xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 133f9794)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
49 	int i;
50 
51 	for (i = 0; i < 8; i++)
52 		pdp_pair[i].val = pdp[7 - i];
53 }
54 
55 static int populate_shadow_context(struct intel_vgpu_workload *workload)
56 {
57 	struct intel_vgpu *vgpu = workload->vgpu;
58 	struct intel_gvt *gvt = vgpu->gvt;
59 	int ring_id = workload->ring_id;
60 	struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
61 	struct drm_i915_gem_object *ctx_obj =
62 		shadow_ctx->engine[ring_id].state->obj;
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct page *page;
65 	void *dst;
66 	unsigned long context_gpa, context_page_num;
67 	int i;
68 
69 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
70 			workload->ctx_desc.lrca);
71 
72 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
73 
74 	context_page_num = context_page_num >> PAGE_SHIFT;
75 
76 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
77 		context_page_num = 19;
78 
79 	i = 2;
80 
81 	while (i < context_page_num) {
82 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
83 				(u32)((workload->ctx_desc.lrca + i) <<
84 				I915_GTT_PAGE_SHIFT));
85 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
86 			gvt_vgpu_err("Invalid guest context descriptor\n");
87 			return -EFAULT;
88 		}
89 
90 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
91 		dst = kmap(page);
92 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
93 				I915_GTT_PAGE_SIZE);
94 		kunmap(page);
95 		i++;
96 	}
97 
98 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
99 	shadow_ring_context = kmap(page);
100 
101 #define COPY_REG(name) \
102 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
103 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
104 
105 	COPY_REG(ctx_ctrl);
106 	COPY_REG(ctx_timestamp);
107 
108 	if (ring_id == RCS) {
109 		COPY_REG(bb_per_ctx_ptr);
110 		COPY_REG(rcs_indirect_ctx);
111 		COPY_REG(rcs_indirect_ctx_offset);
112 	}
113 #undef COPY_REG
114 
115 	set_context_pdp_root_pointer(shadow_ring_context,
116 				     (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
117 
118 	intel_gvt_hypervisor_read_gpa(vgpu,
119 			workload->ring_context_gpa +
120 			sizeof(*shadow_ring_context),
121 			(void *)shadow_ring_context +
122 			sizeof(*shadow_ring_context),
123 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
124 
125 	kunmap(page);
126 	return 0;
127 }
128 
129 static inline bool is_gvt_request(struct i915_request *req)
130 {
131 	return i915_gem_context_force_single_submission(req->ctx);
132 }
133 
134 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
135 {
136 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
137 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
138 	i915_reg_t reg;
139 
140 	reg = RING_INSTDONE(ring_base);
141 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
142 	reg = RING_ACTHD(ring_base);
143 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
144 	reg = RING_ACTHD_UDW(ring_base);
145 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
146 }
147 
148 static int shadow_context_status_change(struct notifier_block *nb,
149 		unsigned long action, void *data)
150 {
151 	struct i915_request *req = data;
152 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
153 				shadow_ctx_notifier_block[req->engine->id]);
154 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
155 	enum intel_engine_id ring_id = req->engine->id;
156 	struct intel_vgpu_workload *workload;
157 	unsigned long flags;
158 
159 	if (!is_gvt_request(req)) {
160 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
161 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
162 		    scheduler->engine_owner[ring_id]) {
163 			/* Switch ring from vGPU to host. */
164 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
165 					      NULL, ring_id);
166 			scheduler->engine_owner[ring_id] = NULL;
167 		}
168 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
169 
170 		return NOTIFY_OK;
171 	}
172 
173 	workload = scheduler->current_workload[ring_id];
174 	if (unlikely(!workload))
175 		return NOTIFY_OK;
176 
177 	switch (action) {
178 	case INTEL_CONTEXT_SCHEDULE_IN:
179 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
180 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
181 			/* Switch ring from host to vGPU or vGPU to vGPU. */
182 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
183 					      workload->vgpu, ring_id);
184 			scheduler->engine_owner[ring_id] = workload->vgpu;
185 		} else
186 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
187 				      ring_id, workload->vgpu->id);
188 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
189 		atomic_set(&workload->shadow_ctx_active, 1);
190 		break;
191 	case INTEL_CONTEXT_SCHEDULE_OUT:
192 		save_ring_hw_state(workload->vgpu, ring_id);
193 		atomic_set(&workload->shadow_ctx_active, 0);
194 		break;
195 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
196 		save_ring_hw_state(workload->vgpu, ring_id);
197 		break;
198 	default:
199 		WARN_ON(1);
200 		return NOTIFY_OK;
201 	}
202 	wake_up(&workload->shadow_ctx_status_wq);
203 	return NOTIFY_OK;
204 }
205 
206 static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
207 		struct intel_engine_cs *engine)
208 {
209 	struct intel_context *ce = &ctx->engine[engine->id];
210 	u64 desc = 0;
211 
212 	desc = ce->lrc_desc;
213 
214 	/* Update bits 0-11 of the context descriptor which includes flags
