1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "i915_drv.h" 39 #include "gvt.h" 40 41 #define RING_CTX_OFF(x) \ 42 offsetof(struct execlist_ring_context, x) 43 44 static void set_context_pdp_root_pointer( 45 struct execlist_ring_context *ring_context, 46 u32 pdp[8]) 47 { 48 struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW; 49 int i; 50 51 for (i = 0; i < 8; i++) 52 pdp_pair[i].val = pdp[7 - i]; 53 } 54 55 static int populate_shadow_context(struct intel_vgpu_workload *workload) 56 { 57 struct intel_vgpu *vgpu = workload->vgpu; 58 struct intel_gvt *gvt = vgpu->gvt; 59 int ring_id = workload->ring_id; 60 struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx; 61 struct drm_i915_gem_object *ctx_obj = 62 shadow_ctx->engine[ring_id].state->obj; 63 struct execlist_ring_context *shadow_ring_context; 64 struct page *page; 65 void *dst; 66 unsigned long context_gpa, context_page_num; 67 int i; 68 69 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 70 workload->ctx_desc.lrca); 71 72 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 73 74 context_page_num = context_page_num >> PAGE_SHIFT; 75 76 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS) 77 context_page_num = 19; 78 79 i = 2; 80 81 while (i < context_page_num) { 82 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 83 (u32)((workload->ctx_desc.lrca + i) << 84 I915_GTT_PAGE_SHIFT)); 85 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 86 gvt_vgpu_err("Invalid guest context descriptor\n"); 87 return -EFAULT; 88 } 89 90 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 91 dst = kmap(page); 92 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 93 I915_GTT_PAGE_SIZE); 94 kunmap(page); 95 i++; 96 } 97 98 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 99 shadow_ring_context = kmap(page); 100 101 #define COPY_REG(name) \ 102 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 103 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 104 105 COPY_REG(ctx_ctrl); 106 COPY_REG(ctx_timestamp); 107 108 if (ring_id == RCS) { 109 COPY_REG(bb_per_ctx_ptr); 110 COPY_REG(rcs_indirect_ctx); 111 COPY_REG(rcs_indirect_ctx_offset); 112 } 113 #undef COPY_REG 114 115 set_context_pdp_root_pointer(shadow_ring_context, 116 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 117 118 intel_gvt_hypervisor_read_gpa(vgpu, 119 workload->ring_context_gpa + 120 sizeof(*shadow_ring_context), 121 (void *)shadow_ring_context + 122 sizeof(*shadow_ring_context), 123 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 124 125 kunmap(page); 126 return 0; 127 } 128 129 static inline bool is_gvt_request(struct i915_request *req) 130 { 131 return i915_gem_context_force_single_submission(req->ctx); 132 } 133 134 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 135 { 136 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 137 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 138 i915_reg_t reg; 139 140 reg = RING_INSTDONE(ring_base); 141 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 142 reg = RING_ACTHD(ring_base); 143 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 144 reg = RING_ACTHD_UDW(ring_base); 145 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 146 } 147 148 static int shadow_context_status_change(struct notifier_block *nb, 149 unsigned long action, void *data) 150 { 151 struct i915_request *req = data; 152 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 153 shadow_ctx_notifier_block[req->engine->id]); 154 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 155 enum intel_engine_id ring_id = req->engine->id; 156 struct intel_vgpu_workload *workload; 157 unsigned long flags; 158 159 if (!is_gvt_request(req)) { 160 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 161 if (action == INTEL_CONTEXT_SCHEDULE_IN && 162 scheduler->engine_owner[ring_id]) { 163 /* Switch ring from vGPU to host. */ 164 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 165 NULL, ring_id); 166 scheduler->engine_owner[ring_id] = NULL; 167 } 168 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 169 170 return NOTIFY_OK; 171 } 172 173 workload = scheduler->current_workload[ring_id]; 174 if (unlikely(!workload)) 175 return NOTIFY_OK; 176 177 switch (action) { 178 case INTEL_CONTEXT_SCHEDULE_IN: 179 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 180 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 181 /* Switch ring from host to vGPU or vGPU to vGPU. */ 182 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 183 workload->vgpu, ring_id); 184 scheduler->engine_owner[ring_id] = workload->vgpu; 185 } else 186 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 187 ring_id, workload->vgpu->id); 188 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 189 atomic_set(&workload->shadow_ctx_active, 1); 190 break; 191 case INTEL_CONTEXT_SCHEDULE_OUT: 192 save_ring_hw_state(workload->vgpu, ring_id); 193 