xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_execlists_submission.h"
41 #include "gt/intel_gt_regs.h"
42 #include "gt/intel_lrc.h"
43 #include "gt/intel_ring.h"
44 
45 #include "i915_drv.h"
46 #include "i915_gem_gtt.h"
47 #include "i915_perf_oa_regs.h"
48 #include "gvt.h"
49 
50 #define RING_CTX_OFF(x) \
51 	offsetof(struct execlist_ring_context, x)
52 
53 static void set_context_pdp_root_pointer(
54 		struct execlist_ring_context *ring_context,
55 		u32 pdp[8])
56 {
57 	int i;
58 
59 	for (i = 0; i < 8; i++)
60 		ring_context->pdps[i].val = pdp[7 - i];
61 }
62 
63 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
64 {
65 	struct execlist_ring_context *shadow_ring_context;
66 	struct intel_context *ctx = workload->req->context;
67 
68 	if (WARN_ON(!workload->shadow_mm))
69 		return;
70 
71 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
72 		return;
73 
74 	shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
75 	set_context_pdp_root_pointer(shadow_ring_context,
76 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
77 }
78 
79 /*
80  * when populating shadow ctx from guest, we should not overrride oa related
81  * registers, so that they will not be overlapped by guest oa configs. Thus
82  * made it possible to capture oa data from host for both host and guests.
83  */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85 		u32 *reg_state, bool save)
86 {
87 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
88 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90 	int i = 0;
91 	u32 flex_mmio[] = {
92 		i915_mmio_reg_offset(EU_PERF_CNTL0),
93 		i915_mmio_reg_offset(EU_PERF_CNTL1),
94 		i915_mmio_reg_offset(EU_PERF_CNTL2),
95 		i915_mmio_reg_offset(EU_PERF_CNTL3),
96 		i915_mmio_reg_offset(EU_PERF_CNTL4),
97 		i915_mmio_reg_offset(EU_PERF_CNTL5),
98 		i915_mmio_reg_offset(EU_PERF_CNTL6),
99 	};
100 
101 	if (workload->engine->id != RCS0)
102 		return;
103 
104 	if (save) {
105 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106 
107 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108 			u32 state_offset = ctx_flexeu0 + i * 2;
109 
110 			workload->flex_mmio[i] = reg_state[state_offset + 1];
111 		}
112 	} else {
113 		reg_state[ctx_oactxctrl] =
114 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116 
117 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118 			u32 state_offset = ctx_flexeu0 + i * 2;
119 			u32 mmio = flex_mmio[i];
120 
121 			reg_state[state_offset] = mmio;
122 			reg_state[state_offset + 1] = workload->flex_mmio[i];
123 		}
124 	}
125 }
126 
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129 	struct intel_vgpu *vgpu = workload->vgpu;
130 	struct intel_gvt *gvt = vgpu->gvt;
131 	struct intel_context *ctx = workload->req->context;
132 	struct execlist_ring_context *shadow_ring_context;
133 	void *dst;
134 	void *context_base;
135 	unsigned long context_gpa, context_page_num;
136 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
137 	unsigned long gpa_size; /* size of consecutive GPAs */
138 	struct intel_vgpu_submission *s = &vgpu->submission;
139 	int i;
140 	bool skip = false;
141 	int ring_id = workload->engine->id;
142 	int ret;
143 
144 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
145 
146 	context_base = (void *) ctx->lrc_reg_state -
147 				(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
148 
149 	shadow_ring_context = (void *) ctx->lrc_reg_state;
150 
151 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
152 #define COPY_REG(name) \
153 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
154 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
155 #define COPY_REG_MASKED(name) {\
156 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
157 					      + RING_CTX_OFF(name.val),\
158 					      &shadow_ring_context->name.val, 4);\
159 		shadow_ring_context->name.val |= 0xffff << 16;\
160 	}
161 
162 	COPY_REG_MASKED(ctx_ctrl);
163 	COPY_REG(ctx_timestamp);
164 
165 	if (workload->engine->id == RCS0) {
166 		COPY_REG(bb_per_ctx_ptr);
167 		COPY_REG(rcs_indirect_ctx);
168 		COPY_REG(rcs_indirect_ctx_offset);
169 	} else if (workload->engine->id == BCS0)
170 		intel_gvt_hypervisor_read_gpa(vgpu,
171 				workload->ring_context_gpa +
172 				BCS_TILE_REGISTER_VAL_OFFSET,
173 				(void *)shadow_ring_context +
174 				BCS_TILE_REGISTER_VAL_OFFSET, 4);
175 #undef COPY_REG
176 #undef COPY_REG_MASKED
177 
178 	/* don't copy Ring Context (the first 0x50 dwords),
179 	 * only copy the Engine Context part from guest
180 	 */
181 	intel_gvt_hypervisor_read_gpa(vgpu,
182 			workload->ring_context_gpa +
183 			RING_CTX_SIZE,
184 			(void *)shadow_ring_context +
185 			RING_CTX_SIZE,
186 			I915_GTT_PAGE_SIZE - RING_CTX_SIZE);
187 
188 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
189 
190 	gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
191 			workload->engine->name, workload->ctx_desc.lrca,
192 			workload->ctx_desc.context_id,
193 			workload->ring_context_gpa);
194 
195 	/* only need to ensure this context is not pinned/unpinned during the
196 	 * period from last submission to this this submission.
197 	 * Upon reaching this function, the currently submitted context is not
198 	 * supposed to get unpinned. If a misbehaving guest driver ever does
199 	 * this, it would corrupt itself.
