xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 323dd2c3)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41 #include "gt/intel_ring.h"
42 
43 #include "i915_drv.h"
44 #include "gvt.h"
45 
46 #define RING_CTX_OFF(x) \
47 	offsetof(struct execlist_ring_context, x)
48 
49 static void set_context_pdp_root_pointer(
50 		struct execlist_ring_context *ring_context,
51 		u32 pdp[8])
52 {
53 	int i;
54 
55 	for (i = 0; i < 8; i++)
56 		ring_context->pdps[i].val = pdp[7 - i];
57 }
58 
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 	struct drm_i915_gem_object *ctx_obj =
62 		workload->req->hw_context->state->obj;
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct page *page;
65 
66 	if (WARN_ON(!workload->shadow_mm))
67 		return;
68 
69 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70 		return;
71 
72 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73 	shadow_ring_context = kmap(page);
74 	set_context_pdp_root_pointer(shadow_ring_context,
75 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76 	kunmap(page);
77 }
78 
79 /*
80  * when populating shadow ctx from guest, we should not overrride oa related
81  * registers, so that they will not be overlapped by guest oa configs. Thus
82  * made it possible to capture oa data from host for both host and guests.
83  */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85 		u32 *reg_state, bool save)
86 {
87 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
88 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90 	int i = 0;
91 	u32 flex_mmio[] = {
92 		i915_mmio_reg_offset(EU_PERF_CNTL0),
93 		i915_mmio_reg_offset(EU_PERF_CNTL1),
94 		i915_mmio_reg_offset(EU_PERF_CNTL2),
95 		i915_mmio_reg_offset(EU_PERF_CNTL3),
96 		i915_mmio_reg_offset(EU_PERF_CNTL4),
97 		i915_mmio_reg_offset(EU_PERF_CNTL5),
98 		i915_mmio_reg_offset(EU_PERF_CNTL6),
99 	};
100 
101 	if (workload->ring_id != RCS0)
102 		return;
103 
104 	if (save) {
105 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106 
107 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108 			u32 state_offset = ctx_flexeu0 + i * 2;
109 
110 			workload->flex_mmio[i] = reg_state[state_offset + 1];
111 		}
112 	} else {
113 		reg_state[ctx_oactxctrl] =
114 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116 
117 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118 			u32 state_offset = ctx_flexeu0 + i * 2;
119 			u32 mmio = flex_mmio[i];
120 
121 			reg_state[state_offset] = mmio;
122 			reg_state[state_offset + 1] = workload->flex_mmio[i];
123 		}
124 	}
125 }
126 
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129 	struct intel_vgpu *vgpu = workload->vgpu;
130 	struct intel_gvt *gvt = vgpu->gvt;
131 	int ring_id = workload->ring_id;
132 	struct drm_i915_gem_object *ctx_obj =
133 		workload->req->hw_context->state->obj;
134 	struct execlist_ring_context *shadow_ring_context;
135 	struct page *page;
136 	void *dst;
137 	unsigned long context_gpa, context_page_num;
138 	int i;
139 
140 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
141 	shadow_ring_context = kmap(page);
142 
143 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
144 #define COPY_REG(name) \
145 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
146 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
147 #define COPY_REG_MASKED(name) {\
148 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149 					      + RING_CTX_OFF(name.val),\
150 					      &shadow_ring_context->name.val, 4);\
151 		shadow_ring_context->name.val |= 0xffff << 16;\
152 	}
153 
154 	COPY_REG_MASKED(ctx_ctrl);
155 	COPY_REG(ctx_timestamp);
156 
157 	if (ring_id == RCS0) {
158 		COPY_REG(bb_per_ctx_ptr);
159 		COPY_REG(rcs_indirect_ctx);
160 		COPY_REG(rcs_indirect_ctx_offset);
161 	}
162 #undef COPY_REG
163 #undef COPY_REG_MASKED
164 
165 	intel_gvt_hypervisor_read_gpa(vgpu,
166 			workload->ring_context_gpa +
167 			sizeof(*shadow_ring_context),
168 			(void *)shadow_ring_context +
169 			sizeof(*shadow_ring_context),
170 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
171 
172 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
173 	kunmap(page);
174 
175 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
176 		return 0;
177 
178 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
179 			workload->ctx_desc.lrca);
180 
181 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
182 
183 	context_page_num = context_page_num >> PAGE_SHIFT;
184 
185 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
186 		context_page_num = 19;
187 
188 	i = 2;
189 	while (i < context_page_num) {
190 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
191 				(u32)((workload->ctx_desc.lrca + i) <<
192 				I915_GTT_PAGE_SHIFT));
193 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
194 			gvt_vgpu_err("Invalid guest context descriptor\n");
195 			return -EFAULT;
196 		}
197 
198 		page = i915_gem_object_get_page(ctx_obj, i);
199 		dst = kmap(page);
200 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
201 				I915_GTT_PAGE_SIZE);
202 		kunmap(page);
203 		i++;
204 	}
205 	return 0;
206 }
207 
208 static inline bool is_gvt_request(struct i915_request *req)
209 {
210 	return i915_gem_context_force_single_submission(req->gem_context);
211 }
212 
213 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
214 {
215 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
216 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
217 	i915_reg_t reg;
218 
219 	reg = RING_INSTDONE(ring_base);
220 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
221 	reg = RING_ACTHD(ring_base);
222 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
223 	reg = RING_ACTHD_UDW(ring_base);
224 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
225 }
226 
227 static int shadow_context_status_change(struct notifier_block *nb,
228 		unsigned long action, void *data)
229 {
230 	struct i915_request *req = data;
231 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