atomic_set(&workload->shadow_ctx_active, 0); 194 break; 195 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 196 save_ring_hw_state(workload->vgpu, ring_id); 197 break; 198 default: 199 WARN_ON(1); 200 return NOTIFY_OK; 201 } 202 wake_up(&workload->shadow_ctx_status_wq); 203 return NOTIFY_OK; 204 } 205 206 static void shadow_context_descriptor_update(struct i915_gem_context *ctx, 207 struct intel_engine_cs *engine) 208 { 209 struct intel_context *ce = &ctx->engine[engine->id]; 210 u64 desc = 0; 211 212 desc = ce->lrc_desc; 213 214 /* Update bits 0-11 of the context descriptor which includes flags 215 * like GEN8_CTX_* cached in desc_template 216 */ 217 desc &= U64_MAX << 12; 218 desc |= ctx->desc_template & ((1ULL << 12) - 1); 219 220 ce->lrc_desc = desc; 221 } 222 223 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 224 { 225 struct intel_vgpu *vgpu = workload->vgpu; 226 void *shadow_ring_buffer_va; 227 u32 *cs; 228 struct i915_request *req = workload->req; 229 230 if (IS_KABYLAKE(req->i915) && 231 is_inhibit_context(req->ctx, req->engine->id)) 232 intel_vgpu_restore_inhibit_context(vgpu, req); 233 234 /* allocate shadow ring buffer */ 235 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 236 if (IS_ERR(cs)) { 237 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 238 workload->rb_len); 239 return PTR_ERR(cs); 240 } 241 242 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 243 244 /* get shadow ring buffer va */ 245 workload->shadow_ring_buffer_va = cs; 246 247 memcpy(cs, shadow_ring_buffer_va, 248 workload->rb_len); 249 250 cs += workload->rb_len / sizeof(u32); 251 intel_ring_advance(workload->req, cs); 252 253 return 0; 254 } 255 256 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 257 { 258 if (!wa_ctx->indirect_ctx.obj) 259 return; 260 261 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 262 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 263 } 264 265 /** 266 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 267 * shadow it as well, include ringbuffer,wa_ctx and ctx. 268 * @workload: an abstract entity for each execlist submission. 269 * 270 * This function is called before the workload submitting to i915, to make 271 * sure the content of the workload is valid. 272 */ 273 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 274 { 275 struct intel_vgpu *vgpu = workload->vgpu; 276 struct intel_vgpu_submission *s = &vgpu->submission; 277 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 278 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 279 int ring_id = workload->ring_id; 280 struct intel_engine_cs *engine = dev_priv->engine[ring_id]; 281 struct intel_ring *ring; 282 int ret; 283 284 lockdep_assert_held(&dev_priv->drm.struct_mutex); 285 286 if (workload->shadowed) 287 return 0; 288 289 shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 290 shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode << 291 GEN8_CTX_ADDRESSING_MODE_SHIFT; 292 293 if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated)) 294 shadow_context_descriptor_update(shadow_ctx, 295 dev_priv->engine[ring_id]); 296 297 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 298 if (ret) 299 goto err_scan; 300 301 if ((workload->ring_id == RCS) && 302 (workload->wa_ctx.indirect_ctx.size != 0)) { 303 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 304 if (ret) 305 goto err_scan; 306 } 307 308 /* pin shadow context by gvt even the shadow context will be pinned 309 * when i915 alloc request. That is because gvt will update the guest 310 * context from shadow context when workload is completed, and at that 311 * moment, i915 may already unpined the shadow context to make the 312 * shadow_ctx pages invalid. So gvt need to pin itself. After update 313 * the guest context, gvt can unpin the shadow_ctx safely. 314 */ 315 ring = engine->context_pin(engine, shadow_ctx); 316 if (IS_ERR(ring)) { 317 ret = PTR_ERR(ring); 318 gvt_vgpu_err("fail to pin shadow context\n"); 319 goto err_shadow; 320 } 321 322 ret = populate_shadow_context(workload); 323 if (ret) 324 goto err_unpin; 325 workload->shadowed = true; 326 return 0; 327 328 err_unpin: 329 engine->context_unpin(engine, shadow_ctx); 330 err_shadow: 331 release_shadow_wa_ctx(&workload->wa_ctx); 332 err_scan: 333 return ret; 334 } 335 336 static int intel_gvt_generate_request(struct intel_vgpu_workload *workload) 337 { 338 int ring_id = workload->ring_id; 339 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 340 struct intel_engine_cs *engine = dev_priv->engine[ring_id]; 341 struct i915_request *rq; 342 struct intel_vgpu *vgpu = workload->vgpu; 343 struct intel_vgpu_submission *s = &vgpu->submission; 344 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 345 int ret; 346 347 rq = i915_request_alloc(dev_priv->engine[ring_id], shadow_ctx); 348 if (IS_ERR(rq)) { 349 gvt_vgpu_err("fail to allocate gem request\n"); 350 ret = PTR_ERR(rq); 351 goto err_unpin; 