 	}
609 
610 	if (scheduler->need_reschedule) {
611 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
612 		goto out;
613 	}
614 
615 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
616 		goto out;
617 
618 	/*
619 	 * still have current workload, maybe the workload disptacher
620 	 * fail to submit it for some reason, resubmit it.
621 	 */
622 	if (scheduler->current_workload[ring_id]) {
623 		workload = scheduler->current_workload[ring_id];
624 		gvt_dbg_sched("ring id %d still have current workload %p\n",
625 				ring_id, workload);
626 		goto out;
627 	}
628 
629 	/*
630 	 * pick a workload as current workload
631 	 * once current workload is set, schedule policy routines
632 	 * will wait the current workload is finished when trying to
633 	 * schedule out a vgpu.
634 	 */
635 	scheduler->current_workload[ring_id] = container_of(
636 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
637 			struct intel_vgpu_workload, list);
638 
639 	workload = scheduler->current_workload[ring_id];
640 
641 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
642 
643 	atomic_inc(&workload->vgpu->submission.running_workload_num);
644 out:
645 	mutex_unlock(&gvt->lock);
646 	return workload;
647 }
648 
649 static void update_guest_context(struct intel_vgpu_workload *workload)
650 {
651 	struct intel_vgpu *vgpu = workload->vgpu;
652 	struct intel_gvt *gvt = vgpu->gvt;
653 	struct intel_vgpu_submission *s = &vgpu->submission;
654 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
655 	int ring_id = workload->ring_id;
656 	struct drm_i915_gem_object *ctx_obj =
657 		shadow_ctx->engine[ring_id].state->obj;
658 	struct execlist_ring_context *shadow_ring_context;
659 	struct page *page;
660 	void *src;
661 	unsigned long context_gpa, context_page_num;
662 	int i;
663 
664 	gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
665 			workload->ctx_desc.lrca);
666 
667 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
668 
669 	context_page_num = context_page_num >> PAGE_SHIFT;
670 
671 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
672 		context_page_num = 19;
673 
674 	i = 2;
675 
676 	while (i < context_page_num) {
677 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
678 				(u32)((workload->ctx_desc.lrca + i) <<
679 					I915_GTT_PAGE_SHIFT));
680 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
681 			gvt_vgpu_err("invalid guest context descriptor\n");
682 			return;
683 		}
684 
685 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
686 		src = kmap(page);
687 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
688 				I915_GTT_PAGE_SIZE);
689 		kunmap(page);
690 		i++;
691 	}
692 
693 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
694 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
695 
696 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
697 	shadow_ring_context = kmap(page);
698 
699 #define COPY_REG(name) \
700 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
701 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
702 
703 	COPY_REG(ctx_ctrl);
704 	COPY_REG(ctx_timestamp);
705 
706 #undef COPY_REG
707 
708 	intel_gvt_hypervisor_write_gpa(vgpu,
709 			workload->ring_context_gpa +
710 			sizeof(*shadow_ring_context),
711 			(void *)shadow_ring_context +
712 			sizeof(*shadow_ring_context),
713 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
714 
715 	kunmap(page);
716 }
717 
718 static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
719 {
720 	struct intel_vgpu_submission *s = &vgpu->submission;
721 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
722 	struct intel_engine_cs *engine;
723 	struct intel_vgpu_workload *pos, *n;
724 	unsigned int tmp;
725 
726 	/* free the unsubmited workloads in the queues. */
727 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
728 		list_for_each_entry_safe(pos, n,
729 			&s->workload_q_head[engine->id], list) {
730 			list_del_init(&pos->list);
731 			intel_vgpu_destroy_workload(pos);
732 		}
733 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
734 	}
735 }
736 
737 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
738 {
739 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
740 	struct intel_vgpu_workload *workload =
741 		scheduler->current_workload[ring_id];
742 	struct intel_vgpu *vgpu = workload->vgpu;
743 	struct intel_vgpu_submission *s = &vgpu->submission;
744 	int event;
745 
746 	mutex_lock(&gvt->lock);
747 
748 	/* For the workload w/ request, needs to wait for the context
749 	 * switch to make sure request is completed.