232 				shadow_ctx_notifier_block[req->engine->id]);
233 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
234 	enum intel_engine_id ring_id = req->engine->id;
235 	struct intel_vgpu_workload *workload;
236 	unsigned long flags;
237 
238 	if (!is_gvt_request(req)) {
239 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
240 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
241 		    scheduler->engine_owner[ring_id]) {
242 			/* Switch ring from vGPU to host. */
243 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
244 					      NULL, ring_id);
245 			scheduler->engine_owner[ring_id] = NULL;
246 		}
247 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
248 
249 		return NOTIFY_OK;
250 	}
251 
252 	workload = scheduler->current_workload[ring_id];
253 	if (unlikely(!workload))
254 		return NOTIFY_OK;
255 
256 	switch (action) {
257 	case INTEL_CONTEXT_SCHEDULE_IN:
258 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
259 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
260 			/* Switch ring from host to vGPU or vGPU to vGPU. */
261 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
262 					      workload->vgpu, ring_id);
263 			scheduler->engine_owner[ring_id] = workload->vgpu;
264 		} else
265 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
266 				      ring_id, workload->vgpu->id);
267 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
268 		atomic_set(&workload->shadow_ctx_active, 1);
269 		break;
270 	case INTEL_CONTEXT_SCHEDULE_OUT:
271 		save_ring_hw_state(workload->vgpu, ring_id);
272 		atomic_set(&workload->shadow_ctx_active, 0);
273 		break;
274 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
275 		save_ring_hw_state(workload->vgpu, ring_id);
276 		break;
277 	default:
278 		WARN_ON(1);
279 		return NOTIFY_OK;
280 	}
281 	wake_up(&workload->shadow_ctx_status_wq);
282 	return NOTIFY_OK;
283 }
284 
285 static void
286 shadow_context_descriptor_update(struct intel_context *ce,
287 				 struct intel_vgpu_workload *workload)
288 {
289 	u64 desc = ce->lrc_desc;
290 
291 	/*
292 	 * Update bits 0-11 of the context descriptor which includes flags
293 	 * like GEN8_CTX_* cached in desc_template
294 	 */
295 	desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
296 	desc |= workload->ctx_desc.addressing_mode <<
297 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
298 
299 	ce->lrc_desc = desc;
300 }
301 
302 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
303 {
304 	struct intel_vgpu *vgpu = workload->vgpu;
305 	struct i915_request *req = workload->req;
306 	void *shadow_ring_buffer_va;
307 	u32 *cs;
308 	int err;
309 
310 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
311 		intel_vgpu_restore_inhibit_context(vgpu, req);
312 
313 	/*
314 	 * To track whether a request has started on HW, we can emit a
315 	 * breadcrumb at the beginning of the request and check its
316 	 * timeline's HWSP to see if the breadcrumb has advanced past the
317 	 * start of this request. Actually, the request must have the
318 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
319 	 * scheduler might get a wrong state of it during reset. Since the
320 	 * requests from gvt always set the has_init_breadcrumb flag, here
321 	 * need to do the emit_init_breadcrumb for all the requests.
322 	 */
323 	if (req->engine->emit_init_breadcrumb) {
324 		err = req->engine->emit_init_breadcrumb(req);
325 		if (err) {
326 			gvt_vgpu_err("fail to emit init breadcrumb\n");
327 			return err;
328 		}
329 	}
330 
331 	/* allocate shadow ring buffer */
332 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
333 	if (IS_ERR(cs)) {
334 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
335 			workload->rb_len);
336 		return PTR_ERR(cs);
337 	}
338 
339 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
340 
341 	/* get shadow ring buffer va */
342 	workload->shadow_ring_buffer_va = cs;
343 
344 	memcpy(cs, shadow_ring_buffer_va,
345 			workload->rb_len);
346 
347 	cs += workload->rb_len / sizeof(u32);
348 	intel_ring_advance(workload->req, cs);
349 
350 	return 0;
351 }
352 
353 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
354 {
355 	if (!wa_ctx->indirect_ctx.obj)
356 		return;
357 
358 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
359 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
360 
361 	wa_ctx->indirect_ctx.obj = NULL;
362 	wa_ctx->indirect_ctx.shadow_va = NULL;
363 }
364 
365 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
366 					  struct i915_gem_context *ctx)
367 {
368 	struct intel_vgpu_mm *mm = workload->shadow_mm;
369 	struct i915_ppgtt *ppgtt =
370 		i915_vm_to_ppgtt(i915_gem_context_get_vm_rcu(ctx));
371 	int i = 0;
372 
373 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
374 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
375 	} else {
376 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
377 			struct i915_page_directory * const pd =
378 				i915_pd_entry(ppgtt->pd, i);
379 
380 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
381 		}
382 	}
383 
384 	i915_vm_put(&ppgtt->vm);
385 }
386 
387 static int
388 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
389 {
390 	struct intel_vgpu *vgpu = workload->vgpu;
391 	struct intel_vgpu_submission *s = &vgpu->submission;
392 	struct i915_request *rq;
393 
394 	if (workload->req)
395 		return 0;
396 
397 	rq = i915_request_create(s->shadow[workload->ring_id]);
398 	if (IS_ERR(rq)) {
399 		gvt_vgpu_err("fail to allocate gem request\n");
400 		return PTR_ERR(rq);
401 	}
402 
403 	workload->req = i915_request_get(rq);
404 	return 0;
405 }
406 
407 /**
408  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
409  * shadow it as well, include ringbuffer,wa_ctx and ctx.
410  * @workload: an abstract entity for each execlist submission.
411  *
412  * This function is called before the workload submitting to i915, to make
413  * sure the content of the workload is valid.
