1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_pm.h" 39 #include "gt/intel_context.h" 40 #include "gt/intel_ring.h" 41 42 #include "i915_drv.h" 43 #include "i915_gem_gtt.h" 44 #include "gvt.h" 45 46 #define RING_CTX_OFF(x) \ 47 offsetof(struct execlist_ring_context, x) 48 49 static void set_context_pdp_root_pointer( 50 struct execlist_ring_context *ring_context, 51 u32 pdp[8]) 52 { 53 int i; 54 55 for (i = 0; i < 8; i++) 56 ring_context->pdps[i].val = pdp[7 - i]; 57 } 58 59 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 60 { 61 struct drm_i915_gem_object *ctx_obj = 62 workload->req->context->state->obj; 63 struct execlist_ring_context *shadow_ring_context; 64 struct page *page; 65 66 if (WARN_ON(!workload->shadow_mm)) 67 return; 68 69 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 70 return; 71 72 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 73 shadow_ring_context = kmap(page); 74 set_context_pdp_root_pointer(shadow_ring_context, 75 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 76 kunmap(page); 77 } 78 79 /* 80 * when populating shadow ctx from guest, we should not overrride oa related 81 * registers, so that they will not be overlapped by guest oa configs. Thus 82 * made it possible to capture oa data from host for both host and guests. 83 */ 84 static void sr_oa_regs(struct intel_vgpu_workload *workload, 85 u32 *reg_state, bool save) 86 { 87 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; 88 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 89 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 90 int i = 0; 91 u32 flex_mmio[] = { 92 i915_mmio_reg_offset(EU_PERF_CNTL0), 93 i915_mmio_reg_offset(EU_PERF_CNTL1), 94 i915_mmio_reg_offset(EU_PERF_CNTL2), 95 i915_mmio_reg_offset(EU_PERF_CNTL3), 96 i915_mmio_reg_offset(EU_PERF_CNTL4), 97 i915_mmio_reg_offset(EU_PERF_CNTL5), 98 i915_mmio_reg_offset(EU_PERF_CNTL6), 99 }; 100 101 if (workload->engine->id != RCS0) 102 return; 103 104 if (save) { 105 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 106 107 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 108 u32 state_offset = ctx_flexeu0 + i * 2; 109 110 workload->flex_mmio[i] = reg_state[state_offset + 1]; 111 } 112 } else { 113 reg_state[ctx_oactxctrl] = 114 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 115 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 116 117 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 118 u32 state_offset = ctx_flexeu0 + i * 2; 119 u32 mmio = flex_mmio[i]; 120 121 reg_state[state_offset] = mmio; 122 reg_state[state_offset + 1] = workload->flex_mmio[i]; 123 } 124 } 125 } 126 127 static int populate_shadow_context(struct intel_vgpu_workload *workload) 128 { 129 struct intel_vgpu *vgpu = workload->vgpu; 130 struct intel_gvt *gvt = vgpu->gvt; 131 struct drm_i915_gem_object *ctx_obj = 132 workload->req->context->state->obj; 133 struct execlist_ring_context *shadow_ring_context; 134 struct page *page; 135 void *dst; 136 unsigned long context_gpa, context_page_num; 137 int i; 138 139 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 140 shadow_ring_context = kmap(page); 141 142 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 143 #define COPY_REG(name) \ 144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 146 #define COPY_REG_MASKED(name) {\ 147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 148 + RING_CTX_OFF(name.val),\ 149 &shadow_ring_context->name.val, 4);\ 150 shadow_ring_context->name.val |= 0xffff << 16;\ 151 } 152 153 COPY_REG_MASKED(ctx_ctrl); 154 COPY_REG(ctx_timestamp); 155 156 if (workload->engine->id == RCS0) { 157 COPY_REG(bb_per_ctx_ptr); 158 COPY_REG(rcs_indirect_ctx); 159 COPY_REG(rcs_indirect_ctx_offset); 160 } 161 #undef COPY_REG 162 #undef COPY_REG_MASKED 163 164 intel_gvt_hypervisor_read_gpa(vgpu, 165 workload->ring_context_gpa + 166 sizeof(*shadow_ring_context), 167 (void *)shadow_ring_context + 168 sizeof(*shadow_ring_context), 169 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 170 171 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 172 kunmap(page); 173 174 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 175 return 0; 176 177 gvt_dbg_sched("ring %s workload lrca %x", 178 workload->engine->name, 179 workload->ctx_desc.lrca); 180 181 context_page_num = workload->engine->context_size; 182 context_page_num = context_page_num >> PAGE_SHIFT; 183 184 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0) 185 context_page_num = 19; 186 187 i = 2; 188 while (i < context_page_num) { 189 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 190 (u32)((workload->ctx_desc.lrca + i) << 191 I915_GTT_PAGE_SHIFT)); 192 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 193 gvt_vgpu_err("Invalid guest context descriptor\n"); 194 return -EFAULT; 195 } 196 197 page = i915_gem_object_get_page(ctx_obj, i); 198 dst = kmap(page); 199 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 200 I915_GTT_PAGE_SIZE); 201 kunmap(page); 202 i++; 203 } 204 return 0; 205 } 206 207 static inline bool is_gvt_request(struct i915_request *rq) 208 { 209 return intel_context_force_single_submission(rq->context); 210 } 211 212 static void save_ring_hw_state(struct intel_vgpu *vgpu, 213 const struct intel_engine_cs *engine) 214 { 215 struct intel_uncore *uncore = engine->uncore; 216 i915_reg_t reg; 217 218 reg = RING_INSTDONE(engine->mmio_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 220 intel_uncore_read(uncore, reg); 221 222 reg = RING_ACTHD(engine->mmio_base); 223 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 224 intel_uncore_read(uncore, reg); 225 226 reg = RING_ACTHD_UDW(engine->mmio_base); 227 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 228 intel_uncore_read(uncore, reg); 229 } 