750 	 * For the workload w/o request, directly complete the workload.
751 	 */
752 	if (workload->req) {
753 		struct drm_i915_private *dev_priv =
754 			workload->vgpu->gvt->dev_priv;
755 		struct intel_engine_cs *engine =
756 			dev_priv->engine[workload->ring_id];
757 		wait_event(workload->shadow_ctx_status_wq,
758 			   !atomic_read(&workload->shadow_ctx_active));
759 
760 		/* If this request caused GPU hang, req->fence.error will
761 		 * be set to -EIO. Use -EIO to set workload status so
762 		 * that when this request caused GPU hang, didn't trigger
763 		 * context switch interrupt to guest.
764 		 */
765 		if (likely(workload->status == -EINPROGRESS)) {
766 			if (workload->req->fence.error == -EIO)
767 				workload->status = -EIO;
768 			else
769 				workload->status = 0;
770 		}
771 
772 		i915_gem_request_put(fetch_and_zero(&workload->req));
773 
774 		if (!workload->status && !(vgpu->resetting_eng &
775 					   ENGINE_MASK(ring_id))) {
776 			update_guest_context(workload);
777 
778 			for_each_set_bit(event, workload->pending_events,
779 					 INTEL_GVT_EVENT_MAX)
780 				intel_vgpu_trigger_virtual_event(vgpu, event);
781 		}
782 		mutex_lock(&dev_priv->drm.struct_mutex);
783 		/* unpin shadow ctx as the shadow_ctx update is done */
784 		engine->context_unpin(engine, s->shadow_ctx);
785 		mutex_unlock(&dev_priv->drm.struct_mutex);
786 	}
787 
788 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
789 			ring_id, workload, workload->status);
790 
791 	scheduler->current_workload[ring_id] = NULL;
792 
793 	list_del_init(&workload->list);
794 
795 	if (!workload->status) {
796 		release_shadow_batch_buffer(workload);
797 		release_shadow_wa_ctx(&workload->wa_ctx);
798 	}
799 
800 	if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
801 		/* if workload->status is not successful means HW GPU
802 		 * has occurred GPU hang or something wrong with i915/GVT,
803 		 * and GVT won't inject context switch interrupt to guest.
804 		 * So this error is a vGPU hang actually to the guest.
805 		 * According to this we should emunlate a vGPU hang. If
806 		 * there are pending workloads which are already submitted
807 		 * from guest, we should clean them up like HW GPU does.
808 		 *
809 		 * if it is in middle of engine resetting, the pending
810 		 * workloads won't be submitted to HW GPU and will be
811 		 * cleaned up during the resetting process later, so doing
812 		 * the workload clean up here doesn't have any impact.
