xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 1fa0a7dc)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS0)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136 	shadow_ring_context = kmap(page);
137 
138 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144 					      + RING_CTX_OFF(name.val),\
145 					      &shadow_ring_context->name.val, 4);\
146 		shadow_ring_context->name.val |= 0xffff << 16;\
147 	}
148 
149 	COPY_REG_MASKED(ctx_ctrl);
150 	COPY_REG(ctx_timestamp);
151 
152 	if (ring_id == RCS0) {
153 		COPY_REG(bb_per_ctx_ptr);
154 		COPY_REG(rcs_indirect_ctx);
155 		COPY_REG(rcs_indirect_ctx_offset);
156 	}
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159 
160 	intel_gvt_hypervisor_read_gpa(vgpu,
161 			workload->ring_context_gpa +
162 			sizeof(*shadow_ring_context),
163 			(void *)shadow_ring_context +
164 			sizeof(*shadow_ring_context),
165 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168 	kunmap(page);
169 
170 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171 		return 0;
172 
173 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174 			workload->ctx_desc.lrca);
175 
176 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177 
178 	context_page_num = context_page_num >> PAGE_SHIFT;
179 
180 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
181 		context_page_num = 19;
182 
183 	i = 2;
184 	while (i < context_page_num) {
185 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186 				(u32)((workload->ctx_desc.lrca + i) <<
187 				I915_GTT_PAGE_SHIFT));
188 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189 			gvt_vgpu_err("Invalid guest context descriptor\n");
190 			return -EFAULT;
191 		}
192 
193 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194 		dst = kmap(page);
195 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196 				I915_GTT_PAGE_SIZE);
197 		kunmap(page);
198 		i++;
199 	}
200 	return 0;
201 }
202 
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205 	return i915_gem_context_force_single_submission(req->gem_context);
206 }
207 
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212 	i915_reg_t reg;
213 
214 	reg = RING_INSTDONE(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 	reg = RING_ACTHD_UDW(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221 
222 static int shadow_context_status_change(struct notifier_block *nb,
223 		unsigned long action, void *data)
224 {
225 	struct i915_request *req = data;
226 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227 				shadow_ctx_notifier_block[req->engine->id]);
228 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229 	enum intel_engine_id ring_id = req->engine->id;
230 	struct intel_vgpu_workload *workload;
231 	unsigned long flags;
232 
233 	if (!is_gvt_request(req)) {
234 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236 		    scheduler->engine_owner[ring_id]) {
237 			/* Switch ring from vGPU to host. */
238 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239 					      NULL, ring_id);
240 			scheduler->engine_owner[ring_id] = NULL;
241 		}
242 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243 
244 		return NOTIFY_OK;
245 	}
246 
247 	workload = scheduler->current_workload[ring_id];
248 	if (unlikely(!workload))
249 		return NOTIFY_OK;
250 
251 	switch (action) {
252 	case INTEL_CONTEXT_SCHEDULE_IN:
253 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255 			/* Switch ring from host to vGPU or vGPU to vGPU. */
256 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257 					      workload->vgpu, ring_id);
258 			scheduler->engine_owner[ring_id] = workload->vgpu;
259 		} else
260 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261 				      ring_id, workload->vgpu->id);
262 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263 		atomic_set(&workload->shadow_ctx_active, 1);
264 		break;
265 	case INTEL_CONTEXT_SCHEDULE_OUT:
266 		save_ring_hw_state(workload->vgpu, ring_id);
267 		atomic_set(&workload->shadow_ctx_active, 0);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		break;
272 	default:
273 		WARN_ON(1);
274 		return NOTIFY_OK;
275 	}
276 	wake_up(&workload->shadow_ctx_status_wq);
277 	return NOTIFY_OK;
278 }
279 
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282 	u64 desc = 0;
283 
284 	desc = ce->lrc_desc;
285 
286 	/* Update bits 0-11 of the context descriptor which includes flags
287 	 * like GEN8_CTX_* cached in desc_template
288 	 */
289 	desc &= U64_MAX << 12;
290 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291 
292 	ce->lrc_desc = desc;
293 }
294 
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297 	struct intel_vgpu *vgpu = workload->vgpu;
298 	struct i915_request *req = workload->req;
299 	void *shadow_ring_buffer_va;
300 	u32 *cs;
301 
302 	if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)
303 		|| IS_COFFEELAKE(req->i915))
304 		&& is_inhibit_context(req->hw_context))
305 		intel_vgpu_restore_inhibit_context(vgpu, req);
306 
307 	/* allocate shadow ring buffer */
308 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
