xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 2359ccdd)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
49 	int i;
50 
51 	for (i = 0; i < 8; i++)
52 		pdp_pair[i].val = pdp[7 - i];
53 }
54 
55 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
56 {
57 	struct intel_vgpu *vgpu = workload->vgpu;
58 	int ring_id = workload->ring_id;
59 	struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
60 	struct drm_i915_gem_object *ctx_obj =
61 		shadow_ctx->engine[ring_id].state->obj;
62 	struct execlist_ring_context *shadow_ring_context;
63 	struct page *page;
64 
65 	if (WARN_ON(!workload->shadow_mm))
66 		return;
67 
68 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69 		return;
70 
71 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72 	shadow_ring_context = kmap(page);
73 	set_context_pdp_root_pointer(shadow_ring_context,
74 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 	kunmap(page);
76 }
77 
78 /*
79  * when populating shadow ctx from guest, we should not overrride oa related
80  * registers, so that they will not be overlapped by guest oa configs. Thus
81  * made it possible to capture oa data from host for both host and guests.
82  */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84 		u32 *reg_state, bool save)
85 {
86 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
88 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
89 	int i = 0;
90 	u32 flex_mmio[] = {
91 		i915_mmio_reg_offset(EU_PERF_CNTL0),
92 		i915_mmio_reg_offset(EU_PERF_CNTL1),
93 		i915_mmio_reg_offset(EU_PERF_CNTL2),
94 		i915_mmio_reg_offset(EU_PERF_CNTL3),
95 		i915_mmio_reg_offset(EU_PERF_CNTL4),
96 		i915_mmio_reg_offset(EU_PERF_CNTL5),
97 		i915_mmio_reg_offset(EU_PERF_CNTL6),
98 	};
99 
100 	if (!workload || !reg_state || workload->ring_id != RCS)
101 		return;
102 
103 	if (save) {
104 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105 
106 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107 			u32 state_offset = ctx_flexeu0 + i * 2;
108 
109 			workload->flex_mmio[i] = reg_state[state_offset + 1];
110 		}
111 	} else {
112 		reg_state[ctx_oactxctrl] =
113 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115 
116 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117 			u32 state_offset = ctx_flexeu0 + i * 2;
118 			u32 mmio = flex_mmio[i];
119 
120 			reg_state[state_offset] = mmio;
121 			reg_state[state_offset + 1] = workload->flex_mmio[i];
122 		}
123 	}
124 }
125 
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128 	struct intel_vgpu *vgpu = workload->vgpu;
129 	struct intel_gvt *gvt = vgpu->gvt;
130 	int ring_id = workload->ring_id;
131 	struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
132 	struct drm_i915_gem_object *ctx_obj =
133 		shadow_ctx->engine[ring_id].state->obj;
134 	struct execlist_ring_context *shadow_ring_context;
135 	struct page *page;
136 	void *dst;
137 	unsigned long context_gpa, context_page_num;
138 	int i;
139 
140 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
141 			workload->ctx_desc.lrca);
142 
143 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
144 
145 	context_page_num = context_page_num >> PAGE_SHIFT;
146 
147 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
148 		context_page_num = 19;
149 
150 	i = 2;
151 
152 	while (i < context_page_num) {
153 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
154 				(u32)((workload->ctx_desc.lrca + i) <<
155 				I915_GTT_PAGE_SHIFT));
156 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
157 			gvt_vgpu_err("Invalid guest context descriptor\n");
158 			return -EFAULT;
159 		}
160 
161 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
162 		dst = kmap(page);
163 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
164 				I915_GTT_PAGE_SIZE);
165 		kunmap(page);
166 		i++;
167 	}
168 
169 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
170 	shadow_ring_context = kmap(page);
171 
172 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
173 #define COPY_REG(name) \
174 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
175 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
176 #define COPY_REG_MASKED(name) {\
177 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
178 					      + RING_CTX_OFF(name.val),\
179 					      &shadow_ring_context->name.val, 4);\
180 		shadow_ring_context->name.val |= 0xffff << 16;\
181 	}
182 
183 	COPY_REG_MASKED(ctx_ctrl);
184 	COPY_REG(ctx_timestamp);
185 
186 	if (ring_id == RCS) {
187 		COPY_REG(bb_per_ctx_ptr);
188 		COPY_REG(rcs_indirect_ctx);
189 		COPY_REG(rcs_indirect_ctx_offset);
190 	}
191 #undef COPY_REG
192 #undef COPY_REG_MASKED
193 
194 	intel_gvt_hypervisor_read_gpa(vgpu,
195 			workload->ring_context_gpa +
196 			sizeof(*shadow_ring_context),
197 			(void *)shadow_ring_context +
198 			sizeof(*shadow_ring_context),
199 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
200 
201 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
202 	kunmap(page);
203 	return 0;
204 }
205 
206 static inline bool is_gvt_request(struct i915_request *req)
207 {
208 	return i915_gem_context_force_single_submission(req->ctx);
209 }
210 
211 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
212 {
213 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
214 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
215 	i915_reg_t reg;
216 
217 	reg = RING_INSTDONE(ring_base);
218 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
219 	reg = RING_ACTHD(ring_base);
220 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
221 	reg = RING_ACTHD_UDW(ring_base);
222 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
223 }
224 