813 		 **/
814 		clean_workloads(vgpu, ENGINE_MASK(ring_id));
815 	}
816 
817 	workload->complete(workload);
818 
819 	atomic_dec(&s->running_workload_num);
820 	wake_up(&scheduler->workload_complete_wq);
821 
822 	if (gvt->scheduler.need_reschedule)
823 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
824 
825 	mutex_unlock(&gvt->lock);
826 }
827 
828 struct workload_thread_param {
829 	struct intel_gvt *gvt;
830 	int ring_id;
831 };
832 
833 static int workload_thread(void *priv)
834 {
835 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
836 	struct intel_gvt *gvt = p->gvt;
837 	int ring_id = p->ring_id;
838 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
839 	struct intel_vgpu_workload *workload = NULL;
840 	struct intel_vgpu *vgpu = NULL;
841 	int ret;
842 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
843 			|| IS_KABYLAKE(gvt->dev_priv);
844 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
845 
846 	kfree(p);
847 
848 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
849 
850 	while (!kthread_should_stop()) {
851 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
852 		do {
853 			workload = pick_next_workload(gvt, ring_id);
854 			if (workload)
855 				break;
856 			wait_woken(&wait, TASK_INTERRUPTIBLE,
857 				   MAX_SCHEDULE_TIMEOUT);
858 		} while (!kthread_should_stop());
859 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
860 
861 		if (!workload)
862 			break;
863 
864 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
865 				workload->ring_id, workload,
866 				workload->vgpu->id);
867 
868 		intel_runtime_pm_get(gvt->dev_priv);
869 
870 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
871 				workload->ring_id, workload);
872 
873 		if (need_force_wake)
874 			intel_uncore_forcewake_get(gvt->dev_priv,
875 					FORCEWAKE_ALL);
876 
877 		mutex_lock(&gvt->lock);
878 		ret = dispatch_workload(workload);
879 		mutex_unlock(&gvt->lock);
880 
881 		if (ret) {
882 			vgpu = workload->vgpu;
883 			gvt_vgpu_err("fail to dispatch workload, skip\n");
884 			goto complete;
885 		}
886 
887 		gvt_dbg_sched("ring id %d wait workload %p\n",
888 				workload->ring_id, workload);
889 		i915_wait_request(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
890 
891 complete:
892 		gvt_dbg_sched("will complete workload %p, status: %d\n",
893 				workload, workload->status);
894 
895 		complete_current_workload(gvt, ring_id);
896 
897 		if (need_force_wake)
898 			intel_uncore_forcewake_put(gvt->dev_priv,
899 					FORCEWAKE_ALL);
900 
901 		intel_runtime_pm_put(gvt->dev_priv);
902 		if (ret && (vgpu_is_vm_unhealthy(ret)))
903 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
904 	}
905 	return 0;
906 }
907 
908 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
909 {
910 	struct intel_vgpu_submission *s = &vgpu->submission;
911 	struct intel_gvt *gvt = vgpu->gvt;
912 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
913 
914 	if (atomic_read(&s->running_workload_num)) {
915 		gvt_dbg_sched("wait vgpu idle\n");
916 
917 		wait_event(scheduler->workload_complete_wq,
918 				!atomic_read(&s->running_workload_num));
919 	}
920 }
921 
922 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
923 {
924 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
925 	struct intel_engine_cs *engine;
926 	enum intel_engine_id i;
927 
928 	gvt_dbg_core("clean workload scheduler\n");
929 
930 	for_each_engine(engine, gvt->dev_priv, i) {
931 		atomic_notifier_chain_unregister(
932 					&engine->context_status_notifier,
933 					&gvt->shadow_ctx_notifier_block[i]);
934 		kthread_stop(scheduler->thread[i]);
935 	}
936 }
937 
938 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
939 {
940 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
941 	struct workload_thread_param *param = NULL;
942 	struct intel_engine_cs *engine;
943 	enum intel_engine_id i;
944 	int ret;
945 
946 	gvt_dbg_core("init workload scheduler\n");
947 
948 	init_waitqueue_head(&scheduler->workload_complete_wq);
949 
950 	for_each_engine(engine, gvt->dev_priv, i) {
951 		init_waitqueue_head(&scheduler->waitq[i]);
952 
953 		param = kzalloc(sizeof(*param), GFP_KERNEL);
954 		if (!param) {
955 			ret = -ENOMEM;
956 			goto err;
957 		}
958 
959 		param->gvt = gvt;
960 		param->ring_id = i;
961 
962 		scheduler->thread[i] = kthread_run(workload_thread, param,
963 			"gvt workload %d", i);
964 		if (IS_ERR(scheduler->thread[i])) {
965 			gvt_err("fail to create workload thread\n");
966 			ret = PTR_ERR(scheduler->thread[i]);
967 			goto err;
968 		}
969 
970 		gvt->shadow_ctx_notifier_block[i].notifier_call =
971 					shadow_context_status_change;
972 		atomic_notifier_chain_register(&engine->context_status_notifier,
973 					&gvt->shadow_ctx_notifier_block[i]);
974 	}
975 	return 0;
976 err:
977 	intel_gvt_clean_workload_scheduler(gvt);
978 	kfree(param);
979 	param = NULL;
980 	return ret;
981 }
982 
983 /**
984  * intel_vgpu_clean_submission - free submission-related resource for vGPU
985  * @vgpu: a vGPU
986  *
987  * This function is called when a vGPU is being destroyed.