200 	 */
201 	if (s->last_ctx[ring_id].valid &&
202 			(s->last_ctx[ring_id].lrca ==
203 				workload->ctx_desc.lrca) &&
204 			(s->last_ctx[ring_id].ring_context_gpa ==
205 				workload->ring_context_gpa))
206 		skip = true;
207 
208 	s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
209 	s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
210 
211 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
212 		return 0;
213 
214 	s->last_ctx[ring_id].valid = false;
215 	context_page_num = workload->engine->context_size;
216 	context_page_num = context_page_num >> PAGE_SHIFT;
217 
218 	if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
219 		context_page_num = 19;
220 
221 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
222 	 * read from the continuous GPAs into dst virtual address
223 	 */
224 	gpa_size = 0;
225 	for (i = 2; i < context_page_num; i++) {
226 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
227 				(u32)((workload->ctx_desc.lrca + i) <<
228 				I915_GTT_PAGE_SHIFT));
229 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
230 			gvt_vgpu_err("Invalid guest context descriptor\n");
231 			return -EFAULT;
232 		}
233 
234 		if (gpa_size == 0) {
235 			gpa_base = context_gpa;
236 			dst = context_base + (i << I915_GTT_PAGE_SHIFT);
237 		} else if (context_gpa != gpa_base + gpa_size)
238 			goto read;
239 
240 		gpa_size += I915_GTT_PAGE_SIZE;
241 
242 		if (i == context_page_num - 1)
243 			goto read;
244 
245 		continue;
246 
247 read:
248 		intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
249 		gpa_base = context_gpa;
250 		gpa_size = I915_GTT_PAGE_SIZE;
251 		dst = context_base + (i << I915_GTT_PAGE_SHIFT);
252 	}
253 	ret = intel_gvt_scan_engine_context(workload);
254 	if (ret) {
255 		gvt_vgpu_err("invalid cmd found in guest context pages\n");
256 		return ret;
257 	}
258 	s->last_ctx[ring_id].valid = true;
259 	return 0;
260 }
261 
262 static inline bool is_gvt_request(struct i915_request *rq)
263 {
264 	return intel_context_force_single_submission(rq->context);
265 }
266 
267 static void save_ring_hw_state(struct intel_vgpu *vgpu,
268 			       const struct intel_engine_cs *engine)
269 {
270 	struct intel_uncore *uncore = engine->uncore;
271 	i915_reg_t reg;
272 
273 	reg = RING_INSTDONE(engine->mmio_base);
274 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
275 		intel_uncore_read(uncore, reg);
276 
277 	reg = RING_ACTHD(engine->mmio_base);
278 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
279 		intel_uncore_read(uncore, reg);
280 
281 	reg = RING_ACTHD_UDW(engine->mmio_base);
282 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
283 		intel_uncore_read(uncore, reg);
284 }
285 
286 static int shadow_context_status_change(struct notifier_block *nb,
287 		unsigned long action, void *data)
288 {
289 	struct i915_request *rq = data;
290 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
291 				shadow_ctx_notifier_block[rq->engine->id]);
292 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
293 	enum intel_engine_id ring_id = rq->engine->id;
294 	struct intel_vgpu_workload *workload;
295 	unsigned long flags;
296 
297 	if (!is_gvt_request(rq)) {
298 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
299 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
300 		    scheduler->engine_owner[ring_id]) {
301 			/* Switch ring from vGPU to host. */
302 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
303 					      NULL, rq->engine);
304 			scheduler->engine_owner[ring_id] = NULL;
305 		}
306 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
307 
308 		return NOTIFY_OK;
309 	}
310 
311 	workload = scheduler->current_workload[ring_id];
312 	if (unlikely(!workload))
313 		return NOTIFY_OK;
314 
315 	switch (action) {
316 	case INTEL_CONTEXT_SCHEDULE_IN:
317 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
318 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
319 			/* Switch ring from host to vGPU or vGPU to vGPU. */
320 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
321 					      workload->vgpu, rq->engine);
322 			scheduler->engine_owner[ring_id] = workload->vgpu;
323 		} else
324 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
325 				      ring_id, workload->vgpu->id);
326 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
327 		atomic_set(&workload->shadow_ctx_active, 1);
328 		break;
329 	case INTEL_CONTEXT_SCHEDULE_OUT:
330 		save_ring_hw_state(workload->vgpu, rq->engine);
331 		atomic_set(&workload->shadow_ctx_active, 0);
332 		break;
333 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
334 		save_ring_hw_state(workload->vgpu, rq->engine);
335 		break;
336 	default:
337 		WARN_ON(1);
338 		return NOTIFY_OK;
339 	}
340 	wake_up(&workload->shadow_ctx_status_wq);
341 	return NOTIFY_OK;
342 }
343 
344 static void
345 shadow_context_descriptor_update(struct intel_context *ce,
346 				 struct intel_vgpu_workload *workload)
347 {
348 	u64 desc = ce->lrc.desc;
349 
350 	/*
351 	 * Update bits 0-11 of the context descriptor which includes flags
352 	 * like GEN8_CTX_* cached in desc_template
353 	 */
354 	desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
355 	desc |= (u64)workload->ctx_desc.addressing_mode <<
356 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
357 
358 	ce->lrc.desc = desc;
359 }
360 
361 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
362 {
363 	struct intel_vgpu *vgpu = workload->vgpu;
364 	struct i915_request *req = workload->req;
365 	void *shadow_ring_buffer_va;
366 	u32 *cs;
367 	int err;
368 
369 	if (GRAPHICS_VER(req->engine->i915) == 9 && is_inhibit_context(req->context))
370 		intel_vgpu_restore_inhibit_context(vgpu, req);
371 
372 	/*
373 	 * To track whether a request has started on HW, we can emit a
374 	 * breadcrumb at the beginning of the request and check its
375 	 * timeline's HWSP to see if the breadcrumb has advanced past the
376 	 * start of this request. Actually, the request must have the
377 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
378 	 * scheduler might get a wrong state of it during reset. Since the
379 	 * requests from gvt always set the has_init_breadcrumb flag, here
380 	 * need to do the emit_init_breadcrumb for all the requests.
381 	 */
382 	if (req->engine->emit_init_breadcrumb) {
383 		err = req->engine->emit_init_breadcrumb(req);
384 		if (err) {
385 			gvt_vgpu_err("fail to emit init breadcrumb\n");
386 			return err;
387 		}
388 	}
389 
390 	/* allocate shadow ring buffer */
391 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
392 	if (IS_ERR(cs)) {
393 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
394 			workload->rb_len);
395 		return PTR_ERR(cs);
396 	}
397 
398 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
399 
400 	/* get shadow ring buffer va */
401 	workload->shadow_ring_buffer_va = cs;
402 
403 	memcpy(cs, shadow_ring_buffer_va,
404 			workload->rb_len);
405 
406 	cs += workload->rb_len / sizeof(u32);
407 	intel_ring_advance(workload->req, cs);
408 
409 	return 0;
410 }
411 
412 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
413 {
414 	if (!wa_ctx->indirect_ctx.obj)
415 		return;
416 
417 	i915_gem_object_lock(wa_ctx->indirect_ctx.obj, NULL);
418 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
419 	i915_gem_object_unlock(wa_ctx->indirect_ctx.obj);
420 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
421 
422 	wa_ctx->indirect_ctx.obj = NULL;
423 	wa_ctx->indirect_ctx.shadow_va = NULL;
424 }
425 
426 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
427 {
428 	struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
429 
430 	/* This is not a good idea */
431 	sg->dma_address = addr;
432 }
433 
434 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
435 					  struct intel_context *ce)
436 {
437 	struct intel_vgpu_mm *mm = workload->shadow_mm;
438 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
439 	int i = 0;
440 
441 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
442 		set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
443 	} else {
444 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
445 			struct i915_page_directory * const pd =
446 				i915_pd_entry(ppgtt->pd, i);
447 			/* skip now as current i915 ppgtt alloc won't allocate
448 			   top level pdp for non 4-level table, won't impact
449 			   shadow ppgtt. */
450 			if (!pd)
451 				break;
452 
453 			set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
454 		}
455 	}
456 }
457 
458 static int
459 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
460 {
461 	struct intel_vgpu *vgpu = workload->vgpu;
462 	struct intel_vgpu_submission *s = &vgpu->submission;
463 	struct i915_request *rq;
464 
465 	if (workload->req)
466 		return 0;
467 
468 	rq = i915_request_create(s->shadow[workload->engine->id]);
469 	if (IS_ERR(rq)) {
470 		gvt_vgpu_err("fail to allocate gem request\n");
471 		return PTR_ERR(rq);
472 	}
473 
474 	workload->req = i915_request_get(rq);
475 	return 0;
476 }
477 
478 /**
479  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
480  * shadow it as well, include ringbuffer,wa_ctx and ctx.