225 static int shadow_context_status_change(struct notifier_block *nb,
226 		unsigned long action, void *data)
227 {
228 	struct i915_request *req = data;
229 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
230 				shadow_ctx_notifier_block[req->engine->id]);
231 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
232 	enum intel_engine_id ring_id = req->engine->id;
233 	struct intel_vgpu_workload *workload;
234 	unsigned long flags;
235 
236 	if (!is_gvt_request(req)) {
237 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
238 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
239 		    scheduler->engine_owner[ring_id]) {
240 			/* Switch ring from vGPU to host. */
241 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
242 					      NULL, ring_id);
243 			scheduler->engine_owner[ring_id] = NULL;
244 		}
245 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
246 
247 		return NOTIFY_OK;
248 	}
249 
250 	workload = scheduler->current_workload[ring_id];
251 	if (unlikely(!workload))
252 		return NOTIFY_OK;
253 
254 	switch (action) {
255 	case INTEL_CONTEXT_SCHEDULE_IN:
256 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
257 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
258 			/* Switch ring from host to vGPU or vGPU to vGPU. */
259 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
260 					      workload->vgpu, ring_id);
261 			scheduler->engine_owner[ring_id] = workload->vgpu;
262 		} else
263 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
264 				      ring_id, workload->vgpu->id);
265 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
266 		atomic_set(&workload->shadow_ctx_active, 1);
267 		break;
268 	case INTEL_CONTEXT_SCHEDULE_OUT:
269 		save_ring_hw_state(workload->vgpu, ring_id);
270 		atomic_set(&workload->shadow_ctx_active, 0);
271 		break;
272 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
273 		save_ring_hw_state(workload->vgpu, ring_id);
274 		break;
275 	default:
276 		WARN_ON(1);
277 		return NOTIFY_OK;
278 	}
279 	wake_up(&workload->shadow_ctx_status_wq);
280 	return NOTIFY_OK;
281 }
282 
283 static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
284 		struct intel_engine_cs *engine)
285 {
286 	struct intel_context *ce = &ctx->engine[engine->id];
287 	u64 desc = 0;
288 
289 	desc = ce->lrc_desc;
290 
291 	/* Update bits 0-11 of the context descriptor which includes flags
292 	 * like GEN8_CTX_* cached in desc_template
293 	 */
294 	desc &= U64_MAX << 12;
295 	desc |= ctx->desc_template & ((1ULL << 12) - 1);
296 
297 	ce->lrc_desc = desc;
298 }
299 
300 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
301 {
302 	struct intel_vgpu *vgpu = workload->vgpu;
303 	void *shadow_ring_buffer_va;
304 	u32 *cs;
305 	struct i915_request *req = workload->req;
306 
307 	if (IS_KABYLAKE(req->i915) &&
308 	    is_inhibit_context(req->ctx, req->engine->id))
309 		intel_vgpu_restore_inhibit_context(vgpu, req);
310 
311 	/* allocate shadow ring buffer */
312 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
313 	if (IS_ERR(cs)) {
314 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
315 			workload->rb_len);
316 		return PTR_ERR(cs);
317 	}
318 
319 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
320 
321 	/* get shadow ring buffer va */
322 	workload->shadow_ring_buffer_va = cs;
323 
324 	memcpy(cs, shadow_ring_buffer_va,
325 			workload->rb_len);
326 
327 	cs += workload->rb_len / sizeof(u32);
328 	intel_ring_advance(workload->req, cs);
329 
330 	return 0;
331 }
332 
333 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
334 {
335 	if (!wa_ctx->indirect_ctx.obj)
336 		return;
337 
338 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
339 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
340 }
341 
342 /**
343  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
344  * shadow it as well, include ringbuffer,wa_ctx and ctx.
345  * @workload: an abstract entity for each execlist submission.
346  *
347  * This function is called before the workload submitting to i915, to make
348  * sure the content of the workload is valid.
349  */
350 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
351 {
352 	struct intel_vgpu *vgpu = workload->vgpu;
353 	struct intel_vgpu_submission *s = &vgpu->submission;
354 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
355 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
356 	int ring_id = workload->ring_id;
357 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
358 	struct intel_ring *ring;
359 	int ret;
360 
361 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
362 
363 	if (workload->shadowed)
364 		return 0;
365 
366 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
367 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
368 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
369 
370 	if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated))
371 		shadow_context_descriptor_update(shadow_ctx,
372 					dev_priv->engine[ring_id]);
373 
374 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
375 	if (ret)
376 		goto err_scan;
377 
378 	if ((workload->ring_id == RCS) &&
379 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
380 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
381 		if (ret)
382 			goto err_scan;
383 	}
384 
385 	/* pin shadow context by gvt even the shadow context will be pinned
386 	 * when i915 alloc request. That is because gvt will update the guest
387 	 * context from shadow context when workload is completed, and at that
388 	 * moment, i915 may already unpined the shadow context to make the
389 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
390 	 * the guest context, gvt can unpin the shadow_ctx safely.