230 231 static int shadow_context_status_change(struct notifier_block *nb, 232 unsigned long action, void *data) 233 { 234 struct i915_request *rq = data; 235 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 236 shadow_ctx_notifier_block[rq->engine->id]); 237 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 238 enum intel_engine_id ring_id = rq->engine->id; 239 struct intel_vgpu_workload *workload; 240 unsigned long flags; 241 242 if (!is_gvt_request(rq)) { 243 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 244 if (action == INTEL_CONTEXT_SCHEDULE_IN && 245 scheduler->engine_owner[ring_id]) { 246 /* Switch ring from vGPU to host. */ 247 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 248 NULL, rq->engine); 249 scheduler->engine_owner[ring_id] = NULL; 250 } 251 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 252 253 return NOTIFY_OK; 254 } 255 256 workload = scheduler->current_workload[ring_id]; 257 if (unlikely(!workload)) 258 return NOTIFY_OK; 259 260 switch (action) { 261 case INTEL_CONTEXT_SCHEDULE_IN: 262 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 263 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 264 /* Switch ring from host to vGPU or vGPU to vGPU. */ 265 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 266 workload->vgpu, rq->engine); 267 scheduler->engine_owner[ring_id] = workload->vgpu; 268 } else 269 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 270 ring_id, workload->vgpu->id); 271 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 272 atomic_set(&workload->shadow_ctx_active, 1); 273 break; 274 case INTEL_CONTEXT_SCHEDULE_OUT: 275 save_ring_hw_state(workload->vgpu, rq->engine); 276 atomic_set(&workload->shadow_ctx_active, 0); 277 break; 278 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 279 save_ring_hw_state(workload->vgpu, rq->engine); 280 break; 281 default: 282 WARN_ON(1); 283 return NOTIFY_OK; 284 } 285 wake_up(&workload->shadow_ctx_status_wq); 286 return NOTIFY_OK; 287 } 288 289 static void 290 shadow_context_descriptor_update(struct intel_context *ce, 291 struct intel_vgpu_workload *workload) 292 { 293 u64 desc = ce->lrc_desc; 294 295 /* 296 * Update bits 0-11 of the context descriptor which includes flags 297 * like GEN8_CTX_* cached in desc_template 298 */ 299 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT); 300 desc |= (u64)workload->ctx_desc.addressing_mode << 301 GEN8_CTX_ADDRESSING_MODE_SHIFT; 302 303 ce->lrc_desc = desc; 304 } 305 306 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 307 { 308 struct intel_vgpu *vgpu = workload->vgpu; 309 struct i915_request *req = workload->req; 310 void *shadow_ring_buffer_va; 311 u32 *cs; 312 int err; 313 314 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context)) 315 intel_vgpu_restore_inhibit_context(vgpu, req); 316 317 /* 318 * To track whether a request has started on HW, we can emit a 319 * breadcrumb at the beginning of the request and check its 320 * timeline's HWSP to see if the breadcrumb has advanced past the 321 * start of this request. Actually, the request must have the 322 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 323 * scheduler might get a wrong state of it during reset. Since the 324 * requests from gvt always set the has_init_breadcrumb flag, here 325 * need to do the emit_init_breadcrumb for all the requests. 326 */ 327 if (req->engine->emit_init_breadcrumb) { 328 err = req->engine->emit_init_breadcrumb(req); 329 if (err) { 330 gvt_vgpu_err("fail to emit init breadcrumb\n"); 331 return err; 332 } 333 } 334 335 /* allocate shadow ring buffer */ 336 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 337 if (IS_ERR(cs)) { 338 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 339 workload->rb_len); 340 return PTR_ERR(cs); 341 } 342 343 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 344 345 /* get shadow ring buffer va */ 346 workload->shadow_ring_buffer_va = cs; 347 348 memcpy(cs, shadow_ring_buffer_va, 349 workload->rb_len); 350 351 cs += workload->rb_len / sizeof(u32); 352 intel_ring_advance(workload->req, cs); 353 354 return 0; 355 } 356 357 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 358 { 359 if (!wa_ctx->indirect_ctx.obj) 360 return; 361 362 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 363 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 364 365 wa_ctx->indirect_ctx.obj = NULL; 366 wa_ctx->indirect_ctx.shadow_va = NULL; 367 } 368 369 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 370 struct intel_context *ce) 371 { 372 struct intel_vgpu_mm *mm = workload->shadow_mm; 373 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); 374 int i = 0; 375 376 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 377 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0]; 378 } else { 379 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 380 struct i915_page_directory * const pd = 381 i915_pd_entry(ppgtt->pd, i); 382 383 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i]; 384 } 385 } 386 } 387 388 static int 389 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 390 { 391 struct intel_vgpu *vgpu = workload->vgpu; 392 struct intel_vgpu_submission *s = &vgpu->submission; 393 struct i915_request *rq; 394 395 if (workload->req) 396 return 0; 397 398 rq = i915_request_create(s->shadow[workload->engine->id]); 399 if (IS_ERR(rq)) { 400 gvt_vgpu_err("fail to allocate gem request\n"); 401 return PTR_ERR(rq); 402 } 403 404 workload->req = i915_request_get(rq); 405 return 0; 406 } 407 408 /** 409 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 410 * shadow it as well, include ringbuffer,wa_ctx and ctx. 411 * @workload: an abstract entity for each execlist submission. 