352 } 353 354 gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq); 355 356 workload->req = i915_request_get(rq); 357 ret = copy_workload_to_ring_buffer(workload); 358 if (ret) 359 goto err_unpin; 360 return 0; 361 362 err_unpin: 363 engine->context_unpin(engine, shadow_ctx); 364 release_shadow_wa_ctx(&workload->wa_ctx); 365 return ret; 366 } 367 368 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 369 370 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 371 { 372 struct intel_gvt *gvt = workload->vgpu->gvt; 373 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 374 struct intel_vgpu_shadow_bb *bb; 375 int ret; 376 377 list_for_each_entry(bb, &workload->shadow_bb, list) { 378 bb->vma = i915_gem_object_ggtt_pin(bb->obj, NULL, 0, 0, 0); 379 if (IS_ERR(bb->vma)) { 380 ret = PTR_ERR(bb->vma); 381 goto err; 382 } 383 384 /* relocate shadow batch buffer */ 385 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 386 if (gmadr_bytes == 8) 387 bb->bb_start_cmd_va[2] = 0; 388 389 /* No one is going to touch shadow bb from now on. */ 390 if (bb->clflush & CLFLUSH_AFTER) { 391 drm_clflush_virt_range(bb->va, bb->obj->base.size); 392 bb->clflush &= ~CLFLUSH_AFTER; 393 } 394 395 ret = i915_gem_object_set_to_gtt_domain(bb->obj, false); 396 if (ret) 397 goto err; 398 399 i915_gem_obj_finish_shmem_access(bb->obj); 400 bb->accessing = false; 401 402 i915_vma_move_to_active(bb->vma, workload->req, 0); 403 } 404 return 0; 405 err: 406 release_shadow_batch_buffer(workload); 407 return ret; 408 } 409 410 static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 411 { 412 struct intel_vgpu_workload *workload = container_of(wa_ctx, 413 struct intel_vgpu_workload, 414 wa_ctx); 415 int ring_id = workload->ring_id; 416 struct intel_vgpu_submission *s = &workload->vgpu->submission; 417 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 418 struct drm_i915_gem_object *ctx_obj = 419 shadow_ctx->engine[ring_id].state->obj; 420 struct execlist_ring_context *shadow_ring_context; 421 struct page *page; 422 423 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 424 shadow_ring_context = kmap_atomic(page); 425 426 shadow_ring_context->bb_per_ctx_ptr.val = 427 (shadow_ring_context->bb_per_ctx_ptr.val & 428 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 429 shadow_ring_context->rcs_indirect_ctx.val = 430 (shadow_ring_context->rcs_indirect_ctx.val & 431 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 432 433 kunmap_atomic(shadow_ring_context); 434 return 0; 435 } 436 437 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 438 { 439 struct i915_vma *vma; 440 unsigned char *per_ctx_va = 441 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 442 wa_ctx->indirect_ctx.size; 443 444 if (wa_ctx->indirect_ctx.size == 0) 445 return 0; 446 447 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 448 0, CACHELINE_BYTES, 0); 449 if (IS_ERR(vma)) 450 return PTR_ERR(vma); 451 452 /* FIXME: we are not tracking our pinned VMA leaving it 453 * up to the core to fix up the stray pin_count upon 454 * free. 455 */ 456 457 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 458 459 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 460 memset(per_ctx_va, 0, CACHELINE_BYTES); 461 462 update_wa_ctx_2_shadow_ctx(wa_ctx); 463 return 0; 464 } 465 466 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 467 { 468 struct intel_vgpu *vgpu = workload->vgpu; 469 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 470 struct intel_vgpu_shadow_bb *bb, *pos; 471 472 if (list_empty(&workload->shadow_bb)) 473 return; 474 475 bb = list_first_entry(&workload->shadow_bb, 476 struct intel_vgpu_shadow_bb, list); 477 478 mutex_lock(&dev_priv->drm.struct_mutex); 479 480 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 481 if (bb->obj) { 482 if (bb->accessing) 483 i915_gem_obj_finish_shmem_access(bb->obj); 484 485 if (bb->va && !IS_ERR(bb->va)) 486 i915_gem_object_unpin_map(bb->obj); 487 488 if (bb->vma && !IS_ERR(bb->vma)) { 489 i915_vma_unpin(bb->vma); 490 i915_vma_close(bb->vma); 491 } 492 __i915_gem_object_release_unless_active(bb->obj); 493 } 494 list_del(&bb->list); 495 kfree(bb); 496 } 497 498 mutex_unlock(&dev_priv->drm.struct_mutex); 499 } 500 501 static int prepare_workload(struct intel_vgpu_workload *workload) 502 { 503 struct intel_vgpu *vgpu = workload->vgpu; 504 int ret = 0; 505 506 ret = intel_vgpu_pin_mm(workload->shadow_mm); 507 if (ret) { 508 gvt_vgpu_err("fail to vgpu pin mm\n"); 509 return ret; 510 } 511 512 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 513 if (ret) { 514 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 515 goto err_unpin_mm; 516 } 517 518 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 519 if (ret) { 520 gvt_vgpu_err("fail to flush post shadow\n"); 521 goto err_unpin_mm; 522 } 523 524 ret = intel_gvt_generate_request(workload); 525 if (ret) { 526 gvt_vgpu_err("fail to generate