414  */
415 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
416 {
417 	struct intel_vgpu *vgpu = workload->vgpu;
418 	struct intel_vgpu_submission *s = &vgpu->submission;
419 	int ret;
420 
421 	lockdep_assert_held(&vgpu->vgpu_lock);
422 
423 	if (workload->shadow)
424 		return 0;
425 
426 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
427 		shadow_context_descriptor_update(s->shadow[workload->ring_id],
428 						 workload);
429 
430 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
431 	if (ret)
432 		return ret;
433 
434 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
435 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
436 		if (ret)
437 			goto err_shadow;
438 	}
439 
440 	workload->shadow = true;
441 	return 0;
442 err_shadow:
443 	release_shadow_wa_ctx(&workload->wa_ctx);
444 	return ret;
445 }
446 
447 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
448 
449 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
450 {
451 	struct intel_gvt *gvt = workload->vgpu->gvt;
452 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
453 	struct intel_vgpu_shadow_bb *bb;
454 	int ret;
455 
456 	list_for_each_entry(bb, &workload->shadow_bb, list) {
457 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
458 		 * is only updated into ring_scan_buffer, not real ring address
459 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
460 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
461 		 * in copy_workload_to_ring_buffer.
462 		 */
463 
464 		if (bb->bb_offset)
465 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
466 				+ bb->bb_offset;
467 
468 		if (bb->ppgtt) {
469 			/* for non-priv bb, scan&shadow is only for
470 			 * debugging purpose, so the content of shadow bb
471 			 * is the same as original bb. Therefore,
472 			 * here, rather than switch to shadow bb's gma
473 			 * address, we directly use original batch buffer's
474 			 * gma address, and send original bb to hardware
475 			 * directly
476 			 */
477 			if (bb->clflush & CLFLUSH_AFTER) {
478 				drm_clflush_virt_range(bb->va,
479 						bb->obj->base.size);
480 				bb->clflush &= ~CLFLUSH_AFTER;
481 			}
482 			i915_gem_object_finish_access(bb->obj);
483 			bb->accessing = false;
484 
485 		} else {
486 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
487 					NULL, 0, 0, 0);
488 			if (IS_ERR(bb->vma)) {
489 				ret = PTR_ERR(bb->vma);
490 				goto err;
491 			}
492 
493 			/* relocate shadow batch buffer */
494 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
495 			if (gmadr_bytes == 8)
496 				bb->bb_start_cmd_va[2] = 0;
497 
498 			/* No one is going to touch shadow bb from now on. */
499 			if (bb->clflush & CLFLUSH_AFTER) {
500 				drm_clflush_virt_range(bb->va,
501 						bb->obj->base.size);
502 				bb->clflush &= ~CLFLUSH_AFTER;
503 			}
504 
505 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
506 								false);
507 			if (ret)
508 				goto err;
509 
510 			ret = i915_vma_move_to_active(bb->vma,
511 						      workload->req,
512 						      0);
513 			if (ret)
514 				goto err;
515 
516 			i915_gem_object_finish_access(bb->obj);
517 			bb->accessing = false;
518 		}
519 	}
520 	return 0;
521 err:
522 	release_shadow_batch_buffer(workload);
523 	return ret;
524 }
525 
526 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
527 {
528 	struct intel_vgpu_workload *workload =
529 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
530 	struct i915_request *rq = workload->req;
531 	struct execlist_ring_context *shadow_ring_context =
532 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
533 
534 	shadow_ring_context->bb_per_ctx_ptr.val =
535 		(shadow_ring_context->bb_per_ctx_ptr.val &
536 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
537 	shadow_ring_context->rcs_indirect_ctx.val =
538 		(shadow_ring_context->rcs_indirect_ctx.val &
539 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
540 }
541 
542 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
543 {
544 	struct i915_vma *vma;
545 	unsigned char *per_ctx_va =
546 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
547 		wa_ctx->indirect_ctx.size;
548 
549 	if (wa_ctx->indirect_ctx.size == 0)
550 		return 0;
551 
552 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
553 				       0, CACHELINE_BYTES, 0);
554 	if (IS_ERR(vma))
555 		return PTR_ERR(vma);
556 
557 	/* FIXME: we are not tracking our pinned VMA leaving it
558 	 * up to the core to fix up the stray pin_count upon
559 	 * free.
560 	 */
561 
562 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
563 
564 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
565 	memset(per_ctx_va, 0, CACHELINE_BYTES);
566 
567 	update_wa_ctx_2_shadow_ctx(wa_ctx);
568 	return 0;
569 }
570 
571 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
572 {
573 	struct intel_vgpu *vgpu = workload->vgpu;
574 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
575 	u32 ring_base;
576 
577 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
578 	vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start;
579 }
580 
581 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
582 {
583 	struct intel_vgpu_shadow_bb *bb, *pos;
584 
585 	if (list_empty(&workload->shadow_bb))
586 		return;
587 
588 	bb = list_first_entry(&workload->shadow_bb,
589 			struct intel_vgpu_shadow_bb, list);
590 
591 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
592 		if (bb->obj) {
593 			if (bb->accessing)
594 				i915_gem_object_finish_access(bb->obj);
595 
596 			if (bb->va && !IS_ERR(bb->va))
597 				i915_gem_object_unpin_map(bb->obj);
598 
599 			if (bb->vma && !IS_ERR(bb->vma)) {
600 				i915_vma_unpin(bb->vma);
601 				i915_vma_close(bb->vma);
602 			}
603 			i915_gem_object_put(bb->obj);
604 		}
605 		list_del(&bb->list);
606 		kfree(bb);
607 	}
608 }
609 
610 static int prepare_workload(struct intel_vgpu_workload *workload)
611 {
612 	struct intel_vgpu *vgpu = workload->vgpu;
613 	struct intel_vgpu_submission *s = &vgpu->submission;
614 	int ring = workload->ring_id;
615 	int ret = 0;
616 
617 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
618 	if (ret) {
619 		gvt_vgpu_err("fail to vgpu pin mm\n");
620 		return ret;
621 	}
622 
623 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
624 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
625 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
626 		return -EINVAL;
627 	}
628 
629 	update_shadow_pdps(workload);
630 
631 	set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context);
632 
633 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
634 	if (ret) {
635 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
636 		goto err_unpin_mm;
637 	}
638 
639 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
640 	if (ret) {
641 		gvt_vgpu_err("fail to flush post shadow\n");
642 		goto err_unpin_mm;
643 	}
644 
645 	ret = copy_workload_to_ring_buffer(workload);
646 	if (ret) {
647 		gvt_vgpu_err("fail to generate request\n");
648 		goto err_unpin_mm;
649 	}
650 
651 	ret = prepare_shadow_batch_buffer(workload);
652 	if (ret) {
653 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
654 		goto err_unpin_mm;
655 	}
656 
657 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
658 	if (ret) {
659 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
660 		goto err_shadow_batch;