412 * 413 * This function is called before the workload submitting to i915, to make 414 * sure the content of the workload is valid. 415 */ 416 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 417 { 418 struct intel_vgpu *vgpu = workload->vgpu; 419 struct intel_vgpu_submission *s = &vgpu->submission; 420 int ret; 421 422 lockdep_assert_held(&vgpu->vgpu_lock); 423 424 if (workload->shadow) 425 return 0; 426 427 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated)) 428 shadow_context_descriptor_update(s->shadow[workload->engine->id], 429 workload); 430 431 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 432 if (ret) 433 return ret; 434 435 if (workload->engine->id == RCS0 && 436 workload->wa_ctx.indirect_ctx.size) { 437 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 438 if (ret) 439 goto err_shadow; 440 } 441 442 workload->shadow = true; 443 return 0; 444 445 err_shadow: 446 release_shadow_wa_ctx(&workload->wa_ctx); 447 return ret; 448 } 449 450 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 451 452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 453 { 454 struct intel_gvt *gvt = workload->vgpu->gvt; 455 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 456 struct intel_vgpu_shadow_bb *bb; 457 int ret; 458 459 list_for_each_entry(bb, &workload->shadow_bb, list) { 460 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 461 * is only updated into ring_scan_buffer, not real ring address 462 * allocated in later copy_workload_to_ring_buffer. pls be noted 463 * shadow_ring_buffer_va is now pointed to real ring buffer va 464 * in copy_workload_to_ring_buffer. 465 */ 466 467 if (bb->bb_offset) 468 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 469 + bb->bb_offset; 470 471 if (bb->ppgtt) { 472 /* for non-priv bb, scan&shadow is only for 473 * debugging purpose, so the content of shadow bb 474 * is the same as original bb. Therefore, 475 * here, rather than switch to shadow bb's gma 476 * address, we directly use original batch buffer's 477 * gma address, and send original bb to hardware 478 * directly 479 */ 480 if (bb->clflush & CLFLUSH_AFTER) { 481 drm_clflush_virt_range(bb->va, 482 bb->obj->base.size); 483 bb->clflush &= ~CLFLUSH_AFTER; 484 } 485 i915_gem_object_finish_access(bb->obj); 486 bb->accessing = false; 487 488 } else { 489 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 490 NULL, 0, 0, 0); 491 if (IS_ERR(bb->vma)) { 492 ret = PTR_ERR(bb->vma); 493 goto err; 494 } 495 496 /* relocate shadow batch buffer */ 497 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 498 if (gmadr_bytes == 8) 499 bb->bb_start_cmd_va[2] = 0; 500 501 /* No one is going to touch shadow bb from now on. */ 502 if (bb->clflush & CLFLUSH_AFTER) { 503 drm_clflush_virt_range(bb->va, 504 bb->obj->base.size); 505 bb->clflush &= ~CLFLUSH_AFTER; 506 } 507 508 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 509 false); 510 if (ret) 511 goto err; 512 513 ret = i915_vma_move_to_active(bb->vma, 514 workload->req, 515 0); 516 if (ret) 517 goto err; 518 519 i915_gem_object_finish_access(bb->obj); 520 bb->accessing = false; 521 } 522 } 523 return 0; 524 err: 525 release_shadow_batch_buffer(workload); 526 return ret; 527 } 528 529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 530 { 531 struct intel_vgpu_workload *workload = 532 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 533 struct i915_request *rq = workload->req; 534 struct execlist_ring_context *shadow_ring_context = 535 (struct execlist_ring_context *)rq->context->lrc_reg_state; 536 537 shadow_ring_context->bb_per_ctx_ptr.val = 538 (shadow_ring_context->bb_per_ctx_ptr.val & 539 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 540 shadow_ring_context->rcs_indirect_ctx.val = 541 (shadow_ring_context->rcs_indirect_ctx.val & 542 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 543 } 544 545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 546 { 547 struct i915_vma *vma; 548 unsigned char *per_ctx_va = 549 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 550 wa_ctx->indirect_ctx.size; 551 552 if (wa_ctx->indirect_ctx.size == 0) 553 return 0; 554 555 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 556 0, CACHELINE_BYTES, 0); 557 if (IS_ERR(vma)) 558 return PTR_ERR(vma); 559 560 /* FIXME: we are not tracking our pinned VMA leaving it 561 * up to the core to fix up the stray pin_count upon 562 * free. 563 */ 564 565 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 566 567 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 568 memset(per_ctx_va, 0, CACHELINE_BYTES); 569 570 update_wa_ctx_2_shadow_ctx(wa_ctx); 571 return 0; 572 } 573 574 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 575 { 576 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) = 577 workload->rb_start; 578 } 579 580 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 581 { 582 struct intel_vgpu_shadow_bb *bb, *pos; 583 584 if (list_empty(&workload->shadow_bb)) 585 return; 586 587 bb = list_first_entry(&workload->shadow_bb, 588 struct intel_vgpu_shadow_bb, list); 589 590 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 591 if (bb->obj) { 592 if (bb->accessing) 593 i915_gem_object_finish_access(bb->obj); 594 595 if (bb->va && !IS_ERR(bb->va)) 596 i915_gem_object_unpin_map(bb->obj); 597 598 if (bb->vma && !IS_ERR(bb->vma)) { 599 i915_vma_unpin(bb->vma); 600 i915_vma_close(bb->vma); 601 } 602 i915_gem_object_put(bb->obj); 603 } 604 list_del(&bb->list); 605 kfree(bb); 606 } 607 } 608 609 static int prepare_workload(struct intel_vgpu_workload *workload) 610 { 611 struct intel_vgpu *vgpu = workload->vgpu; 612 struct intel_vgpu_submission *s = &vgpu->submission; 613 int ret = 0; 614 615 ret = intel_vgpu_pin_mm(workload->shadow_mm); 616 if (ret) { 617 gvt_vgpu_err("fail to vgpu