xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136 	shadow_ring_context = kmap(page);
137 
138 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144 					      + RING_CTX_OFF(name.val),\
145 					      &shadow_ring_context->name.val, 4);\
146 		shadow_ring_context->name.val |= 0xffff << 16;\
147 	}
148 
149 	COPY_REG_MASKED(ctx_ctrl);
150 	COPY_REG(ctx_timestamp);
151 
152 	if (ring_id == RCS) {
153 		COPY_REG(bb_per_ctx_ptr);
154 		COPY_REG(rcs_indirect_ctx);
155 		COPY_REG(rcs_indirect_ctx_offset);
156 	}
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159 
160 	intel_gvt_hypervisor_read_gpa(vgpu,
161 			workload->ring_context_gpa +
162 			sizeof(*shadow_ring_context),
163 			(void *)shadow_ring_context +
164 			sizeof(*shadow_ring_context),
165 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168 	kunmap(page);
169 
170 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171 		return 0;
172 
173 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174 			workload->ctx_desc.lrca);
175 
176 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177 
178 	context_page_num = context_page_num >> PAGE_SHIFT;
179 
180 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
181 		context_page_num = 19;
182 
183 	i = 2;
184 	while (i < context_page_num) {
185 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186 				(u32)((workload->ctx_desc.lrca + i) <<
187 				I915_GTT_PAGE_SHIFT));
188 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189 			gvt_vgpu_err("Invalid guest context descriptor\n");
190 			return -EFAULT;
191 		}
192 
193 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194 		dst = kmap(page);
195 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196 				I915_GTT_PAGE_SIZE);
197 		kunmap(page);
198 		i++;
199 	}
200 	return 0;
201 }
202 
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205 	return i915_gem_context_force_single_submission(req->gem_context);
206 }
207 
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212 	i915_reg_t reg;
213 
214 	reg = RING_INSTDONE(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 	reg = RING_ACTHD_UDW(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221 
222 static int shadow_context_status_change(struct notifier_block *nb,
223 		unsigned long action, void *data)
224 {
225 	struct i915_request *req = data;
226 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227 				shadow_ctx_notifier_block[req->engine->id]);
228 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229 	enum intel_engine_id ring_id = req->engine->id;
230 	struct intel_vgpu_workload *workload;
231 	unsigned long flags;
232 
233 	if (!is_gvt_request(req)) {
234 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236 		    scheduler->engine_owner[ring_id]) {
237 			/* Switch ring from vGPU to host. */
238 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239 					      NULL, ring_id);
240 			scheduler->engine_owner[ring_id] = NULL;
241 		}
242 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243 
244 		return NOTIFY_OK;
245 	}
246 
247 	workload = scheduler->current_workload[ring_id];
248 	if (unlikely(!workload))
249 		return NOTIFY_OK;
250 
251 	switch (action) {
252 	case INTEL_CONTEXT_SCHEDULE_IN:
253 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255 			/* Switch ring from host to vGPU or vGPU to vGPU. */
256 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257 					      workload->vgpu, ring_id);
258 			scheduler->engine_owner[ring_id] = workload->vgpu;
259 		} else
260 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261 				      ring_id, workload->vgpu->id);
262 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263 		atomic_set(&workload->shadow_ctx_active, 1);
264 		break;
265 	case INTEL_CONTEXT_SCHEDULE_OUT:
266 		save_ring_hw_state(workload->vgpu, ring_id);
267 		atomic_set(&workload->shadow_ctx_active, 0);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		break;
272 	default:
273 		WARN_ON(1);
274 		return NOTIFY_OK;
275 	}
276 	wake_up(&workload->shadow_ctx_status_wq);
277 	return NOTIFY_OK;
278 }
279 
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282 	u64 desc = 0;
283 
284 	desc = ce->lrc_desc;
285 
286 	/* Update bits 0-11 of the context descriptor which includes flags
287 	 * like GEN8_CTX_* cached in desc_template
288 	 */
289 	desc &= U64_MAX << 12;
290 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291 
292 	ce->lrc_desc = desc;
293 }
294 
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297 	struct intel_vgpu *vgpu = workload->vgpu;
298 	struct i915_request *req = workload->req;
299 	void *shadow_ring_buffer_va;
300 	u32 *cs;
301 
302 	if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915))
303 		&& is_inhibit_context(req->hw_context))
304 		intel_vgpu_restore_inhibit_context(vgpu, req);
305 
306 	/* allocate shadow ring buffer */
307 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
308 	if (IS_ERR(cs)) {
309 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
310 			workload->rb_len);
311 		return PTR_ERR(cs);
312 	}
313 
314 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
315 
316 	/* get shadow ring buffer va */
317 	workload->shadow_ring_buffer_va = cs;
318 
319 	memcpy(cs, shadow_ring_buffer_va,
320 			workload->rb_len);
321 
322 	cs += workload->rb_len / sizeof(u32);
323 	intel_ring_advance(workload->req, cs);
324 
325 	return 0;
326 }
327 
328 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
329 {
330 	if (!wa_ctx->indirect_ctx.obj)
331 		return;
332 
333 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
334 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
335 }
336 
337 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
338 					 struct i915_gem_context *ctx)
339 {
340 	struct intel_vgpu_mm *mm = workload->shadow_mm;
341 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
342 	int i = 0;
343 
344 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
345 		return -1;
346 
347 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
348 		px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
349 	} else {
350 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
351 			px_dma(ppgtt->pdp.page_directory[i]) =
352 				mm->ppgtt_mm.shadow_pdps[i];
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 static int
360 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
361 {
362 	struct intel_vgpu *vgpu = workload->vgpu;
363 	struct intel_vgpu_submission *s = &vgpu->submission;
364 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
365 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
366 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
367 	struct i915_request *rq;
368 	int ret = 0;
369 
370 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
371 
372 	if (workload->req)
373 		goto out;
374 
375 	rq = i915_request_alloc(engine, shadow_ctx);
376 	if (IS_ERR(rq)) {
377 		gvt_vgpu_err("fail to allocate gem request\n");
378 		ret = PTR_ERR(rq);
379 		goto out;
380 	}
381 	workload->req = i915_request_get(rq);
382 out:
383 	return ret;
384 }
385 
386 /**
387  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
388  * shadow it as well, include ringbuffer,wa_ctx and ctx.