661 	}
662 
663 	if (workload->prepare) {
664 		ret = workload->prepare(workload);
665 		if (ret)
666 			goto err_shadow_wa_ctx;
667 	}
668 
669 	return 0;
670 err_shadow_wa_ctx:
671 	release_shadow_wa_ctx(&workload->wa_ctx);
672 err_shadow_batch:
673 	release_shadow_batch_buffer(workload);
674 err_unpin_mm:
675 	intel_vgpu_unpin_mm(workload->shadow_mm);
676 	return ret;
677 }
678 
679 static int dispatch_workload(struct intel_vgpu_workload *workload)
680 {
681 	struct intel_vgpu *vgpu = workload->vgpu;
682 	struct i915_request *rq;
683 	int ring_id = workload->ring_id;
684 	int ret;
685 
686 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
687 		ring_id, workload);
688 
689 	mutex_lock(&vgpu->vgpu_lock);
690 
691 	ret = intel_gvt_workload_req_alloc(workload);
692 	if (ret)
693 		goto err_req;
694 
695 	ret = intel_gvt_scan_and_shadow_workload(workload);
696 	if (ret)
697 		goto out;
698 
699 	ret = populate_shadow_context(workload);
700 	if (ret) {
701 		release_shadow_wa_ctx(&workload->wa_ctx);
702 		goto out;
703 	}
704 
705 	ret = prepare_workload(workload);
706 out:
707 	if (ret) {
708 		/* We might still need to add request with
709 		 * clean ctx to retire it properly..
710 		 */
711 		rq = fetch_and_zero(&workload->req);
712 		i915_request_put(rq);
713 	}
714 
715 	if (!IS_ERR_OR_NULL(workload->req)) {
716 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
717 				ring_id, workload->req);
718 		i915_request_add(workload->req);
719 		workload->dispatched = true;
720 	}
721 err_req:
722 	if (ret)
723 		workload->status = ret;
724 	mutex_unlock(&vgpu->vgpu_lock);
725 	return ret;
726 }
727 
728 static struct intel_vgpu_workload *pick_next_workload(
729 		struct intel_gvt *gvt, int ring_id)
730 {
731 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
732 	struct intel_vgpu_workload *workload = NULL;
733 
734 	mutex_lock(&gvt->sched_lock);
735 
736 	/*
737 	 * no current vgpu / will be scheduled out / no workload
738 	 * bail out
739 	 */
740 	if (!scheduler->current_vgpu) {
741 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
742 		goto out;
743 	}
744 
745 	if (scheduler->need_reschedule) {
746 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
747 		goto out;
748 	}
749 
750 	if (!scheduler->current_vgpu->active ||
751 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
752 		goto out;
753 
754 	/*
755 	 * still have current workload, maybe the workload disptacher
756 	 * fail to submit it for some reason, resubmit it.
757 	 */
758 	if (scheduler->current_workload[ring_id]) {
759 		workload = scheduler->current_workload[ring_id];
760 		gvt_dbg_sched("ring id %d still have current workload %p\n",
761 				ring_id, workload);
762 		goto out;
763 	}
764 
765 	/*
766 	 * pick a workload as current workload
767 	 * once current workload is set, schedule policy routines
768 	 * will wait the current workload is finished when trying to
769 	 * schedule out a vgpu.
770 	 */
771 	scheduler->current_workload[ring_id] = container_of(
772 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
773 			struct intel_vgpu_workload, list);
774 
775 	workload = scheduler->current_workload[ring_id];
776 
777 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
778 
779 	atomic_inc(&workload->vgpu->submission.running_workload_num);
780 out:
781 	mutex_unlock(&gvt->sched_lock);
782 	return workload;
783 }
784 
785 static void update_guest_context(struct intel_vgpu_workload *workload)
786 {
787 	struct i915_request *rq = workload->req;
788 	struct intel_vgpu *vgpu = workload->vgpu;
789 	struct intel_gvt *gvt = vgpu->gvt;
790 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
791 	struct execlist_ring_context *shadow_ring_context;
792 	struct page *page;
793 	void *src;
794 	unsigned long context_gpa, context_page_num;
795 	int i;
796 	struct drm_i915_private *dev_priv = gvt->dev_priv;
797 	u32 ring_base;
798 	u32 head, tail;
799 	u16 wrap_count;
800 
801 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
802 		      workload->ctx_desc.lrca);
803 
804 	head = workload->rb_head;
805 	tail = workload->rb_tail;
806 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
807 
808 	if (tail < head) {
809 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
810 			wrap_count = 0;
811 		else
812 			wrap_count += 1;
813 	}
814 
815 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
816 
817 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
818 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
819 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
820 
821 	context_page_num = rq->engine->context_size;
822 	context_page_num = context_page_num >> PAGE_SHIFT;
823 
824 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
825 		context_page_num = 19;
826 
827 	i = 2;
828 
829 	while (i < context_page_num) {
830 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
831 				(u32)((workload->ctx_desc.lrca + i) <<
832 					I915_GTT_PAGE_SHIFT));
833 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
834 			gvt_vgpu_err("invalid guest context descriptor\n");
835 			return;
836 		}
837 
838 		page = i915_gem_object_get_page(ctx_obj, i);
839 		src = kmap(page);
840 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
841 				I915_GTT_PAGE_SIZE);
842 		kunmap(page);
843 		i++;
844 	}
845 
846 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
847 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
848 
849 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
850 	shadow_ring_context = kmap(page);
851 
852 #define COPY_REG(name) \
853 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
854 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
855 
856 	COPY_REG(ctx_ctrl);
857 	COPY_REG(ctx_timestamp);
858 
859 #undef COPY_REG
860 
861 	intel_gvt_hypervisor_write_gpa(vgpu,
862 			workload->ring_context_gpa +
863 			sizeof(*shadow_ring_context),
864 			(void *)shadow_ring_context +
865 			sizeof(*shadow_ring_context),
866 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
867 
868 	kunmap(page);
869 }
870 
871 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
872 				intel_engine_mask_t engine_mask)
873 {
874 	struct intel_vgpu_submission *s = &vgpu->submission;
875 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
876 	struct intel_engine_cs *engine;
877 	struct intel_vgpu_workload *pos, *n;
878 	intel_engine_mask_t tmp;
879 
880 	/* free the unsubmited workloads in the queues. */
881 	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
882 		list_for_each_entry_safe(pos, n,
883 			&s->workload_q_head[engine->id], list) {
884 			list_del_init(&pos->list);
885 			intel_vgpu_destroy_workload(pos);
886 		}
887 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
888 	}
889 }
890 
891 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
892 {
893 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
894 	struct intel_vgpu_workload *workload =
895 		scheduler->current_workload[ring_id];
896 	struct intel_vgpu *vgpu = workload->vgpu;
897 	struct intel_vgpu_submission *s = &vgpu->submission;
898 	struct i915_request *rq = workload->req;
899 	int event;
900 
901 	mutex_lock(&vgpu->vgpu_lock);
902 	mutex_lock(&gvt->sched_lock);
903 
904 	/* For the workload w/ request, needs to wait for the context
905 	 * switch to make sure request is completed.