215 	 * like GEN8_CTX_* cached in desc_template
216 	 */
217 	desc &= U64_MAX << 12;
218 	desc |= ctx->desc_template & ((1ULL << 12) - 1);
219 
220 	ce->lrc_desc = desc;
221 }
222 
223 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
224 {
225 	struct intel_vgpu *vgpu = workload->vgpu;
226 	void *shadow_ring_buffer_va;
227 	u32 *cs;
228 	struct i915_request *req = workload->req;
229 
230 	if (IS_KABYLAKE(req->i915) &&
231 	    is_inhibit_context(req->ctx, req->engine->id))
232 		intel_vgpu_restore_inhibit_context(vgpu, req);
233 
234 	/* allocate shadow ring buffer */
235 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
236 	if (IS_ERR(cs)) {
237 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
238 			workload->rb_len);
239 		return PTR_ERR(cs);
240 	}
241 
242 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
243 
244 	/* get shadow ring buffer va */
245 	workload->shadow_ring_buffer_va = cs;
246 
247 	memcpy(cs, shadow_ring_buffer_va,
248 			workload->rb_len);
249 
250 	cs += workload->rb_len / sizeof(u32);
251 	intel_ring_advance(workload->req, cs);
252 
253 	return 0;
254 }
255 
256 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
257 {
258 	if (!wa_ctx->indirect_ctx.obj)
259 		return;
260 
261 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
262 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
263 }
264 
265 /**
266  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
267  * shadow it as well, include ringbuffer,wa_ctx and ctx.
268  * @workload: an abstract entity for each execlist submission.
269  *
270  * This function is called before the workload submitting to i915, to make
271  * sure the content of the workload is valid.
272  */
273 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
274 {
275 	struct intel_vgpu *vgpu = workload->vgpu;
276 	struct intel_vgpu_submission *s = &vgpu->submission;
277 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
278 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
279 	int ring_id = workload->ring_id;
280 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
281 	struct intel_ring *ring;
282 	int ret;
283 
284 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
285 
286 	if (workload->shadowed)
287 		return 0;
288 
289 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
290 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
291 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
292 
293 	if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated))
294 		shadow_context_descriptor_update(shadow_ctx,
295 					dev_priv->engine[ring_id]);
296 
297 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
298 	if (ret)
299 		goto err_scan;
300 
301 	if ((workload->ring_id == RCS) &&
302 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
303 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
304 		if (ret)
305 			goto err_scan;
306 	}
307 
308 	/* pin shadow context by gvt even the shadow context will be pinned
309 	 * when i915 alloc request. That is because gvt will update the guest
310 	 * context from shadow context when workload is completed, and at that
311 	 * moment, i915 may already unpined the shadow context to make the
312 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
313 	 * the guest context, gvt can unpin the shadow_ctx safely.
314 	 */
315 	ring = engine->context_pin(engine, shadow_ctx);
316 	if (IS_ERR(ring)) {
317 		ret = PTR_ERR(ring);
318 		gvt_vgpu_err("fail to pin shadow context\n");
319 		goto err_shadow;
320 	}
321 
322 	ret = populate_shadow_context(workload);
323 	if (ret)
324 		goto err_unpin;
325 	workload->shadowed = true;
326 	return 0;
327 
328 err_unpin:
329 	engine->context_unpin(engine, shadow_ctx);
330 err_shadow:
331 	release_shadow_wa_ctx(&workload->wa_ctx);
332 err_scan:
333 	return ret;
334 }
335 
336 static int intel_gvt_generate_request(struct intel_vgpu_workload *workload)
337 {
338 	int ring_id = workload->ring_id;
339 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
340 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
341 	struct i915_request *rq;
342 	struct intel_vgpu *vgpu = workload->vgpu;
343 	struct intel_vgpu_submission *s = &vgpu->submission;
344 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
345 	int ret;
346 
347 	rq = i915_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
348 	if (IS_ERR(rq)) {
349 		gvt_vgpu_err("fail to allocate gem request\n");
350 		ret = PTR_ERR(rq);
351 		goto err_unpin;
352 	}
353 
354 	gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
355 
356 	workload->req = i915_request_get(rq);
357 	ret = copy_workload_to_ring_buffer(workload);
358 	if (ret)
359 		goto err_unpin;
360 	return 0;
361 
362 err_unpin:
363 	engine->context_unpin(engine, shadow_ctx);
364 	release_shadow_wa_ctx(&workload->wa_ctx);
365 	return ret;
366 }
367 
368 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
369 
370 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
371 {
372 	struct intel_gvt *gvt = workload->vgpu->gvt;
373 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
374 	struct intel_vgpu_shadow_bb *bb;
375 	int ret;
376 
377 	list_for_each_entry(bb, &workload->shadow_bb, list) {
378 		bb->vma = i915_gem_object_ggtt_pin(bb->obj, NULL, 0, 0, 0);
379 		if (IS_ERR(bb->vma)) {
380 			ret = PTR_ERR(bb->vma);
381 			goto err;
382 		}
383 
384 		/* relocate shadow batch buffer */
385 		bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
386 		if (gmadr_bytes == 8)
387 			bb->bb_start_cmd_va[2] = 0;
388 