389  * @workload: an abstract entity for each execlist submission.
390  *
391  * This function is called before the workload submitting to i915, to make
392  * sure the content of the workload is valid.
393  */
394 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
395 {
396 	struct intel_vgpu *vgpu = workload->vgpu;
397 	struct intel_vgpu_submission *s = &vgpu->submission;
398 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
399 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
400 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
401 	struct intel_context *ce;
402 	int ret;
403 
404 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
405 
406 	if (workload->shadow)
407 		return 0;
408 
409 	ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
410 	if (ret < 0) {
411 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
412 		return ret;
413 	}
414 
415 	/* pin shadow context by gvt even the shadow context will be pinned
416 	 * when i915 alloc request. That is because gvt will update the guest
417 	 * context from shadow context when workload is completed, and at that
418 	 * moment, i915 may already unpined the shadow context to make the
419 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
420 	 * the guest context, gvt can unpin the shadow_ctx safely.
421 	 */
422 	ce = intel_context_pin(shadow_ctx, engine);
423 	if (IS_ERR(ce)) {
424 		gvt_vgpu_err("fail to pin shadow context\n");
425 		return PTR_ERR(ce);
426 	}
427 
428 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
429 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
430 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
431 
432 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
433 		shadow_context_descriptor_update(ce);
434 
435 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
436 	if (ret)
437 		goto err_unpin;
438 
439 	if ((workload->ring_id == RCS) &&
440 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
441 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
442 		if (ret)
443 			goto err_shadow;
444 	}
445 
446 	workload->shadow = true;
447 	return 0;
448 err_shadow:
449 	release_shadow_wa_ctx(&workload->wa_ctx);
450 err_unpin:
451 	intel_context_unpin(ce);
452 	return ret;
453 }
454 
455 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
456 
457 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
458 {
459 	struct intel_gvt *gvt = workload->vgpu->gvt;
460 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
461 	struct intel_vgpu_shadow_bb *bb;
462 	int ret;
463 
464 	list_for_each_entry(bb, &workload->shadow_bb, list) {
465 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
466 		 * is only updated into ring_scan_buffer, not real ring address
467 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
468 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
469 		 * in copy_workload_to_ring_buffer.
