xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 11678868)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41 
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45 
46 #define RING_CTX_OFF(x) \
47 	offsetof(struct execlist_ring_context, x)
48 
49 static void set_context_pdp_root_pointer(
50 		struct execlist_ring_context *ring_context,
51 		u32 pdp[8])
52 {
53 	int i;
54 
55 	for (i = 0; i < 8; i++)
56 		ring_context->pdps[i].val = pdp[7 - i];
57 }
58 
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 	struct execlist_ring_context *shadow_ring_context;
62 	struct intel_context *ctx = workload->req->context;
63 
64 	if (WARN_ON(!workload->shadow_mm))
65 		return;
66 
67 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
68 		return;
69 
70 	shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
71 	set_context_pdp_root_pointer(shadow_ring_context,
72 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
73 }
74 
75 /*
76  * when populating shadow ctx from guest, we should not overrride oa related
77  * registers, so that they will not be overlapped by guest oa configs. Thus
78  * made it possible to capture oa data from host for both host and guests.
79  */
80 static void sr_oa_regs(struct intel_vgpu_workload *workload,
81 		u32 *reg_state, bool save)
82 {
83 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
84 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
85 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
86 	int i = 0;
87 	u32 flex_mmio[] = {
88 		i915_mmio_reg_offset(EU_PERF_CNTL0),
89 		i915_mmio_reg_offset(EU_PERF_CNTL1),
90 		i915_mmio_reg_offset(EU_PERF_CNTL2),
91 		i915_mmio_reg_offset(EU_PERF_CNTL3),
92 		i915_mmio_reg_offset(EU_PERF_CNTL4),
93 		i915_mmio_reg_offset(EU_PERF_CNTL5),
94 		i915_mmio_reg_offset(EU_PERF_CNTL6),
95 	};
96 
97 	if (workload->engine->id != RCS0)
98 		return;
99 
100 	if (save) {
101 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
102 
103 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
104 			u32 state_offset = ctx_flexeu0 + i * 2;
105 
106 			workload->flex_mmio[i] = reg_state[state_offset + 1];
107 		}
108 	} else {
109 		reg_state[ctx_oactxctrl] =
110 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
111 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
112 
113 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
114 			u32 state_offset = ctx_flexeu0 + i * 2;
115 			u32 mmio = flex_mmio[i];
116 
117 			reg_state[state_offset] = mmio;
118 			reg_state[state_offset + 1] = workload->flex_mmio[i];
119 		}
120 	}
121 }
122 
123 static int populate_shadow_context(struct intel_vgpu_workload *workload)
124 {
125 	struct intel_vgpu *vgpu = workload->vgpu;
126 	struct intel_gvt *gvt = vgpu->gvt;
127 	struct intel_context *ctx = workload->req->context;
128 	struct execlist_ring_context *shadow_ring_context;
129 	void *dst;
130 	void *context_base;
131 	unsigned long context_gpa, context_page_num;
132 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
133 	unsigned long gpa_size; /* size of consecutive GPAs */
134 	struct intel_vgpu_submission *s = &vgpu->submission;
135 	int i;
136 	bool skip = false;
137 	int ring_id = workload->engine->id;
138 
139 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
140 
141 	context_base = (void *) ctx->lrc_reg_state -
142 				(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
143 
144 	shadow_ring_context = (void *) ctx->lrc_reg_state;
145 
146 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
147 #define COPY_REG(name) \
148 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
150 #define COPY_REG_MASKED(name) {\
151 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
152 					      + RING_CTX_OFF(name.val),\
153 					      &shadow_ring_context->name.val, 4);\
154 		shadow_ring_context->name.val |= 0xffff << 16;\
155 	}
156 
157 	COPY_REG_MASKED(ctx_ctrl);
158 	COPY_REG(ctx_timestamp);
159 
160 	if (workload->engine->id == RCS0) {
161 		COPY_REG(bb_per_ctx_ptr);
162 		COPY_REG(rcs_indirect_ctx);
163 		COPY_REG(rcs_indirect_ctx_offset);
164 	}
165 #undef COPY_REG
166 #undef COPY_REG_MASKED
167 
168 	intel_gvt_hypervisor_read_gpa(vgpu,
169 			workload->ring_context_gpa +
170 			sizeof(*shadow_ring_context),
171 			(void *)shadow_ring_context +
172 			sizeof(*shadow_ring_context),
173 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
174 
175 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
176 
177 	gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
178 			workload->engine->name, workload->ctx_desc.lrca,
179 			workload->ctx_desc.context_id,
180 			workload->ring_context_gpa);
181 
182 	/* only need to ensure this context is not pinned/unpinned during the
183 	 * period from last submission to this this submission.