request\n"); 527 goto err_unpin_mm; 528 } 529 530 ret = prepare_shadow_batch_buffer(workload); 531 if (ret) { 532 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 533 goto err_unpin_mm; 534 } 535 536 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 537 if (ret) { 538 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 539 goto err_shadow_batch; 540 } 541 542 if (workload->prepare) { 543 ret = workload->prepare(workload); 544 if (ret) 545 goto err_shadow_wa_ctx; 546 } 547 548 return 0; 549 err_shadow_wa_ctx: 550 release_shadow_wa_ctx(&workload->wa_ctx); 551 err_shadow_batch: 552 release_shadow_batch_buffer(workload); 553 err_unpin_mm: 554 intel_vgpu_unpin_mm(workload->shadow_mm); 555 return ret; 556 } 557 558 static int dispatch_workload(struct intel_vgpu_workload *workload) 559 { 560 struct intel_vgpu *vgpu = workload->vgpu; 561 struct intel_vgpu_submission *s = &vgpu->submission; 562 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 563 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 564 int ring_id = workload->ring_id; 565 struct intel_engine_cs *engine = dev_priv->engine[ring_id]; 566 int ret = 0; 567 568 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 569 ring_id, workload); 570 571 mutex_lock(&dev_priv->drm.struct_mutex); 572 573 ret = intel_gvt_scan_and_shadow_workload(workload); 574 if (ret) 575 goto out; 576 577 ret = prepare_workload(workload); 578 if (ret) { 579 engine->context_unpin(engine, shadow_ctx); 580 goto out; 581 } 582 583 out: 584 if (ret) 585 workload->status = ret; 586 587 if (!IS_ERR_OR_NULL(workload->req)) { 588 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 589 ring_id, workload->req); 590 i915_request_add(workload->req); 591 workload->dispatched = true; 592 } 593 594 mutex_unlock(&dev_priv->drm.struct_mutex); 595 return ret; 596 } 597 598 static struct intel_vgpu_workload *pick_next_workload( 599 struct intel_gvt *gvt, int ring_id) 600 { 601 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 602 struct intel_vgpu_workload *workload = NULL; 603 604 mutex_lock(&gvt->lock); 605 606 /* 607 * no current vgpu / will be scheduled out / no workload 608 * bail out 609 */ 610 if (!scheduler->current_vgpu) { 611 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 612 goto out; 613 } 614 615 if (scheduler->need_reschedule) { 616 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 617 goto out; 618 } 619 620 if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 621 goto out; 622 623 /* 624 * still have current workload, maybe the workload disptacher 625 * fail to submit it for some reason, resubmit it. 626 */ 627 if (scheduler->current_workload[ring_id]) { 628 workload = scheduler->current_workload[ring_id]; 629 gvt_dbg_sched("ring id %d still have current workload %p\n", 630 ring_id, workload); 631 goto out; 632 } 633 634 /* 635 * pick a workload as current workload 636 * once current workload is set, schedule policy routines 637 * will wait the current workload is finished when trying to 638 * schedule out a vgpu. 639 */ 640 scheduler->current_workload[ring_id] = container_of( 641 workload_q_head(scheduler->current_vgpu, ring_id)->next, 642 struct intel_vgpu_workload, list); 643 644 workload = scheduler->current_workload[ring_id]; 645 646 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 647 648 atomic_inc(&workload->vgpu->submission.running_workload_num); 649 out: 650 mutex_unlock(&gvt->lock); 651 return workload; 652 } 653 654 static void update_guest_context(struct intel_vgpu_workload *workload) 655 { 656 struct intel_vgpu *vgpu = workload->vgpu; 657 struct intel_gvt *gvt = vgpu->gvt; 658 struct intel_vgpu_submission *s = &vgpu->submission; 659 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 660 int ring_id = workload->ring_id; 661 struct drm_i915_gem_object *ctx_obj = 662 shadow_ctx->engine[ring_id].state->obj; 663 struct execlist_ring_context *shadow_ring_context; 664 struct page *page; 665 void *src; 666 unsigned long context_gpa, context_page_num; 667 int i; 668 669 gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id, 670 workload->ctx_desc.lrca); 671 672 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 673 674 context_page_num = context_page_num >> PAGE_SHIFT; 675 676 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS) 677 context_page_num = 19; 678 679 i = 2; 680 681 while (i < context_page_num) { 682 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 683 (u32)((workload->ctx_desc.lrca + i) << 684 I915_GTT_PAGE_SHIFT)); 685 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 686 gvt_vgpu_err("invalid guest context descriptor\n"); 687 return; 688 } 689 690 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 691 src = kmap(page); 692 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 693 I915_GTT_PAGE_SIZE); 694 kunmap(page); 695 i++; 696 } 697 698 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 699 