389 		/* No one is going to touch shadow bb from now on. */
390 		if (bb->clflush & CLFLUSH_AFTER) {
391 			drm_clflush_virt_range(bb->va, bb->obj->base.size);
392 			bb->clflush &= ~CLFLUSH_AFTER;
393 		}
394 
395 		ret = i915_gem_object_set_to_gtt_domain(bb->obj, false);
396 		if (ret)
397 			goto err;
398 
399 		i915_gem_obj_finish_shmem_access(bb->obj);
400 		bb->accessing = false;
401 
402 		i915_vma_move_to_active(bb->vma, workload->req, 0);
403 	}
404 	return 0;
405 err:
406 	release_shadow_batch_buffer(workload);
407 	return ret;
408 }
409 
410 static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
411 {
412 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
413 					struct intel_vgpu_workload,
414 					wa_ctx);
415 	int ring_id = workload->ring_id;
416 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
417 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
418 	struct drm_i915_gem_object *ctx_obj =
419 		shadow_ctx->engine[ring_id].state->obj;
420 	struct execlist_ring_context *shadow_ring_context;
421 	struct page *page;
422 
423 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
424 	shadow_ring_context = kmap_atomic(page);
425 
426 	shadow_ring_context->bb_per_ctx_ptr.val =
427 		(shadow_ring_context->bb_per_ctx_ptr.val &
428 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
429 	shadow_ring_context->rcs_indirect_ctx.val =
430 		(shadow_ring_context->rcs_indirect_ctx.val &
431 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
432 
433 	kunmap_atomic(shadow_ring_context);
434 	return 0;
435 }
436 
437 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
438 {
439 	struct i915_vma *vma;
440 	unsigned char *per_ctx_va =
441 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
442 		wa_ctx->indirect_ctx.size;
443 
444 	if (wa_ctx->indirect_ctx.size == 0)
445 		return 0;
446 
447 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
448 				       0, CACHELINE_BYTES, 0);
449 	if (IS_ERR(vma))
450 		return PTR_ERR(vma);
451 
452 	/* FIXME: we are not tracking our pinned VMA leaving it
453 	 * up to the core to fix up the stray pin_count upon
454 	 * free.
455 	 */
456 
457 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
458 
459 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
460 	memset(per_ctx_va, 0, CACHELINE_BYTES);
461 
462 	update_wa_ctx_2_shadow_ctx(wa_ctx);
463 	return 0;
464 }
465 
466 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
467 {
468 	struct intel_vgpu *vgpu = workload->vgpu;
469 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
470 	struct intel_vgpu_shadow_bb *bb, *pos;
471 
472 	if (list_empty(&workload->shadow_bb))
473 		return;
474 
475 	bb = list_first_entry(&workload->shadow_bb,
476 			struct intel_vgpu_shadow_bb, list);
477 
478 	mutex_lock(&dev_priv->drm.struct_mutex);
479 
480 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
481 		if (bb->obj) {
482 			if (bb->accessing)
483 				i915_gem_obj_finish_shmem_access(bb->obj);
484 
485 			if (bb->va && !IS_ERR(bb->va))
486 				i915_gem_object_unpin_map(bb->obj);
487 
488 			if (bb->vma && !IS_ERR(bb->vma)) {
489 				i915_vma_unpin(bb->vma);
490 				i915_vma_close(bb->vma);
491 			}
492 			__i915_gem_object_release_unless_active(bb->obj);
493 		}
494 		list_del(&bb->list);
495 		kfree(bb);
496 	}
497 
498 	mutex_unlock(&dev_priv->drm.struct_mutex);
499 }
500 
501 static int prepare_workload(struct intel_vgpu_workload *workload)
502 {
503 	struct intel_vgpu *vgpu = workload->vgpu;
504 	int ret = 0;
505 
506 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
507 	if (ret) {
508 		gvt_vgpu_err("fail to vgpu pin mm\n");
509 		return ret;
510 	}
511 
512 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
513 	if (ret) {
514 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
515 		goto err_unpin_mm;
516 	}
517 
518 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
519 	if (ret) {
520 		gvt_vgpu_err("fail to flush post shadow\n");
521 		goto err_unpin_mm;
522 	}
523 
524 	ret = intel_gvt_generate_request(workload);
525 	if (ret) {
526 		gvt_vgpu_err("fail to generate request\n");
527 		goto err_unpin_mm;
528 	}
529 
530 	ret = prepare_shadow_batch_buffer(workload);
531 	if (ret) {
532 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
533 		goto err_unpin_mm;
534 	}
535 
536 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
537 	if (ret) {
538 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
539 		goto err_shadow_batch;
540 	}
541 
542 	if (workload->prepare) {
543 		ret = workload->prepare(workload);
544 		if (ret)
545 			goto err_shadow_wa_ctx;
546 	}
547 
548 	return 0;
549 err_shadow_wa_ctx:
550 	release_shadow_wa_ctx(&workload->wa_ctx);
551 err_shadow_batch:
552 	release_shadow_batch_buffer(workload);
553 err_unpin_mm:
554 	intel_vgpu_unpin_mm(workload->shadow_mm);
555 	return ret;
556 }
557 
558 static int dispatch_workload(struct intel_vgpu_workload *workload)
559 {
560 	struct intel_vgpu *vgpu = workload->vgpu;
561 	struct intel_vgpu_submission *s = &vgpu->submission;
562 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
563 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
564 	int ring_id = workload->ring_id;
565 	struct intel_engine_cs *engine = dev_priv->engine[ring_id];
566 	int ret = 0;
567 
568 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
569 		ring_id, workload);
570 
571 	mutex_lock(&dev_priv->drm.struct_mutex);
572 
573 	ret = intel_gvt_scan_and_shadow_workload(workload);
574 	if (ret)
575 		goto out;
576 