391 	 */
392 	ring = engine->context_pin(engine, shadow_ctx);
393 	if (IS_ERR(ring)) {
394 		ret = PTR_ERR(ring);
395 		gvt_vgpu_err("fail to pin shadow context\n");
396 		goto err_shadow;
397 	}
398 
399 	ret = populate_shadow_context(workload);
400 	if (ret)
401 		goto err_unpin;
402 	workload->shadowed = true;
403 	return 0;
404 
405 err_unpin:
406 	engine->context_unpin(engine, shadow_ctx);
407 err_shadow:
408 	release_shadow_wa_ctx(&workload->wa_ctx);
409 err_scan:
410 	return ret;
411 }
412 
413 static int intel_gvt_generate_request(struct intel_vgpu_workload *workload)
414 {
415 	int ring_id = workload->ring_id;
416 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
417 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
418 	struct i915_request *rq;
419 	struct intel_vgpu *vgpu = workload->vgpu;
420 	struct intel_vgpu_submission *s = &vgpu->submission;
421 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
422 	int ret;
423 
424 	rq = i915_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
425 	if (IS_ERR(rq)) {
426 		gvt_vgpu_err("fail to allocate gem request\n");
427 		ret = PTR_ERR(rq);
428 		goto err_unpin;
429 	}
430 
431 	gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
432 
433 	workload->req = i915_request_get(rq);
434 	ret = copy_workload_to_ring_buffer(workload);
435 	if (ret)
436 		goto err_unpin;
437 	return 0;
438 
439 err_unpin:
440 	engine->context_unpin(engine, shadow_ctx);
441 	release_shadow_wa_ctx(&workload->wa_ctx);
442 	return ret;
443 }
444 
445 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
446 
447 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
448 {
449 	struct intel_gvt *gvt = workload->vgpu->gvt;
450 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
451 	struct intel_vgpu_shadow_bb *bb;
452 	int ret;
453 
454 	list_for_each_entry(bb, &workload->shadow_bb, list) {
455 		bb->vma = i915_gem_object_ggtt_pin(bb->obj, NULL, 0, 0, 0);
456 		if (IS_ERR(bb->vma)) {
457 			ret = PTR_ERR(bb->vma);
458 			goto err;
459 		}
460 
461 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
462 		 * is only updated into ring_scan_buffer, not real ring address
463 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
464 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
465 		 * in copy_workload_to_ring_buffer.
466 		 */
467 
468 		if (bb->bb_offset)
469 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
470 				+ bb->bb_offset;
471 
472 		/* relocate shadow batch buffer */
473 		bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
474 		if (gmadr_bytes == 8)
475 			bb->bb_start_cmd_va[2] = 0;
476 
477 		/* No one is going to touch shadow bb from now on. */
478 		if (bb->clflush & CLFLUSH_AFTER) {
479 			drm_clflush_virt_range(bb->va, bb->obj->base.size);
480 			bb->clflush &= ~CLFLUSH_AFTER;
481 		}
482 
483 		ret = i915_gem_object_set_to_gtt_domain(bb->obj, false);
484 		if (ret)
485 			goto err;
486 
487 		i915_gem_obj_finish_shmem_access(bb->obj);
488 		bb->accessing = false;
489 
490 		i915_vma_move_to_active(bb->vma, workload->req, 0);
491 	}
492 	return 0;
493 err:
494 	release_shadow_batch_buffer(workload);
495 	return ret;
496 }
497 
498 static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
499 {
500 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
501 					struct intel_vgpu_workload,
502 					wa_ctx);
503 	int ring_id = workload->ring_id;
504 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
505 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
506 	struct drm_i915_gem_object *ctx_obj =
507 		shadow_ctx->engine[ring_id].state->obj;
508 	struct execlist_ring_context *shadow_ring_context;
509 	struct page *page;
510 
511 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
512 	shadow_ring_context = kmap_atomic(page);
513 
514 	shadow_ring_context->bb_per_ctx_ptr.val =
515 		(shadow_ring_context->bb_per_ctx_ptr.val &
516 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
517 	shadow_ring_context->rcs_indirect_ctx.val =
518 		(shadow_ring_context->rcs_indirect_ctx.val &
519 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
520 
521 	kunmap_atomic(shadow_ring_context);
522 	return 0;
523 }
524 
525 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
526 {
527 	struct i915_vma *vma;
528 	unsigned char *per_ctx_va =
529 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
530 		wa_ctx->indirect_ctx.size;
531 
532 	if (wa_ctx->indirect_ctx.size == 0)
533 		return 0;
534 
535 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
536 				       0, CACHELINE_BYTES, 0);
537 	if (IS_ERR(vma))
538 		return PTR_ERR(vma);
539 
540 	/* FIXME: we are not tracking our pinned VMA leaving it
541 	 * up to the core to fix up the stray pin_count upon
542 	 * free.