481  * @workload: an abstract entity for each execlist submission.
482  *
483  * This function is called before the workload submitting to i915, to make
484  * sure the content of the workload is valid.
485  */
486 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
487 {
488 	struct intel_vgpu *vgpu = workload->vgpu;
489 	struct intel_vgpu_submission *s = &vgpu->submission;
490 	int ret;
491 
492 	lockdep_assert_held(&vgpu->vgpu_lock);
493 
494 	if (workload->shadow)
495 		return 0;
496 
497 	if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
498 		shadow_context_descriptor_update(s->shadow[workload->engine->id],
499 						 workload);
500 
501 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
502 	if (ret)
503 		return ret;
504 
505 	if (workload->engine->id == RCS0 &&
506 	    workload->wa_ctx.indirect_ctx.size) {
507 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
508 		if (ret)
509 			goto err_shadow;
510 	}
511 
512 	workload->shadow = true;
513 	return 0;
514 
515 err_shadow:
516 	release_shadow_wa_ctx(&workload->wa_ctx);
517 	return ret;
518 }
519 
520 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
521 
522 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
523 {
524 	struct intel_gvt *gvt = workload->vgpu->gvt;
525 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
526 	struct intel_vgpu_shadow_bb *bb;
527 	struct i915_gem_ww_ctx ww;
528 	int ret;
529 
530 	list_for_each_entry(bb, &workload->shadow_bb, list) {
531 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
532 		 * is only updated into ring_scan_buffer, not real ring address
533 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
534 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
535 		 * in copy_workload_to_ring_buffer.
536 		 */
537 
538 		if (bb->bb_offset)
539 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
540 				+ bb->bb_offset;
541 
542 		/*
543 		 * For non-priv bb, scan&shadow is only for
544 		 * debugging purpose, so the content of shadow bb
545 		 * is the same as original bb. Therefore,
546 		 * here, rather than switch to shadow bb's gma
547 		 * address, we directly use original batch buffer's
548 		 * gma address, and send original bb to hardware
549 		 * directly
550 		 */
551 		if (!bb->ppgtt) {
552 			i915_gem_ww_ctx_init(&ww, false);
553 retry:
554 			i915_gem_object_lock(bb->obj, &ww);
555 
556 			bb->vma = i915_gem_object_ggtt_pin_ww(bb->obj, &ww,
557 							      NULL, 0, 0, 0);
558 			if (IS_ERR(bb->vma)) {
559 				ret = PTR_ERR(bb->vma);
560 				if (ret == -EDEADLK) {
561 					ret = i915_gem_ww_ctx_backoff(&ww);
562 					if (!ret)
563 						goto retry;
564 				}
565 				goto err;
566 			}
567 
568 			/* relocate shadow batch buffer */
569 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
570 			if (gmadr_bytes == 8)
571 				bb->bb_start_cmd_va[2] = 0;
572 
573 			ret = i915_vma_move_to_active(bb->vma,
574 						      workload->req,
575 						      0);
576 			if (ret)
577 				goto err;
578 
579 			/* No one is going to touch shadow bb from now on. */
580 			i915_gem_object_flush_map(bb->obj);
581 			i915_gem_ww_ctx_fini(&ww);
582 		}
583 	}
584 	return 0;
585 err:
586 	i915_gem_ww_ctx_fini(&ww);
587 	release_shadow_batch_buffer(workload);
588 	return ret;
589 }
590 
591 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
592 {
593 	struct intel_vgpu_workload *workload =
594 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
595 	struct i915_request *rq = workload->req;
596 	struct execlist_ring_context *shadow_ring_context =
597 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
598 
599 	shadow_ring_context->bb_per_ctx_ptr.val =
600 		(shadow_ring_context->bb_per_ctx_ptr.val &
601 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
602 	shadow_ring_context->rcs_indirect_ctx.val =
603 		(shadow_ring_context->rcs_indirect_ctx.val &
604 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
605 }
606 
607 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
608 {
609 	struct i915_vma *vma;
610 	unsigned char *per_ctx_va =
611 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
612 		wa_ctx->indirect_ctx.size;
613 	struct i915_gem_ww_ctx ww;
614 	int ret;
615 
616 	if (wa_ctx->indirect_ctx.size == 0)
617 		return 0;
618 
619 	i915_gem_ww_ctx_init(&ww, false);
620 retry:
621 	i915_gem_object_lock(wa_ctx->indirect_ctx.obj, &ww);
622 
623 	vma = i915_gem_object_ggtt_pin_ww(wa_ctx->indirect_ctx.obj, &ww, NULL,
624 					  0, CACHELINE_BYTES, 0);
625 	if (IS_ERR(vma)) {
626 		ret = PTR_ERR(vma);
627 		if (ret == -EDEADLK) {
628 			ret = i915_gem_ww_ctx_backoff(&ww);
629 			if (!ret)
630 				goto retry;
631 		}
632 		return ret;
633 	}
634 
635 	i915_gem_ww_ctx_fini(&ww);
636 
637 	/* FIXME: we are not tracking our pinned VMA leaving it
638 	 * up to the core to fix up the stray pin_count upon
639 	 * free.