988  *
989  */
990 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
991 {
992 	struct intel_vgpu_submission *s = &vgpu->submission;
993 
994 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
995 	i915_gem_context_put(s->shadow_ctx);
996 	kmem_cache_destroy(s->workloads);
997 }
998 
999 
1000 /**
1001  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1002  * @vgpu: a vGPU
1003  * @engine_mask: engines expected to be reset
1004  *
1005  * This function is called when a vGPU is being destroyed.
1006  *
1007  */
1008 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1009 		unsigned long engine_mask)
1010 {
1011 	struct intel_vgpu_submission *s = &vgpu->submission;
1012 
1013 	if (!s->active)
1014 		return;
1015 
1016 	clean_workloads(vgpu, engine_mask);
1017 	s->ops->reset(vgpu, engine_mask);
1018 }
1019 
1020 /**
1021  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1022  * @vgpu: a vGPU
1023  *
1024  * This function is called when a vGPU is being created.
1025  *
1026  * Returns:
1027  * Zero on success, negative error code if failed.
1028  *
1029  */
1030 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1031 {
1032 	struct intel_vgpu_submission *s = &vgpu->submission;
1033 	enum intel_engine_id i;
1034 	struct intel_engine_cs *engine;
1035 	int ret;
1036 
1037 	s->shadow_ctx = i915_gem_context_create_gvt(
1038 			&vgpu->gvt->dev_priv->drm);
1039 	if (IS_ERR(s->shadow_ctx))
1040 		return PTR_ERR(s->shadow_ctx);
1041 
1042 	if (HAS_LOGICAL_RING_PREEMPTION(vgpu->gvt->dev_priv))
1043 		s->shadow_ctx->priority = INT_MAX;
1044 
1045 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1046 
1047 	s->workloads = kmem_cache_create("gvt-g_vgpu_workload",
1048 			sizeof(struct intel_vgpu_workload), 0,
1049 			SLAB_HWCACHE_ALIGN,
1050 			NULL);
1051 
1052 	if (!s->workloads) {
1053 		ret = -ENOMEM;
1054 		goto out_shadow_ctx;
1055 	}
1056 
1057 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1058 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1059 
1060 	atomic_set(&s->running_workload_num, 0);
1061 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1062 
1063 	return 0;
1064 
1065 out_shadow_ctx:
1066 	i915_gem_context_put(s->shadow_ctx);
1067 	return ret;
1068 }
1069 
1070 /**
1071  * intel_vgpu_select_submission_ops - select virtual submission interface
1072  * @vgpu: a vGPU
1073  * @interface: expected vGPU virtual submission interface
1074  *
1075  * This function is called when guest configures submission interface.
1076  *
1077  * Returns:
1078  * Zero on success, negative error code if failed.