543 	 */
544 
545 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
546 
547 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
548 	memset(per_ctx_va, 0, CACHELINE_BYTES);
549 
550 	update_wa_ctx_2_shadow_ctx(wa_ctx);
551 	return 0;
552 }
553 
554 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
555 {
556 	struct intel_vgpu *vgpu = workload->vgpu;
557 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
558 	struct intel_vgpu_shadow_bb *bb, *pos;
559 
560 	if (list_empty(&workload->shadow_bb))
561 		return;
562 
563 	bb = list_first_entry(&workload->shadow_bb,
564 			struct intel_vgpu_shadow_bb, list);
565 
566 	mutex_lock(&dev_priv->drm.struct_mutex);
567 
568 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
569 		if (bb->obj) {
570 			if (bb->accessing)
571 				i915_gem_obj_finish_shmem_access(bb->obj);
572 
573 			if (bb->va && !IS_ERR(bb->va))
574 				i915_gem_object_unpin_map(bb->obj);
575 
576 			if (bb->vma && !IS_ERR(bb->vma)) {
577 				i915_vma_unpin(bb->vma);
578 				i915_vma_close(bb->vma);
579 			}
580 			__i915_gem_object_release_unless_active(bb->obj);
581 		}
582 		list_del(&bb->list);
583 		kfree(bb);
584 	}
585 
586 	mutex_unlock(&dev_priv->drm.struct_mutex);
587 }
588 
589 static int prepare_workload(struct intel_vgpu_workload *workload)
590 {
591 	struct intel_vgpu *vgpu = workload->vgpu;
592 	int ret = 0;
593 
594 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
595 	if (ret) {
596 		gvt_vgpu_err("fail to vgpu pin mm\n");
597 		return ret;
598 	}
599 
600 	update_shadow_pdps(workload);
601 
602 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
603 	if (ret) {
604 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
605 		goto err_unpin_mm;
606 	}
607 
608 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
609 	if (ret) {
610 		gvt_vgpu_err("fail to flush post shadow\n");
611 		goto err_unpin_mm;
612 	}
613 
614 	ret = intel_gvt_generate_request(workload);
615 	if (ret) {
616 		gvt_vgpu_err("fail to generate request\n");
617 		goto err_unpin_mm;
618 	}
619 
620 	ret = prepare_shadow_batch_buffer(workload);
621 	if (ret) {
622 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
623 		goto err_unpin_mm;
624 	}
625 
626 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
627 	if (ret) {
628 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
629 		goto err_shadow_batch;
630 	}
631 
632 	if (workload->prepare) {
633 		ret = workload->prepare(workload);
634 		if (ret)
635 			goto err_shadow_wa_ctx;
636 	}
637 
638 	return 0;
639 err_shadow_wa_ctx:
640 	release_shadow_wa_ctx(&workload->wa_ctx);
641 err_shadow_batch:
642 	release_shadow_batch_buffer(workload);
643 err_unpin_mm:
644 	intel_vgpu_unpin_mm(workload->shadow_mm);
645 	return ret;
646 }
647 
648 static int dispatch_workload(struct intel_vgpu_workload *workload)
649 {
650 	struct intel_vgpu *vgpu = workload->vgpu;
651 	struct intel_vgpu_submission *s = &vgpu->submission;
652 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
653 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
654 	int ring_id = workload->ring_id;
655 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
656 	int ret = 0;
657 
658 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
659 		ring_id, workload);
660 
661 	mutex_lock(&dev_priv->drm.struct_mutex);
662 
663 	ret = intel_gvt_scan_and_shadow_workload(workload);
664 	if (ret)
665 		goto out;
666 
667 	ret = prepare_workload(workload);
668 	if (ret) {
669 		engine->context_unpin(engine, shadow_ctx);
670 		goto out;
671 	}
672 
673 out:
674 	if (ret)
675 		workload->status = ret;
676 
677 	if (!IS_ERR_OR_NULL(workload->req)) {
678 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
679 				ring_id, workload->req);
680 		i915_request_add(workload->req);
681 		workload->dispatched = true;
682 	}
683 
684 	mutex_unlock(&dev_priv->drm.struct_mutex);
685 	return ret;
686 }
687 
688 static struct intel_vgpu_workload *pick_next_workload(
689 		struct intel_gvt *gvt, int ring_id)
690 {
691 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
692 	struct intel_vgpu_workload *workload = NULL;
693 
694 	mutex_lock(&gvt->lock);
695 
696 	/*
697 	 * no current vgpu / will be scheduled out / no workload
698 	 * bail out
699 	 */
700 	if (!scheduler->current_vgpu) {
701 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
702 		goto out;
703 	}
704 
705 	if (scheduler->need_reschedule) {
706 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
707 		goto out;
708 	}
709 
710 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
711 		goto out;
712 
713 	/*
714 	 * still have current workload, maybe the workload disptacher
715 	 * fail to submit it for some reason, resubmit it.
716 	 */
717 	if (scheduler->current_workload[ring_id]) {
718 		workload = scheduler->current_workload[ring_id];
719 		gvt_dbg_sched("ring id %d still have current workload %p\n",
720 				ring_id, workload);
721 		goto out;
722 	}
723 
724 	/*
725 	 * pick a workload as current workload
726 	 * once current workload is set, schedule policy routines
727 	 * will wait the current workload is finished when trying to
728 	 * schedule out a vgpu.