309 	if (IS_ERR(cs)) {
310 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
311 			workload->rb_len);
312 		return PTR_ERR(cs);
313 	}
314 
315 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
316 
317 	/* get shadow ring buffer va */
318 	workload->shadow_ring_buffer_va = cs;
319 
320 	memcpy(cs, shadow_ring_buffer_va,
321 			workload->rb_len);
322 
323 	cs += workload->rb_len / sizeof(u32);
324 	intel_ring_advance(workload->req, cs);
325 
326 	return 0;
327 }
328 
329 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
330 {
331 	if (!wa_ctx->indirect_ctx.obj)
332 		return;
333 
334 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
335 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
336 
337 	wa_ctx->indirect_ctx.obj = NULL;
338 	wa_ctx->indirect_ctx.shadow_va = NULL;
339 }
340 
341 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
342 					 struct i915_gem_context *ctx)
343 {
344 	struct intel_vgpu_mm *mm = workload->shadow_mm;
345 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
346 	int i = 0;
347 
348 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
349 		return -EINVAL;
350 
351 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
352 		px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
353 	} else {
354 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
355 			px_dma(ppgtt->pdp.page_directory[i]) =
356 				mm->ppgtt_mm.shadow_pdps[i];
357 		}
358 	}
359 
360 	return 0;
361 }
362 
363 static int
364 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
365 {
366 	struct intel_vgpu *vgpu = workload->vgpu;
367 	struct intel_vgpu_submission *s = &vgpu->submission;
368 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
369 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
370 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
371 	struct i915_request *rq;
372 	int ret = 0;
373 
374 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
375 
376 	if (workload->req)
377 		goto out;
378 
379 	rq = i915_request_alloc(engine, shadow_ctx);
380 	if (IS_ERR(rq)) {
381 		gvt_vgpu_err("fail to allocate gem request\n");
382 		ret = PTR_ERR(rq);
383 		goto out;
384 	}
385 	workload->req = i915_request_get(rq);
386 out:
387 	return ret;
388 }
389 
390 /**
391  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
392  * shadow it as well, include ringbuffer,wa_ctx and ctx.
393  * @workload: an abstract entity for each execlist submission.
394  *
395  * This function is called before the workload submitting to i915, to make
396  * sure the content of the workload is valid.
397  */
398 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
399 {
400 	struct intel_vgpu *vgpu = workload->vgpu;
401 	struct intel_vgpu_submission *s = &vgpu->submission;
402 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
403 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
404 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
405 	struct intel_context *ce;
406 	int ret;
407 
408 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
409 
410 	if (workload->shadow)
411 		return 0;
412 
413 	/* pin shadow context by gvt even the shadow context will be pinned
414 	 * when i915 alloc request. That is because gvt will update the guest
415 	 * context from shadow context when workload is completed, and at that
416 	 * moment, i915 may already unpined the shadow context to make the
417 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
418 	 * the guest context, gvt can unpin the shadow_ctx safely.
419 	 */
420 	ce = intel_context_pin(shadow_ctx, engine);
421 	if (IS_ERR(ce)) {
422 		gvt_vgpu_err("fail to pin shadow context\n");
423 		return PTR_ERR(ce);
424 	}
425 
426 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
427 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
428 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
429 
430 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
431 		shadow_context_descriptor_update(ce);
432 
433 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
434 	if (ret)
435 		goto err_unpin;
436 
437 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
438 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
439 		if (ret)
440 			goto err_shadow;
441 	}
442 
443 	workload->shadow = true;
444 	return 0;
445 err_shadow:
446 	release_shadow_wa_ctx(&workload->wa_ctx);
447 err_unpin:
448 	intel_context_unpin(ce);
449 	return ret;
450 }
451 
452 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
453 
454 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
455 {
456 	struct intel_gvt *gvt = workload->vgpu->gvt;
457 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
458 	struct intel_vgpu_shadow_bb *bb;
459 	int ret;
460 
461 	list_for_each_entry(bb, &workload->shadow_bb, list) {
462 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
463 		 * is only updated into ring_scan_buffer, not real ring address
464 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
465 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
466 		 * in copy_workload_to_ring_buffer.