577 	ret = prepare_workload(workload);
578 	if (ret) {
579 		engine->context_unpin(engine, shadow_ctx);
580 		goto out;
581 	}
582 
583 out:
584 	if (ret)
585 		workload->status = ret;
586 
587 	if (!IS_ERR_OR_NULL(workload->req)) {
588 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
589 				ring_id, workload->req);
590 		i915_request_add(workload->req);
591 		workload->dispatched = true;
592 	}
593 
594 	mutex_unlock(&dev_priv->drm.struct_mutex);
595 	return ret;
596 }
597 
598 static struct intel_vgpu_workload *pick_next_workload(
599 		struct intel_gvt *gvt, int ring_id)
600 {
601 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
602 	struct intel_vgpu_workload *workload = NULL;
603 
604 	mutex_lock(&gvt->lock);
605 
606 	/*
607 	 * no current vgpu / will be scheduled out / no workload
608 	 * bail out
609 	 */
610 	if (!scheduler->current_vgpu) {
611 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
612 		goto out;
613 	}
614 
615 	if (scheduler->need_reschedule) {
616 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
617 		goto out;
618 	}
619 
620 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
621 		goto out;
622 
623 	/*
624 	 * still have current workload, maybe the workload disptacher
625 	 * fail to submit it for some reason, resubmit it.
626 	 */
627 	if (scheduler->current_workload[ring_id]) {
628 		workload = scheduler->current_workload[ring_id];
629 		gvt_dbg_sched("ring id %d still have current workload %p\n",
630 				ring_id, workload);
631 		goto out;
632 	}
633 
634 	/*
635 	 * pick a workload as current workload
636 	 * once current workload is set, schedule policy routines
637 	 * will wait the current workload is finished when trying to
638 	 * schedule out a vgpu.
639 	 */
640 	scheduler->current_workload[ring_id] = container_of(
641 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
642 			struct intel_vgpu_workload, list);
643 
644 	workload = scheduler->current_workload[ring_id];
645 
646 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
647 
648 	atomic_inc(&workload->vgpu->submission.running_workload_num);
649 out:
650 	mutex_unlock(&gvt->lock);
651 	return workload;
652 }
653 
654 static void update_guest_context(struct intel_vgpu_workload *workload)
655 {
656 	struct intel_vgpu *vgpu = workload->vgpu;
657 	struct intel_gvt *gvt = vgpu->gvt;
658 	struct intel_vgpu_submission *s = &vgpu->submission;
659 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
660 	int ring_id = workload->ring_id;
661 	struct drm_i915_gem_object *ctx_obj =
662 		shadow_ctx->engine[ring_id].state->obj;
663 	struct execlist_ring_context *shadow_ring_context;
664 	struct page *page;
665 	void *src;
666 	unsigned long context_gpa, context_page_num;
667 	int i;
668 
669 	gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
670 			workload->ctx_desc.lrca);
671 
672 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
673 
674 	context_page_num = context_page_num >> PAGE_SHIFT;
675 
676 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
677 		context_page_num = 19;
678 
679 	i = 2;
680 
681 	while (i < context_page_num) {
682 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
683 				(u32)((workload->ctx_desc.lrca + i) <<
684 					I915_GTT_PAGE_SHIFT));
685 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
686 			gvt_vgpu_err("invalid guest context descriptor\n");
687 			return;
688 		}
689 
690 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
691 		src = kmap(page);
692 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
693 				I915_GTT_PAGE_SIZE);
694 		kunmap(page);
695 		i++;
696 	}
697 
698 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
699 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
700 
701 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
702 	shadow_ring_context = kmap(page);
703 
704 #define COPY_REG(name) \
705 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
706 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
707 
708 	COPY_REG(ctx_ctrl);
709 	COPY_REG(ctx_timestamp);
710 
711 #undef COPY_REG
712 
713 	intel_gvt_hypervisor_write_gpa(vgpu,
714 			workload->ring_context_gpa +
715 			sizeof(*shadow_ring_context),
716 			(void *)shadow_ring_context +
717 			sizeof(*shadow_ring_context),
718 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
719 
720 	kunmap(page);
721 }
722 
723 static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
724 {
725 	struct intel_vgpu_submission *s = &vgpu->submission;
726 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
727 	struct intel_engine_cs *engine;
728 	struct intel_vgpu_workload *pos, *n;
729 	unsigned int tmp;
730 
731 	/* free the unsubmited workloads in the queues. */
732 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
733 		list_for_each_entry_safe(pos, n,
734 			&s->workload_q_head[engine->id], list) {
735 			list_del_init(&pos->list);
736 			intel_vgpu_destroy_workload(pos);
737 		}
738 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
739 	}
740 }
741 
742 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
743 {
744 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
745 	struct intel_vgpu_workload *workload =
746 		scheduler->current_workload[ring_id];
747 	struct intel_vgpu *vgpu = workload->vgpu;
748 	struct intel_vgpu_submission *s = &vgpu->submission;
749 	int event;
750 
751 	mutex_lock(&gvt->lock);
752 
753 	/* For the workload w/ request, needs to wait for the context
754 	 * switch to make sure request is completed.