729 	 */
730 	scheduler->current_workload[ring_id] = container_of(
731 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
732 			struct intel_vgpu_workload, list);
733 
734 	workload = scheduler->current_workload[ring_id];
735 
736 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
737 
738 	atomic_inc(&workload->vgpu->submission.running_workload_num);
739 out:
740 	mutex_unlock(&gvt->lock);
741 	return workload;
742 }
743 
744 static void update_guest_context(struct intel_vgpu_workload *workload)
745 {
746 	struct intel_vgpu *vgpu = workload->vgpu;
747 	struct intel_gvt *gvt = vgpu->gvt;
748 	struct intel_vgpu_submission *s = &vgpu->submission;
749 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
750 	int ring_id = workload->ring_id;
751 	struct drm_i915_gem_object *ctx_obj =
752 		shadow_ctx->engine[ring_id].state->obj;
753 	struct execlist_ring_context *shadow_ring_context;
754 	struct page *page;
755 	void *src;
756 	unsigned long context_gpa, context_page_num;
757 	int i;
758 
759 	gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
760 			workload->ctx_desc.lrca);
761 
762 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
763 
764 	context_page_num = context_page_num >> PAGE_SHIFT;
765 
766 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
767 		context_page_num = 19;
768 
769 	i = 2;
770 
771 	while (i < context_page_num) {
772 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
773 				(u32)((workload->ctx_desc.lrca + i) <<
774 					I915_GTT_PAGE_SHIFT));
775 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
776 			gvt_vgpu_err("invalid guest context descriptor\n");
777 			return;
778 		}
779 
780 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
781 		src = kmap(page);
782 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
783 				I915_GTT_PAGE_SIZE);
784 		kunmap(page);
785 		i++;
786 	}
787 
788 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
789 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
790 
791 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
792 	shadow_ring_context = kmap(page);
793 
794 #define COPY_REG(name) \
795 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
796 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
797 
798 	COPY_REG(ctx_ctrl);
799 	COPY_REG(ctx_timestamp);
800 
801 #undef COPY_REG
802 
803 	intel_gvt_hypervisor_write_gpa(vgpu,
804 			workload->ring_context_gpa +
805 			sizeof(*shadow_ring_context),
806 			(void *)shadow_ring_context +
807 			sizeof(*shadow_ring_context),
808 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
809 
810 	kunmap(page);
811 }
812 
813 static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
814 {
815 	struct intel_vgpu_submission *s = &vgpu->submission;
816 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
817 	struct intel_engine_cs *engine;
818 	struct intel_vgpu_workload *pos, *n;
819 	unsigned int tmp;
820 
821 	/* free the unsubmited workloads in the queues. */
822 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
823 		list_for_each_entry_safe(pos, n,
824 			&s->workload_q_head[engine->id], list) {
825 			list_del_init(&pos->list);
826 			intel_vgpu_destroy_workload(pos);
827 		}
828 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
829 	}
830 }
831 
832 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
833 {
834 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
835 	struct intel_vgpu_workload *workload =
836 		scheduler->current_workload[ring_id];
837 	struct intel_vgpu *vgpu = workload->vgpu;
838 	struct intel_vgpu_submission *s = &vgpu->submission;
839 	int event;
840 
841 	mutex_lock(&gvt->lock);
842 
843 	/* For the workload w/ request, needs to wait for the context
844 	 * switch to make sure request is completed.
845 	 * For the workload w/o request, directly complete the workload.
846 	 */
847 	if (workload->req) {
848 		struct drm_i915_private *dev_priv =
849 			workload->vgpu->gvt->dev_priv;
850 		struct intel_engine_cs *engine =
851 			dev_priv->engine[workload->ring_id];
852 		wait_event(workload->shadow_ctx_status_wq,
853 			   !atomic_read(&workload->shadow_ctx_active));
854 
855 		/* If this request caused GPU hang, req->fence.error will
856 		 * be set to -EIO. Use -EIO to set workload status so
857 		 * that when this request caused GPU hang, didn't trigger
858 		 * context switch interrupt to guest.
859 		 */
860 		if (likely(workload->status == -EINPROGRESS)) {
861 			if (workload->req->fence.error == -EIO)
862 				workload->status = -EIO;
863 			else
864 				workload->status = 0;
865 		}
866 
867 		i915_request_put(fetch_and_zero(&workload->req));
868 
869 		if (!workload->status && !(vgpu->resetting_eng &
870 					   ENGINE_MASK(ring_id))) {
871 			update_guest_context(workload);
872 
873 			for_each_set_bit(event, workload->pending_events,
874 					 INTEL_GVT_EVENT_MAX)
875 				intel_vgpu_trigger_virtual_event(vgpu, event);
876 		}
877 		mutex_lock(&dev_priv->drm.struct_mutex);
878 		/* unpin shadow ctx as the shadow_ctx update is done */
879 		engine->context_unpin(engine, s->shadow_ctx);
880 		mutex_unlock(&dev_priv->drm.struct_mutex);
881 	}
882 
883 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
884 			ring_id, workload, workload->status);
885 
886 	scheduler->current_workload[ring_id] = NULL;
887 
888 	list_del_init(&workload->list);
889 
890 	if (!workload->status) {
891 		release_shadow_batch_buffer(workload);
892 		release_shadow_wa_ctx(&workload->wa_ctx);
893 	}
894 
895 	if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
896 		/* if workload->status is not successful means HW GPU
897 		 * has occurred GPU hang or something wrong with i915/GVT,
898 		 * and GVT won't inject context switch interrupt to guest.
899 		 * So this error is a vGPU hang actually to the guest.
900 		 * According to this we should emunlate a vGPU hang. If
901 		 * there are pending workloads which are already submitted
902 		 * from guest, we should clean them up like HW GPU does.
903 		 *
904 		 * if it is in middle of engine resetting, the pending
905 		 * workloads won't be submitted to HW GPU and will be
906 		 * cleaned up during the resetting process later, so doing
907 		 * the workload clean up here doesn't have any impact.