906 	 * For the workload w/o request, directly complete the workload.
907 	 */
908 	if (rq) {
909 		wait_event(workload->shadow_ctx_status_wq,
910 			   !atomic_read(&workload->shadow_ctx_active));
911 
912 		/* If this request caused GPU hang, req->fence.error will
913 		 * be set to -EIO. Use -EIO to set workload status so
914 		 * that when this request caused GPU hang, didn't trigger
915 		 * context switch interrupt to guest.
916 		 */
917 		if (likely(workload->status == -EINPROGRESS)) {
918 			if (workload->req->fence.error == -EIO)
919 				workload->status = -EIO;
920 			else
921 				workload->status = 0;
922 		}
923 
924 		if (!workload->status &&
925 		    !(vgpu->resetting_eng & BIT(ring_id))) {
926 			update_guest_context(workload);
927 
928 			for_each_set_bit(event, workload->pending_events,
929 					 INTEL_GVT_EVENT_MAX)
930 				intel_vgpu_trigger_virtual_event(vgpu, event);
931 		}
932 
933 		i915_request_put(fetch_and_zero(&workload->req));
934 	}
935 
936 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
937 			ring_id, workload, workload->status);
938 
939 	scheduler->current_workload[ring_id] = NULL;
940 
941 	list_del_init(&workload->list);
942 
943 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
944 		/* if workload->status is not successful means HW GPU
945 		 * has occurred GPU hang or something wrong with i915/GVT,
946 		 * and GVT won't inject context switch interrupt to guest.
947 		 * So this error is a vGPU hang actually to the guest.
948 		 * According to this we should emunlate a vGPU hang. If
949 		 * there are pending workloads which are already submitted
950 		 * from guest, we should clean them up like HW GPU does.
951 		 *
952 		 * if it is in middle of engine resetting, the pending
953 		 * workloads won't be submitted to HW GPU and will be
954 		 * cleaned up during the resetting process later, so doing
955 		 * the workload clean up here doesn't have any impact.
956 		 **/
957 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
958 	}
959 
960 	workload->complete(workload);
961 
962 	atomic_dec(&s->running_workload_num);
963 	wake_up(&scheduler->workload_complete_wq);
964 
965 	if (gvt->scheduler.need_reschedule)
966 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
967 
968 	mutex_unlock(&gvt->sched_lock);
969 	mutex_unlock(&vgpu->vgpu_lock);
970 }
971 
972 struct workload_thread_param {
973 	struct intel_gvt *gvt;
974 	int ring_id;
975 };
976 
977 static int workload_thread(void *priv)
978 {
979 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
980 	struct intel_gvt *gvt = p->gvt;
981 	int ring_id = p->ring_id;
982 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
983 	struct intel_vgpu_workload *workload = NULL;
984 	struct intel_vgpu *vgpu = NULL;
985 	int ret;
986 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
987 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
988 	struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
989 
990 	kfree(p);
991 
992 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
993 
994 	while (!kthread_should_stop()) {
995 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
996 		do {
997 			workload = pick_next_workload(gvt, ring_id);
998 			if (workload)
999 				break;
1000 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1001 				   MAX_SCHEDULE_TIMEOUT);
1002 		} while (!kthread_should_stop());
1003 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1004 
1005 		if (!workload)
1006 			break;
1007 
1008 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1009 				workload->ring_id, workload,
1010 				workload->vgpu->id);
1011 
1012 		intel_runtime_pm_get(rpm);
1013 
1014 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1015 				workload->ring_id, workload);
1016 
1017 		if (need_force_wake)
1018 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1019 					FORCEWAKE_ALL);
1020 		/*
1021 		 * Update the vReg of the vGPU which submitted this
1022 		 * workload. The vGPU may use these registers for checking
1023 		 * the context state. The value comes from GPU commands
1024 		 * in this workload.