pin mm\n"); 618 return ret; 619 } 620 621 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 622 !workload->shadow_mm->ppgtt_mm.shadowed) { 623 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 624 return -EINVAL; 625 } 626 627 update_shadow_pdps(workload); 628 629 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]); 630 631 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 632 if (ret) { 633 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 634 goto err_unpin_mm; 635 } 636 637 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 638 if (ret) { 639 gvt_vgpu_err("fail to flush post shadow\n"); 640 goto err_unpin_mm; 641 } 642 643 ret = copy_workload_to_ring_buffer(workload); 644 if (ret) { 645 gvt_vgpu_err("fail to generate request\n"); 646 goto err_unpin_mm; 647 } 648 649 ret = prepare_shadow_batch_buffer(workload); 650 if (ret) { 651 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 652 goto err_unpin_mm; 653 } 654 655 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 656 if (ret) { 657 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 658 goto err_shadow_batch; 659 } 660 661 if (workload->prepare) { 662 ret = workload->prepare(workload); 663 if (ret) 664 goto err_shadow_wa_ctx; 665 } 666 667 return 0; 668 err_shadow_wa_ctx: 669 release_shadow_wa_ctx(&workload->wa_ctx); 670 err_shadow_batch: 671 release_shadow_batch_buffer(workload); 672 err_unpin_mm: 673 intel_vgpu_unpin_mm(workload->shadow_mm); 674 return ret; 675 } 676 677 static int dispatch_workload(struct intel_vgpu_workload *workload) 678 { 679 struct intel_vgpu *vgpu = workload->vgpu; 680 struct i915_request *rq; 681 int ret; 682 683 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n", 684 workload->engine->name, workload); 685 686 mutex_lock(&vgpu->vgpu_lock); 687 688 ret = intel_gvt_workload_req_alloc(workload); 689 if (ret) 690 goto err_req; 691 692 ret = intel_gvt_scan_and_shadow_workload(workload); 693 if (ret) 694 goto out; 695 696 ret = populate_shadow_context(workload); 697 if (ret) { 698 release_shadow_wa_ctx(&workload->wa_ctx); 699 goto out; 700 } 701 702 ret = prepare_workload(workload); 703 out: 704 if (ret) { 705 /* We might still need to add request with 706 * clean ctx to retire it properly.. 707 */ 708 rq = fetch_and_zero(&workload->req); 709 i915_request_put(rq); 710 } 711 712 if (!IS_ERR_OR_NULL(workload->req)) { 713 gvt_dbg_sched("ring id %s submit workload to i915 %p\n", 714 workload->engine->name, workload->req); 715 i915_request_add(workload->req); 716 workload->dispatched = true; 717 } 718 err_req: 719 if (ret) 720 workload->status = ret; 721 mutex_unlock(&vgpu->vgpu_lock); 722 return ret; 723 } 724 725 static struct intel_vgpu_workload * 726 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine) 727 { 728 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 729 struct intel_vgpu_workload *workload = NULL; 730 731 mutex_lock(&gvt->sched_lock); 732 733 /* 734 * no current vgpu / will be scheduled out / no workload 735 * bail out 736 */ 737 if (!scheduler->current_vgpu) { 738 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name); 739 goto out; 740 } 741 742 if (scheduler->need_reschedule) { 743 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name); 744 goto out; 745 } 746 747 if (!scheduler->current_vgpu->active || 748 list_empty(workload_q_head(scheduler->current_vgpu, engine))) 749 goto out; 750 751 /* 752 * still have current workload, maybe the workload disptacher 753 * fail to submit it for some reason, resubmit it. 754 */ 755 if (scheduler->current_workload[engine->id]) { 756 workload = scheduler->current_workload[engine->id]; 757 gvt_dbg_sched("ring %s still have current workload %p\n", 758 engine->name, workload); 759 goto out; 760 } 761 762 /* 763 * pick a workload as current workload 764 * once current workload is set, schedule policy routines 765 * will wait the current workload is finished when trying to 766 * schedule out a vgpu. 767 */ 768 scheduler->current_workload[engine->id] = 769 list_first_entry(workload_q_head(scheduler->current_vgpu, 770 engine), 771 struct intel_vgpu_workload, list); 772 773 workload = scheduler->current_workload[engine->id]; 774 775 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload); 776 777 atomic_inc(&workload->vgpu->submission.running_workload_num); 778 out: 779 mutex_unlock(&gvt->sched_lock); 780 return workload; 781 } 782 783 static void update_guest_context(struct intel_vgpu_workload *workload) 784 { 785 struct i915_request *rq = workload->req; 786 struct intel_vgpu *vgpu = workload->vgpu; 787 struct drm_i915_gem_object *ctx_obj = rq->context->state->obj; 788 struct execlist_ring_context *shadow_ring_context; 789 struct page *page; 790 void *src; 791 unsigned long context_gpa, context_page_num; 792 int i; 793 u32 ring_base; 794 u32 head, tail; 795 u16 wrap_count; 796 797 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 798 workload->ctx_desc.lrca); 799 800 head = workload->rb_head; 801 tail = workload->rb_tail; 802 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 803 804 if (tail < head) { 805 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 806 wrap_count = 0; 807 else 808 wrap_count += 1; 809 } 810 811 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 812 813 ring_base = rq->engine->mmio_base; 814 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 815 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 816 817 context_page_num = rq->engine->context_size; 818 context_page_num = context_page_num >> PAGE_SHIFT; 819 820 if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0) 821 context_page_num = 19; 822 823 i = 2; 824 825 while (i < context_page_num) { 826 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 827 (u32)((workload->ctx_desc.lrca + i) << 828 I915_GTT_PAGE_SHIFT)); 829 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 830 gvt_vgpu_err("invalid guest context descriptor\n"); 831 return; 832 } 833 834 page = i915_gem_object_get_page(ctx_obj, i); 835 src = kmap(page); 836 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 837 I915_GTT_PAGE_SIZE); 838 kunmap(page); 839 i++; 840 } 841 842 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 843 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 844 845 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 846 shadow_ring_context = kmap(page); 847 848 #define COPY_REG(name) \ 849 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 850 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 851 852 COPY_REG(ctx_ctrl); 853 COPY_REG(ctx_timestamp); 854 855 #undef COPY_REG 856 857 intel_gvt_hypervisor_write_gpa(vgpu, 858 workload->ring_context_gpa + 859 sizeof(*shadow_ring_context), 860 (void *)shadow_ring_context + 861 sizeof(*shadow_ring_context), 862 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 863 864 kunmap(page); 865 } 866 867 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 868 intel_engine_mask_t engine_mask) 869 { 870 struct intel_vgpu_submission *s = &vgpu->submission; 871 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 872 struct intel_engine_cs *engine; 873 struct intel_vgpu_workload *pos, *n; 874 intel_engine_mask_t tmp; 875 876 /* free the unsubmited workloads in the queues. */ 877 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) { 878 list_for_each_entry_safe(pos, n, 879 &s->workload_q_head[engine->id], list) { 880 list_del_init(&pos->list); 881 intel_vgpu_destroy_workload(pos); 882 } 883 clear_bit(engine->id, s->shadow_ctx_desc_updated); 884 } 885 } 886 887 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 888 { 889 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 890 struct intel_vgpu_workload *workload = 891 scheduler->current_workload[ring_id]; 892 struct intel_vgpu *vgpu = workload->vgpu; 893 struct intel_vgpu_submission *s = &vgpu->submission; 894 struct i915_request *rq = workload->req; 895 int event; 896 897 mutex_lock(&vgpu->vgpu_lock); 898 mutex_lock(&gvt->sched_lock); 899 900 /* For the workload w/ request, needs to wait for the context 901 * switch to make sure request is completed. 902 * For the workload w/o request, directly complete the workload. 903 */ 904 if (rq) { 905 wait_event(workload->shadow_ctx_status_wq, 906 !atomic_read(&workload->shadow_ctx_active)); 907 908 /* If this request caused GPU hang, req->fence.error will 909 * be set to -EIO. Use -EIO to set workload status so 910 * that when this request caused GPU hang, didn't trigger 911 * context switch interrupt to guest. 912 */ 913 if (likely(workload->status == -EINPROGRESS)) { 914 if (workload->req->fence.error == -EIO) 915 workload->status = -EIO; 916 else 917 workload->status = 0; 918 } 919 920 if (!workload->status && 921 !(vgpu->resetting_eng & BIT(ring_id))) { 922 update_guest_context(workload); 923 924 for_each_set_bit(event, workload->pending_events, 925 INTEL_GVT_EVENT_MAX) 926 intel_vgpu_trigger_virtual_event(vgpu, event); 927 } 928 929 i915_request_put(fetch_and_zero(&workload->req)); 930 } 931 932 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 933 ring_id, workload, workload->status); 934 935 scheduler->current_workload[ring_id] = NULL; 936 937 list_del_init(&workload->list); 938 939 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 940 /* if workload->status is not successful means HW GPU 941 * has occurred GPU hang or something wrong with i915/GVT, 942 * and GVT won't inject context switch interrupt to guest. 943 * So this error is a vGPU hang actually to the guest. 944 * According to this we should emunlate a vGPU hang. If 945 * there are pending workloads which are already submitted 946 * from guest, we should clean them up like HW GPU does. 947 * 948 * if it is in middle of engine resetting, the pending 949 * workloads won't be submitted to HW GPU and will be 950 * cleaned up during the resetting process later, so doing 951 * the workload clean up here doesn't have any impact. 952 **/ 953 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 954 } 955 956 workload->complete(workload); 957 958 atomic_dec(&s->running_workload_num); 959 wake_up(&scheduler->workload_complete_wq); 960 961 if (gvt->scheduler.need_reschedule) 962 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 963 964 mutex_unlock(&gvt->sched_lock); 965 mutex_unlock(&vgpu->vgpu_lock); 966 } 967 968 static int workload_thread(void *arg) 969 { 970 struct intel_engine_cs *engine = arg; 971 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9; 972 struct intel_gvt *gvt = engine->i915->gvt; 973 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 974 struct intel_vgpu_workload *workload = NULL; 975 struct intel_vgpu *vgpu = NULL; 976 int ret; 977 DEFINE_WAIT_FUNC(wait, woken_wake_function); 978 979 gvt_dbg_core("workload thread for ring %s started\n", engine->name); 980 981 while (!kthread_should_stop()) { 982 intel_wakeref_t wakeref; 983 984 add_wait_queue(&scheduler->waitq[engine->id], &wait); 985 do { 986 workload = pick_next_workload(gvt, engine); 987 if (workload) 988 break; 989 wait_woken(&wait, TASK_INTERRUPTIBLE, 990 MAX_SCHEDULE_TIMEOUT); 991 } while (!kthread_should_stop()); 992 remove_wait_queue(&scheduler->waitq[engine->id], &wait); 993 994 if (!workload) 995 break; 996 997 gvt_dbg_sched("ring %s next workload %p vgpu %d\n", 998 engine->name, workload, 999 workload->vgpu->id); 1000 1001 wakeref = intel_runtime_pm_get(engine->uncore->rpm); 1002 1003 gvt_dbg_sched("ring %s will dispatch workload %p\n", 1004 engine->name, workload); 1005 1006 if (need_force_wake) 1007 intel_uncore_forcewake_get(engine->uncore, 1008 FORCEWAKE_ALL); 1009 /* 1010 * Update the vReg of the vGPU which submitted this 1011 * workload. The vGPU may use these registers for checking 1012 * the context state. The value comes from GPU commands 1013 * in this workload. 