184 	 * Upon reaching this function, the currently submitted context is not
185 	 * supposed to get unpinned. If a misbehaving guest driver ever does
186 	 * this, it would corrupt itself.
187 	 */
188 	if (s->last_ctx[ring_id].valid &&
189 			(s->last_ctx[ring_id].lrca ==
190 				workload->ctx_desc.lrca) &&
191 			(s->last_ctx[ring_id].ring_context_gpa ==
192 				workload->ring_context_gpa))
193 		skip = true;
194 
195 	s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
196 	s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
197 
198 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
199 		return 0;
200 
201 	s->last_ctx[ring_id].valid = false;
202 	context_page_num = workload->engine->context_size;
203 	context_page_num = context_page_num >> PAGE_SHIFT;
204 
205 	if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
206 		context_page_num = 19;
207 
208 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
209 	 * read from the continuous GPAs into dst virtual address
210 	 */
211 	gpa_size = 0;
212 	for (i = 2; i < context_page_num; i++) {
213 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
214 				(u32)((workload->ctx_desc.lrca + i) <<
215 				I915_GTT_PAGE_SHIFT));
216 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
217 			gvt_vgpu_err("Invalid guest context descriptor\n");
218 			return -EFAULT;
219 		}
220 
221 		if (gpa_size == 0) {
222 			gpa_base = context_gpa;
223 			dst = context_base + (i << I915_GTT_PAGE_SHIFT);
224 		} else if (context_gpa != gpa_base + gpa_size)
225 			goto read;
226 
227 		gpa_size += I915_GTT_PAGE_SIZE;
228 
229 		if (i == context_page_num - 1)
230 			goto read;
231 
232 		continue;
233 
234 read:
235 		intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
236 		gpa_base = context_gpa;
237 		gpa_size = I915_GTT_PAGE_SIZE;
238 		dst = context_base + (i << I915_GTT_PAGE_SHIFT);
239 	}
240 	s->last_ctx[ring_id].valid = true;
241 	return 0;
242 }
243 
244 static inline bool is_gvt_request(struct i915_request *rq)
245 {
246 	return intel_context_force_single_submission(rq->context);
247 }
248 
249 static void save_ring_hw_state(struct intel_vgpu *vgpu,
250 			       const struct intel_engine_cs *engine)
251 {
252 	struct intel_uncore *uncore = engine->uncore;
253 	i915_reg_t reg;
254 
255 	reg = RING_INSTDONE(engine->mmio_base);
256 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
257 		intel_uncore_read(uncore, reg);
258 
259 	reg = RING_ACTHD(engine->mmio_base);
260 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
261 		intel_uncore_read(uncore, reg);
262 
263 	reg = RING_ACTHD_UDW(engine->mmio_base);
264 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
265 		intel_uncore_read(uncore, reg);
266 }
267 
268 static int shadow_context_status_change(struct notifier_block *nb,
269 		unsigned long action, void *data)
270 {
271 	struct i915_request *rq = data;
272 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
273 				shadow_ctx_notifier_block[rq->engine->id]);
274 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
275 	enum intel_engine_id ring_id = rq->engine->id;
276 	struct intel_vgpu_workload *workload;
277 	unsigned long flags;
278 
279 	if (!is_gvt_request(rq)) {
280 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
281 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
282 		    scheduler->engine_owner[ring_id]) {
283 			/* Switch ring from vGPU to host. */
284 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
285 					      NULL, rq->engine);
286 			scheduler->engine_owner[ring_id] = NULL;
287 		}
288 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
289 
290 		return NOTIFY_OK;
291 	}
292 
293 	workload = scheduler->current_workload[ring_id];
294 	if (unlikely(!workload))
295 		return NOTIFY_OK;
296 
297 	switch (action) {
298 	case INTEL_CONTEXT_SCHEDULE_IN:
299 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
300 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
301 			/* Switch ring from host to vGPU or vGPU to vGPU. */
302 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
303 					      workload->vgpu, rq->engine);
304 			scheduler->engine_owner[ring_id] = workload->vgpu;
305 		} else
306 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
307 				      ring_id, workload->vgpu->id);