1079  *
1080  */
1081 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1082 				     unsigned long engine_mask,
1083 				     unsigned int interface)
1084 {
1085 	struct intel_vgpu_submission *s = &vgpu->submission;
1086 	const struct intel_vgpu_submission_ops *ops[] = {
1087 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1088 			&intel_vgpu_execlist_submission_ops,
1089 	};
1090 	int ret;
1091 
1092 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1093 		return -EINVAL;
1094 
1095 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1096 		return -EINVAL;
1097 
1098 	if (s->active)
1099 		s->ops->clean(vgpu, engine_mask);
1100 
1101 	if (interface == 0) {
1102 		s->ops = NULL;
1103 		s->virtual_submission_interface = 0;
1104 		s->active = false;
1105 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1106 		return 0;
1107 	}
1108 
1109 	ret = ops[interface]->init(vgpu, engine_mask);
1110 	if (ret)
1111 		return ret;
1112 
1113 	s->ops = ops[interface];
1114 	s->virtual_submission_interface = interface;
1115 	s->active = true;
1116 
1117 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1118 			vgpu->id, s->ops->name);
1119 
1120 	return 0;
1121 }
1122 
1123 /**
1124  * intel_vgpu_destroy_workload - destroy a vGPU workload
1125  * @vgpu: a vGPU
1126  *
1127  * This function is called when destroy a vGPU workload.
1128  *
1129  */
1130 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1131 {
1132 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1133 
1134 	if (workload->shadow_mm)
1135 		intel_gvt_mm_unreference(workload->shadow_mm);
1136 
1137 	kmem_cache_free(s->workloads, workload);
1138 }
1139 
1140 static struct intel_vgpu_workload *
1141 alloc_workload(struct intel_vgpu *vgpu)
1142 {
1143 	struct intel_vgpu_submission *s = &vgpu->submission;
1144 	struct intel_vgpu_workload *workload;
1145 
1146 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1147 	if (!workload)
1148 		return ERR_PTR(-ENOMEM);
1149 
1150 	INIT_LIST_HEAD(&workload->list);
1151 	INIT_LIST_HEAD(&workload->shadow_bb);
1152 
1153 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1154 	atomic_set(&workload->shadow_ctx_active, 0);
1155 
1156 	workload->status = -EINPROGRESS;
1157 	workload->shadowed = false;
1158 	workload->vgpu = vgpu;
1159 
1160 	return workload;
1161 }
1162 
1163 #define RING_CTX_OFF(x) \
1164 	offsetof(struct execlist_ring_context, x)
1165 
1166 static void read_guest_pdps(struct intel_vgpu *vgpu,
1167 		u64 ring_context_gpa, u32 pdp[8])
1168 {
1169 	u64 gpa;
1170 	int i;
1171 
1172 	gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
1173 
1174 	for (i = 0; i < 8; i++)
1175 		intel_gvt_hypervisor_read_gpa(vgpu,
1176 				gpa + i * 8, &pdp[7 - i], 4);
1177 }
1178 
1179 static int prepare_mm(struct intel_vgpu_workload *workload)
1180 {
1181 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1182 	struct intel_vgpu_mm *mm;
1183 	struct intel_vgpu *vgpu = workload->vgpu;
1184 	int page_table_level;
1185 	u32 pdp[8];
1186 
1187 	if (desc->addressing_mode == 1) { /* legacy 32-bit */
1188 		page_table_level = 3;
1189 	} else if (desc->addressing_mode == 3) { /* legacy 64 bit */
1190 		page_table_level = 4;
1191 	} else {
1192 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1193 		return -EINVAL;
1194 	}
1195 
1196 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, pdp);
1197 
1198 	mm = intel_vgpu_find_ppgtt_mm(workload->vgpu, page_table_level, pdp);
1199 	if (mm) {
1200 		intel_gvt_mm_reference(mm);
1201 	} else {
1202 
1203 		mm = intel_vgpu_create_mm(workload->vgpu, INTEL_GVT_MM_PPGTT,
1204 				pdp, page_table_level, 0);
1205 		if (IS_ERR(mm)) {
1206 			gvt_vgpu_err("fail to create mm object.\n");
1207 			return PTR_ERR(mm);
1208 		}
1209 	}
1210 	workload->shadow_mm = mm;
1211 	return 0;
1212 }
1213 
1214 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1215 		((a)->lrca == (b)->lrca))
1216 
1217 #define get_last_workload(q) \
1218 	(list_empty(q) ? NULL : container_of(q->prev, \
1219 	struct intel_vgpu_workload, list))
1220 /**
1221  * intel_vgpu_create_workload - create a vGPU workload
1222  * @vgpu: a vGPU
1223  * @desc: a guest context descriptor
1224  *
1225  * This function is called when creating a vGPU workload.