908 		 **/
909 		clean_workloads(vgpu, ENGINE_MASK(ring_id));
910 	}
911 
912 	workload->complete(workload);
913 
914 	atomic_dec(&s->running_workload_num);
915 	wake_up(&scheduler->workload_complete_wq);
916 
917 	if (gvt->scheduler.need_reschedule)
918 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
919 
920 	mutex_unlock(&gvt->lock);
921 }
922 
923 struct workload_thread_param {
924 	struct intel_gvt *gvt;
925 	int ring_id;
926 };
927 
928 static int workload_thread(void *priv)
929 {
930 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
931 	struct intel_gvt *gvt = p->gvt;
932 	int ring_id = p->ring_id;
933 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
934 	struct intel_vgpu_workload *workload = NULL;
935 	struct intel_vgpu *vgpu = NULL;
936 	int ret;
937 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
938 			|| IS_KABYLAKE(gvt->dev_priv);
939 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
940 
941 	kfree(p);
942 
943 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
944 
945 	while (!kthread_should_stop()) {
946 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
947 		do {
948 			workload = pick_next_workload(gvt, ring_id);
949 			if (workload)
950 				break;
951 			wait_woken(&wait, TASK_INTERRUPTIBLE,
952 				   MAX_SCHEDULE_TIMEOUT);
953 		} while (!kthread_should_stop());
954 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
955 
956 		if (!workload)
957 			break;
958 
959 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
960 				workload->ring_id, workload,
961 				workload->vgpu->id);
962 
963 		intel_runtime_pm_get(gvt->dev_priv);
964 
965 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
966 				workload->ring_id, workload);
967 
968 		if (need_force_wake)
969 			intel_uncore_forcewake_get(gvt->dev_priv,
970 					FORCEWAKE_ALL);
971 
972 		mutex_lock(&gvt->lock);
973 		ret = dispatch_workload(workload);
974 		mutex_unlock(&gvt->lock);
975 
976 		if (ret) {
977 			vgpu = workload->vgpu;
978 			gvt_vgpu_err("fail to dispatch workload, skip\n");
979 			goto complete;
980 		}
981 
982 		gvt_dbg_sched("ring id %d wait workload %p\n",
983 				workload->ring_id, workload);
984 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
985 
986 complete:
987 		gvt_dbg_sched("will complete workload %p, status: %d\n",
988 				workload, workload->status);
989 
990 		complete_current_workload(gvt, ring_id);
991 
992 		if (need_force_wake)
993 			intel_uncore_forcewake_put(gvt->dev_priv,
994 					FORCEWAKE_ALL);
995 
996 		intel_runtime_pm_put(gvt->dev_priv);
997 		if (ret && (vgpu_is_vm_unhealthy(ret)))
998 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
999 	}
1000 	return 0;
1001 }
1002 
1003 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1004 {
1005 	struct intel_vgpu_submission *s = &vgpu->submission;
1006 	struct intel_gvt *gvt = vgpu->gvt;
1007 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1008 
1009 	if (atomic_read(&s->running_workload_num)) {
1010 		gvt_dbg_sched("wait vgpu idle\n");
1011 
1012 		wait_event(scheduler->workload_complete_wq,
1013 				!atomic_read(&s->running_workload_num));
1014 	}
1015 }
1016 
1017 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1018 {
1019 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1020 	struct intel_engine_cs *engine;
1021 	enum intel_engine_id i;
1022 
1023 	gvt_dbg_core("clean workload scheduler\n");
1024 
1025 	for_each_engine(engine, gvt->dev_priv, i) {
1026 		atomic_notifier_chain_unregister(
1027 					&engine->context_status_notifier,
1028 					&gvt->shadow_ctx_notifier_block[i]);
1029 		kthread_stop(scheduler->thread[i]);
1030 	}
1031 }
1032 
1033 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1034 {
1035 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1036 	struct workload_thread_param *param = NULL;
1037 	struct intel_engine_cs *engine;
1038 	enum intel_engine_id i;
1039 	int ret;
1040 
1041 	gvt_dbg_core("init workload scheduler\n");
1042 
1043 	init_waitqueue_head(&scheduler->workload_complete_wq);
1044 
1045 	for_each_engine(engine, gvt->dev_priv, i) {
1046 		init_waitqueue_head(&scheduler->waitq[i]);
1047 
1048 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1049 		if (!param) {
1050 			ret = -ENOMEM;
1051 			goto err;
1052 		}
1053 
1054 		param->gvt = gvt;
1055 		param->ring_id = i;
1056 
1057 		scheduler->thread[i] = kthread_run(workload_thread, param,
1058 			"gvt workload %d", i);
1059 		if (IS_ERR(scheduler->thread[i])) {
1060 			gvt_err("fail to create workload thread\n");
1061 			ret = PTR_ERR(scheduler->thread[i]);
1062 			goto err;
1063 		}
1064 
1065 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1066 					shadow_context_status_change;
1067 		atomic_notifier_chain_register(&engine->context_status_notifier,
1068 					&gvt->shadow_ctx_notifier_block[i]);
1069 	}
1070 	return 0;
1071 err:
1072 	intel_gvt_clean_workload_scheduler(gvt);
1073 	kfree(param);
1074 	param = NULL;
1075 	return ret;
1076 }
1077 
1078 /**
1079  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1080  * @vgpu: a vGPU
1081  *
1082  * This function is called when a vGPU is being destroyed.