1025 		 */
1026 		update_vreg_in_ctx(workload);
1027 
1028 		ret = dispatch_workload(workload);
1029 
1030 		if (ret) {
1031 			vgpu = workload->vgpu;
1032 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1033 			goto complete;
1034 		}
1035 
1036 		gvt_dbg_sched("ring id %d wait workload %p\n",
1037 				workload->ring_id, workload);
1038 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1039 
1040 complete:
1041 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1042 				workload, workload->status);
1043 
1044 		complete_current_workload(gvt, ring_id);
1045 
1046 		if (need_force_wake)
1047 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1048 					FORCEWAKE_ALL);
1049 
1050 		intel_runtime_pm_put_unchecked(rpm);
1051 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1052 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1053 	}
1054 	return 0;
1055 }
1056 
1057 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1058 {
1059 	struct intel_vgpu_submission *s = &vgpu->submission;
1060 	struct intel_gvt *gvt = vgpu->gvt;
1061 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1062 
1063 	if (atomic_read(&s->running_workload_num)) {
1064 		gvt_dbg_sched("wait vgpu idle\n");
1065 
1066 		wait_event(scheduler->workload_complete_wq,
1067 				!atomic_read(&s->running_workload_num));
1068 	}
1069 }
1070 
1071 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1072 {
1073 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1074 	struct intel_engine_cs *engine;
1075 	enum intel_engine_id i;
1076 
1077 	gvt_dbg_core("clean workload scheduler\n");
1078 
1079 	for_each_engine(engine, gvt->dev_priv, i) {
1080 		atomic_notifier_chain_unregister(
1081 					&engine->context_status_notifier,
1082 					&gvt->shadow_ctx_notifier_block[i]);
1083 		kthread_stop(scheduler->thread[i]);
1084 	}
1085 }
1086 
1087 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1088 {
1089 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1090 	struct workload_thread_param *param = NULL;
1091 	struct intel_engine_cs *engine;
1092 	enum intel_engine_id i;
1093 	int ret;
1094 
1095 	gvt_dbg_core("init workload scheduler\n");
1096 
1097 	init_waitqueue_head(&scheduler->workload_complete_wq);
1098 
1099 	for_each_engine(engine, gvt->dev_priv, i) {
1100 		init_waitqueue_head(&scheduler->waitq[i]);
1101 
1102 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1103 		if (!param) {
1104 			ret = -ENOMEM;
1105 			goto err;
1106 		}
1107 
1108 		param->gvt = gvt;
1109 		param->ring_id = i;
1110 
1111 		scheduler->thread[i] = kthread_run(workload_thread, param,
1112 			"gvt workload %d", i);
1113 		if (IS_ERR(scheduler->thread[i])) {
1114 			gvt_err("fail to create workload thread\n");
1115 			ret = PTR_ERR(scheduler->thread[i]);
1116 			goto err;
1117 		}
1118 
1119 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1120 					shadow_context_status_change;
1121 		atomic_notifier_chain_register(&engine->context_status_notifier,
1122 					&gvt->shadow_ctx_notifier_block[i]);
1123 	}
1124 	return 0;
1125 err:
1126 	intel_gvt_clean_workload_scheduler(gvt);
1127 	kfree(param);
1128 	param = NULL;
1129 	return ret;
1130 }
1131 
1132 static void
1133 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1134 				struct i915_ppgtt *ppgtt)
1135 {
1136 	int i;
1137 
1138 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1139 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1140 	} else {
1141 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1142 			struct i915_page_directory * const pd =
1143 				i915_pd_entry(ppgtt->pd, i);
1144 
1145 			px_dma(pd) = s->i915_context_pdps[i];
1146 		}
1147 	}
1148 }
1149 
1150 /**
1151  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1152  * @vgpu: a vGPU
1153  *
1154  * This function is called when a vGPU is being destroyed.
1155  *
1156  */
1157 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1158 {
1159 	struct intel_vgpu_submission *s = &vgpu->submission;
1160 	struct intel_engine_cs *engine;
1161 	enum intel_engine_id id;
1162 
1163 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1164 
1165 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1166 	for_each_engine(engine, vgpu->gvt->dev_priv, id)
1167 		intel_context_unpin(s->shadow[id]);
1168 
1169 	kmem_cache_destroy(s->workloads);
1170 }
1171 
1172 
1173 /**
1174  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1175  * @vgpu: a vGPU
1176  * @engine_mask: engines expected to be reset
1177  *
1178  * This function is called when a vGPU is being destroyed.
1179  *
1180  */
1181 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1182 				 intel_engine_mask_t engine_mask)
1183 {
1184 	struct intel_vgpu_submission *s = &vgpu->submission;
1185 
1186 	if (!s->active)
1187 		return;
1188 
1189 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1190 	s->ops->reset(vgpu, engine_mask);
1191 }
1192 
1193 static void
1194 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1195 			     struct i915_ppgtt *ppgtt)
1196 {
1197 	int i;
1198 
1199 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1200 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1201 	} else {
1202 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1203 			struct i915_page_directory * const pd =
1204 				i915_pd_entry(ppgtt->pd, i);
1205 
1206 			s->i915_context_pdps[i] = px_dma(pd);
1207 		}
1208 	}
1209 }
1210 
1211 /**
1212  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1213  * @vgpu: a vGPU
1214  *
1215  * This function is called when a vGPU is being created.
1216  *
1217  * Returns:
1218  * Zero on success, negative error code if failed.