467 		 */
468 
469 		if (bb->bb_offset)
470 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
471 				+ bb->bb_offset;
472 
473 		if (bb->ppgtt) {
474 			/* for non-priv bb, scan&shadow is only for
475 			 * debugging purpose, so the content of shadow bb
476 			 * is the same as original bb. Therefore,
477 			 * here, rather than switch to shadow bb's gma
478 			 * address, we directly use original batch buffer's
479 			 * gma address, and send original bb to hardware
480 			 * directly
481 			 */
482 			if (bb->clflush & CLFLUSH_AFTER) {
483 				drm_clflush_virt_range(bb->va,
484 						bb->obj->base.size);
485 				bb->clflush &= ~CLFLUSH_AFTER;
486 			}
487 			i915_gem_obj_finish_shmem_access(bb->obj);
488 			bb->accessing = false;
489 
490 		} else {
491 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
492 					NULL, 0, 0, 0);
493 			if (IS_ERR(bb->vma)) {
494 				ret = PTR_ERR(bb->vma);
495 				goto err;
496 			}
497 
498 			/* relocate shadow batch buffer */
499 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
500 			if (gmadr_bytes == 8)
501 				bb->bb_start_cmd_va[2] = 0;
502 
503 			/* No one is going to touch shadow bb from now on. */
504 			if (bb->clflush & CLFLUSH_AFTER) {
505 				drm_clflush_virt_range(bb->va,
506 						bb->obj->base.size);
507 				bb->clflush &= ~CLFLUSH_AFTER;
508 			}
509 
510 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
511 					false);
512 			if (ret)
513 				goto err;
514 
515 			i915_gem_obj_finish_shmem_access(bb->obj);
516 			bb->accessing = false;
517 
518 			ret = i915_vma_move_to_active(bb->vma,
519 						      workload->req,
520 						      0);
521 			if (ret)
522 				goto err;
523 		}
524 	}
525 	return 0;
526 err:
527 	release_shadow_batch_buffer(workload);
528 	return ret;
529 }
530 
531 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
532 {
533 	struct intel_vgpu_workload *workload =
534 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
535 	struct i915_request *rq = workload->req;
536 	struct execlist_ring_context *shadow_ring_context =
537 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
538 
539 	shadow_ring_context->bb_per_ctx_ptr.val =
540 		(shadow_ring_context->bb_per_ctx_ptr.val &
541 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
542 	shadow_ring_context->rcs_indirect_ctx.val =
543 		(shadow_ring_context->rcs_indirect_ctx.val &
544 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
545 }
546 
547 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
548 {
549 	struct i915_vma *vma;
550 	unsigned char *per_ctx_va =
551 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
552 		wa_ctx->indirect_ctx.size;
553 
554 	if (wa_ctx->indirect_ctx.size == 0)
555 		return 0;
556 
557 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
558 				       0, CACHELINE_BYTES, 0);
559 	if (IS_ERR(vma))
560 		return PTR_ERR(vma);
561 
562 	/* FIXME: we are not tracking our pinned VMA leaving it
563 	 * up to the core to fix up the stray pin_count upon
564 	 * free.
565 	 */
566 
567 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
568 
569 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
570 	memset(per_ctx_va, 0, CACHELINE_BYTES);
571 
572 	update_wa_ctx_2_shadow_ctx(wa_ctx);
573 	return 0;
574 }
575 
576 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
577 {
578 	struct intel_vgpu *vgpu = workload->vgpu;
579 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
580 	struct intel_vgpu_shadow_bb *bb, *pos;
581 
582 	if (list_empty(&workload->shadow_bb))
583 		return;
584 
585 	bb = list_first_entry(&workload->shadow_bb,
586 			struct intel_vgpu_shadow_bb, list);
587 
588 	mutex_lock(&dev_priv->drm.struct_mutex);
589 
590 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
591 		if (bb->obj) {
592 			if (bb->accessing)
593 				i915_gem_obj_finish_shmem_access(bb->obj);
594 
595 			if (bb->va && !IS_ERR(bb->va))
596 				i915_gem_object_unpin_map(bb->obj);
597 
598 			if (bb->vma && !IS_ERR(bb->vma)) {
599 				i915_vma_unpin(bb->vma);
600 				i915_vma_close(bb->vma);
601 			}
602 			__i915_gem_object_release_unless_active(bb->obj);
603 		}
604 		list_del(&bb->list);
605 		kfree(bb);
606 	}
607 
608 	mutex_unlock(&dev_priv->drm.struct_mutex);
609 }
610 
611 static int prepare_workload(struct intel_vgpu_workload *workload)
612 {
613 	struct intel_vgpu *vgpu = workload->vgpu;
614 	int ret = 0;
615 
616 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
617 	if (ret) {
618 		gvt_vgpu_err("fail to vgpu pin mm\n");
619 		return ret;
620 	}
621 
622 	update_shadow_pdps(workload);
623 
624 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
625 	if (ret) {
626 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
627 		goto err_unpin_mm;
628 	}
629 
630 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
631 	if (ret) {
632 		gvt_vgpu_err("fail to flush post shadow\n");
633 		goto err_unpin_mm;
634 	}
635 
636 	ret = copy_workload_to_ring_buffer(workload);
637 	if (ret) {
638 		gvt_vgpu_err("fail to generate request\n");
639 		goto err_unpin_mm;
640 	}
641 
642 	ret = prepare_shadow_batch_buffer(workload);
643 	if (ret) {
644 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
645 		goto err_unpin_mm;
646 	}
647 
648 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
649 	if (ret) {
650 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
651 		goto err_shadow_batch;
652 	}
653 
654 	if (workload->prepare) {
655 		ret = workload->prepare(workload);
656 		if (ret)
657 			goto err_shadow_wa_ctx;
658 	}
659 
660 	return 0;
661 err_shadow_wa_ctx:
662 	release_shadow_wa_ctx(&workload->wa_ctx);
663 err_shadow_batch:
664 	release_shadow_batch_buffer(workload);
665 err_unpin_mm:
666 	intel_vgpu_unpin_mm(workload->shadow_mm);
667 	return ret;
668 }
669 
670 static int dispatch_workload(struct intel_vgpu_workload *workload)
671 {
672 	struct intel_vgpu *vgpu = workload->vgpu;
673 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
674 	struct intel_vgpu_submission *s = &vgpu->submission;
675 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
676 	struct i915_request *rq;
677 	int ring_id = workload->ring_id;
678 	int ret;
679 
680 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
681 		ring_id, workload);
682 
683 	mutex_lock(&vgpu->vgpu_lock);
684 	mutex_lock(&dev_priv->drm.struct_mutex);
685 
686 	ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
687 	if (ret < 0) {
688 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
689 		goto err_req;
690 	}
691 
692 	ret = intel_gvt_workload_req_alloc(workload);
693 	if (ret)
694 		goto err_req;
695 
696 	ret = intel_gvt_scan_and_shadow_workload(workload);
697 	if (ret)
698 		goto out;
699 
700 	ret = populate_shadow_context(workload);
701 	if (ret) {
702 		release_shadow_wa_ctx(&workload->wa_ctx);
703 		goto out;
704 	}
705 
706 	ret = prepare_workload(workload);
707 out:
708 	if (ret) {
709 		/* We might still need to add request with
710 		 * clean ctx to retire it properly..