1083  *
1084  */
1085 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1086 {
1087 	struct intel_vgpu_submission *s = &vgpu->submission;
1088 
1089 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1090 	i915_gem_context_put(s->shadow_ctx);
1091 	kmem_cache_destroy(s->workloads);
1092 }
1093 
1094 
1095 /**
1096  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1097  * @vgpu: a vGPU
1098  * @engine_mask: engines expected to be reset
1099  *
1100  * This function is called when a vGPU is being destroyed.
1101  *
1102  */
1103 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1104 		unsigned long engine_mask)
1105 {
1106 	struct intel_vgpu_submission *s = &vgpu->submission;
1107 
1108 	if (!s->active)
1109 		return;
1110 
1111 	clean_workloads(vgpu, engine_mask);
1112 	s->ops->reset(vgpu, engine_mask);
1113 }
1114 
1115 /**
1116  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1117  * @vgpu: a vGPU
1118  *
1119  * This function is called when a vGPU is being created.
1120  *
1121  * Returns:
1122  * Zero on success, negative error code if failed.
1123  *
1124  */
1125 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1126 {
1127 	struct intel_vgpu_submission *s = &vgpu->submission;
1128 	enum intel_engine_id i;
1129 	struct intel_engine_cs *engine;
1130 	int ret;
1131 
1132 	s->shadow_ctx = i915_gem_context_create_gvt(
1133 			&vgpu->gvt->dev_priv->drm);
1134 	if (IS_ERR(s->shadow_ctx))
1135 		return PTR_ERR(s->shadow_ctx);
1136 
1137 	if (HAS_LOGICAL_RING_PREEMPTION(vgpu->gvt->dev_priv))
1138 		s->shadow_ctx->priority = INT_MAX;
1139 
1140 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1141 
1142 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1143 						  sizeof(struct intel_vgpu_workload), 0,
1144 						  SLAB_HWCACHE_ALIGN,
1145 						  offsetof(struct intel_vgpu_workload, rb_tail),
1146 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1147 						  NULL);
1148 
1149 	if (!s->workloads) {
1150 		ret = -ENOMEM;
1151 		goto out_shadow_ctx;
1152 	}
1153 
1154 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1155 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1156 
1157 	atomic_set(&s->running_workload_num, 0);
1158 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1159 
1160 	return 0;
1161 
1162 out_shadow_ctx:
1163 	i915_gem_context_put(s->shadow_ctx);
1164 	return ret;
1165 }
1166 
1167 /**
1168  * intel_vgpu_select_submission_ops - select virtual submission interface
1169  * @vgpu: a vGPU
1170  * @interface: expected vGPU virtual submission interface
1171  *
1172  * This function is called when guest configures submission interface.
1173  *
1174  * Returns:
1175  * Zero on success, negative error code if failed.
1176  *
1177  */
1178 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1179 				     unsigned long engine_mask,
1180 				     unsigned int interface)
1181 {
1182 	struct intel_vgpu_submission *s = &vgpu->submission;
1183 	const struct intel_vgpu_submission_ops *ops[] = {
1184 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1185 			&intel_vgpu_execlist_submission_ops,
1186 	};
1187 	int ret;
1188 
1189 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1190 		return -EINVAL;
1191 
1192 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1193 		return -EINVAL;
1194 
1195 	if (s->active)
1196 		s->ops->clean(vgpu, engine_mask);
1197 
1198 	if (interface == 0) {
1199 		s->ops = NULL;
1200 		s->virtual_submission_interface = 0;
1201 		s->active = false;
1202 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1203 		return 0;
1204 	}
1205 
1206 	ret = ops[interface]->init(vgpu, engine_mask);
1207 	if (ret)
1208 		return ret;
1209 
1210 	s->ops = ops[interface];
1211 	s->virtual_submission_interface = interface;
1212 	s->active = true;
1213 
1214 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1215 			vgpu->id, s->ops->name);
1216 
1217 	return 0;
1218 }
1219 
1220 /**
1221  * intel_vgpu_destroy_workload - destroy a vGPU workload
1222  * @vgpu: a vGPU
1223  *
1224  * This function is called when destroy a vGPU workload.