1014 */ 1015 update_vreg_in_ctx(workload); 1016 1017 ret = dispatch_workload(workload); 1018 1019 if (ret) { 1020 vgpu = workload->vgpu; 1021 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1022 goto complete; 1023 } 1024 1025 gvt_dbg_sched("ring %s wait workload %p\n", 1026 engine->name, workload); 1027 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1028 1029 complete: 1030 gvt_dbg_sched("will complete workload %p, status: %d\n", 1031 workload, workload->status); 1032 1033 complete_current_workload(gvt, engine->id); 1034 1035 if (need_force_wake) 1036 intel_uncore_forcewake_put(engine->uncore, 1037 FORCEWAKE_ALL); 1038 1039 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1040 if (ret && (vgpu_is_vm_unhealthy(ret))) 1041 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1042 } 1043 return 0; 1044 } 1045 1046 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1047 { 1048 struct intel_vgpu_submission *s = &vgpu->submission; 1049 struct intel_gvt *gvt = vgpu->gvt; 1050 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1051 1052 if (atomic_read(&s->running_workload_num)) { 1053 gvt_dbg_sched("wait vgpu idle\n"); 1054 1055 wait_event(scheduler->workload_complete_wq, 1056 !atomic_read(&s->running_workload_num)); 1057 } 1058 } 1059 1060 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1061 { 1062 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1063 struct intel_engine_cs *engine; 1064 enum intel_engine_id i; 1065 1066 gvt_dbg_core("clean workload scheduler\n"); 1067 1068 for_each_engine(engine, gvt->gt, i) { 1069 atomic_notifier_chain_unregister( 1070 &engine->context_status_notifier, 1071 &gvt->shadow_ctx_notifier_block[i]); 1072 kthread_stop(scheduler->thread[i]); 1073 } 1074 } 1075 1076 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1077 { 1078 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1079 struct intel_engine_cs *engine; 1080 enum intel_engine_id i; 1081 int ret; 1082 1083 gvt_dbg_core("init workload scheduler\n"); 1084 1085 init_waitqueue_head(&scheduler->workload_complete_wq); 1086 1087 for_each_engine(engine, gvt->gt, i) { 1088 init_waitqueue_head(&scheduler->waitq[i]); 1089 1090 scheduler->thread[i] = kthread_run(workload_thread, engine, 1091 "gvt:%s", engine->name); 1092 if (IS_ERR(scheduler->thread[i])) { 1093 gvt_err("fail to create workload thread\n"); 1094 ret = PTR_ERR(scheduler->thread[i]); 1095 goto err; 1096 } 1097 1098 gvt->shadow_ctx_notifier_block[i].notifier_call = 1099 shadow_context_status_change; 1100 atomic_notifier_chain_register(&engine->context_status_notifier, 1101 &gvt->shadow_ctx_notifier_block[i]); 1102 } 1103 1104 return 0; 1105 1106 err: 1107 intel_gvt_clean_workload_scheduler(gvt); 1108 return ret; 1109 } 1110 1111 static void 1112 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1113 struct i915_ppgtt *ppgtt) 1114 { 1115 int i; 1116 1117 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1118 px_dma(ppgtt->pd) = s->i915_context_pml4; 1119 } else { 1120 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1121 struct i915_page_directory * const pd = 1122 i915_pd_entry(ppgtt->pd, i); 1123 1124 px_dma(pd) = s->i915_context_pdps[i]; 1125 } 1126 } 1127 } 1128 1129 /** 1130 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1131 * @vgpu: a vGPU 1132 * 1133 * This function is called when a vGPU is being destroyed. 1134 * 1135 */ 1136 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1137 { 1138 struct intel_vgpu_submission *s = &vgpu->submission; 1139 struct intel_engine_cs *engine; 1140 enum intel_engine_id id; 1141 1142 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1143 1144 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1145 for_each_engine(engine, vgpu->gvt->gt, id) 1146 intel_context_unpin(s->shadow[id]); 1147 1148 kmem_cache_destroy(s->workloads); 1149 } 1150 1151 1152 /** 1153 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1154 * @vgpu: a vGPU 1155 * @engine_mask: engines expected to be reset 1156 * 1157 * This function is called when a vGPU is being destroyed. 1158 * 1159 */ 1160 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1161 intel_engine_mask_t engine_mask) 1162 { 1163 struct intel_vgpu_submission *s = &vgpu->submission; 1164 1165 if (!s->active) 1166 return; 1167 1168 intel_vgpu_clean_workloads(vgpu, engine_mask); 1169 s->ops->reset(vgpu, engine_mask); 1170 } 1171 1172 static void 1173 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1174 struct i915_ppgtt *ppgtt) 1175 { 1176 int i; 1177 1178 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1179 s->i915_context_pml4 = px_dma(ppgtt->pd); 1180 } else { 1181 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1182 struct i915_page_directory * const pd = 1183 i915_pd_entry(ppgtt->pd, i); 1184 1185 s->i915_context_pdps[i] = px_dma(pd); 1186 } 1187 } 1188 } 1189 1190 /** 1191 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1192 * @vgpu: a vGPU 1193 * 1194 * This function is called when a vGPU is being created. 1195 * 1196 * Returns: 1197 * Zero on success, negative error code if failed. 