755 	 * For the workload w/o request, directly complete the workload.
756 	 */
757 	if (workload->req) {
758 		struct drm_i915_private *dev_priv =
759 			workload->vgpu->gvt->dev_priv;
760 		struct intel_engine_cs *engine =
761 			dev_priv->engine[workload->ring_id];
762 		wait_event(workload->shadow_ctx_status_wq,
763 			   !atomic_read(&workload->shadow_ctx_active));
764 
765 		/* If this request caused GPU hang, req->fence.error will
766 		 * be set to -EIO. Use -EIO to set workload status so
767 		 * that when this request caused GPU hang, didn't trigger
768 		 * context switch interrupt to guest.
769 		 */
770 		if (likely(workload->status == -EINPROGRESS)) {
771 			if (workload->req->fence.error == -EIO)
772 				workload->status = -EIO;
773 			else
774 				workload->status = 0;
775 		}
776 
777 		i915_request_put(fetch_and_zero(&workload->req));
778 
779 		if (!workload->status && !(vgpu->resetting_eng &
780 					   ENGINE_MASK(ring_id))) {
781 			update_guest_context(workload);
782 
783 			for_each_set_bit(event, workload->pending_events,
784 					 INTEL_GVT_EVENT_MAX)
785 				intel_vgpu_trigger_virtual_event(vgpu, event);
786 		}
787 		mutex_lock(&dev_priv->drm.struct_mutex);
788 		/* unpin shadow ctx as the shadow_ctx update is done */
789 		engine->context_unpin(engine, s->shadow_ctx);
790 		mutex_unlock(&dev_priv->drm.struct_mutex);
791 	}
792 
793 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
794 			ring_id, workload, workload->status);
795 
796 	scheduler->current_workload[ring_id] = NULL;
797 
798 	list_del_init(&workload->list);
799 
800 	if (!workload->status) {
801 		release_shadow_batch_buffer(workload);
802 		release_shadow_wa_ctx(&workload->wa_ctx);
803 	}
804 
805 	if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
806 		/* if workload->status is not successful means HW GPU
807 		 * has occurred GPU hang or something wrong with i915/GVT,
808 		 * and GVT won't inject context switch interrupt to guest.
809 		 * So this error is a vGPU hang actually to the guest.
810 		 * According to this we should emunlate a vGPU hang. If
811 		 * there are pending workloads which are already submitted
812 		 * from guest, we should clean them up like HW GPU does.
813 		 *
814 		 * if it is in middle of engine resetting, the pending
815 		 * workloads won't be submitted to HW GPU and will be
816 		 * cleaned up during the resetting process later, so doing
817 		 * the workload clean up here doesn't have any impact.