640 	 */
641 
642 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
643 
644 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
645 	memset(per_ctx_va, 0, CACHELINE_BYTES);
646 
647 	update_wa_ctx_2_shadow_ctx(wa_ctx);
648 	return 0;
649 }
650 
651 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
652 {
653 	vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
654 		workload->rb_start;
655 }
656 
657 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
658 {
659 	struct intel_vgpu_shadow_bb *bb, *pos;
660 
661 	if (list_empty(&workload->shadow_bb))
662 		return;
663 
664 	bb = list_first_entry(&workload->shadow_bb,
665 			struct intel_vgpu_shadow_bb, list);
666 
667 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
668 		if (bb->obj) {
669 			i915_gem_object_lock(bb->obj, NULL);
670 			if (bb->va && !IS_ERR(bb->va))
671 				i915_gem_object_unpin_map(bb->obj);
672 
673 			if (bb->vma && !IS_ERR(bb->vma))
674 				i915_vma_unpin(bb->vma);
675 
676 			i915_gem_object_unlock(bb->obj);
677 			i915_gem_object_put(bb->obj);
678 		}
679 		list_del(&bb->list);
680 		kfree(bb);
681 	}
682 }
683 
684 static int
685 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
686 {
687 	struct intel_vgpu *vgpu = workload->vgpu;
688 	struct intel_vgpu_mm *m;
689 	int ret = 0;
690 
691 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
692 	if (ret) {
693 		gvt_vgpu_err("fail to vgpu pin mm\n");
694 		return ret;
695 	}
696 
697 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
698 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
699 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
700 		return -EINVAL;
701 	}
702 
703 	if (!list_empty(&workload->lri_shadow_mm)) {
704 		list_for_each_entry(m, &workload->lri_shadow_mm,
705 				    ppgtt_mm.link) {
706 			ret = intel_vgpu_pin_mm(m);
707 			if (ret) {
708 				list_for_each_entry_from_reverse(m,
709 								 &workload->lri_shadow_mm,
710 								 ppgtt_mm.link)
711 					intel_vgpu_unpin_mm(m);
712 				gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
713 				break;
714 			}
715 		}
716 	}
717 
718 	if (ret)
719 		intel_vgpu_unpin_mm(workload->shadow_mm);
720 
721 	return ret;
722 }
723 
724 static void
725 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
726 {
727 	struct intel_vgpu_mm *m;
728 
729 	if (!list_empty(&workload->lri_shadow_mm)) {
730 		list_for_each_entry(m, &workload->lri_shadow_mm,
731 				    ppgtt_mm.link)
732 			intel_vgpu_unpin_mm(m);
733 	}
734 	intel_vgpu_unpin_mm(workload->shadow_mm);
735 }
736 
737 static int prepare_workload(struct intel_vgpu_workload *workload)
738 {
739 	struct intel_vgpu *vgpu = workload->vgpu;
740 	struct intel_vgpu_submission *s = &vgpu->submission;
741 	int ret = 0;
742 
743 	ret = intel_vgpu_shadow_mm_pin(workload);
744 	if (ret) {
745 		gvt_vgpu_err("fail to pin shadow mm\n");
746 		return ret;
747 	}
748 
749 	update_shadow_pdps(workload);
750 
751 	set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
752 
753 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
754 	if (ret) {
755 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
756 		goto err_unpin_mm;
757 	}
758 
759 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
760 	if (ret) {
761 		gvt_vgpu_err("fail to flush post shadow\n");
762 		goto err_unpin_mm;
763 	}
764 
765 	ret = copy_workload_to_ring_buffer(workload);
766 	if (ret) {
767 		gvt_vgpu_err("fail to generate request\n");
768 		goto err_unpin_mm;
769 	}
770 
771 	ret = prepare_shadow_batch_buffer(workload);
772 	if (ret) {
773 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
774 		goto err_unpin_mm;
775 	}
776 
777 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
778 	if (ret) {
779 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
780 		goto err_shadow_batch;
781 	}
782 
783 	if (workload->prepare) {
784 		ret = workload->prepare(workload);
785 		if (ret)
786 			goto err_shadow_wa_ctx;
787 	}
788 
789 	return 0;
790 err_shadow_wa_ctx:
791 	release_shadow_wa_ctx(&workload->wa_ctx);
792 err_shadow_batch:
793 	release_shadow_batch_buffer(workload);
794 err_unpin_mm:
795 	intel_vgpu_shadow_mm_unpin(workload);
796 	return ret;
797 }
798 
799 static int dispatch_workload(struct intel_vgpu_workload *workload)
800 {
801 	struct intel_vgpu *vgpu = workload->vgpu;
802 	struct i915_request *rq;
803 	int ret;
804 
805 	gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
806 		      workload->engine->name, workload);
807 
808 	mutex_lock(&vgpu->vgpu_lock);
809 
810 	ret = intel_gvt_workload_req_alloc(workload);
811 	if (ret)
812 		goto err_req;
813 
814 	ret = intel_gvt_scan_and_shadow_workload(workload);
815 	if (ret)
816 		goto out;
817 
818 	ret = populate_shadow_context(workload);
819 	if (ret) {
820 		release_shadow_wa_ctx(&workload->wa_ctx);
821 		goto out;
822 	}
823 
824 	ret = prepare_workload(workload);
825 out:
826 	if (ret) {
827 		/* We might still need to add request with
828 		 * clean ctx to retire it properly..
829 		 */
830 		rq = fetch_and_zero(&workload->req);
831 		i915_request_put(rq);
832 	}
833 
834 	if (!IS_ERR_OR_NULL(workload->req)) {
835 		gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
836 			      workload->engine->name, workload->req);
837 		i915_request_add(workload->req);
838 		workload->dispatched = true;
839 	}
840 err_req:
841 	if (ret)
842 		workload->status = ret;
843 	mutex_unlock(&vgpu->vgpu_lock);
844 	return ret;
845 }
846 
847 static struct intel_vgpu_workload *
848 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
849 {
850 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
851 	struct intel_vgpu_workload *workload = NULL;
852 
853 	mutex_lock(&gvt->sched_lock);
854 
855 	/*
856 	 * no current vgpu / will be scheduled out / no workload
857 	 * bail out
858 	 */
859 	if (!scheduler->current_vgpu) {
860 		gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
861 		goto out;
862 	}
863 
864 	if (scheduler->need_reschedule) {
865 		gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
866 		goto out;
867 	}
868 
869 	if (!scheduler->current_vgpu->active ||
870 	    list_empty(workload_q_head(scheduler->current_vgpu, engine)))
871 		goto out;
872 
873 	/*
874 	 * still have current workload, maybe the workload disptacher
875 	 * fail to submit it for some reason, resubmit it.
876 	 */
877 	if (scheduler->current_workload[engine->id]) {
878 		workload = scheduler->current_workload[engine->id];
879 		gvt_dbg_sched("ring %s still have current workload %p\n",
880 			      engine->name, workload);
881 		goto out;
882 	}
883 
884 	/*
885 	 * pick a workload as current workload
886 	 * once current workload is set, schedule policy routines
887 	 * will wait the current workload is finished when trying to
888 	 * schedule out a vgpu.