1198 * 1199 */ 1200 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1201 { 1202 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1203 struct intel_vgpu_submission *s = &vgpu->submission; 1204 struct intel_engine_cs *engine; 1205 struct i915_ppgtt *ppgtt; 1206 enum intel_engine_id i; 1207 int ret; 1208 1209 ppgtt = i915_ppgtt_create(&i915->gt); 1210 if (IS_ERR(ppgtt)) 1211 return PTR_ERR(ppgtt); 1212 1213 i915_context_ppgtt_root_save(s, ppgtt); 1214 1215 for_each_engine(engine, vgpu->gvt->gt, i) { 1216 struct intel_context *ce; 1217 1218 INIT_LIST_HEAD(&s->workload_q_head[i]); 1219 s->shadow[i] = ERR_PTR(-EINVAL); 1220 1221 ce = intel_context_create(engine); 1222 if (IS_ERR(ce)) { 1223 ret = PTR_ERR(ce); 1224 goto out_shadow_ctx; 1225 } 1226 1227 i915_vm_put(ce->vm); 1228 ce->vm = i915_vm_get(&ppgtt->vm); 1229 intel_context_set_single_submission(ce); 1230 1231 /* Max ring buffer size */ 1232 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) { 1233 const unsigned int ring_size = 512 * SZ_4K; 1234 1235 ce->ring = __intel_context_ring_size(ring_size); 1236 } 1237 1238 ret = intel_context_pin(ce); 1239 intel_context_put(ce); 1240 if (ret) 1241 goto out_shadow_ctx; 1242 1243 s->shadow[i] = ce; 1244 } 1245 1246 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1247 1248 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1249 sizeof(struct intel_vgpu_workload), 0, 1250 SLAB_HWCACHE_ALIGN, 1251 offsetof(struct intel_vgpu_workload, rb_tail), 1252 sizeof_field(struct intel_vgpu_workload, rb_tail), 1253 NULL); 1254 1255 if (!s->workloads) { 1256 ret = -ENOMEM; 1257 goto out_shadow_ctx; 1258 } 1259 1260 atomic_set(&s->running_workload_num, 0); 1261 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1262 1263 i915_vm_put(&ppgtt->vm); 1264 return 0; 1265 1266 out_shadow_ctx: 1267 i915_context_ppgtt_root_restore(s, ppgtt); 1268 for_each_engine(engine, vgpu->gvt->gt, i) { 1269 if (IS_ERR(s->shadow[i])) 1270 break; 1271 1272 intel_context_unpin(s->shadow[i]); 1273 intel_context_put(s->shadow[i]); 1274 } 1275 i915_vm_put(&ppgtt->vm); 1276 return ret; 1277 } 1278 1279 /** 1280 * intel_vgpu_select_submission_ops - select virtual submission interface 1281 * @vgpu: a vGPU 1282 * @engine_mask: either ALL_ENGINES or target engine mask 1283 * @interface: expected vGPU virtual submission interface 1284 * 1285 * This function is called when guest configures submission interface. 1286 * 1287 * Returns: 1288 * Zero on success, negative error code if failed. 1289 * 1290 */ 1291 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1292 intel_engine_mask_t engine_mask, 1293 unsigned int interface) 1294 { 1295 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1296 struct intel_vgpu_submission *s = &vgpu->submission; 1297 const struct intel_vgpu_submission_ops *ops[] = { 1298 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1299 &intel_vgpu_execlist_submission_ops, 1300 }; 1301 int ret; 1302 1303 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops))) 1304 return -EINVAL; 1305 1306 if (drm_WARN_ON(&i915->drm, 1307 interface == 0 && engine_mask != ALL_ENGINES)) 1308 return -EINVAL; 1309 1310 if (s->active) 1311 s->ops->clean(vgpu, engine_mask); 1312 1313 if (interface == 0) { 1314 s->ops = NULL; 1315 s->virtual_submission_interface = 0; 1316 s->active = false; 1317 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1318 return 0; 1319 } 1320 1321 ret = ops[interface]->init(vgpu, engine_mask); 1322 if (ret) 1323 return ret; 1324 1325 s->ops = ops[interface]; 1326 s->virtual_submission_interface = interface; 1327 s->active = true; 1328 1329 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1330 vgpu->id, s->ops->name); 1331 1332 return 0; 1333 } 1334 1335 /** 1336 * intel_vgpu_destroy_workload - destroy a vGPU workload 1337 * @workload: workload to destroy 1338 * 1339 * This function is called when destroy a vGPU workload. 1340 * 1341 */ 1342 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1343 { 1344 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1345 1346 release_shadow_batch_buffer(workload); 1347 release_shadow_wa_ctx(&workload->wa_ctx); 1348 1349 if (workload->shadow_mm) 1350 intel_vgpu_mm_put(workload->shadow_mm); 1351 1352 kmem_cache_free(s->workloads, workload); 1353 } 1354 1355 static struct intel_vgpu_workload * 1356 alloc_workload(struct intel_vgpu *vgpu) 1357 { 1358 struct intel_vgpu_submission *s = &vgpu->submission; 1359 struct intel_vgpu_workload *workload; 1360 1361 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1362 if (!workload) 1363 return ERR_PTR(-ENOMEM); 1364 1365 INIT_LIST_HEAD(&workload->list); 1366 INIT_LIST_HEAD(&workload->shadow_bb); 1367 1368 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1369 atomic_set(&workload->shadow_ctx_active, 0); 1370 1371 workload->status = -EINPROGRESS; 1372 workload->vgpu = vgpu; 1373 1374 return workload; 1375 } 1376 1377 #define RING_CTX_OFF(x) \ 1378 offsetof(struct execlist_ring_context, x) 1379 1380 static void read_guest_pdps(struct intel_vgpu *vgpu, 1381 u64 ring_context_gpa, u32 pdp[8]) 1382 { 1383 u64 gpa; 1384 int i; 1385 1386 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1387 1388 for (i = 0; i < 8; i++) 1389 intel_gvt_hypervisor_read_gpa(vgpu, 1390 gpa + i * 8, &pdp[7 - i], 4); 1391 } 1392 1393 static int prepare_mm(struct intel_vgpu_workload *workload) 1394 { 1395 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1396 struct intel_vgpu_mm *mm; 1397 struct intel_vgpu *vgpu = workload->vgpu; 1398 enum intel_gvt_gtt_type root_entry_type; 1399 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1400 1401 switch (desc->addressing_mode) { 1402 case 1: /* legacy 32-bit */ 1403 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1404 break; 1405 case 3: /* legacy 64-bit */ 1406 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1407 break; 1408 default: 1409 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1410 return -EINVAL; 1411 } 1412 1413 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1414 1415 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1416 if (IS_ERR(mm)) 1417 return PTR_ERR(mm); 1418 1419 workload->shadow_mm = mm; 1420 return 0; 1421 } 1422 1423 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1424 ((a)->lrca == (b)->lrca)) 1425 1426 /** 1427 * intel_vgpu_create_workload - create a vGPU workload 1428 * @vgpu: a vGPU 1429 * @engine: the engine 1430 * @desc: a guest context descriptor 1431 * 1432 * This function is called when creating a vGPU workload. 