1219  *
1220  */
1221 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1222 {
1223 	struct drm_i915_private *i915 = vgpu->gvt->dev_priv;
1224 	struct intel_vgpu_submission *s = &vgpu->submission;
1225 	struct intel_engine_cs *engine;
1226 	struct i915_gem_context *ctx;
1227 	struct i915_ppgtt *ppgtt;
1228 	enum intel_engine_id i;
1229 	int ret;
1230 
1231 	ctx = i915_gem_context_create_kernel(i915, I915_PRIORITY_MAX);
1232 	if (IS_ERR(ctx))
1233 		return PTR_ERR(ctx);
1234 
1235 	i915_gem_context_set_force_single_submission(ctx);
1236 
1237 	ppgtt = i915_vm_to_ppgtt(i915_gem_context_get_vm_rcu(ctx));
1238 	i915_context_ppgtt_root_save(s, ppgtt);
1239 
1240 	for_each_engine(engine, i915, i) {
1241 		struct intel_context *ce;
1242 
1243 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1244 		s->shadow[i] = ERR_PTR(-EINVAL);
1245 
1246 		ce = intel_context_create(ctx, engine);
1247 		if (IS_ERR(ce)) {
1248 			ret = PTR_ERR(ce);
1249 			goto out_shadow_ctx;
1250 		}
1251 
1252 		if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1253 			const unsigned int ring_size = 512 * SZ_4K;
1254 
1255 			ce->ring = __intel_context_ring_size(ring_size);
1256 		}
1257 
1258 		ret = intel_context_pin(ce);
1259 		intel_context_put(ce);
1260 		if (ret)
1261 			goto out_shadow_ctx;
1262 
1263 		s->shadow[i] = ce;
1264 	}
1265 
1266 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1267 
1268 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1269 						  sizeof(struct intel_vgpu_workload), 0,
1270 						  SLAB_HWCACHE_ALIGN,
1271 						  offsetof(struct intel_vgpu_workload, rb_tail),
1272 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1273 						  NULL);
1274 
1275 	if (!s->workloads) {
1276 		ret = -ENOMEM;
1277 		goto out_shadow_ctx;
1278 	}
1279 
1280 	atomic_set(&s->running_workload_num, 0);
1281 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1282 
1283 	i915_vm_put(&ppgtt->vm);
1284 	i915_gem_context_put(ctx);
1285 	return 0;
1286 
1287 out_shadow_ctx:
1288 	i915_context_ppgtt_root_restore(s, ppgtt);
1289 	for_each_engine(engine, i915, i) {
1290 		if (IS_ERR(s->shadow[i]))
1291 			break;
1292 
1293 		intel_context_unpin(s->shadow[i]);
1294 		intel_context_put(s->shadow[i]);
1295 	}
1296 	i915_vm_put(&ppgtt->vm);
1297 	i915_gem_context_put(ctx);
1298 	return ret;
1299 }
1300 
1301 /**
1302  * intel_vgpu_select_submission_ops - select virtual submission interface
1303  * @vgpu: a vGPU
1304  * @engine_mask: either ALL_ENGINES or target engine mask
1305  * @interface: expected vGPU virtual submission interface
1306  *
1307  * This function is called when guest configures submission interface.
1308  *
1309  * Returns:
1310  * Zero on success, negative error code if failed.
1311  *
1312  */
1313 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1314 				     intel_engine_mask_t engine_mask,
1315 				     unsigned int interface)
1316 {
1317 	struct intel_vgpu_submission *s = &vgpu->submission;
1318 	const struct intel_vgpu_submission_ops *ops[] = {
1319 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1320 			&intel_vgpu_execlist_submission_ops,
1321 	};
1322 	int ret;
1323 
1324 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1325 		return -EINVAL;
1326 
1327 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1328 		return -EINVAL;
1329 
1330 	if (s->active)
1331 		s->ops->clean(vgpu, engine_mask);
1332 
1333 	if (interface == 0) {
1334 		s->ops = NULL;
1335 		s->virtual_submission_interface = 0;
1336 		s->active = false;
1337 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1338 		return 0;
1339 	}
1340 
1341 	ret = ops[interface]->init(vgpu, engine_mask);
1342 	if (ret)
1343 		return ret;
1344 
1345 	s->ops = ops[interface];
1346 	s->virtual_submission_interface = interface;
1347 	s->active = true;
1348 
1349 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1350 			vgpu->id, s->ops->name);
1351 
1352 	return 0;
1353 }
1354 
1355 /**
1356  * intel_vgpu_destroy_workload - destroy a vGPU workload
1357  * @workload: workload to destroy
1358  *
1359  * This function is called when destroy a vGPU workload.
1360  *
1361  */
1362 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1363 {
1364 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1365 
1366 	release_shadow_batch_buffer(workload);
1367 	release_shadow_wa_ctx(&workload->wa_ctx);
1368 
1369 	if (workload->shadow_mm)
1370 		intel_vgpu_mm_put(workload->shadow_mm);
1371 
1372 	kmem_cache_free(s->workloads, workload);
1373 }
1374 
1375 static struct intel_vgpu_workload *
1376 alloc_workload(struct intel_vgpu *vgpu)
1377 {
1378 	struct intel_vgpu_submission *s = &vgpu->submission;
1379 	struct intel_vgpu_workload *workload;
1380 
1381 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1382 	if (!workload)
1383 		return ERR_PTR(-ENOMEM);
1384 
1385 	INIT_LIST_HEAD(&workload->list);
1386 	INIT_LIST_HEAD(&workload->shadow_bb);
1387 
1388 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1389 	atomic_set(&workload->shadow_ctx_active, 0);
1390 
1391 	workload->status = -EINPROGRESS;
1392 	workload->vgpu = vgpu;
1393 
1394 	return workload;
1395 }
1396 
1397 #define RING_CTX_OFF(x) \
1398 	offsetof(struct execlist_ring_context, x)
1399 
1400 static void read_guest_pdps(struct intel_vgpu *vgpu,
1401 		u64 ring_context_gpa, u32 pdp[8])
1402 {
1403 	u64 gpa;
1404 	int i;
1405 
1406 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1407 
1408 	for (i = 0; i < 8; i++)
1409 		intel_gvt_hypervisor_read_gpa(vgpu,
1410 				gpa + i * 8, &pdp[7 - i], 4);
1411 }
1412 
1413 static int prepare_mm(struct intel_vgpu_workload *workload)
1414 {
1415 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1416 	struct intel_vgpu_mm *mm;
1417 	struct intel_vgpu *vgpu = workload->vgpu;
1418 	enum intel_gvt_gtt_type root_entry_type;
1419 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1420 
1421 	switch (desc->addressing_mode) {
1422 	case 1: /* legacy 32-bit */
1423 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1424 		break;
1425 	case 3: /* legacy 64-bit */
1426 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1427 		break;
1428 	default:
1429 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1430 		return -EINVAL;
1431 	}
1432 
1433 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1434 
1435 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1436 	if (IS_ERR(mm))
1437 		return PTR_ERR(mm);
1438 
1439 	workload->shadow_mm = mm;
1440 	return 0;
1441 }
1442 
1443 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1444 		((a)->lrca == (b)->lrca))
1445 
1446 /**
1447  * intel_vgpu_create_workload - create a vGPU workload
1448  * @vgpu: a vGPU
1449  * @ring_id: ring index
1450  * @desc: a guest context descriptor
1451  *
1452  * This function is called when creating a vGPU workload.