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 700 701 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 702 shadow_ring_context = kmap(page); 703 704 #define COPY_REG(name) \ 705 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 706 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 707 708 COPY_REG(ctx_ctrl); 709 COPY_REG(ctx_timestamp); 710 711 #undef COPY_REG 712 713 intel_gvt_hypervisor_write_gpa(vgpu, 714 workload->ring_context_gpa + 715 sizeof(*shadow_ring_context), 716 (void *)shadow_ring_context + 717 sizeof(*shadow_ring_context), 718 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 719 720 kunmap(page); 721 } 722 723 static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask) 724 { 725 struct intel_vgpu_submission *s = &vgpu->submission; 726 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 727 struct intel_engine_cs *engine; 728 struct intel_vgpu_workload *pos, *n; 729 unsigned int tmp; 730 731 /* free the unsubmited workloads in the queues. */ 732 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 733 list_for_each_entry_safe(pos, n, 734 &s->workload_q_head[engine->id], list) { 735 list_del_init(&pos->list); 736 intel_vgpu_destroy_workload(pos); 737 } 738 clear_bit(engine->id, s->shadow_ctx_desc_updated); 739 } 740 } 741 742 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 743 { 744 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 745 struct intel_vgpu_workload *workload = 746 scheduler->current_workload[ring_id]; 747 struct intel_vgpu *vgpu = workload->vgpu; 748 struct intel_vgpu_submission *s = &vgpu->submission; 749 int event; 750 751 mutex_lock(&gvt->lock); 752 753 /* For the workload w/ request, needs to wait for the context 754 * switch to make sure request is completed. 755 * For the workload w/o request, directly complete the workload. 756 */ 757 if (workload->req) { 758 struct drm_i915_private *dev_priv = 759 workload->vgpu->gvt->dev_priv; 760 struct intel_engine_cs *engine = 761 dev_priv->engine[workload->ring_id]; 762 wait_event(workload->shadow_ctx_status_wq, 763 !atomic_read(&workload->shadow_ctx_active)); 764 765 /* If this request caused GPU hang, req->fence.error will 766 * be set to -EIO. Use -EIO to set workload status so 767 * that when this request caused GPU hang, didn't trigger 768 * context switch interrupt to guest. 769 */ 770 if (likely(workload->status == -EINPROGRESS)) { 771 if (workload->req->fence.error == -EIO) 772 workload->status = -EIO; 773 else 774 workload->status = 0; 775 } 776 777 i915_request_put(fetch_and_zero(&workload->req)); 778 779 if (!workload->status && !(vgpu->resetting_eng & 780 ENGINE_MASK(ring_id))) { 781 update_guest_context(workload); 782 783 for_each_set_bit(event, workload->pending_events, 784 INTEL_GVT_EVENT_MAX) 785 intel_vgpu_trigger_virtual_event(vgpu, event); 786 } 787 mutex_lock(&dev_priv->drm.struct_mutex); 788 /* unpin shadow ctx as the shadow_ctx update is done */ 789 engine->context_unpin(engine, s->shadow_ctx); 790 mutex_unlock(&dev_priv->drm.struct_mutex); 791 } 792 793 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 794 ring_id, workload, workload->status); 795 796 scheduler->current_workload[ring_id] = NULL; 797 798 list_del_init(&workload->list); 799 800 if (!workload->status) { 801 release_shadow_batch_buffer(workload); 802 release_shadow_wa_ctx(&workload->wa_ctx); 803 } 804 805 if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) { 806 /* if workload->status is not successful means HW GPU 807 * has occurred GPU hang or something wrong with i915/GVT, 808 * and GVT won't inject context switch interrupt to guest. 809 * So this error is a vGPU hang actually to the guest. 810 * According to this we should emunlate a vGPU hang. If 811 * there are pending workloads which are already submitted 812 * from guest, we should clean them up like HW GPU does. 813 * 814 * if it is in middle of engine resetting, the pending 815 * workloads won't be submitted to HW GPU and will be 816 * cleaned up during the resetting process later, so doing 817 * the workload clean up here doesn't have any impact. 818 **/ 819 clean_workloads(vgpu, ENGINE_MASK(ring_id)); 820 } 821 822 workload->complete(workload); 823 824 atomic_dec(&s->running_workload_num); 825 wake_up(&scheduler->workload_complete_wq); 826 827 if (gvt->scheduler.need_reschedule) 828 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 829 830 mutex_unlock(&gvt->lock); 831 } 832 833 struct workload_thread_param { 834 struct intel_gvt *gvt; 835 int ring_id; 836 }; 837 838 static int workload_thread(void *priv) 839 { 840 struct workload_thread_param *p = (struct workload_thread_param *)priv; 841 struct intel_gvt *gvt = p->gvt; 842 int ring_id = p->ring_id; 843 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 844 struct intel_vgpu_workload *workload = NULL; 845 struct intel_vgpu *vgpu = NULL; 846 int ret; 847 bool need_force_wake = IS_SKYLAKE(gvt->dev_priv) 