470 		 */
471 
472 		if (bb->bb_offset)
473 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
474 				+ bb->bb_offset;
475 
476 		if (bb->ppgtt) {
477 			/* for non-priv bb, scan&shadow is only for
478 			 * debugging purpose, so the content of shadow bb
479 			 * is the same as original bb. Therefore,
480 			 * here, rather than switch to shadow bb's gma
481 			 * address, we directly use original batch buffer's
482 			 * gma address, and send original bb to hardware
483 			 * directly
484 			 */
485 			if (bb->clflush & CLFLUSH_AFTER) {
486 				drm_clflush_virt_range(bb->va,
487 						bb->obj->base.size);
488 				bb->clflush &= ~CLFLUSH_AFTER;
489 			}
490 			i915_gem_obj_finish_shmem_access(bb->obj);
491 			bb->accessing = false;
492 
493 		} else {
494 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
495 					NULL, 0, 0, 0);
496 			if (IS_ERR(bb->vma)) {
497 				ret = PTR_ERR(bb->vma);
498 				goto err;
499 			}
500 
501 			/* relocate shadow batch buffer */
502 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
503 			if (gmadr_bytes == 8)
504 				bb->bb_start_cmd_va[2] = 0;
505 
506 			/* No one is going to touch shadow bb from now on. */
507 			if (bb->clflush & CLFLUSH_AFTER) {
508 				drm_clflush_virt_range(bb->va,
509 						bb->obj->base.size);
510 				bb->clflush &= ~CLFLUSH_AFTER;
511 			}
512 
513 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
514 					false);
515 			if (ret)
516 				goto err;
517 
518 			i915_gem_obj_finish_shmem_access(bb->obj);
519 			bb->accessing = false;
520 
521 			ret = i915_vma_move_to_active(bb->vma,
522 						      workload->req,
523 						      0);
524 			if (ret)
525 				goto err;
526 		}
527 	}
528 	return 0;
529 err:
530 	release_shadow_batch_buffer(workload);
531 	return ret;
532 }
533 
534 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
535 {
536 	struct intel_vgpu_workload *workload =
537 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
538 	struct i915_request *rq = workload->req;
539 	struct execlist_ring_context *shadow_ring_context =
540 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
541 
542 	shadow_ring_context->bb_per_ctx_ptr.val =
543 		(shadow_ring_context->bb_per_ctx_ptr.val &
544 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
545 	shadow_ring_context->rcs_indirect_ctx.val =
546 		(shadow_ring_context->rcs_indirect_ctx.val &
547 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
548 }
549 
550 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
551 {
552 	struct i915_vma *vma;
553 	unsigned char *per_ctx_va =
554 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
555 		wa_ctx->indirect_ctx.size;
556 
557 	if (wa_ctx->indirect_ctx.size == 0)
558 		return 0;
559 
560 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
561 				       0, CACHELINE_BYTES, 0);
562 	if (IS_ERR(vma))
563 		return PTR_ERR(vma);
564 
565 	/* FIXME: we are not tracking our pinned VMA leaving it
566 	 * up to the core to fix up the stray pin_count upon
567 	 * free.
568 	 */
569 
570 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
571 
572 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
573 	memset(per_ctx_va, 0, CACHELINE_BYTES);
574 
575 	update_wa_ctx_2_shadow_ctx(wa_ctx);
576 	return 0;
577 }
578 
579 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
580 {
581 	struct intel_vgpu *vgpu = workload->vgpu;
582 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
583 	struct intel_vgpu_shadow_bb *bb, *pos;
584 
585 	if (list_empty(&workload->shadow_bb))
586 		return;
587 
588 	bb = list_first_entry(&workload->shadow_bb,
589 			struct intel_vgpu_shadow_bb, list);
590 
591 	mutex_lock(&dev_priv->drm.struct_mutex);
592 
593 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
594 		if (bb->obj) {
595 			if (bb->accessing)
596 				i915_gem_obj_finish_shmem_access(bb->obj);
597 
598 			if (bb->va && !IS_ERR(bb->va))
599 				i915_gem_object_unpin_map(bb->obj);
600 
601 			if (bb->vma && !IS_ERR(bb->vma)) {
602 				i915_vma_unpin(bb->vma);
603 				i915_vma_close(bb->vma);
604 			}
605 			__i915_gem_object_release_unless_active(bb->obj);
606 		}
607 		list_del(&bb->list);
608 		kfree(bb);
609 	}
610 
611 	mutex_unlock(&dev_priv->drm.struct_mutex);
612 }
613 
614 static int prepare_workload(struct intel_vgpu_workload *workload)
615 {
616 	struct intel_vgpu *vgpu = workload->vgpu;
617 	int ret = 0;
618 
619 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
620 	if (ret) {
621 		gvt_vgpu_err("fail to vgpu pin mm\n");
622 		return ret;
623 	}
624 
625 	update_shadow_pdps(workload);
626 
627 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
628 	if (ret) {
629 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
630 		goto err_unpin_mm;
631 	}
632 
633 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
634 	if (ret) {
635 		gvt_vgpu_err("fail to flush post shadow\n");
636 		goto err_unpin_mm;
637 	}
638 
639 	ret = copy_workload_to_ring_buffer(workload);
640 	if (ret) {
641 		gvt_vgpu_err("fail to generate request\n");
642 		goto err_unpin_mm;
643 	}
644 
645 	ret = prepare_shadow_batch_buffer(workload);
646 	if (ret) {
647 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
648 		goto err_unpin_mm;
649 	}
650 
651 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
652 	if (ret) {
653 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
654 		goto err_shadow_batch;
655 	}
656 
657 	if (workload->prepare) {
658 		ret = workload->prepare(workload);
659 		if (ret)
660 			goto err_shadow_wa_ctx;
661 	}
662 
663 	return 0;
664 err_shadow_wa_ctx:
665 	release_shadow_wa_ctx(&workload->wa_ctx);
666 err_shadow_batch:
667 	release_shadow_batch_buffer(workload);
668 err_unpin_mm:
669 	intel_vgpu_unpin_mm(workload->shadow_mm);
670 	return ret;
671 }
672 
673 static int dispatch_workload(struct intel_vgpu_workload *workload)
674 {
675 	struct intel_vgpu *vgpu = workload->vgpu;
676 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