711 		 */
712 		rq = fetch_and_zero(&workload->req);
713 		i915_request_put(rq);
714 	}
715 
716 	if (!IS_ERR_OR_NULL(workload->req)) {
717 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
718 				ring_id, workload->req);
719 		i915_request_add(workload->req);
720 		workload->dispatched = true;
721 	}
722 err_req:
723 	if (ret)
724 		workload->status = ret;
725 	mutex_unlock(&dev_priv->drm.struct_mutex);
726 	mutex_unlock(&vgpu->vgpu_lock);
727 	return ret;
728 }
729 
730 static struct intel_vgpu_workload *pick_next_workload(
731 		struct intel_gvt *gvt, int ring_id)
732 {
733 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
734 	struct intel_vgpu_workload *workload = NULL;
735 
736 	mutex_lock(&gvt->sched_lock);
737 
738 	/*
739 	 * no current vgpu / will be scheduled out / no workload
740 	 * bail out
741 	 */
742 	if (!scheduler->current_vgpu) {
743 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
744 		goto out;
745 	}
746 
747 	if (scheduler->need_reschedule) {
748 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
749 		goto out;
750 	}
751 
752 	if (!scheduler->current_vgpu->active ||
753 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
754 		goto out;
755 
756 	/*
757 	 * still have current workload, maybe the workload disptacher
758 	 * fail to submit it for some reason, resubmit it.
759 	 */
760 	if (scheduler->current_workload[ring_id]) {
761 		workload = scheduler->current_workload[ring_id];
762 		gvt_dbg_sched("ring id %d still have current workload %p\n",
763 				ring_id, workload);
764 		goto out;
765 	}
766 
767 	/*
768 	 * pick a workload as current workload
769 	 * once current workload is set, schedule policy routines
770 	 * will wait the current workload is finished when trying to
771 	 * schedule out a vgpu.
772 	 */
773 	scheduler->current_workload[ring_id] = container_of(
774 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
775 			struct intel_vgpu_workload, list);
776 
777 	workload = scheduler->current_workload[ring_id];
778 
779 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
780 
781 	atomic_inc(&workload->vgpu->submission.running_workload_num);
782 out:
783 	mutex_unlock(&gvt->sched_lock);
784 	return workload;
785 }
786 
787 static void update_guest_context(struct intel_vgpu_workload *workload)
788 {
789 	struct i915_request *rq = workload->req;
790 	struct intel_vgpu *vgpu = workload->vgpu;
791 	struct intel_gvt *gvt = vgpu->gvt;
792 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
793 	struct execlist_ring_context *shadow_ring_context;
794 	struct page *page;
795 	void *src;
796 	unsigned long context_gpa, context_page_num;
797 	int i;
798 
799 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
800 		      workload->ctx_desc.lrca);
801 
802 	context_page_num = rq->engine->context_size;
803 	context_page_num = context_page_num >> PAGE_SHIFT;
804 
805 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
806 		context_page_num = 19;
807 
808 	i = 2;
809 
810 	while (i < context_page_num) {
811 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
812 				(u32)((workload->ctx_desc.lrca + i) <<
813 					I915_GTT_PAGE_SHIFT));
814 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
815 			gvt_vgpu_err("invalid guest context descriptor\n");
816 			return;
817 		}
818 
819 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
820 		src = kmap(page);
821 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
822 				I915_GTT_PAGE_SIZE);
823 		kunmap(page);
824 		i++;
825 	}
826 
827 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
828 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
829 
830 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
831 	shadow_ring_context = kmap(page);
832 
833 #define COPY_REG(name) \
834 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
835 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
836 
837 	COPY_REG(ctx_ctrl);
838 	COPY_REG(ctx_timestamp);
839 
840 #undef COPY_REG
841 
842 	intel_gvt_hypervisor_write_gpa(vgpu,
843 			workload->ring_context_gpa +
844 			sizeof(*shadow_ring_context),
845 			(void *)shadow_ring_context +
846 			sizeof(*shadow_ring_context),
847 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
848 
849 	kunmap(page);
850 }
851 
852 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
853 				intel_engine_mask_t engine_mask)
854 {
855 	struct intel_vgpu_submission *s = &vgpu->submission;
856 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
857 	struct intel_engine_cs *engine;
858 	struct intel_vgpu_workload *pos, *n;
859 	intel_engine_mask_t tmp;
860 
861 	/* free the unsubmited workloads in the queues. */
862 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
863 		list_for_each_entry_safe(pos, n,
864 			&s->workload_q_head[engine->id], list) {
865 			list_del_init(&pos->list);
866 			intel_vgpu_destroy_workload(pos);
867 		}
868 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
869 	}
870 }
871 
872 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
873 {
874 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
875 	struct intel_vgpu_workload *workload =
876 		scheduler->current_workload[ring_id];
877 	struct intel_vgpu *vgpu = workload->vgpu;
878 	struct intel_vgpu_submission *s = &vgpu->submission;
879 	struct i915_request *rq = workload->req;
880 	int event;
881 
882 	mutex_lock(&vgpu->vgpu_lock);
883 	mutex_lock(&gvt->sched_lock);
884 
885 	/* For the workload w/ request, needs to wait for the context
886 	 * switch to make sure request is completed.