848 || IS_KABYLAKE(gvt->dev_priv); 849 DEFINE_WAIT_FUNC(wait, woken_wake_function); 850 851 kfree(p); 852 853 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 854 855 while (!kthread_should_stop()) { 856 add_wait_queue(&scheduler->waitq[ring_id], &wait); 857 do { 858 workload = pick_next_workload(gvt, ring_id); 859 if (workload) 860 break; 861 wait_woken(&wait, TASK_INTERRUPTIBLE, 862 MAX_SCHEDULE_TIMEOUT); 863 } while (!kthread_should_stop()); 864 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 865 866 if (!workload) 867 break; 868 869 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 870 workload->ring_id, workload, 871 workload->vgpu->id); 872 873 intel_runtime_pm_get(gvt->dev_priv); 874 875 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 876 workload->ring_id, workload); 877 878 if (need_force_wake) 879 intel_uncore_forcewake_get(gvt->dev_priv, 880 FORCEWAKE_ALL); 881 882 mutex_lock(&gvt->lock); 883 ret = dispatch_workload(workload); 884 mutex_unlock(&gvt->lock); 885 886 if (ret) { 887 vgpu = workload->vgpu; 888 gvt_vgpu_err("fail to dispatch workload, skip\n"); 889 goto complete; 890 } 891 892 gvt_dbg_sched("ring id %d wait workload %p\n", 893 workload->ring_id, workload); 894 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 895 896 complete: 897 gvt_dbg_sched("will complete workload %p, status: %d\n", 898 workload, workload->status); 899 900 complete_current_workload(gvt, ring_id); 901 902 if (need_force_wake) 903 intel_uncore_forcewake_put(gvt->dev_priv, 904 FORCEWAKE_ALL); 905 906 intel_runtime_pm_put(gvt->dev_priv); 907 if (ret && (vgpu_is_vm_unhealthy(ret))) 908 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 909 } 910 return 0; 911 } 912 913 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 914 { 915 struct intel_vgpu_submission *s = &vgpu->submission; 916 struct intel_gvt *gvt = vgpu->gvt; 917 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 918 919 if (atomic_read(&s->running_workload_num)) { 920 gvt_dbg_sched("wait vgpu idle\n"); 921 922 wait_event(scheduler->workload_complete_wq, 923 !atomic_read(&s->running_workload_num)); 924 } 925 } 926 927 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 928 { 929 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 930 struct intel_engine_cs *engine; 931 enum intel_engine_id i; 932 933 gvt_dbg_core("clean workload scheduler\n"); 934 935 for_each_engine(engine, gvt->dev_priv, i) { 936 atomic_notifier_chain_unregister( 937 &engine->context_status_notifier, 938 &gvt->shadow_ctx_notifier_block[i]); 939 kthread_stop(scheduler->thread[i]); 940 } 941 } 942 943 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 944 { 945 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 946 struct workload_thread_param *param = NULL; 947 struct intel_engine_cs *engine; 948 enum intel_engine_id i; 949 int ret; 950 951 gvt_dbg_core("init workload scheduler\n"); 952 953 init_waitqueue_head(&scheduler->workload_complete_wq); 954 955 for_each_engine(engine, gvt->dev_priv, i) { 956 init_waitqueue_head(&scheduler->waitq[i]); 957 958 param = kzalloc(sizeof(*param), GFP_KERNEL); 959 if (!param) { 960 ret = -ENOMEM; 961 goto err; 962 } 963 964 param->gvt = gvt; 965 param->ring_id = i; 966 967 scheduler->thread[i] = kthread_run(workload_thread, param, 968 "gvt workload %d", i); 969 if (IS_ERR(scheduler->thread[i])) { 970 gvt_err("fail to create workload thread\n"); 971 ret = PTR_ERR(scheduler->thread[i]); 972 goto err; 973 } 974 975 gvt->shadow_ctx_notifier_block[i].notifier_call = 976 shadow_context_status_change; 977 atomic_notifier_chain_register(&engine->context_status_notifier, 978 &gvt->shadow_ctx_notifier_block[i]); 979 } 980 return 0; 981 err: 982 intel_gvt_clean_workload_scheduler(gvt); 983 kfree(param); 984 param = NULL; 985 return ret; 986 } 987 988 /** 989 * intel_vgpu_clean_submission - free submission-related resource for vGPU 990 * @vgpu: a vGPU 991 * 992 * This function is called when a vGPU is being destroyed. 993 * 994 */ 995 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 996 { 997 struct intel_vgpu_submission *s = &vgpu->submission; 998 999 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1000 i915_gem_context_put(s->shadow_ctx); 1001 kmem_cache_destroy(s->workloads); 1002 } 1003 1004 1005 /** 1006 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1007 * @vgpu: a vGPU 1008 * @engine_mask: engines expected to be reset 1009 * 1010 * This function is called when a vGPU is being destroyed. 1011 * 1012 */ 1013 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1014 unsigned long engine_mask) 1015 { 1016 struct intel_vgpu_submission *s = &vgpu->submission; 1017 1018 if (!s->active) 1019 return; 1020 1021 clean_workloads(vgpu, engine_mask); 1022 s->ops->reset(vgpu, engine_mask); 1023 } 1024 1025 /** 1026 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1027 * @vgpu: a vGPU 1028 * 1029 * This function is called when a vGPU is being created. 