308 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
309 		atomic_set(&workload->shadow_ctx_active, 1);
310 		break;
311 	case INTEL_CONTEXT_SCHEDULE_OUT:
312 		save_ring_hw_state(workload->vgpu, rq->engine);
313 		atomic_set(&workload->shadow_ctx_active, 0);
314 		break;
315 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
316 		save_ring_hw_state(workload->vgpu, rq->engine);
317 		break;
318 	default:
319 		WARN_ON(1);
320 		return NOTIFY_OK;
321 	}
322 	wake_up(&workload->shadow_ctx_status_wq);
323 	return NOTIFY_OK;
324 }
325 
326 static void
327 shadow_context_descriptor_update(struct intel_context *ce,
328 				 struct intel_vgpu_workload *workload)
329 {
330 	u64 desc = ce->lrc.desc;
331 
332 	/*
333 	 * Update bits 0-11 of the context descriptor which includes flags
334 	 * like GEN8_CTX_* cached in desc_template
335 	 */
336 	desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
337 	desc |= (u64)workload->ctx_desc.addressing_mode <<
338 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
339 
340 	ce->lrc.desc = desc;
341 }
342 
343 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
344 {
345 	struct intel_vgpu *vgpu = workload->vgpu;
346 	struct i915_request *req = workload->req;
347 	void *shadow_ring_buffer_va;
348 	u32 *cs;
349 	int err;
350 
351 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
352 		intel_vgpu_restore_inhibit_context(vgpu, req);
353 
354 	/*
355 	 * To track whether a request has started on HW, we can emit a
356 	 * breadcrumb at the beginning of the request and check its
357 	 * timeline's HWSP to see if the breadcrumb has advanced past the
358 	 * start of this request. Actually, the request must have the
359 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
360 	 * scheduler might get a wrong state of it during reset. Since the
361 	 * requests from gvt always set the has_init_breadcrumb flag, here
362 	 * need to do the emit_init_breadcrumb for all the requests.
363 	 */
364 	if (req->engine->emit_init_breadcrumb) {
365 		err = req->engine->emit_init_breadcrumb(req);
366 		if (err) {
367 			gvt_vgpu_err("fail to emit init breadcrumb\n");
368 			return err;
369 		}
370 	}
371 
372 	/* allocate shadow ring buffer */
373 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
374 	if (IS_ERR(cs)) {
375 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
376 			workload->rb_len);
377 		return PTR_ERR(cs);
378 	}
379 
380 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
381 
382 	/* get shadow ring buffer va */
383 	workload->shadow_ring_buffer_va = cs;
384 
385 	memcpy(cs, shadow_ring_buffer_va,
386 			workload->rb_len);
387 
388 	cs += workload->rb_len / sizeof(u32);
389 	intel_ring_advance(workload->req, cs);
390 
391 	return 0;
392 }
393 
394 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
395 {
396 	if (!wa_ctx->indirect_ctx.obj)
397 		return;
398 
399 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
400 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
401 
402 	wa_ctx->indirect_ctx.obj = NULL;
403 	wa_ctx->indirect_ctx.shadow_va = NULL;
404 }
405 
406 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
407 					  struct intel_context *ce)
408 {
409 	struct intel_vgpu_mm *mm = workload->shadow_mm;
410 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
411 	int i = 0;
412 
413 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
414 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
415 	} else {
416 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
417 			struct i915_page_directory * const pd =
418 				i915_pd_entry(ppgtt->pd, i);
419 
420 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
421 		}
422 	}
423 }
424 
425 static int
426 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
427 {
428 	struct intel_vgpu *vgpu = workload->vgpu;
429 	struct intel_vgpu_submission *s = &vgpu->submission;
430 	struct i915_request *rq;
431 
432 	if (workload->req)
433 		return 0;
434 
435 	rq = i915_request_create(s->shadow[workload->engine->id]);
436 	if (IS_ERR(rq)) {
437 		gvt_vgpu_err("fail to allocate gem request\n");
438 		return PTR_ERR(rq);
439 	}
440 
441 	workload->req = i915_request_get(rq);
442 	return 0;
443 }
444 
445 /**
446  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
447  * shadow it as well, include ringbuffer,wa_ctx and ctx.