887 	 * For the workload w/o request, directly complete the workload.
888 	 */
889 	if (rq) {
890 		wait_event(workload->shadow_ctx_status_wq,
891 			   !atomic_read(&workload->shadow_ctx_active));
892 
893 		/* If this request caused GPU hang, req->fence.error will
894 		 * be set to -EIO. Use -EIO to set workload status so
895 		 * that when this request caused GPU hang, didn't trigger
896 		 * context switch interrupt to guest.
897 		 */
898 		if (likely(workload->status == -EINPROGRESS)) {
899 			if (workload->req->fence.error == -EIO)
900 				workload->status = -EIO;
901 			else
902 				workload->status = 0;
903 		}
904 
905 		if (!workload->status &&
906 		    !(vgpu->resetting_eng & BIT(ring_id))) {
907 			update_guest_context(workload);
908 
909 			for_each_set_bit(event, workload->pending_events,
910 					 INTEL_GVT_EVENT_MAX)
911 				intel_vgpu_trigger_virtual_event(vgpu, event);
912 		}
913 
914 		/* unpin shadow ctx as the shadow_ctx update is done */
915 		mutex_lock(&rq->i915->drm.struct_mutex);
916 		intel_context_unpin(rq->hw_context);
917 		mutex_unlock(&rq->i915->drm.struct_mutex);
918 
919 		i915_request_put(fetch_and_zero(&workload->req));
920 	}
921 
922 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
923 			ring_id, workload, workload->status);
924 
925 	scheduler->current_workload[ring_id] = NULL;
926 
927 	list_del_init(&workload->list);
928 
929 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
930 		/* if workload->status is not successful means HW GPU
931 		 * has occurred GPU hang or something wrong with i915/GVT,
932 		 * and GVT won't inject context switch interrupt to guest.
933 		 * So this error is a vGPU hang actually to the guest.
934 		 * According to this we should emunlate a vGPU hang. If
935 		 * there are pending workloads which are already submitted
936 		 * from guest, we should clean them up like HW GPU does.
937 		 *
938 		 * if it is in middle of engine resetting, the pending
939 		 * workloads won't be submitted to HW GPU and will be
940 		 * cleaned up during the resetting process later, so doing
941 		 * the workload clean up here doesn't have any impact.
942 		 **/
943 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
944 	}
945 
946 	workload->complete(workload);
947 
948 	atomic_dec(&s->running_workload_num);
949 	wake_up(&scheduler->workload_complete_wq);
950 
951 	if (gvt->scheduler.need_reschedule)
952 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
953 
954 	mutex_unlock(&gvt->sched_lock);
955 	mutex_unlock(&vgpu->vgpu_lock);
956 }
957 
958 struct workload_thread_param {
959 	struct intel_gvt *gvt;
960 	int ring_id;
961 };
962 
963 static int workload_thread(void *priv)
964 {
965 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
966 	struct intel_gvt *gvt = p->gvt;
967 	int ring_id = p->ring_id;
968 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
969 	struct intel_vgpu_workload *workload = NULL;
970 	struct intel_vgpu *vgpu = NULL;
971 	int ret;
972 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
973 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
974 
975 	kfree(p);
976 
977 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
978 
979 	while (!kthread_should_stop()) {
980 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
981 		do {
982 			workload = pick_next_workload(gvt, ring_id);
983 			if (workload)
984 				break;
985 			wait_woken(&wait, TASK_INTERRUPTIBLE,
986 				   MAX_SCHEDULE_TIMEOUT);
987 		} while (!kthread_should_stop());
988 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
989 
990 		if (!workload)
991 			break;
992 
993 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
994 				workload->ring_id, workload,
995 				workload->vgpu->id);
996 
997 		intel_runtime_pm_get(gvt->dev_priv);
998 
999 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1000 				workload->ring_id, workload);
1001 
1002 		if (need_force_wake)
1003 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1004 					FORCEWAKE_ALL);
1005 
1006 		ret = dispatch_workload(workload);
1007 
1008 		if (ret) {
1009 			vgpu = workload->vgpu;
1010 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1011 			goto complete;
1012 		}
1013 
1014 		gvt_dbg_sched("ring id %d wait workload %p\n",
1015 				workload->ring_id, workload);
1016 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1017 
1018 complete:
1019 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1020 				workload, workload->status);
1021 
1022 		complete_current_workload(gvt, ring_id);
1023 
1024 		if (need_force_wake)
1025 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1026 					FORCEWAKE_ALL);