1030 * 1031 * Returns: 1032 * Zero on success, negative error code if failed. 1033 * 1034 */ 1035 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1036 { 1037 struct intel_vgpu_submission *s = &vgpu->submission; 1038 enum intel_engine_id i; 1039 struct intel_engine_cs *engine; 1040 int ret; 1041 1042 s->shadow_ctx = i915_gem_context_create_gvt( 1043 &vgpu->gvt->dev_priv->drm); 1044 if (IS_ERR(s->shadow_ctx)) 1045 return PTR_ERR(s->shadow_ctx); 1046 1047 if (HAS_LOGICAL_RING_PREEMPTION(vgpu->gvt->dev_priv)) 1048 s->shadow_ctx->priority = INT_MAX; 1049 1050 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1051 1052 s->workloads = kmem_cache_create("gvt-g_vgpu_workload", 1053 sizeof(struct intel_vgpu_workload), 0, 1054 SLAB_HWCACHE_ALIGN, 1055 NULL); 1056 1057 if (!s->workloads) { 1058 ret = -ENOMEM; 1059 goto out_shadow_ctx; 1060 } 1061 1062 for_each_engine(engine, vgpu->gvt->dev_priv, i) 1063 INIT_LIST_HEAD(&s->workload_q_head[i]); 1064 1065 atomic_set(&s->running_workload_num, 0); 1066 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1067 1068 return 0; 1069 1070 out_shadow_ctx: 1071 i915_gem_context_put(s->shadow_ctx); 1072 return ret; 1073 } 1074 1075 /** 1076 * intel_vgpu_select_submission_ops - select virtual submission interface 1077 * @vgpu: a vGPU 1078 * @interface: expected vGPU virtual submission interface 1079 * 1080 * This function is called when guest configures submission interface. 1081 * 1082 * Returns: 1083 * Zero on success, negative error code if failed. 1084 * 1085 */ 1086 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1087 unsigned long engine_mask, 1088 unsigned int interface) 1089 { 1090 struct intel_vgpu_submission *s = &vgpu->submission; 1091 const struct intel_vgpu_submission_ops *ops[] = { 1092 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1093 &intel_vgpu_execlist_submission_ops, 1094 }; 1095 int ret; 1096 1097 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1098 return -EINVAL; 1099 1100 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1101 return -EINVAL; 1102 1103 if (s->active) 1104 s->ops->clean(vgpu, engine_mask); 1105 1106 if (interface == 0) { 1107 s->ops = NULL; 1108 s->virtual_submission_interface = 0; 1109 s->active = false; 1110 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1111 return 0; 1112 } 1113 1114 ret = ops[interface]->init(vgpu, engine_mask); 1115 if (ret) 1116 return ret; 1117 1118 s->ops = ops[interface]; 1119 s->virtual_submission_interface = interface; 1120 s->active = true; 1121 1122 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1123 vgpu->id, s->ops->name); 1124 1125 return 0; 1126 } 1127 1128 /** 1129 * intel_vgpu_destroy_workload - destroy a vGPU workload 1130 * @vgpu: a vGPU 1131 * 1132 * This function is called when destroy a vGPU workload. 1133 * 1134 */ 1135 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1136 { 1137 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1138 1139 if (workload->shadow_mm) 1140 intel_vgpu_mm_put(workload->shadow_mm); 1141 1142 kmem_cache_free(s->workloads, workload); 1143 } 1144 1145 static struct intel_vgpu_workload * 1146 alloc_workload(struct intel_vgpu *vgpu) 1147 { 1148 struct intel_vgpu_submission *s = &vgpu->submission; 1149 struct intel_vgpu_workload *workload; 1150 1151 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1152 if (!workload) 1153 return ERR_PTR(-ENOMEM); 1154 1155 INIT_LIST_HEAD(&workload->list); 1156 INIT_LIST_HEAD(&workload->shadow_bb); 1157 1158 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1159 atomic_set(&workload->shadow_ctx_active, 0); 1160 1161 workload->status = -EINPROGRESS; 1162 workload->shadowed = false; 1163 workload->vgpu = vgpu; 1164 1165 return workload; 1166 } 1167 1168 #define RING_CTX_OFF(x) \ 1169 offsetof(struct execlist_ring_context, x) 1170 1171 static void read_guest_pdps(struct intel_vgpu *vgpu, 1172 u64 ring_context_gpa, u32 pdp[8]) 1173 { 1174 u64 gpa; 1175 int i; 1176 1177 gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val); 1178 1179 for (i = 0; i < 8; i++) 1180 intel_gvt_hypervisor_read_gpa(vgpu, 1181 gpa + i * 8, &pdp[7 - i], 4); 1182 } 1183 1184 static int prepare_mm(struct intel_vgpu_workload *workload) 1185 { 1186 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1187 struct intel_vgpu_mm *mm; 1188 struct intel_vgpu *vgpu = workload->vgpu; 1189 intel_gvt_gtt_type_t root_entry_type; 1190 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1191 1192 switch (desc->addressing_mode) { 1193 case 1: /* legacy 32-bit */ 1194 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1195 break; 1196 case 3: /* legacy 64-bit */ 1197 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1198 break; 1199 default: 1200 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1201 return -EINVAL; 1202 } 1203 1204 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1205 1206 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1207 if (IS_ERR(mm)) 1208 return PTR_ERR(mm); 1209 1210 workload->shadow_mm = mm; 1211 return 0; 1212 } 1213 1214 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1215 ((a)->lrca == (b)->lrca)) 1216 1217 #define get_last_workload(q) \ 1218 (list_empty(q) ? NULL : container_of(q->prev, \ 1219 struct intel_vgpu_workload, list)) 1220 /** 1221 * intel_vgpu_create_workload - create a vGPU workload 1222 * @vgpu: a vGPU 1223 * @desc: a guest context descriptor 1224 * 1225 * This function is called when creating a vGPU workload. 