677 	int ring_id = workload->ring_id;
678 	int ret;
679 
680 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
681 		ring_id, workload);
682 
683 	mutex_lock(&vgpu->vgpu_lock);
684 	mutex_lock(&dev_priv->drm.struct_mutex);
685 
686 	ret = intel_gvt_workload_req_alloc(workload);
687 	if (ret)
688 		goto err_req;
689 
690 	ret = intel_gvt_scan_and_shadow_workload(workload);
691 	if (ret)
692 		goto out;
693 
694 	ret = populate_shadow_context(workload);
695 	if (ret) {
696 		release_shadow_wa_ctx(&workload->wa_ctx);
697 		goto out;
698 	}
699 
700 	ret = prepare_workload(workload);
701 out:
702 	if (!IS_ERR_OR_NULL(workload->req)) {
703 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
704 				ring_id, workload->req);
705 		i915_request_add(workload->req);
706 		workload->dispatched = true;
707 	}
708 err_req:
709 	if (ret)
710 		workload->status = ret;
711 	mutex_unlock(&dev_priv->drm.struct_mutex);
712 	mutex_unlock(&vgpu->vgpu_lock);
713 	return ret;
714 }
715 
716 static struct intel_vgpu_workload *pick_next_workload(
717 		struct intel_gvt *gvt, int ring_id)
718 {
719 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
720 	struct intel_vgpu_workload *workload = NULL;
721 
722 	mutex_lock(&gvt->sched_lock);
723 
724 	/*
725 	 * no current vgpu / will be scheduled out / no workload
726 	 * bail out
727 	 */
728 	if (!scheduler->current_vgpu) {
729 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
730 		goto out;
731 	}
732 
733 	if (scheduler->need_reschedule) {
734 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
735 		goto out;
736 	}
737 
738 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
739 		goto out;
740 
741 	/*
742 	 * still have current workload, maybe the workload disptacher
743 	 * fail to submit it for some reason, resubmit it.
744 	 */
745 	if (scheduler->current_workload[ring_id]) {
746 		workload = scheduler->current_workload[ring_id];
747 		gvt_dbg_sched("ring id %d still have current workload %p\n",
748 				ring_id, workload);
749 		goto out;
750 	}
751 
752 	/*
753 	 * pick a workload as current workload
754 	 * once current workload is set, schedule policy routines
755 	 * will wait the current workload is finished when trying to
756 	 * schedule out a vgpu.
757 	 */
758 	scheduler->current_workload[ring_id] = container_of(
759 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
760 			struct intel_vgpu_workload, list);
761 
762 	workload = scheduler->current_workload[ring_id];
763 
764 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
765 
766 	atomic_inc(&workload->vgpu->submission.running_workload_num);
767 out:
768 	mutex_unlock(&gvt->sched_lock);
769 	return workload;
770 }
771 
772 static void update_guest_context(struct intel_vgpu_workload *workload)
773 {
774 	struct i915_request *rq = workload->req;
775 	struct intel_vgpu *vgpu = workload->vgpu;
776 	struct intel_gvt *gvt = vgpu->gvt;
777 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
778 	struct execlist_ring_context *shadow_ring_context;
779 	struct page *page;
780 	void *src;
781 	unsigned long context_gpa, context_page_num;
782 	int i;
783 
784 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
785 		      workload->ctx_desc.lrca);
786 
787 	context_page_num = rq->engine->context_size;
788 	context_page_num = context_page_num >> PAGE_SHIFT;
789 
790 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS)
791 		context_page_num = 19;
792 
793 	i = 2;
794 
795 	while (i < context_page_num) {
796 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
797 				(u32)((workload->ctx_desc.lrca + i) <<
798 					I915_GTT_PAGE_SHIFT));
799 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
800 			gvt_vgpu_err("invalid guest context descriptor\n");
801 			return;
802 		}
803 
804 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
805 		src = kmap(page);
806 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
807 				I915_GTT_PAGE_SIZE);
808 		kunmap(page);
809 		i++;
810 	}
811 
812 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
813 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
814 
815 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
816 	shadow_ring_context = kmap(page);
817 
818 #define COPY_REG(name) \
819 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
820 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
821 
822 	COPY_REG(ctx_ctrl);
823 	COPY_REG(ctx_timestamp);
824 
825 #undef COPY_REG
826 
827 	intel_gvt_hypervisor_write_gpa(vgpu,
828 			workload->ring_context_gpa +
829 			sizeof(*shadow_ring_context),
830 			(void *)shadow_ring_context +
831 			sizeof(*shadow_ring_context),
832 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
833 
834 	kunmap(page);
835 }
836 
837 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
838 				unsigned long engine_mask)
839 {
840 	struct intel_vgpu_submission *s = &vgpu->submission;
841 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
842 	struct intel_engine_cs *engine;
843 	struct intel_vgpu_workload *pos, *n;
844 	unsigned int tmp;
845 
846 	/* free the unsubmited workloads in the queues. */
847 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
848 		list_for_each_entry_safe(pos, n,
849 			&s->workload_q_head[engine->id], list) {
850 			list_del_init(&pos->list);
851 			intel_vgpu_destroy_workload(pos);
852 		}
853 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
854 	}
855 }
856 
857 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
858 {
859 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
860 	struct intel_vgpu_workload *workload =
861 		scheduler->current_workload[ring_id];
862 	struct intel_vgpu *vgpu = workload->vgpu;
863 	struct intel_vgpu_submission *s = &vgpu->submission;
864 	struct i915_request *rq = workload->req;
865 	int event;
866 
867 	mutex_lock(&vgpu->vgpu_lock);
868 	mutex_lock(&gvt->sched_lock);
869 
870 	/* For the workload w/ request, needs to wait for the context
871 	 * switch to make sure request is completed.