1027 
1028 		intel_runtime_pm_put_unchecked(gvt->dev_priv);
1029 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1030 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1031 	}
1032 	return 0;
1033 }
1034 
1035 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1036 {
1037 	struct intel_vgpu_submission *s = &vgpu->submission;
1038 	struct intel_gvt *gvt = vgpu->gvt;
1039 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1040 
1041 	if (atomic_read(&s->running_workload_num)) {
1042 		gvt_dbg_sched("wait vgpu idle\n");
1043 
1044 		wait_event(scheduler->workload_complete_wq,
1045 				!atomic_read(&s->running_workload_num));
1046 	}
1047 }
1048 
1049 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1050 {
1051 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1052 	struct intel_engine_cs *engine;
1053 	enum intel_engine_id i;
1054 
1055 	gvt_dbg_core("clean workload scheduler\n");
1056 
1057 	for_each_engine(engine, gvt->dev_priv, i) {
1058 		atomic_notifier_chain_unregister(
1059 					&engine->context_status_notifier,
1060 					&gvt->shadow_ctx_notifier_block[i]);
1061 		kthread_stop(scheduler->thread[i]);
1062 	}
1063 }
1064 
1065 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1066 {
1067 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1068 	struct workload_thread_param *param = NULL;
1069 	struct intel_engine_cs *engine;
1070 	enum intel_engine_id i;
1071 	int ret;
1072 
1073 	gvt_dbg_core("init workload scheduler\n");
1074 
1075 	init_waitqueue_head(&scheduler->workload_complete_wq);
1076 
1077 	for_each_engine(engine, gvt->dev_priv, i) {
1078 		init_waitqueue_head(&scheduler->waitq[i]);
1079 
1080 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1081 		if (!param) {
1082 			ret = -ENOMEM;
1083 			goto err;
1084 		}
1085 
1086 		param->gvt = gvt;
1087 		param->ring_id = i;
1088 
1089 		scheduler->thread[i] = kthread_run(workload_thread, param,
1090 			"gvt workload %d", i);
1091 		if (IS_ERR(scheduler->thread[i])) {
1092 			gvt_err("fail to create workload thread\n");
1093 			ret = PTR_ERR(scheduler->thread[i]);
1094 			goto err;
1095 		}
1096 
1097 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1098 					shadow_context_status_change;
1099 		atomic_notifier_chain_register(&engine->context_status_notifier,
1100 					&gvt->shadow_ctx_notifier_block[i]);
1101 	}
1102 	return 0;
1103 err:
1104 	intel_gvt_clean_workload_scheduler(gvt);
1105 	kfree(param);
1106 	param = NULL;
1107 	return ret;
1108 }
1109 
1110 static void
1111 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1112 {
1113 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1114 	int i;
1115 
1116 	if (i915_vm_is_4lvl(&i915_ppgtt->vm)) {
1117 		px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1118 	} else {
1119 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1120 			px_dma(i915_ppgtt->pdp.page_directory[i]) =
1121 						s->i915_context_pdps[i];
1122 	}
1123 }
1124 
1125 /**
1126  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1127  * @vgpu: a vGPU
1128  *
1129  * This function is called when a vGPU is being destroyed.
1130  *
1131  */
1132 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1133 {
1134 	struct intel_vgpu_submission *s = &vgpu->submission;
1135 
1136 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1137 	i915_context_ppgtt_root_restore(s);
1138 	i915_gem_context_put(s->shadow_ctx);
1139 	kmem_cache_destroy(s->workloads);
1140 }
1141 
1142 
1143 /**
1144  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1145  * @vgpu: a vGPU
1146  * @engine_mask: engines expected to be reset
1147  *
1148  * This function is called when a vGPU is being destroyed.
1149  *
1150  */
1151 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1152 				 intel_engine_mask_t engine_mask)
1153 {
1154 	struct intel_vgpu_submission *s = &vgpu->submission;
1155 
1156 	if (!s->active)
1157 		return;
1158 
1159 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1160 	s->ops->reset(vgpu, engine_mask);
1161 }
1162 
1163 static void
1164 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1165 {
1166 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1167 	int i;
1168 
1169 	if (i915_vm_is_4lvl(&i915_ppgtt->vm))
1170 		s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1171 	else {
1172 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1173 			s->i915_context_pdps[i] =
1174 				px_dma(i915_ppgtt->pdp.page_directory[i]);
1175 	}
1176 }
1177 
1178 /**
1179  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1180  * @vgpu: a vGPU
1181  *
1182  * This function is called when a vGPU is being created.