889 	 */
890 	scheduler->current_workload[engine->id] =
891 		list_first_entry(workload_q_head(scheduler->current_vgpu,
892 						 engine),
893 				 struct intel_vgpu_workload, list);
894 
895 	workload = scheduler->current_workload[engine->id];
896 
897 	gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
898 
899 	atomic_inc(&workload->vgpu->submission.running_workload_num);
900 out:
901 	mutex_unlock(&gvt->sched_lock);
902 	return workload;
903 }
904 
905 static void update_guest_pdps(struct intel_vgpu *vgpu,
906 			      u64 ring_context_gpa, u32 pdp[8])
907 {
908 	u64 gpa;
909 	int i;
910 
911 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
912 
913 	for (i = 0; i < 8; i++)
914 		intel_gvt_hypervisor_write_gpa(vgpu,
915 				gpa + i * 8, &pdp[7 - i], 4);
916 }
917 
918 static __maybe_unused bool
919 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
920 {
921 	if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
922 		u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
923 
924 		if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
925 			gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
926 			return false;
927 		}
928 		return true;
929 	} else {
930 		/* see comment in LRI handler in cmd_parser.c */
931 		gvt_dbg_mm("invalid shadow mm type\n");
932 		return false;
933 	}
934 }
935 
936 static void update_guest_context(struct intel_vgpu_workload *workload)
937 {
938 	struct i915_request *rq = workload->req;
939 	struct intel_vgpu *vgpu = workload->vgpu;
940 	struct execlist_ring_context *shadow_ring_context;
941 	struct intel_context *ctx = workload->req->context;
942 	void *context_base;
943 	void *src;
944 	unsigned long context_gpa, context_page_num;
945 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
946 	unsigned long gpa_size; /* size of consecutive GPAs*/
947 	int i;
948 	u32 ring_base;
949 	u32 head, tail;
950 	u16 wrap_count;
951 
952 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
953 		      workload->ctx_desc.lrca);
954 
955 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
956 
957 	head = workload->rb_head;
958 	tail = workload->rb_tail;
959 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
960 
961 	if (tail < head) {
962 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
963 			wrap_count = 0;
964 		else
965 			wrap_count += 1;
966 	}
967 
968 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
969 
970 	ring_base = rq->engine->mmio_base;
971 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
972 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
973 
974 	context_page_num = rq->engine->context_size;
975 	context_page_num = context_page_num >> PAGE_SHIFT;
976 
977 	if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0)
978 		context_page_num = 19;
979 
980 	context_base = (void *) ctx->lrc_reg_state -
981 			(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
982 
983 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
984 	 * write to the consecutive GPAs from src virtual address
985 	 */
986 	gpa_size = 0;
987 	for (i = 2; i < context_page_num; i++) {
988 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
989 				(u32)((workload->ctx_desc.lrca + i) <<
990 					I915_GTT_PAGE_SHIFT));
991 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
992 			gvt_vgpu_err("invalid guest context descriptor\n");
993 			return;
994 		}
995 
996 		if (gpa_size == 0) {
997 			gpa_base = context_gpa;
998 			src = context_base + (i << I915_GTT_PAGE_SHIFT);
999 		} else if (context_gpa != gpa_base + gpa_size)
1000 			goto write;
1001 
1002 		gpa_size += I915_GTT_PAGE_SIZE;
1003 
1004 		if (i == context_page_num - 1)
1005 			goto write;
1006 
1007 		continue;
1008 
1009 write:
1010 		intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
1011 		gpa_base = context_gpa;
1012 		gpa_size = I915_GTT_PAGE_SIZE;
1013 		src = context_base + (i << I915_GTT_PAGE_SHIFT);
1014 	}
1015 
1016 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
1017 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
1018 
1019 	shadow_ring_context = (void *) ctx->lrc_reg_state;
1020 
1021 	if (!list_empty(&workload->lri_shadow_mm)) {
1022 		struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
1023 							  struct intel_vgpu_mm,
1024 							  ppgtt_mm.link);
1025 		GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
1026 		update_guest_pdps(vgpu, workload->ring_context_gpa,
1027 				  (void *)m->ppgtt_mm.guest_pdps);
1028 	}
1029 
1030 #define COPY_REG(name) \
1031 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
1032 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
1033 
1034 	COPY_REG(ctx_ctrl);
1035 	COPY_REG(ctx_timestamp);
1036 
1037 #undef COPY_REG
1038 
1039 	intel_gvt_hypervisor_write_gpa(vgpu,
1040 			workload->ring_context_gpa +
1041 			sizeof(*shadow_ring_context),
1042 			(void *)shadow_ring_context +
1043 			sizeof(*shadow_ring_context),
1044 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
1045 }
1046 
1047 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
1048 				intel_engine_mask_t engine_mask)
1049 {
1050 	struct intel_vgpu_submission *s = &vgpu->submission;
1051 	struct intel_engine_cs *engine;
1052 	struct intel_vgpu_workload *pos, *n;
1053 	intel_engine_mask_t tmp;
1054 
1055 	/* free the unsubmited workloads in the queues. */
1056 	for_each_engine_masked(engine, vgpu->gvt->gt, engine_mask, tmp) {
1057 		list_for_each_entry_safe(pos, n,
1058 			&s->workload_q_head[engine->id], list) {
1059 			list_del_init(&pos->list);
1060 			intel_vgpu_destroy_workload(pos);
1061 		}
1062 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
1063 	}
1064 }
1065 
1066 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1067 {
1068 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1069 	struct intel_vgpu_workload *workload =
1070 		scheduler->current_workload[ring_id];
1071 	struct intel_vgpu *vgpu = workload->vgpu;
1072 	struct intel_vgpu_submission *s = &vgpu->submission;
1073 	struct i915_request *rq = workload->req;
1074 	int event;
1075 
1076 	mutex_lock(&vgpu->vgpu_lock);
1077 	mutex_lock(&gvt->sched_lock);
1078 
1079 	/* For the workload w/ request, needs to wait for the context
1080 	 * switch to make sure request is completed.
1081 	 * For the workload w/o request, directly complete the workload.
1082 	 */
1083 	if (rq) {
1084 		wait_event(workload->shadow_ctx_status_wq,
1085 			   !atomic_read(&workload->shadow_ctx_active));
1086 
1087 		/* If this request caused GPU hang, req->fence.error will
1088 		 * be set to -EIO. Use -EIO to set workload status so
1089 		 * that when this request caused GPU hang, didn't trigger
1090 		 * context switch interrupt to guest.
1091 		 */
1092 		if (likely(workload->status == -EINPROGRESS)) {
1093 			if (workload->req->fence.error == -EIO)
1094 				workload->status = -EIO;
1095 			else
1096 				workload->status = 0;
1097 		}
1098 
1099 		if (!workload->status &&
1100 		    !(vgpu->resetting_eng & BIT(ring_id))) {
1101 			update_guest_context(workload);
1102 
1103 			for_each_set_bit(event, workload->pending_events,
1104 					 INTEL_GVT_EVENT_MAX)
1105 				intel_vgpu_trigger_virtual_event(vgpu, event);
1106 		}
1107 
1108 		i915_request_put(fetch_and_zero(&workload->req));
1109 	}
1110 
1111 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1112 			ring_id, workload, workload->status);
1113 
1114 	scheduler->current_workload[ring_id] = NULL;
1115 
1116 	list_del_init(&workload->list);
1117 
1118 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1119 		/* if workload->status is not successful means HW GPU
1120 		 * has occurred GPU hang or something wrong with i915/GVT,
1121 		 * and GVT won't inject context switch interrupt to guest.
1122 		 * So this error is a vGPU hang actually to the guest.
1123 		 * According to this we should emunlate a vGPU hang. If
1124 		 * there are pending workloads which are already submitted
1125 		 * from guest, we should clean them up like HW GPU does.