1453  *
1454  * Returns:
1455  * struct intel_vgpu_workload * on success, negative error code in
1456  * pointer if failed.
1457  *
1458  */
1459 struct intel_vgpu_workload *
1460 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1461 			   struct execlist_ctx_descriptor_format *desc)
1462 {
1463 	struct intel_vgpu_submission *s = &vgpu->submission;
1464 	struct list_head *q = workload_q_head(vgpu, ring_id);
1465 	struct intel_vgpu_workload *last_workload = NULL;
1466 	struct intel_vgpu_workload *workload = NULL;
1467 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1468 	u64 ring_context_gpa;
1469 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1470 	u32 guest_head;
1471 	int ret;
1472 
1473 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1474 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1475 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1476 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1477 		return ERR_PTR(-EINVAL);
1478 	}
1479 
1480 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1481 			RING_CTX_OFF(ring_header.val), &head, 4);
1482 
1483 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1484 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1485 
1486 	guest_head = head;
1487 
1488 	head &= RB_HEAD_OFF_MASK;
1489 	tail &= RB_TAIL_OFF_MASK;
1490 
1491 	list_for_each_entry_reverse(last_workload, q, list) {
1492 
1493 		if (same_context(&last_workload->ctx_desc, desc)) {
1494 			gvt_dbg_el("ring id %d cur workload == last\n",
1495 					ring_id);
1496 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1497 					last_workload->rb_tail);
1498 			/*
1499 			 * cannot use guest context head pointer here,
1500 			 * as it might not be updated at this time
1501 			 */
1502 			head = last_workload->rb_tail;
1503 			break;
1504 		}
1505 	}
1506 
1507 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1508 
1509 	/* record some ring buffer register values for scan and shadow */
1510 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1511 			RING_CTX_OFF(rb_start.val), &start, 4);
1512 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1513 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1514 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1515 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1516 
1517 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1518 				_RING_CTL_BUF_SIZE(ctl))) {
1519 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1520 		return ERR_PTR(-EINVAL);
1521 	}
1522 
1523 	workload = alloc_workload(vgpu);
1524 	if (IS_ERR(workload))
1525 		return workload;
1526 
1527 	workload->ring_id = ring_id;
1528 	workload->ctx_desc = *desc;
1529 	workload->ring_context_gpa = ring_context_gpa;
1530 	workload->rb_head = head;
1531 	workload->guest_rb_head = guest_head;
1532 	workload->rb_tail = tail;
1533 	workload->rb_start = start;
1534 	workload->rb_ctl = ctl;
1535 
1536 	if (ring_id == RCS0) {
1537 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1538 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1539 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1540 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1541 
1542 		workload->wa_ctx.indirect_ctx.guest_gma =
1543 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1544 		workload->wa_ctx.indirect_ctx.size =
1545 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1546 			CACHELINE_BYTES;
1547 
1548 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1549 			if (!intel_gvt_ggtt_validate_range(vgpu,
1550 				workload->wa_ctx.indirect_ctx.guest_gma,
1551 				workload->wa_ctx.indirect_ctx.size)) {
1552 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1553 				    workload->wa_ctx.indirect_ctx.guest_gma);
1554 				kmem_cache_free(s->workloads, workload);
1555 				return ERR_PTR(-EINVAL);
1556 			}
1557 		}
1558 
1559 		workload->wa_ctx.per_ctx.guest_gma =
1560 			per_ctx & PER_CTX_ADDR_MASK;
1561 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1562 		if (workload->wa_ctx.per_ctx.valid) {
1563 			if (!intel_gvt_ggtt_validate_range(vgpu,
1564 				workload->wa_ctx.per_ctx.guest_gma,
1565 				CACHELINE_BYTES)) {
1566 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1567 					workload->wa_ctx.per_ctx.guest_gma);
1568 				kmem_cache_free(s->workloads, workload);
1569 				return ERR_PTR(-EINVAL);
1570 			}
1571 		}
1572 	}
1573 
1574 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1575 			workload, ring_id, head, tail, start, ctl);
1576 
1577 	ret = prepare_mm(workload);
1578 	if (ret) {
1579 		kmem_cache_free(s->workloads, workload);
1580 		return ERR_PTR(ret);
1581 	}
1582 
1583 	/* Only scan and shadow the first workload in the queue
1584 	 * as there is only one pre-allocated buf-obj for shadow.
1585 	 */
1586 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1587 		intel_runtime_pm_get(&dev_priv->runtime_pm);
1588 		ret = intel_gvt_scan_and_shadow_workload(workload);
1589 		intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1590 	}
1591 
1592 	if (ret) {
1593 		if (vgpu_is_vm_unhealthy(ret))
1594 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1595 		intel_vgpu_destroy_workload(workload);
1596 		return ERR_PTR(ret);
1597 	}
1598 
1599 	return workload;
1600 }
1601 
1602 /**
1603  * intel_vgpu_queue_workload - Qeue a vGPU workload
1604  * @workload: the workload to queue in
1605  */
1606 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1607 {
1608 	list_add_tail(&workload->list,
1609 		workload_q_head(workload->vgpu, workload->ring_id));
1610 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1611 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1612 }
1613