1183  *
1184  * Returns:
1185  * Zero on success, negative error code if failed.
1186  *
1187  */
1188 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1189 {
1190 	struct intel_vgpu_submission *s = &vgpu->submission;
1191 	enum intel_engine_id i;
1192 	struct intel_engine_cs *engine;
1193 	int ret;
1194 
1195 	s->shadow_ctx = i915_gem_context_create_gvt(
1196 			&vgpu->gvt->dev_priv->drm);
1197 	if (IS_ERR(s->shadow_ctx))
1198 		return PTR_ERR(s->shadow_ctx);
1199 
1200 	i915_context_ppgtt_root_save(s);
1201 
1202 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1203 
1204 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1205 						  sizeof(struct intel_vgpu_workload), 0,
1206 						  SLAB_HWCACHE_ALIGN,
1207 						  offsetof(struct intel_vgpu_workload, rb_tail),
1208 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1209 						  NULL);
1210 
1211 	if (!s->workloads) {
1212 		ret = -ENOMEM;
1213 		goto out_shadow_ctx;
1214 	}
1215 
1216 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1217 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1218 
1219 	atomic_set(&s->running_workload_num, 0);
1220 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1221 
1222 	return 0;
1223 
1224 out_shadow_ctx:
1225 	i915_gem_context_put(s->shadow_ctx);
1226 	return ret;
1227 }
1228 
1229 /**
1230  * intel_vgpu_select_submission_ops - select virtual submission interface
1231  * @vgpu: a vGPU
1232  * @engine_mask: either ALL_ENGINES or target engine mask
1233  * @interface: expected vGPU virtual submission interface
1234  *
1235  * This function is called when guest configures submission interface.
1236  *
1237  * Returns:
1238  * Zero on success, negative error code if failed.
1239  *
1240  */
1241 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1242 				     intel_engine_mask_t engine_mask,
1243 				     unsigned int interface)
1244 {
1245 	struct intel_vgpu_submission *s = &vgpu->submission;
1246 	const struct intel_vgpu_submission_ops *ops[] = {
1247 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1248 			&intel_vgpu_execlist_submission_ops,
1249 	};
1250 	int ret;
1251 
1252 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1253 		return -EINVAL;
1254 
1255 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1256 		return -EINVAL;
1257 
1258 	if (s->active)
1259 		s->ops->clean(vgpu, engine_mask);
1260 
1261 	if (interface == 0) {
1262 		s->ops = NULL;
1263 		s->virtual_submission_interface = 0;
1264 		s->active = false;
1265 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1266 		return 0;
1267 	}
1268 
1269 	ret = ops[interface]->init(vgpu, engine_mask);
1270 	if (ret)
1271 		return ret;
1272 
1273 	s->ops = ops[interface];
1274 	s->virtual_submission_interface = interface;
1275 	s->active = true;
1276 
1277 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1278 			vgpu->id, s->ops->name);
1279 
1280 	return 0;
1281 }
1282 
1283 /**
1284  * intel_vgpu_destroy_workload - destroy a vGPU workload
1285  * @workload: workload to destroy
1286  *
1287  * This function is called when destroy a vGPU workload.
1288  *
1289  */
1290 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1291 {
1292 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1293 
1294 	release_shadow_batch_buffer(workload);
1295 	release_shadow_wa_ctx(&workload->wa_ctx);
1296 
1297 	if (workload->shadow_mm)
1298 		intel_vgpu_mm_put(workload->shadow_mm);
1299 
1300 	kmem_cache_free(s->workloads, workload);
1301 }
1302 
1303 static struct intel_vgpu_workload *
1304 alloc_workload(struct intel_vgpu *vgpu)
1305 {
1306 	struct intel_vgpu_submission *s = &vgpu->submission;
1307 	struct intel_vgpu_workload *workload;
1308 
1309 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1310 	if (!workload)
1311 		return ERR_PTR(-ENOMEM);
1312 
1313 	INIT_LIST_HEAD(&workload->list);
1314 	INIT_LIST_HEAD(&workload->shadow_bb);
1315 
1316 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1317 	atomic_set(&workload->shadow_ctx_active, 0);
1318 
1319 	workload->status = -EINPROGRESS;
1320 	workload->vgpu = vgpu;
1321 
1322 	return workload;
1323 }
1324 
1325 #define RING_CTX_OFF(x) \
1326 	offsetof(struct execlist_ring_context, x)
1327 
1328 static void read_guest_pdps(struct intel_vgpu *vgpu,
1329 		u64 ring_context_gpa, u32 pdp[8])
1330 {
1331 	u64 gpa;
1332 	int i;
1333 
1334 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1335 
1336 	for (i = 0; i < 8; i++)
1337 		intel_gvt_hypervisor_read_gpa(vgpu,
1338 				gpa + i * 8, &pdp[7 - i], 4);
1339 }
1340 
1341 static int prepare_mm(struct intel_vgpu_workload *workload)
1342 {
1343 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1344 	struct intel_vgpu_mm *mm;
1345 	struct intel_vgpu *vgpu = workload->vgpu;
1346 	enum intel_gvt_gtt_type root_entry_type;
1347 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1348 
1349 	switch (desc->addressing_mode) {
1350 	case 1: /* legacy 32-bit */
1351 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1352 		break;
1353 	case 3: /* legacy 64-bit */
1354 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1355 		break;
1356 	default:
1357 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1358 		return -EINVAL;
1359 	}
1360 
1361 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1362 
1363 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1364 	if (IS_ERR(mm))
1365 		return PTR_ERR(mm);
1366 
1367 	workload->shadow_mm = mm;
1368 	return 0;
1369 }
1370 
1371 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1372 		((a)->lrca == (b)->lrca))
1373 
1374 #define get_last_workload(q) \
1375 	(list_empty(q) ? NULL : container_of(q->prev, \
1376 	struct intel_vgpu_workload, list))
1377 /**
1378  * intel_vgpu_create_workload - create a vGPU workload
1379  * @vgpu: a vGPU
1380  * @ring_id: ring index
1381  * @desc: a guest context descriptor
1382  *
1383  * This function is called when creating a vGPU workload.