1126 		 *
1127 		 * if it is in middle of engine resetting, the pending
1128 		 * workloads won't be submitted to HW GPU and will be
1129 		 * cleaned up during the resetting process later, so doing
1130 		 * the workload clean up here doesn't have any impact.
1131 		 **/
1132 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1133 	}
1134 
1135 	workload->complete(workload);
1136 
1137 	intel_vgpu_shadow_mm_unpin(workload);
1138 	intel_vgpu_destroy_workload(workload);
1139 
1140 	atomic_dec(&s->running_workload_num);
1141 	wake_up(&scheduler->workload_complete_wq);
1142 
1143 	if (gvt->scheduler.need_reschedule)
1144 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1145 
1146 	mutex_unlock(&gvt->sched_lock);
1147 	mutex_unlock(&vgpu->vgpu_lock);
1148 }
1149 
1150 static int workload_thread(void *arg)
1151 {
1152 	struct intel_engine_cs *engine = arg;
1153 	const bool need_force_wake = GRAPHICS_VER(engine->i915) >= 9;
1154 	struct intel_gvt *gvt = engine->i915->gvt;
1155 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1156 	struct intel_vgpu_workload *workload = NULL;
1157 	struct intel_vgpu *vgpu = NULL;
1158 	int ret;
1159 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1160 
1161 	gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1162 
1163 	while (!kthread_should_stop()) {
1164 		intel_wakeref_t wakeref;
1165 
1166 		add_wait_queue(&scheduler->waitq[engine->id], &wait);
1167 		do {
1168 			workload = pick_next_workload(gvt, engine);
1169 			if (workload)
1170 				break;
1171 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1172 				   MAX_SCHEDULE_TIMEOUT);
1173 		} while (!kthread_should_stop());
1174 		remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1175 
1176 		if (!workload)
1177 			break;
1178 
1179 		gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1180 			      engine->name, workload,
1181 			      workload->vgpu->id);
1182 
1183 		wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1184 
1185 		gvt_dbg_sched("ring %s will dispatch workload %p\n",
1186 			      engine->name, workload);
1187 
1188 		if (need_force_wake)
1189 			intel_uncore_forcewake_get(engine->uncore,
1190 						   FORCEWAKE_ALL);
1191 		/*
1192 		 * Update the vReg of the vGPU which submitted this
1193 		 * workload. The vGPU may use these registers for checking
1194 		 * the context state. The value comes from GPU commands
1195 		 * in this workload.
1196 		 */
1197 		update_vreg_in_ctx(workload);
1198 
1199 		ret = dispatch_workload(workload);
1200 
1201 		if (ret) {
1202 			vgpu = workload->vgpu;
1203 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1204 			goto complete;
1205 		}
1206 
1207 		gvt_dbg_sched("ring %s wait workload %p\n",
1208 			      engine->name, workload);
1209 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1210 
1211 complete:
1212 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1213 			      workload, workload->status);
1214 
1215 		complete_current_workload(gvt, engine->id);
1216 
1217 		if (need_force_wake)
1218 			intel_uncore_forcewake_put(engine->uncore,
1219 						   FORCEWAKE_ALL);
1220 
1221 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1222 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1223 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1224 	}
1225 	return 0;
1226 }
1227 
1228 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1229 {
1230 	struct intel_vgpu_submission *s = &vgpu->submission;
1231 	struct intel_gvt *gvt = vgpu->gvt;
1232 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1233 
1234 	if (atomic_read(&s->running_workload_num)) {
1235 		gvt_dbg_sched("wait vgpu idle\n");
1236 
1237 		wait_event(scheduler->workload_complete_wq,
1238 				!atomic_read(&s->running_workload_num));
1239 	}
1240 }
1241 
1242 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1243 {
1244 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1245 	struct intel_engine_cs *engine;
1246 	enum intel_engine_id i;
1247 
1248 	gvt_dbg_core("clean workload scheduler\n");
1249 
1250 	for_each_engine(engine, gvt->gt, i) {
1251 		atomic_notifier_chain_unregister(
1252 					&engine->context_status_notifier,
1253 					&gvt->shadow_ctx_notifier_block[i]);
1254 		kthread_stop(scheduler->thread[i]);
1255 	}
1256 }
1257 
1258 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1259 {
1260 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1261 	struct intel_engine_cs *engine;
1262 	enum intel_engine_id i;
1263 	int ret;
1264 
1265 	gvt_dbg_core("init workload scheduler\n");
1266 
1267 	init_waitqueue_head(&scheduler->workload_complete_wq);
1268 
1269 	for_each_engine(engine, gvt->gt, i) {
1270 		init_waitqueue_head(&scheduler->waitq[i]);
1271 
1272 		scheduler->thread[i] = kthread_run(workload_thread, engine,
1273 						   "gvt:%s", engine->name);
1274 		if (IS_ERR(scheduler->thread[i])) {
1275 			gvt_err("fail to create workload thread\n");
1276 			ret = PTR_ERR(scheduler->thread[i]);
1277 			goto err;
1278 		}
1279 
1280 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1281 					shadow_context_status_change;
1282 		atomic_notifier_chain_register(&engine->context_status_notifier,
1283 					&gvt->shadow_ctx_notifier_block[i]);
1284 	}
1285 
1286 	return 0;
1287 
1288 err:
1289 	intel_gvt_clean_workload_scheduler(gvt);
1290 	return ret;
1291 }
1292 
1293 static void
1294 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1295 				struct i915_ppgtt *ppgtt)
1296 {
1297 	int i;
1298 
1299 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1300 		set_dma_address(ppgtt->pd, s->i915_context_pml4);
1301 	} else {
1302 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1303 			struct i915_page_directory * const pd =
1304 				i915_pd_entry(ppgtt->pd, i);
1305 
1306 			set_dma_address(pd, s->i915_context_pdps[i]);
1307 		}
1308 	}
1309 }
1310 
1311 /**
1312  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1313  * @vgpu: a vGPU
1314  *
1315  * This function is called when a vGPU is being destroyed.
1316  *
1317  */
1318 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1319 {
1320 	struct intel_vgpu_submission *s = &vgpu->submission;
1321 	struct intel_engine_cs *engine;
1322 	enum intel_engine_id id;
1323 
1324 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1325 
1326 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1327 	for_each_engine(engine, vgpu->gvt->gt, id)
1328 		intel_context_put(s->shadow[id]);
1329 
1330 	kmem_cache_destroy(s->workloads);
1331 }
1332 
1333 
1334 /**
1335  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1336  * @vgpu: a vGPU
1337  * @engine_mask: engines expected to be reset
1338  *
1339  * This function is called when a vGPU is being destroyed.