872 	 * For the workload w/o request, directly complete the workload.
873 	 */
874 	if (rq) {
875 		wait_event(workload->shadow_ctx_status_wq,
876 			   !atomic_read(&workload->shadow_ctx_active));
877 
878 		/* If this request caused GPU hang, req->fence.error will
879 		 * be set to -EIO. Use -EIO to set workload status so
880 		 * that when this request caused GPU hang, didn't trigger
881 		 * context switch interrupt to guest.
882 		 */
883 		if (likely(workload->status == -EINPROGRESS)) {
884 			if (workload->req->fence.error == -EIO)
885 				workload->status = -EIO;
886 			else
887 				workload->status = 0;
888 		}
889 
890 		if (!workload->status && !(vgpu->resetting_eng &
891 					   ENGINE_MASK(ring_id))) {
892 			update_guest_context(workload);
893 
894 			for_each_set_bit(event, workload->pending_events,
895 					 INTEL_GVT_EVENT_MAX)
896 				intel_vgpu_trigger_virtual_event(vgpu, event);
897 		}
898 
899 		/* unpin shadow ctx as the shadow_ctx update is done */
900 		mutex_lock(&rq->i915->drm.struct_mutex);
901 		intel_context_unpin(rq->hw_context);
902 		mutex_unlock(&rq->i915->drm.struct_mutex);
903 
904 		i915_request_put(fetch_and_zero(&workload->req));
905 	}
906 
907 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
908 			ring_id, workload, workload->status);
909 
910 	scheduler->current_workload[ring_id] = NULL;
911 
912 	list_del_init(&workload->list);
913 
914 	if (!workload->status) {
915 		release_shadow_batch_buffer(workload);
916 		release_shadow_wa_ctx(&workload->wa_ctx);
917 	}
918 
919 	if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
920 		/* if workload->status is not successful means HW GPU
921 		 * has occurred GPU hang or something wrong with i915/GVT,
922 		 * and GVT won't inject context switch interrupt to guest.
923 		 * So this error is a vGPU hang actually to the guest.
924 		 * According to this we should emunlate a vGPU hang. If
925 		 * there are pending workloads which are already submitted
926 		 * from guest, we should clean them up like HW GPU does.
927 		 *
928 		 * if it is in middle of engine resetting, the pending
929 		 * workloads won't be submitted to HW GPU and will be
930 		 * cleaned up during the resetting process later, so doing
931 		 * the workload clean up here doesn't have any impact.
932 		 **/
933 		intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id));
934 	}
935 
936 	workload->complete(workload);
937 
938 	atomic_dec(&s->running_workload_num);
939 	wake_up(&scheduler->workload_complete_wq);
940 
941 	if (gvt->scheduler.need_reschedule)
942 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
943 
944 	mutex_unlock(&gvt->sched_lock);
945 	mutex_unlock(&vgpu->vgpu_lock);
946 }
947 
948 struct workload_thread_param {
949 	struct intel_gvt *gvt;
950 	int ring_id;
951 };
952 
953 static int workload_thread(void *priv)
954 {
955 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
956 	struct intel_gvt *gvt = p->gvt;
957 	int ring_id = p->ring_id;
958 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
959 	struct intel_vgpu_workload *workload = NULL;
960 	struct intel_vgpu *vgpu = NULL;
961 	int ret;
962 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
963 			|| IS_KABYLAKE(gvt->dev_priv)
964 			|| IS_BROXTON(gvt->dev_priv);
965 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
966 
967 	kfree(p);
968 
969 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
970 
971 	while (!kthread_should_stop()) {
972 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
973 		do {
974 			workload = pick_next_workload(gvt, ring_id);
975 			if (workload)
976 				break;
977 			wait_woken(&wait, TASK_INTERRUPTIBLE,
978 				   MAX_SCHEDULE_TIMEOUT);
979 		} while (!kthread_should_stop());
980 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
981 
982 		if (!workload)
983 			break;
984 
985 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
986 				workload->ring_id, workload,
987 				workload->vgpu->id);
988 
989 		intel_runtime_pm_get(gvt->dev_priv);
990 
991 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
992 				workload->ring_id, workload);
993 
994 		if (need_force_wake)
995 			intel_uncore_forcewake_get(gvt->dev_priv,
996 					FORCEWAKE_ALL);
997 
998 		ret = dispatch_workload(workload);
999 
1000 		if (ret) {
1001 			vgpu = workload->vgpu;
1002 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1003 			goto complete;
1004 		}
1005 
1006 		gvt_dbg_sched("ring id %d wait workload %p\n",
1007 				workload->ring_id, workload);
1008 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1009 
1010 complete:
1011 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1012 				workload, workload->status);
1013 
1014 		complete_current_workload(gvt, ring_id);