1384  *
1385  * Returns:
1386  * struct intel_vgpu_workload * on success, negative error code in
1387  * pointer if failed.
1388  *
1389  */
1390 struct intel_vgpu_workload *
1391 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1392 			   struct execlist_ctx_descriptor_format *desc)
1393 {
1394 	struct intel_vgpu_submission *s = &vgpu->submission;
1395 	struct list_head *q = workload_q_head(vgpu, ring_id);
1396 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1397 	struct intel_vgpu_workload *workload = NULL;
1398 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1399 	u64 ring_context_gpa;
1400 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1401 	int ret;
1402 
1403 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1404 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1405 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1406 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1407 		return ERR_PTR(-EINVAL);
1408 	}
1409 
1410 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1411 			RING_CTX_OFF(ring_header.val), &head, 4);
1412 
1413 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1414 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1415 
1416 	head &= RB_HEAD_OFF_MASK;
1417 	tail &= RB_TAIL_OFF_MASK;
1418 
1419 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1420 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1421 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1422 				last_workload->rb_tail);
1423 		/*
1424 		 * cannot use guest context head pointer here,
1425 		 * as it might not be updated at this time
1426 		 */
1427 		head = last_workload->rb_tail;
1428 	}
1429 
1430 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1431 
1432 	/* record some ring buffer register values for scan and shadow */
1433 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1434 			RING_CTX_OFF(rb_start.val), &start, 4);
1435 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1436 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1437 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1438 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1439 
1440 	workload = alloc_workload(vgpu);
1441 	if (IS_ERR(workload))
1442 		return workload;
1443 
1444 	workload->ring_id = ring_id;
1445 	workload->ctx_desc = *desc;
1446 	workload->ring_context_gpa = ring_context_gpa;
1447 	workload->rb_head = head;
1448 	workload->rb_tail = tail;
1449 	workload->rb_start = start;
1450 	workload->rb_ctl = ctl;
1451 
1452 	if (ring_id == RCS0) {
1453 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1454 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1455 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1456 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1457 
1458 		workload->wa_ctx.indirect_ctx.guest_gma =
1459 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1460 		workload->wa_ctx.indirect_ctx.size =
1461 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1462 			CACHELINE_BYTES;
1463 		workload->wa_ctx.per_ctx.guest_gma =
1464 			per_ctx & PER_CTX_ADDR_MASK;
1465 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1466 	}
1467 
1468 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1469 			workload, ring_id, head, tail, start, ctl);
1470 
1471 	ret = prepare_mm(workload);
1472 	if (ret) {
1473 		kmem_cache_free(s->workloads, workload);
1474 		return ERR_PTR(ret);
1475 	}
1476 
1477 	/* Only scan and shadow the first workload in the queue
1478 	 * as there is only one pre-allocated buf-obj for shadow.
1479 	 */
1480 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1481 		intel_runtime_pm_get(dev_priv);
1482 		mutex_lock(&dev_priv->drm.struct_mutex);
1483 		ret = intel_gvt_scan_and_shadow_workload(workload);
1484 		mutex_unlock(&dev_priv->drm.struct_mutex);
1485 		intel_runtime_pm_put_unchecked(dev_priv);
1486 	}
1487 
1488 	if (ret) {
1489 		if (vgpu_is_vm_unhealthy(ret))
1490 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1491 		intel_vgpu_destroy_workload(workload);
1492 		return ERR_PTR(ret);
1493 	}
1494 
1495 	return workload;
1496 }
1497 
1498 /**
1499  * intel_vgpu_queue_workload - Qeue a vGPU workload
1500  * @workload: the workload to queue in
1501  */
1502 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1503 {
1504 	list_add_tail(&workload->list,
1505 		workload_q_head(workload->vgpu, workload->ring_id));
1506 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1507 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1508 }
1509