1433 * 1434 * Returns: 1435 * struct intel_vgpu_workload * on success, negative error code in 1436 * pointer if failed. 1437 * 1438 */ 1439 struct intel_vgpu_workload * 1440 intel_vgpu_create_workload(struct intel_vgpu *vgpu, 1441 const struct intel_engine_cs *engine, 1442 struct execlist_ctx_descriptor_format *desc) 1443 { 1444 struct intel_vgpu_submission *s = &vgpu->submission; 1445 struct list_head *q = workload_q_head(vgpu, engine); 1446 struct intel_vgpu_workload *last_workload = NULL; 1447 struct intel_vgpu_workload *workload = NULL; 1448 u64 ring_context_gpa; 1449 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1450 u32 guest_head; 1451 int ret; 1452 1453 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1454 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1455 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1456 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1457 return ERR_PTR(-EINVAL); 1458 } 1459 1460 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1461 RING_CTX_OFF(ring_header.val), &head, 4); 1462 1463 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1464 RING_CTX_OFF(ring_tail.val), &tail, 4); 1465 1466 guest_head = head; 1467 1468 head &= RB_HEAD_OFF_MASK; 1469 tail &= RB_TAIL_OFF_MASK; 1470 1471 list_for_each_entry_reverse(last_workload, q, list) { 1472 1473 if (same_context(&last_workload->ctx_desc, desc)) { 1474 gvt_dbg_el("ring %s cur workload == last\n", 1475 engine->name); 1476 gvt_dbg_el("ctx head %x real head %lx\n", head, 1477 last_workload->rb_tail); 1478 /* 1479 * cannot use guest context head pointer here, 1480 * as it might not be updated at this time 1481 */ 1482 head = last_workload->rb_tail; 1483 break; 1484 } 1485 } 1486 1487 gvt_dbg_el("ring %s begin a new workload\n", engine->name); 1488 1489 /* record some ring buffer register values for scan and shadow */ 1490 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1491 RING_CTX_OFF(rb_start.val), &start, 4); 1492 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1493 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1494 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1495 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1496 1497 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1498 _RING_CTL_BUF_SIZE(ctl))) { 1499 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1500 return ERR_PTR(-EINVAL); 1501 } 1502 1503 workload = alloc_workload(vgpu); 1504 if (IS_ERR(workload)) 1505 return workload; 1506 1507 workload->engine = engine; 1508 workload->ctx_desc = *desc; 1509 workload->ring_context_gpa = ring_context_gpa; 1510 workload->rb_head = head; 1511 workload->guest_rb_head = guest_head; 1512 workload->rb_tail = tail; 1513 workload->rb_start = start; 1514 workload->rb_ctl = ctl; 1515 1516 if (engine->id == RCS0) { 1517 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1518 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1519 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1520 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1521 1522 workload->wa_ctx.indirect_ctx.guest_gma = 1523 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1524 workload->wa_ctx.indirect_ctx.size = 1525 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1526 CACHELINE_BYTES; 1527 1528 if (workload->wa_ctx.indirect_ctx.size != 0) { 1529 if (!intel_gvt_ggtt_validate_range(vgpu, 1530 workload->wa_ctx.indirect_ctx.guest_gma, 1531 workload->wa_ctx.indirect_ctx.size)) { 1532 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1533 workload->wa_ctx.indirect_ctx.guest_gma); 1534 kmem_cache_free(s->workloads, workload); 1535 return ERR_PTR(-EINVAL); 1536 } 1537 } 1538 1539 workload->wa_ctx.per_ctx.guest_gma = 1540 per_ctx & PER_CTX_ADDR_MASK; 1541 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1542 if (workload->wa_ctx.per_ctx.valid) { 1543 if (!intel_gvt_ggtt_validate_range(vgpu, 1544 workload->wa_ctx.per_ctx.guest_gma, 1545 CACHELINE_BYTES)) { 1546 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1547 workload->wa_ctx.per_ctx.guest_gma); 1548 kmem_cache_free(s->workloads, workload); 1549 return ERR_PTR(-EINVAL); 1550 } 1551 } 1552 } 1553 1554 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n", 1555 workload, engine->name, head, tail, start, ctl); 1556 1557 ret = prepare_mm(workload); 1558 if (ret) { 1559 kmem_cache_free(s->workloads, workload); 1560 return ERR_PTR(ret); 1561 } 1562 1563 /* Only scan and shadow the first workload in the queue 1564 * as there is only one pre-allocated buf-obj for shadow. 1565 */ 1566 if (list_empty(q)) { 1567 intel_wakeref_t wakeref; 1568 1569 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref) 1570 ret = intel_gvt_scan_and_shadow_workload(workload); 1571 } 1572 1573 if (ret) { 1574 if (vgpu_is_vm_unhealthy(ret)) 1575 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1576 intel_vgpu_destroy_workload(workload); 1577 return ERR_PTR(ret); 1578 } 1579 1580 return workload; 1581 } 1582 1583 /** 1584 * intel_vgpu_queue_workload - Qeue a vGPU workload 1585 * @workload: the workload to queue in 1586 */ 1587 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1588 { 1589 list_add_tail(&workload->list, 1590 workload_q_head(workload->vgpu, workload->engine)); 1591 intel_gvt_kick_schedule(workload->vgpu->gvt); 1592 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]); 1593 } 1594