1015 
1016 		if (need_force_wake)
1017 			intel_uncore_forcewake_put(gvt->dev_priv,
1018 					FORCEWAKE_ALL);
1019 
1020 		intel_runtime_pm_put(gvt->dev_priv);
1021 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1022 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1023 	}
1024 	return 0;
1025 }
1026 
1027 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1028 {
1029 	struct intel_vgpu_submission *s = &vgpu->submission;
1030 	struct intel_gvt *gvt = vgpu->gvt;
1031 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1032 
1033 	if (atomic_read(&s->running_workload_num)) {
1034 		gvt_dbg_sched("wait vgpu idle\n");
1035 
1036 		wait_event(scheduler->workload_complete_wq,
1037 				!atomic_read(&s->running_workload_num));
1038 	}
1039 }
1040 
1041 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1042 {
1043 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1044 	struct intel_engine_cs *engine;
1045 	enum intel_engine_id i;
1046 
1047 	gvt_dbg_core("clean workload scheduler\n");
1048 
1049 	for_each_engine(engine, gvt->dev_priv, i) {
1050 		atomic_notifier_chain_unregister(
1051 					&engine->context_status_notifier,
1052 					&gvt->shadow_ctx_notifier_block[i]);
1053 		kthread_stop(scheduler->thread[i]);
1054 	}
1055 }
1056 
1057 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1058 {
1059 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1060 	struct workload_thread_param *param = NULL;
1061 	struct intel_engine_cs *engine;
1062 	enum intel_engine_id i;
1063 	int ret;
1064 
1065 	gvt_dbg_core("init workload scheduler\n");
1066 
1067 	init_waitqueue_head(&scheduler->workload_complete_wq);
1068 
1069 	for_each_engine(engine, gvt->dev_priv, i) {
1070 		init_waitqueue_head(&scheduler->waitq[i]);
1071 
1072 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1073 		if (!param) {
1074 			ret = -ENOMEM;
1075 			goto err;
1076 		}
1077 
1078 		param->gvt = gvt;
1079 		param->ring_id = i;
1080 
1081 		scheduler->thread[i] = kthread_run(workload_thread, param,
1082 			"gvt workload %d", i);
1083 		if (IS_ERR(scheduler->thread[i])) {
1084 			gvt_err("fail to create workload thread\n");
1085 			ret = PTR_ERR(scheduler->thread[i]);
1086 			goto err;
1087 		}
1088 
1089 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1090 					shadow_context_status_change;
1091 		atomic_notifier_chain_register(&engine->context_status_notifier,
1092 					&gvt->shadow_ctx_notifier_block[i]);
1093 	}
1094 	return 0;
1095 err:
1096 	intel_gvt_clean_workload_scheduler(gvt);
1097 	kfree(param);
1098 	param = NULL;
1099 	return ret;
1100 }
1101 
1102 static void
1103 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1104 {
1105 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1106 	int i;
1107 
1108 	if (i915_vm_is_48bit(&i915_ppgtt->vm))
1109 		px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1110 	else {
1111 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1112 			px_dma(i915_ppgtt->pdp.page_directory[i]) =
1113 						s->i915_context_pdps[i];
1114 	}
1115 }
1116 
1117 /**
1118  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1119  * @vgpu: a vGPU
1120  *
1121  * This function is called when a vGPU is being destroyed.
1122  *
1123  */
1124 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1125 {
1126 	struct intel_vgpu_submission *s = &vgpu->submission;
1127 
1128 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1129 	i915_context_ppgtt_root_restore(s);
1130 	i915_gem_context_put(s->shadow_ctx);
1131 	kmem_cache_destroy(s->workloads);
1132 }
1133 
1134 
1135 /**
1136  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1137  * @vgpu: a vGPU
1138  * @engine_mask: engines expected to be reset
1139  *
1140  * This function is called when a vGPU is being destroyed.
1141  *
1142  */
1143 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1144 		unsigned long engine_mask)
1145 {
1146 	struct intel_vgpu_submission *s = &vgpu->submission;
1147 
1148 	if (!s->active)
1149 		return;
1150 
1151 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1152 	s->ops->reset(vgpu, engine_mask);
1153 }
1154 
1155 static void
1156 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1157 {
1158 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1159 	int i;
1160 
1161 	if (i915_vm_is_48bit(&i915_ppgtt->vm))
1162 		s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1163 	else {
1164 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1165 			s->i915_context_pdps[i] =
1166 				px_dma(i915_ppgtt->pdp.page_directory[i]);
1167 	}
1168 }
1169 
1170 /**
1171  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1172  * @vgpu: a vGPU
1173  *
1174  * This function is called when a vGPU is being created.