818 		 **/
819 		clean_workloads(vgpu, ENGINE_MASK(ring_id));
820 	}
821 
822 	workload->complete(workload);
823 
824 	atomic_dec(&s->running_workload_num);
825 	wake_up(&scheduler->workload_complete_wq);
826 
827 	if (gvt->scheduler.need_reschedule)
828 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
829 
830 	mutex_unlock(&gvt->lock);
831 }
832 
833 struct workload_thread_param {
834 	struct intel_gvt *gvt;
835 	int ring_id;
836 };
837 
838 static int workload_thread(void *priv)
839 {
840 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
841 	struct intel_gvt *gvt = p->gvt;
842 	int ring_id = p->ring_id;
843 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
844 	struct intel_vgpu_workload *workload = NULL;
845 	struct intel_vgpu *vgpu = NULL;
846 	int ret;
847 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
848 			|| IS_KABYLAKE(gvt->dev_priv);
849 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
850 
851 	kfree(p);
852 
853 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
854 
855 	while (!kthread_should_stop()) {
856 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
857 		do {
858 			workload = pick_next_workload(gvt, ring_id);
859 			if (workload)
860 				break;
861 			wait_woken(&wait, TASK_INTERRUPTIBLE,
862 				   MAX_SCHEDULE_TIMEOUT);
863 		} while (!kthread_should_stop());
864 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
865 
866 		if (!workload)
867 			break;
868 
869 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
870 				workload->ring_id, workload,
871 				workload->vgpu->id);
872 
873 		intel_runtime_pm_get(gvt->dev_priv);
874 
875 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
876 				workload->ring_id, workload);
877 
878 		if (need_force_wake)
879 			intel_uncore_forcewake_get(gvt->dev_priv,
880 					FORCEWAKE_ALL);
881 
882 		mutex_lock(&gvt->lock);
883 		ret = dispatch_workload(workload);
884 		mutex_unlock(&gvt->lock);
885 
886 		if (ret) {
887 			vgpu = workload->vgpu;
888 			gvt_vgpu_err("fail to dispatch workload, skip\n");
889 			goto complete;
890 		}
891 
892 		gvt_dbg_sched("ring id %d wait workload %p\n",
893 				workload->ring_id, workload);
894 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
895 
896 complete:
897 		gvt_dbg_sched("will complete workload %p, status: %d\n",
898 				workload, workload->status);
899 
900 		complete_current_workload(gvt, ring_id);
901 
902 		if (need_force_wake)
903 			intel_uncore_forcewake_put(gvt->dev_priv,
904 					FORCEWAKE_ALL);
905 
906 		intel_runtime_pm_put(gvt->dev_priv);
907 		if (ret && (vgpu_is_vm_unhealthy(ret)))
908 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
909 	}
910 	return 0;
911 }
912 
913 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
914 {
915 	struct intel_vgpu_submission *s = &vgpu->submission;
916 	struct intel_gvt *gvt = vgpu->gvt;
917 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
918 
919 	if (atomic_read(&s->running_workload_num)) {
920 		gvt_dbg_sched("wait vgpu idle\n");
921 
922 		wait_event(scheduler->workload_complete_wq,
923 				!atomic_read(&s->running_workload_num));
924 	}
925 }
926 
927 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
928 {
929 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
930 	struct intel_engine_cs *engine;
931 	enum intel_engine_id i;
932 
933 	gvt_dbg_core("clean workload scheduler\n");
934 
935 	for_each_engine(engine, gvt->dev_priv, i) {
936 		atomic_notifier_chain_unregister(
937 					&engine->context_status_notifier,
938 					&gvt->shadow_ctx_notifier_block[i]);
939 		kthread_stop(scheduler->thread[i]);
940 	}
941 }
942 
943 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
944 {
945 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
946 	struct workload_thread_param *param = NULL;
947 	struct intel_engine_cs *engine;
948 	enum intel_engine_id i;
949 	int ret;
950 
951 	gvt_dbg_core("init workload scheduler\n");
952 
953 	init_waitqueue_head(&scheduler->workload_complete_wq);
954 
955 	for_each_engine(engine, gvt->dev_priv, i) {
956 		init_waitqueue_head(&scheduler->waitq[i]);
957 
958 		param = kzalloc(sizeof(*param), GFP_KERNEL);
959 		if (!param) {
960 			ret = -ENOMEM;
961 			goto err;
962 		}
963 
964 		param->gvt = gvt;
965 		param->ring_id = i;
966 
967 		scheduler->thread[i] = kthread_run(workload_thread, param,
968 			"gvt workload %d", i);
969 		if (IS_ERR(scheduler->thread[i])) {
970 			gvt_err("fail to create workload thread\n");
971 			ret = PTR_ERR(scheduler->thread[i]);
972 			goto err;
973 		}
974 
975 		gvt->shadow_ctx_notifier_block[i].notifier_call =
976 					shadow_context_status_change;
977 		atomic_notifier_chain_register(&engine->context_status_notifier,
978 					&gvt->shadow_ctx_notifier_block[i]);
979 	}
980 	return 0;
981 err:
982 	intel_gvt_clean_workload_scheduler(gvt);
983 	kfree(param);
984 	param = NULL;
985 	return ret;
986 }
987 
988 /**
989  * intel_vgpu_clean_submission - free submission-related resource for vGPU
990  * @vgpu: a vGPU
991  *
992  * This function is called when a vGPU is being destroyed.
993  *
994  */
995 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
996 {
997 	struct intel_vgpu_submission *s = &vgpu->submission;
998 
999 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1000 	i915_gem_context_put(s->shadow_ctx);
1001 	kmem_cache_destroy(s->workloads);
1002 }
1003 
1004 
1005 /**
1006  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1007  * @vgpu: a vGPU
1008  * @engine_mask: engines expected to be reset
1009  *
1010  * This function is called when a vGPU is being destroyed.