1340  *
1341  */
1342 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1343 				 intel_engine_mask_t engine_mask)
1344 {
1345 	struct intel_vgpu_submission *s = &vgpu->submission;
1346 
1347 	if (!s->active)
1348 		return;
1349 
1350 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1351 	s->ops->reset(vgpu, engine_mask);
1352 }
1353 
1354 static void
1355 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1356 			     struct i915_ppgtt *ppgtt)
1357 {
1358 	int i;
1359 
1360 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1361 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1362 	} else {
1363 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1364 			struct i915_page_directory * const pd =
1365 				i915_pd_entry(ppgtt->pd, i);
1366 
1367 			s->i915_context_pdps[i] = px_dma(pd);
1368 		}
1369 	}
1370 }
1371 
1372 /**
1373  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1374  * @vgpu: a vGPU
1375  *
1376  * This function is called when a vGPU is being created.
1377  *
1378  * Returns:
1379  * Zero on success, negative error code if failed.
1380  *
1381  */
1382 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1383 {
1384 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1385 	struct intel_vgpu_submission *s = &vgpu->submission;
1386 	struct intel_engine_cs *engine;
1387 	struct i915_ppgtt *ppgtt;
1388 	enum intel_engine_id i;
1389 	int ret;
1390 
1391 	ppgtt = i915_ppgtt_create(to_gt(i915), I915_BO_ALLOC_PM_EARLY);
1392 	if (IS_ERR(ppgtt))
1393 		return PTR_ERR(ppgtt);
1394 
1395 	i915_context_ppgtt_root_save(s, ppgtt);
1396 
1397 	for_each_engine(engine, vgpu->gvt->gt, i) {
1398 		struct intel_context *ce;
1399 
1400 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1401 		s->shadow[i] = ERR_PTR(-EINVAL);
1402 
1403 		ce = intel_context_create(engine);
1404 		if (IS_ERR(ce)) {
1405 			ret = PTR_ERR(ce);
1406 			goto out_shadow_ctx;
1407 		}
1408 
1409 		i915_vm_put(ce->vm);
1410 		ce->vm = i915_vm_get(&ppgtt->vm);
1411 		intel_context_set_single_submission(ce);
1412 
1413 		/* Max ring buffer size */
1414 		if (!intel_uc_wants_guc_submission(&engine->gt->uc))
1415 			ce->ring_size = SZ_2M;
1416 
1417 		s->shadow[i] = ce;
1418 	}
1419 
1420 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1421 
1422 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1423 						  sizeof(struct intel_vgpu_workload), 0,
1424 						  SLAB_HWCACHE_ALIGN,
1425 						  offsetof(struct intel_vgpu_workload, rb_tail),
1426 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1427 						  NULL);
1428 
1429 	if (!s->workloads) {
1430 		ret = -ENOMEM;
1431 		goto out_shadow_ctx;
1432 	}
1433 
1434 	atomic_set(&s->running_workload_num, 0);
1435 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1436 
1437 	memset(s->last_ctx, 0, sizeof(s->last_ctx));
1438 
1439 	i915_vm_put(&ppgtt->vm);
1440 	return 0;
1441 
1442 out_shadow_ctx:
1443 	i915_context_ppgtt_root_restore(s, ppgtt);
1444 	for_each_engine(engine, vgpu->gvt->gt, i) {
1445 		if (IS_ERR(s->shadow[i]))
1446 			break;
1447 
1448 		intel_context_put(s->shadow[i]);
1449 	}
1450 	i915_vm_put(&ppgtt->vm);
1451 	return ret;
1452 }
1453 
1454 /**
1455  * intel_vgpu_select_submission_ops - select virtual submission interface
1456  * @vgpu: a vGPU
1457  * @engine_mask: either ALL_ENGINES or target engine mask
1458  * @interface: expected vGPU virtual submission interface
1459  *
1460  * This function is called when guest configures submission interface.
1461  *
1462  * Returns:
1463  * Zero on success, negative error code if failed.
1464  *
1465  */
1466 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1467 				     intel_engine_mask_t engine_mask,
1468 				     unsigned int interface)
1469 {
1470 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1471 	struct intel_vgpu_submission *s = &vgpu->submission;
1472 	const struct intel_vgpu_submission_ops *ops[] = {
1473 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1474 			&intel_vgpu_execlist_submission_ops,
1475 	};
1476 	int ret;
1477 
1478 	if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1479 		return -EINVAL;
1480 
1481 	if (drm_WARN_ON(&i915->drm,
1482 			interface == 0 && engine_mask != ALL_ENGINES))
1483 		return -EINVAL;
1484 
1485 	if (s->active)
1486 		s->ops->clean(vgpu, engine_mask);
1487 
1488 	if (interface == 0) {
1489 		s->ops = NULL;
1490 		s->virtual_submission_interface = 0;
1491 		s->active = false;
1492 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1493 		return 0;
1494 	}
1495 
1496 	ret = ops[interface]->init(vgpu, engine_mask);
1497 	if (ret)
1498 		return ret;
1499 
1500 	s->ops = ops[interface];
1501 	s->virtual_submission_interface = interface;
1502 	s->active = true;
1503 
1504 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1505 			vgpu->id, s->ops->name);
1506 
1507 	return 0;
1508 }
1509 
1510 /**
1511  * intel_vgpu_destroy_workload - destroy a vGPU workload
1512  * @workload: workload to destroy
1513  *
1514  * This function is called when destroy a vGPU workload.
1515  *
1516  */
1517 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1518 {
1519 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1520 
1521 	intel_context_unpin(s->shadow[workload->engine->id]);
1522 	release_shadow_batch_buffer(workload);
1523 	release_shadow_wa_ctx(&workload->wa_ctx);
1524 
1525 	if (!list_empty(&workload->lri_shadow_mm)) {
1526 		struct intel_vgpu_mm *m, *mm;
1527 		list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1528 					 ppgtt_mm.link) {
1529 			list_del(&m->ppgtt_mm.link);
1530 			intel_vgpu_mm_put(m);
1531 		}
1532 	}
1533 
1534 	GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1535 	if (workload->shadow_mm)
1536 		intel_vgpu_mm_put(workload->shadow_mm);
1537 
1538 	kmem_cache_free(s->workloads, workload);
1539 }
1540 
1541 static struct intel_vgpu_workload *
1542 alloc_workload(struct intel_vgpu *vgpu)
1543 {
1544 	struct intel_vgpu_submission *s = &vgpu->submission;
1545 	struct intel_vgpu_workload *workload;
1546 
1547 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1548 	if (!workload)
1549 		return ERR_PTR(-ENOMEM);
1550 
1551 	INIT_LIST_HEAD(&workload->list);
1552 	INIT_LIST_HEAD(&workload->shadow_bb);
1553 	INIT_LIST_HEAD(&workload->lri_shadow_mm);
1554 
1555 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1556 	atomic_set(&workload->shadow_ctx_active, 0);
1557 
1558 	workload->status = -EINPROGRESS;
1559 	workload->vgpu = vgpu;
1560 
1561 	return workload;
1562 }
1563 
1564 #define RING_CTX_OFF(x) \
1565 	offsetof(struct execlist_ring_context, x)
1566 
1567 static void read_guest_pdps(struct intel_vgpu *vgpu,
1568 		u64 ring_context_gpa, u32 pdp[8])
1569 {
1570 	u64 gpa;
1571 	int i;
1572 
1573 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1574 
1575 	for (i = 0; i < 8; i++)
1576 		intel_gvt_hypervisor_read_gpa(vgpu,
1577 				gpa + i * 8, &pdp[7 - i], 4);
1578 }
1579 
1580 static int prepare_mm(struct intel_vgpu_workload *workload)
1581 {
1582 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1583 	struct intel_vgpu_mm *mm;
1584 	struct intel_vgpu *vgpu = workload->vgpu;
1585 	enum intel_gvt_gtt_type root_entry_type;
1586 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1587 
1588 	switch (desc->addressing_mode) {
1589 	case 1: /* legacy 32-bit */
1590 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1591 		break;
1592 	case 3: /* legacy 64-bit */
1593 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1594 		break;
1595 	default:
1596 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1597 		return -EINVAL;
1598 	}
1599 
1600 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1601 
1602 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1603 	if (IS_ERR(mm))
1604 		return PTR_ERR(mm);
1605 
1606 	workload->shadow_mm = mm;
1607 	return 0;
1608 }
1609 
1610 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1611 		((a)->lrca == (b)->lrca))
1612 
1613 /**
1614  * intel_vgpu_create_workload - create a vGPU workload
1615  * @vgpu: a vGPU
1616  * @engine: the engine
1617  * @desc: a guest context descriptor
1618  *
1619  * This function is called when creating a vGPU workload.