1175  *
1176  * Returns:
1177  * Zero on success, negative error code if failed.
1178  *
1179  */
1180 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1181 {
1182 	struct intel_vgpu_submission *s = &vgpu->submission;
1183 	enum intel_engine_id i;
1184 	struct intel_engine_cs *engine;
1185 	int ret;
1186 
1187 	s->shadow_ctx = i915_gem_context_create_gvt(
1188 			&vgpu->gvt->dev_priv->drm);
1189 	if (IS_ERR(s->shadow_ctx))
1190 		return PTR_ERR(s->shadow_ctx);
1191 
1192 	i915_context_ppgtt_root_save(s);
1193 
1194 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1195 
1196 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1197 						  sizeof(struct intel_vgpu_workload), 0,
1198 						  SLAB_HWCACHE_ALIGN,
1199 						  offsetof(struct intel_vgpu_workload, rb_tail),
1200 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1201 						  NULL);
1202 
1203 	if (!s->workloads) {
1204 		ret = -ENOMEM;
1205 		goto out_shadow_ctx;
1206 	}
1207 
1208 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1209 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1210 
1211 	atomic_set(&s->running_workload_num, 0);
1212 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1213 
1214 	return 0;
1215 
1216 out_shadow_ctx:
1217 	i915_gem_context_put(s->shadow_ctx);
1218 	return ret;
1219 }
1220 
1221 /**
1222  * intel_vgpu_select_submission_ops - select virtual submission interface
1223  * @vgpu: a vGPU
1224  * @engine_mask: either ALL_ENGINES or target engine mask
1225  * @interface: expected vGPU virtual submission interface
1226  *
1227  * This function is called when guest configures submission interface.
1228  *
1229  * Returns:
1230  * Zero on success, negative error code if failed.
1231  *
1232  */
1233 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1234 				     unsigned long engine_mask,
1235 				     unsigned int interface)
1236 {
1237 	struct intel_vgpu_submission *s = &vgpu->submission;
1238 	const struct intel_vgpu_submission_ops *ops[] = {
1239 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1240 			&intel_vgpu_execlist_submission_ops,
1241 	};
1242 	int ret;
1243 
1244 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1245 		return -EINVAL;
1246 
1247 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1248 		return -EINVAL;
1249 
1250 	if (s->active)
1251 		s->ops->clean(vgpu, engine_mask);
1252 
1253 	if (interface == 0) {
1254 		s->ops = NULL;
1255 		s->virtual_submission_interface = 0;
1256 		s->active = false;
1257 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1258 		return 0;
1259 	}
1260 
1261 	ret = ops[interface]->init(vgpu, engine_mask);
1262 	if (ret)
1263 		return ret;
1264 
1265 	s->ops = ops[interface];
1266 	s->virtual_submission_interface = interface;
1267 	s->active = true;
1268 
1269 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1270 			vgpu->id, s->ops->name);
1271 
1272 	return 0;
1273 }
1274 
1275 /**
1276  * intel_vgpu_destroy_workload - destroy a vGPU workload
1277  * @workload: workload to destroy
1278  *
1279  * This function is called when destroy a vGPU workload.
1280  *
1281  */
1282 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1283 {
1284 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1285 
1286 	if (workload->shadow_mm)
1287 		intel_vgpu_mm_put(workload->shadow_mm);
1288 
1289 	kmem_cache_free(s->workloads, workload);
1290 }
1291 
1292 static struct intel_vgpu_workload *
1293 alloc_workload(struct intel_vgpu *vgpu)
1294 {
1295 	struct intel_vgpu_submission *s = &vgpu->submission;
1296 	struct intel_vgpu_workload *workload;
1297 
1298 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1299 	if (!workload)
1300 		return ERR_PTR(-ENOMEM);
1301 
1302 	INIT_LIST_HEAD(&workload->list);
1303 	INIT_LIST_HEAD(&workload->shadow_bb);
1304 
1305 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1306 	atomic_set(&workload->shadow_ctx_active, 0);
1307 
1308 	workload->status = -EINPROGRESS;
1309 	workload->vgpu = vgpu;
1310 
1311 	return workload;
1312 }
1313 
1314 #define RING_CTX_OFF(x) \
1315 	offsetof(struct execlist_ring_context, x)
1316 
1317 static void read_guest_pdps(struct intel_vgpu *vgpu,
1318 		u64 ring_context_gpa, u32 pdp[8])
1319 {
1320 	u64 gpa;
1321 	int i;
1322 
1323 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1324 
1325 	for (i = 0; i < 8; i++)
1326 		intel_gvt_hypervisor_read_gpa(vgpu,
1327 				gpa + i * 8, &pdp[7 - i], 4);
1328 }
1329 
1330 static int prepare_mm(struct intel_vgpu_workload *workload)
1331 {
1332 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1333 	struct intel_vgpu_mm *mm;
1334 	struct intel_vgpu *vgpu = workload->vgpu;
1335 	intel_gvt_gtt_type_t root_entry_type;
1336 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1337 
1338 	switch (desc->addressing_mode) {
1339 	case 1: /* legacy 32-bit */
1340 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1341 		break;
1342 	case 3: /* legacy 64-bit */
1343 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1344 		break;
1345 	default:
1346 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1347 		return -EINVAL;
1348 	}
1349 
1350 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1351 
1352 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1353 	if (IS_ERR(mm))
1354 		return PTR_ERR(mm);
1355 
1356 	workload->shadow_mm = mm;
1357 	return 0;
1358 }
1359 
1360 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1361 		((a)->lrca == (b)->lrca))
1362 
1363 #define get_last_workload(q) \
1364 	(list_empty(q) ? NULL : container_of(q->prev, \
1365 	struct intel_vgpu_workload, list))
1366 /**
1367  * intel_vgpu_create_workload - create a vGPU workload
1368  * @vgpu: a vGPU
1369  * @ring_id: ring index
1370  * @desc: a guest context descriptor
1371  *
1372  * This function is called when creating a vGPU workload.