1011  *
1012  */
1013 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1014 		unsigned long engine_mask)
1015 {
1016 	struct intel_vgpu_submission *s = &vgpu->submission;
1017 
1018 	if (!s->active)
1019 		return;
1020 
1021 	clean_workloads(vgpu, engine_mask);
1022 	s->ops->reset(vgpu, engine_mask);
1023 }
1024 
1025 /**
1026  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1027  * @vgpu: a vGPU
1028  *
1029  * This function is called when a vGPU is being created.
1030  *
1031  * Returns:
1032  * Zero on success, negative error code if failed.
1033  *
1034  */
1035 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1036 {
1037 	struct intel_vgpu_submission *s = &vgpu->submission;
1038 	enum intel_engine_id i;
1039 	struct intel_engine_cs *engine;
1040 	int ret;
1041 
1042 	s->shadow_ctx = i915_gem_context_create_gvt(
1043 			&vgpu->gvt->dev_priv->drm);
1044 	if (IS_ERR(s->shadow_ctx))
1045 		return PTR_ERR(s->shadow_ctx);
1046 
1047 	if (HAS_LOGICAL_RING_PREEMPTION(vgpu->gvt->dev_priv))
1048 		s->shadow_ctx->priority = INT_MAX;
1049 
1050 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1051 
1052 	s->workloads = kmem_cache_create("gvt-g_vgpu_workload",
1053 			sizeof(struct intel_vgpu_workload), 0,
1054 			SLAB_HWCACHE_ALIGN,
1055 			NULL);
1056 
1057 	if (!s->workloads) {
1058 		ret = -ENOMEM;
1059 		goto out_shadow_ctx;
1060 	}
1061 
1062 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1063 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1064 
1065 	atomic_set(&s->running_workload_num, 0);
1066 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1067 
1068 	return 0;
1069 
1070 out_shadow_ctx:
1071 	i915_gem_context_put(s->shadow_ctx);
1072 	return ret;
1073 }
1074 
1075 /**
1076  * intel_vgpu_select_submission_ops - select virtual submission interface
1077  * @vgpu: a vGPU
1078  * @interface: expected vGPU virtual submission interface
1079  *
1080  * This function is called when guest configures submission interface.
1081  *
1082  * Returns:
1083  * Zero on success, negative error code if failed.
1084  *
1085  */
1086 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1087 				     unsigned long engine_mask,
1088 				     unsigned int interface)
1089 {
1090 	struct intel_vgpu_submission *s = &vgpu->submission;
1091 	const struct intel_vgpu_submission_ops *ops[] = {
1092 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1093 			&intel_vgpu_execlist_submission_ops,
1094 	};
1095 	int ret;
1096 
1097 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1098 		return -EINVAL;
1099 
1100 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1101 		return -EINVAL;
1102 
1103 	if (s->active)
1104 		s->ops->clean(vgpu, engine_mask);
1105 
1106 	if (interface == 0) {
1107 		s->ops = NULL;
1108 		s->virtual_submission_interface = 0;
1109 		s->active = false;
1110 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1111 		return 0;
1112 	}
1113 
1114 	ret = ops[interface]->init(vgpu, engine_mask);
1115 	if (ret)
1116 		return ret;
1117 
1118 	s->ops = ops[interface];
1119 	s->virtual_submission_interface = interface;
1120 	s->active = true;
1121 
1122 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1123 			vgpu->id, s->ops->name);
1124 
1125 	return 0;
1126 }
1127 
1128 /**
1129  * intel_vgpu_destroy_workload - destroy a vGPU workload
1130  * @vgpu: a vGPU
1131  *
1132  * This function is called when destroy a vGPU workload.
1133  *
1134  */
1135 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1136 {
1137 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1138 
1139 	if (workload->shadow_mm)
1140 		intel_vgpu_mm_put(workload->shadow_mm);
1141 
1142 	kmem_cache_free(s->workloads, workload);
1143 }
1144 
1145 static struct intel_vgpu_workload *
1146 alloc_workload(struct intel_vgpu *vgpu)
1147 {
1148 	struct intel_vgpu_submission *s = &vgpu->submission;
1149 	struct intel_vgpu_workload *workload;
1150 
1151 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1152 	if (!workload)
1153 		return ERR_PTR(-ENOMEM);
1154 
1155 	INIT_LIST_HEAD(&workload->list);
1156 	INIT_LIST_HEAD(&workload->shadow_bb);
1157 
1158 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1159 	atomic_set(&workload->shadow_ctx_active, 0);
1160 
1161 	workload->status = -EINPROGRESS;
1162 	workload->shadowed = false;
1163 	workload->vgpu = vgpu;
1164 
1165 	return workload;
1166 }
1167 
1168 #define RING_CTX_OFF(x) \
1169 	offsetof(struct execlist_ring_context, x)
1170 
1171 static void read_guest_pdps(struct intel_vgpu *vgpu,
1172 		u64 ring_context_gpa, u32 pdp[8])
1173 {
1174 	u64 gpa;
1175 	int i;
1176 
1177 	gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
1178 
1179 	for (i = 0; i < 8; i++)
1180 		intel_gvt_hypervisor_read_gpa(vgpu,
1181 				gpa + i * 8, &pdp[7 - i], 4);
1182 }
1183 
1184 static int prepare_mm(struct intel_vgpu_workload *workload)
1185 {
1186 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1187 	struct intel_vgpu_mm *mm;
1188 	struct intel_vgpu *vgpu = workload->vgpu;
1189 	intel_gvt_gtt_type_t root_entry_type;
1190 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1191 
1192 	switch (desc->addressing_mode) {
1193 	case 1: /* legacy 32-bit */
1194 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1195 		break;
1196 	case 3: /* legacy 64-bit */
1197 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1198 		break;
1199 	default:
1200 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1201 		return -EINVAL;
1202 	}
1203 
1204 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1205 
1206 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1207 	if (IS_ERR(mm))
1208 		return PTR_ERR(mm);
1209 
1210 	workload->shadow_mm = mm;
1211 	return 0;
1212 }
1213 
1214 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1215 		((a)->lrca == (b)->lrca))
1216 
1217 #define get_last_workload(q) \
1218 	(list_empty(q) ? NULL : container_of(q->prev, \
1219 	struct intel_vgpu_workload, list))
1220 /**
1221  * intel_vgpu_create_workload - create a vGPU workload
1222  * @vgpu: a vGPU
1223  * @desc: a guest context descriptor
1224  *
1225  * This function is called when creating a vGPU workload.