1226  *
1227  * Returns:
1228  * struct intel_vgpu_workload * on success, negative error code in
1229  * pointer if failed.
1230  *
1231  */
1232 struct intel_vgpu_workload *
1233 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1234 			   struct execlist_ctx_descriptor_format *desc)
1235 {
1236 	struct intel_vgpu_submission *s = &vgpu->submission;
1237 	struct list_head *q = workload_q_head(vgpu, ring_id);
1238 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1239 	struct intel_vgpu_workload *workload = NULL;
1240 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1241 	u64 ring_context_gpa;
1242 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1243 	int ret;
1244 
1245 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1246 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1247 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1248 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1249 		return ERR_PTR(-EINVAL);
1250 	}
1251 
1252 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1253 			RING_CTX_OFF(ring_header.val), &head, 4);
1254 
1255 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1256 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1257 
1258 	head &= RB_HEAD_OFF_MASK;
1259 	tail &= RB_TAIL_OFF_MASK;
1260 
1261 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1262 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1263 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1264 				last_workload->rb_tail);
1265 		/*
1266 		 * cannot use guest context head pointer here,
1267 		 * as it might not be updated at this time
1268 		 */
1269 		head = last_workload->rb_tail;
1270 	}
1271 
1272 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1273 
1274 	/* record some ring buffer register values for scan and shadow */
1275 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1276 			RING_CTX_OFF(rb_start.val), &start, 4);
1277 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1278 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1279 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1280 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1281 
1282 	workload = alloc_workload(vgpu);
1283 	if (IS_ERR(workload))
1284 		return workload;
1285 
1286 	workload->ring_id = ring_id;
1287 	workload->ctx_desc = *desc;
1288 	workload->ring_context_gpa = ring_context_gpa;
1289 	workload->rb_head = head;
1290 	workload->rb_tail = tail;
1291 	workload->rb_start = start;
1292 	workload->rb_ctl = ctl;
1293 
1294 	if (ring_id == RCS) {
1295 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1296 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1297 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1298 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1299 
1300 		workload->wa_ctx.indirect_ctx.guest_gma =
1301 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1302 		workload->wa_ctx.indirect_ctx.size =
1303 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1304 			CACHELINE_BYTES;
1305 		workload->wa_ctx.per_ctx.guest_gma =
1306 			per_ctx & PER_CTX_ADDR_MASK;
1307 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1308 	}
1309 
1310 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1311 			workload, ring_id, head, tail, start, ctl);
1312 
1313 	ret = prepare_mm(workload);
1314 	if (ret) {
1315 		kmem_cache_free(s->workloads, workload);
1316 		return ERR_PTR(ret);
1317 	}
1318 
1319 	/* Only scan and shadow the first workload in the queue
1320 	 * as there is only one pre-allocated buf-obj for shadow.
1321 	 */
1322 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1323 		intel_runtime_pm_get(dev_priv);
1324 		mutex_lock(&dev_priv->drm.struct_mutex);
1325 		ret = intel_gvt_scan_and_shadow_workload(workload);
1326 		mutex_unlock(&dev_priv->drm.struct_mutex);
1327 		intel_runtime_pm_put(dev_priv);
1328 	}
1329 
1330 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1331 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1332 		intel_vgpu_destroy_workload(workload);
1333 		return ERR_PTR(ret);
1334 	}
1335 
1336 	return workload;
1337 }
1338 
1339 /**
1340  * intel_vgpu_queue_workload - Qeue a vGPU workload
1341  * @workload: the workload to queue in
1342  */
1343 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1344 {
1345 	list_add_tail(&workload->list,
1346 		workload_q_head(workload->vgpu, workload->ring_id));
1347 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1348 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1349 }
1350