1225  *
1226  */
1227 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1228 {
1229 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1230 
1231 	if (workload->shadow_mm)
1232 		intel_vgpu_mm_put(workload->shadow_mm);
1233 
1234 	kmem_cache_free(s->workloads, workload);
1235 }
1236 
1237 static struct intel_vgpu_workload *
1238 alloc_workload(struct intel_vgpu *vgpu)
1239 {
1240 	struct intel_vgpu_submission *s = &vgpu->submission;
1241 	struct intel_vgpu_workload *workload;
1242 
1243 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1244 	if (!workload)
1245 		return ERR_PTR(-ENOMEM);
1246 
1247 	INIT_LIST_HEAD(&workload->list);
1248 	INIT_LIST_HEAD(&workload->shadow_bb);
1249 
1250 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1251 	atomic_set(&workload->shadow_ctx_active, 0);
1252 
1253 	workload->status = -EINPROGRESS;
1254 	workload->shadowed = false;
1255 	workload->vgpu = vgpu;
1256 
1257 	return workload;
1258 }
1259 
1260 #define RING_CTX_OFF(x) \
1261 	offsetof(struct execlist_ring_context, x)
1262 
1263 static void read_guest_pdps(struct intel_vgpu *vgpu,
1264 		u64 ring_context_gpa, u32 pdp[8])
1265 {
1266 	u64 gpa;
1267 	int i;
1268 
1269 	gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
1270 
1271 	for (i = 0; i < 8; i++)
1272 		intel_gvt_hypervisor_read_gpa(vgpu,
1273 				gpa + i * 8, &pdp[7 - i], 4);
1274 }
1275 
1276 static int prepare_mm(struct intel_vgpu_workload *workload)
1277 {
1278 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1279 	struct intel_vgpu_mm *mm;
1280 	struct intel_vgpu *vgpu = workload->vgpu;
1281 	intel_gvt_gtt_type_t root_entry_type;
1282 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1283 
1284 	switch (desc->addressing_mode) {
1285 	case 1: /* legacy 32-bit */
1286 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1287 		break;
1288 	case 3: /* legacy 64-bit */
1289 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1290 		break;
1291 	default:
1292 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1293 		return -EINVAL;
1294 	}
1295 
1296 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1297 
1298 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1299 	if (IS_ERR(mm))
1300 		return PTR_ERR(mm);
1301 
1302 	workload->shadow_mm = mm;
1303 	return 0;
1304 }
1305 
1306 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1307 		((a)->lrca == (b)->lrca))
1308 
1309 #define get_last_workload(q) \
1310 	(list_empty(q) ? NULL : container_of(q->prev, \
1311 	struct intel_vgpu_workload, list))
1312 /**
1313  * intel_vgpu_create_workload - create a vGPU workload
1314  * @vgpu: a vGPU
1315  * @desc: a guest context descriptor
1316  *
1317  * This function is called when creating a vGPU workload.
1318  *
1319  * Returns:
1320  * struct intel_vgpu_workload * on success, negative error code in
1321  * pointer if failed.
1322  *
1323  */
1324 struct intel_vgpu_workload *
1325 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1326 			   struct execlist_ctx_descriptor_format *desc)
1327 {
1328 	struct intel_vgpu_submission *s = &vgpu->submission;
1329 	struct list_head *q = workload_q_head(vgpu, ring_id);
1330 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1331 	struct intel_vgpu_workload *workload = NULL;
1332 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1333 	u64 ring_context_gpa;
1334 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1335 	int ret;
1336 
1337 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1338 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1339 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1340 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1341 		return ERR_PTR(-EINVAL);
1342 	}
1343 
1344 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1345 			RING_CTX_OFF(ring_header.val), &head, 4);
1346 
1347 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1348 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1349 
1350 	head &= RB_HEAD_OFF_MASK;
1351 	tail &= RB_TAIL_OFF_MASK;
1352 
1353 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1354 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1355 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1356 				last_workload->rb_tail);
1357 		/*
1358 		 * cannot use guest context head pointer here,
1359 		 * as it might not be updated at this time
1360 		 */
1361 		head = last_workload->rb_tail;
1362 	}
1363 
1364 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1365 
1366 	/* record some ring buffer register values for scan and shadow */
1367 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1368 			RING_CTX_OFF(rb_start.val), &start, 4);
1369 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1370 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1371 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1372 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1373 
1374 	workload = alloc_workload(vgpu);
1375 	if (IS_ERR(workload))
1376 		return workload;
1377 
1378 	workload->ring_id = ring_id;
1379 	workload->ctx_desc = *desc;
1380 	workload->ring_context_gpa = ring_context_gpa;
1381 	workload->rb_head = head;
1382 	workload->rb_tail = tail;
1383 	workload->rb_start = start;
1384 	workload->rb_ctl = ctl;
1385 
1386 	if (ring_id == RCS) {
1387 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1388 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1389 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1390 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1391 
1392 		workload->wa_ctx.indirect_ctx.guest_gma =
1393 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1394 		workload->wa_ctx.indirect_ctx.size =
1395 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1396 			CACHELINE_BYTES;
1397 		workload->wa_ctx.per_ctx.guest_gma =
1398 			per_ctx & PER_CTX_ADDR_MASK;
1399 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1400 	}
1401 
1402 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1403 			workload, ring_id, head, tail, start, ctl);
1404 
1405 	ret = prepare_mm(workload);
1406 	if (ret) {
1407 		kmem_cache_free(s->workloads, workload);
1408 		return ERR_PTR(ret);
1409 	}
1410 
1411 	/* Only scan and shadow the first workload in the queue
1412 	 * as there is only one pre-allocated buf-obj for shadow.
1413 	 */
1414 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1415 		intel_runtime_pm_get(dev_priv);
1416 		mutex_lock(&dev_priv->drm.struct_mutex);
1417 		ret = intel_gvt_scan_and_shadow_workload(workload);
1418 		mutex_unlock(&dev_priv->drm.struct_mutex);
1419 		intel_runtime_pm_put(dev_priv);
1420 	}
1421 
1422 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1423 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1424 		intel_vgpu_destroy_workload(workload);
1425 		return ERR_PTR(ret);
1426 	}
1427 
1428 	return workload;
1429 }
1430 
1431 /**
1432  * intel_vgpu_queue_workload - Qeue a vGPU workload
1433  * @workload: the workload to queue in
1434  */
1435 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1436 {
1437 	list_add_tail(&workload->list,
1438 		workload_q_head(workload->vgpu, workload->ring_id));
1439 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1440 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1441 }
1442