1226  *
1227  * Returns:
1228  * struct intel_vgpu_workload * on success, negative error code in
1229  * pointer if failed.
1230  *
1231  */
1232 struct intel_vgpu_workload *
1233 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1234 			   struct execlist_ctx_descriptor_format *desc)
1235 {
1236 	struct intel_vgpu_submission *s = &vgpu->submission;
1237 	struct list_head *q = workload_q_head(vgpu, ring_id);
1238 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1239 	struct intel_vgpu_workload *workload = NULL;
1240 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1241 	u64 ring_context_gpa;
1242 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1243 	int ret;
1244 
1245 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1246 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1247 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1248 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1249 		return ERR_PTR(-EINVAL);
1250 	}
1251 
1252 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1253 			RING_CTX_OFF(ring_header.val), &head, 4);
1254 
1255 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1256 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1257 
1258 	head &= RB_HEAD_OFF_MASK;
1259 	tail &= RB_TAIL_OFF_MASK;
1260 
1261 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1262 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1263 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1264 				last_workload->rb_tail);
1265 		/*
1266 		 * cannot use guest context head pointer here,
1267 		 * as it might not be updated at this time
1268 		 */
1269 		head = last_workload->rb_tail;
1270 	}
1271 
1272 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1273 
1274 	/* record some ring buffer register values for scan and shadow */
1275 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1276 			RING_CTX_OFF(rb_start.val), &start, 4);
1277 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1278 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1279 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1280 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1281 
1282 	workload = alloc_workload(vgpu);
1283 	if (IS_ERR(workload))
1284 		return workload;
1285 
1286 	workload->ring_id = ring_id;
1287 	workload->ctx_desc = *desc;
1288 	workload->ring_context_gpa = ring_context_gpa;
1289 	workload->rb_head = head;
1290 	workload->rb_tail = tail;
1291 	workload->rb_start = start;
1292 	workload->rb_ctl = ctl;
1293 
1294 	if (ring_id == RCS) {
1295 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1296 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1297 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1298 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1299 
1300 		workload->wa_ctx.indirect_ctx.guest_gma =
1301 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1302 		workload->wa_ctx.indirect_ctx.size =
1303 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1304 			CACHELINE_BYTES;
1305 		workload->wa_ctx.per_ctx.guest_gma =
1306 			per_ctx & PER_CTX_ADDR_MASK;
1307 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1308 	}
1309 
1310 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1311 			workload, ring_id, head, tail, start, ctl);
1312 
1313 	ret = prepare_mm(workload);
1314 	if (ret) {
1315 		kmem_cache_free(s->workloads, workload);
1316 		return ERR_PTR(ret);
1317 	}
1318 
1319 	/* Only scan and shadow the first workload in the queue
1320 	 * as there is only one pre-allocated buf-obj for shadow.
1321 	 */
1322 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1323 		intel_runtime_pm_get(dev_priv);
1324 		mutex_lock(&dev_priv->drm.struct_mutex);
1325 		ret = intel_gvt_scan_and_shadow_workload(workload);
1326 		mutex_unlock(&dev_priv->drm.struct_mutex);
1327 		intel_runtime_pm_put(dev_priv);
1328 	}
1329 
1330 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1331 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1332 		intel_vgpu_destroy_workload(workload);
1333 		return ERR_PTR(ret);
1334 	}
1335 
1336 	return workload;
1337 }
1338 
1339 /**
1340  * intel_vgpu_queue_workload - Qeue a vGPU workload
1341  * @workload: the workload to queue in
1342  */
1343 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1344 {
1345 	list_add_tail(&workload->list,
1346 		workload_q_head(workload->vgpu, workload->ring_id));
1347 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1348 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1349 }
1350