1620  *
1621  * Returns:
1622  * struct intel_vgpu_workload * on success, negative error code in
1623  * pointer if failed.
1624  *
1625  */
1626 struct intel_vgpu_workload *
1627 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1628 			   const struct intel_engine_cs *engine,
1629 			   struct execlist_ctx_descriptor_format *desc)
1630 {
1631 	struct intel_vgpu_submission *s = &vgpu->submission;
1632 	struct list_head *q = workload_q_head(vgpu, engine);
1633 	struct intel_vgpu_workload *last_workload = NULL;
1634 	struct intel_vgpu_workload *workload = NULL;
1635 	u64 ring_context_gpa;
1636 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1637 	u32 guest_head;
1638 	int ret;
1639 
1640 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1641 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1642 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1643 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1644 		return ERR_PTR(-EINVAL);
1645 	}
1646 
1647 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1648 			RING_CTX_OFF(ring_header.val), &head, 4);
1649 
1650 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1651 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1652 
1653 	guest_head = head;
1654 
1655 	head &= RB_HEAD_OFF_MASK;
1656 	tail &= RB_TAIL_OFF_MASK;
1657 
1658 	list_for_each_entry_reverse(last_workload, q, list) {
1659 
1660 		if (same_context(&last_workload->ctx_desc, desc)) {
1661 			gvt_dbg_el("ring %s cur workload == last\n",
1662 				   engine->name);
1663 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1664 				   last_workload->rb_tail);
1665 			/*
1666 			 * cannot use guest context head pointer here,
1667 			 * as it might not be updated at this time
1668 			 */
1669 			head = last_workload->rb_tail;
1670 			break;
1671 		}
1672 	}
1673 
1674 	gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1675 
1676 	/* record some ring buffer register values for scan and shadow */
1677 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1678 			RING_CTX_OFF(rb_start.val), &start, 4);
1679 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1680 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1681 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1682 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1683 
1684 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1685 				_RING_CTL_BUF_SIZE(ctl))) {
1686 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1687 		return ERR_PTR(-EINVAL);
1688 	}
1689 
1690 	workload = alloc_workload(vgpu);
1691 	if (IS_ERR(workload))
1692 		return workload;
1693 
1694 	workload->engine = engine;
1695 	workload->ctx_desc = *desc;
1696 	workload->ring_context_gpa = ring_context_gpa;
1697 	workload->rb_head = head;
1698 	workload->guest_rb_head = guest_head;
1699 	workload->rb_tail = tail;
1700 	workload->rb_start = start;
1701 	workload->rb_ctl = ctl;
1702 
1703 	if (engine->id == RCS0) {
1704 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1705 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1706 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1707 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1708 
1709 		workload->wa_ctx.indirect_ctx.guest_gma =
1710 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1711 		workload->wa_ctx.indirect_ctx.size =
1712 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1713 			CACHELINE_BYTES;
1714 
1715 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1716 			if (!intel_gvt_ggtt_validate_range(vgpu,
1717 				workload->wa_ctx.indirect_ctx.guest_gma,
1718 				workload->wa_ctx.indirect_ctx.size)) {
1719 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1720 				    workload->wa_ctx.indirect_ctx.guest_gma);
1721 				kmem_cache_free(s->workloads, workload);
1722 				return ERR_PTR(-EINVAL);
1723 			}
1724 		}
1725 
1726 		workload->wa_ctx.per_ctx.guest_gma =
1727 			per_ctx & PER_CTX_ADDR_MASK;
1728 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1729 		if (workload->wa_ctx.per_ctx.valid) {
1730 			if (!intel_gvt_ggtt_validate_range(vgpu,
1731 				workload->wa_ctx.per_ctx.guest_gma,
1732 				CACHELINE_BYTES)) {
1733 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1734 					workload->wa_ctx.per_ctx.guest_gma);
1735 				kmem_cache_free(s->workloads, workload);
1736 				return ERR_PTR(-EINVAL);
1737 			}
1738 		}
1739 	}
1740 
1741 	gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1742 		   workload, engine->name, head, tail, start, ctl);
1743 
1744 	ret = prepare_mm(workload);
1745 	if (ret) {
1746 		kmem_cache_free(s->workloads, workload);
1747 		return ERR_PTR(ret);
1748 	}
1749 
1750 	/* Only scan and shadow the first workload in the queue
1751 	 * as there is only one pre-allocated buf-obj for shadow.
1752 	 */
1753 	if (list_empty(q)) {
1754 		intel_wakeref_t wakeref;
1755 
1756 		with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1757 			ret = intel_gvt_scan_and_shadow_workload(workload);
1758 	}
1759 
1760 	if (ret) {
1761 		if (vgpu_is_vm_unhealthy(ret))
1762 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1763 		intel_vgpu_destroy_workload(workload);
1764 		return ERR_PTR(ret);
1765 	}
1766 
1767 	ret = intel_context_pin(s->shadow[engine->id]);
1768 	if (ret) {
1769 		intel_vgpu_destroy_workload(workload);
1770 		return ERR_PTR(ret);
1771 	}
1772 
1773 	return workload;
1774 }
1775 
1776 /**
1777  * intel_vgpu_queue_workload - Qeue a vGPU workload
1778  * @workload: the workload to queue in
1779  */
1780 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1781 {
1782 	list_add_tail(&workload->list,
1783 		      workload_q_head(workload->vgpu, workload->engine));
1784 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1785 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1786 }
1787