1226 * 1227 * Returns: 1228 * struct intel_vgpu_workload * on success, negative error code in 1229 * pointer if failed. 1230 * 1231 */ 1232 struct intel_vgpu_workload * 1233 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1234 struct execlist_ctx_descriptor_format *desc) 1235 { 1236 struct intel_vgpu_submission *s = &vgpu->submission; 1237 struct list_head *q = workload_q_head(vgpu, ring_id); 1238 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1239 struct intel_vgpu_workload *workload = NULL; 1240 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1241 u64 ring_context_gpa; 1242 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1243 int ret; 1244 1245 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1246 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1247 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1248 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1249 return ERR_PTR(-EINVAL); 1250 } 1251 1252 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1253 RING_CTX_OFF(ring_header.val), &head, 4); 1254 1255 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1256 RING_CTX_OFF(ring_tail.val), &tail, 4); 1257 1258 head &= RB_HEAD_OFF_MASK; 1259 tail &= RB_TAIL_OFF_MASK; 1260 1261 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1262 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1263 gvt_dbg_el("ctx head %x real head %lx\n", head, 1264 last_workload->rb_tail); 1265 /* 1266 * cannot use guest context head pointer here, 1267 * as it might not be updated at this time 1268 */ 1269 head = last_workload->rb_tail; 1270 } 1271 1272 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1273 1274 /* record some ring buffer register values for scan and shadow */ 1275 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1276 RING_CTX_OFF(rb_start.val), &start, 4); 1277 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1278 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1279 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1280 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1281 1282 workload = alloc_workload(vgpu); 1283 if (IS_ERR(workload)) 1284 return workload; 1285 1286 workload->ring_id = ring_id; 1287 workload->ctx_desc = *desc; 1288 workload->ring_context_gpa = ring_context_gpa; 1289 workload->rb_head = head; 1290 workload->rb_tail = tail; 1291 workload->rb_start = start; 1292 workload->rb_ctl = ctl; 1293 1294 if (ring_id == RCS) { 1295 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1296 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1297 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1298 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1299 1300 workload->wa_ctx.indirect_ctx.guest_gma = 1301 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1302 workload->wa_ctx.indirect_ctx.size = 1303 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1304 CACHELINE_BYTES; 1305 workload->wa_ctx.per_ctx.guest_gma = 1306 per_ctx & PER_CTX_ADDR_MASK; 1307 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1308 } 1309 1310 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1311 workload, ring_id, head, tail, start, ctl); 1312 1313 ret = prepare_mm(workload); 1314 if (ret) { 1315 kmem_cache_free(s->workloads, workload); 1316 return ERR_PTR(ret); 1317 } 1318 1319 /* Only scan and shadow the first workload in the queue 1320 * as there is only one pre-allocated buf-obj for shadow. 1321 */ 1322 if (list_empty(workload_q_head(vgpu, ring_id))) { 1323 intel_runtime_pm_get(dev_priv); 1324 mutex_lock(&dev_priv->drm.struct_mutex); 1325 ret = intel_gvt_scan_and_shadow_workload(workload); 1326 mutex_unlock(&dev_priv->drm.struct_mutex); 1327 intel_runtime_pm_put(dev_priv); 1328 } 1329 1330 if (ret && (vgpu_is_vm_unhealthy(ret))) { 1331 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1332 intel_vgpu_destroy_workload(workload); 1333 return ERR_PTR(ret); 1334 } 1335 1336 return workload; 1337 } 1338 1339 /** 1340 * intel_vgpu_queue_workload - Qeue a vGPU workload 1341 * @workload: the workload to queue in 1342 */ 1343 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1344 { 1345 list_add_tail(&workload->list, 1346 workload_q_head(workload->vgpu, workload->ring_id)); 1347 intel_gvt_kick_schedule(workload->vgpu->gvt); 1348 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1349 } 1350