1373  *
1374  * Returns:
1375  * struct intel_vgpu_workload * on success, negative error code in
1376  * pointer if failed.
1377  *
1378  */
1379 struct intel_vgpu_workload *
1380 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1381 			   struct execlist_ctx_descriptor_format *desc)
1382 {
1383 	struct intel_vgpu_submission *s = &vgpu->submission;
1384 	struct list_head *q = workload_q_head(vgpu, ring_id);
1385 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1386 	struct intel_vgpu_workload *workload = NULL;
1387 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1388 	u64 ring_context_gpa;
1389 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1390 	int ret;
1391 
1392 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1393 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1394 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1395 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1396 		return ERR_PTR(-EINVAL);
1397 	}
1398 
1399 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1400 			RING_CTX_OFF(ring_header.val), &head, 4);
1401 
1402 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1403 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1404 
1405 	head &= RB_HEAD_OFF_MASK;
1406 	tail &= RB_TAIL_OFF_MASK;
1407 
1408 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1409 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1410 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1411 				last_workload->rb_tail);
1412 		/*
1413 		 * cannot use guest context head pointer here,
1414 		 * as it might not be updated at this time
1415 		 */
1416 		head = last_workload->rb_tail;
1417 	}
1418 
1419 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1420 
1421 	/* record some ring buffer register values for scan and shadow */
1422 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1423 			RING_CTX_OFF(rb_start.val), &start, 4);
1424 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1425 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1426 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1427 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1428 
1429 	workload = alloc_workload(vgpu);
1430 	if (IS_ERR(workload))
1431 		return workload;
1432 
1433 	workload->ring_id = ring_id;
1434 	workload->ctx_desc = *desc;
1435 	workload->ring_context_gpa = ring_context_gpa;
1436 	workload->rb_head = head;
1437 	workload->rb_tail = tail;
1438 	workload->rb_start = start;
1439 	workload->rb_ctl = ctl;
1440 
1441 	if (ring_id == RCS) {
1442 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1443 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1444 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1445 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1446 
1447 		workload->wa_ctx.indirect_ctx.guest_gma =
1448 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1449 		workload->wa_ctx.indirect_ctx.size =
1450 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1451 			CACHELINE_BYTES;
1452 		workload->wa_ctx.per_ctx.guest_gma =
1453 			per_ctx & PER_CTX_ADDR_MASK;
1454 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1455 	}
1456 
1457 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1458 			workload, ring_id, head, tail, start, ctl);
1459 
1460 	ret = prepare_mm(workload);
1461 	if (ret) {
1462 		kmem_cache_free(s->workloads, workload);
1463 		return ERR_PTR(ret);
1464 	}
1465 
1466 	/* Only scan and shadow the first workload in the queue
1467 	 * as there is only one pre-allocated buf-obj for shadow.
1468 	 */
1469 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1470 		intel_runtime_pm_get(dev_priv);
1471 		mutex_lock(&dev_priv->drm.struct_mutex);
1472 		ret = intel_gvt_scan_and_shadow_workload(workload);
1473 		mutex_unlock(&dev_priv->drm.struct_mutex);
1474 		intel_runtime_pm_put(dev_priv);
1475 	}
1476 
1477 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1478 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1479 		intel_vgpu_destroy_workload(workload);
1480 		return ERR_PTR(ret);
1481 	}
1482 
1483 	return workload;
1484 }
1485 
1486 /**
1487  * intel_vgpu_queue_workload - Qeue a vGPU workload
1488  * @workload: the workload to queue in
1489  */
1490 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1491 {
1492 	list_add_tail(&workload->list,
1493 		workload_q_head(workload->vgpu, workload->ring_id));
1494 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1495 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1496 }
1497