448  * @workload: an abstract entity for each execlist submission.
449  *
450  * This function is called before the workload submitting to i915, to make
451  * sure the content of the workload is valid.
452  */
453 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
454 {
455 	struct intel_vgpu *vgpu = workload->vgpu;
456 	struct intel_vgpu_submission *s = &vgpu->submission;
457 	int ret;
458 
459 	lockdep_assert_held(&vgpu->vgpu_lock);
460 
461 	if (workload->shadow)
462 		return 0;
463 
464 	if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
465 		shadow_context_descriptor_update(s->shadow[workload->engine->id],
466 						 workload);
467 
468 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
469 	if (ret)
470 		return ret;
471 
472 	if (workload->engine->id == RCS0 &&
473 	    workload->wa_ctx.indirect_ctx.size) {
474 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
475 		if (ret)
476 			goto err_shadow;
477 	}
478 
479 	workload->shadow = true;
480 	return 0;
481 
482 err_shadow:
483 	release_shadow_wa_ctx(&workload->wa_ctx);
484 	return ret;
485 }
486 
487 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
488 
489 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
490 {
491 	struct intel_gvt *gvt = workload->vgpu->gvt;
492 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
493 	struct intel_vgpu_shadow_bb *bb;
494 	int ret;
495 
496 	list_for_each_entry(bb, &workload->shadow_bb, list) {
497 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
498 		 * is only updated into ring_scan_buffer, not real ring address
499 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
500 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
501 		 * in copy_workload_to_ring_buffer.
502 		 */
503 
504 		if (bb->bb_offset)
505 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
506 				+ bb->bb_offset;
507 
508 		if (bb->ppgtt) {
509 			/* for non-priv bb, scan&shadow is only for
510 			 * debugging purpose, so the content of shadow bb
511 			 * is the same as original bb. Therefore,
512 			 * here, rather than switch to shadow bb's gma
513 			 * address, we directly use original batch buffer's
514 			 * gma address, and send original bb to hardware
515 			 * directly
516 			 */
517 			if (bb->clflush & CLFLUSH_AFTER) {
518 				drm_clflush_virt_range(bb->va,
519 						bb->obj->base.size);
520 				bb->clflush &= ~CLFLUSH_AFTER;
521 			}
522 			i915_gem_object_finish_access(bb->obj);
523 			bb->accessing = false;
524 
525 		} else {
526 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
527 					NULL, 0, 0, 0);
528 			if (IS_ERR(bb->vma)) {
529 				ret = PTR_ERR(bb->vma);
530 				goto err;
531 			}
532 
533 			/* relocate shadow batch buffer */
534 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
535 			if (gmadr_bytes == 8)
536 				bb->bb_start_cmd_va[2] = 0;
537 
538 			/* No one is going to touch shadow bb from now on. */
539 			if (bb->clflush & CLFLUSH_AFTER) {
540 				drm_clflush_virt_range(bb->va,
541 						bb->obj->base.size);
542 				bb->clflush &= ~CLFLUSH_AFTER;
543 			}
544 
545 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
546 								false);
547 			if (ret)
548 				goto err;
549 
550 			ret = i915_vma_move_to_active(bb->vma,
551 						      workload->req,
552 						      0);
553 			if (ret)
554 				goto err;
555 
556 			i915_gem_object_finish_access(bb->obj);
557 			bb->accessing = false;
558 		}
559 	}
560 	return 0;
561 err:
562 	release_shadow_batch_buffer(workload);
563 	return ret;
564 }
565 
566 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
567 {
568 	struct intel_vgpu_workload *workload =
569 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
570 	struct i915_request *rq = workload->req;
571 	struct execlist_ring_context *shadow_ring_context =
572 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
573 
574 	shadow_ring_context->bb_per_ctx_ptr.val =
575 		(shadow_ring_context->bb_per_ctx_ptr.val &
576 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
577 	shadow_ring_context->rcs_indirect_ctx.val =
578 		(shadow_ring_context->rcs_indirect_ctx.val &
579 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
580 }
581 
582 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
583 {
584 	struct i915_vma *vma;
585 	unsigned char *per_ctx_va =
586 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
587 		wa_ctx->indirect_ctx.size;
588 
589 	if (wa_ctx->indirect_ctx.size == 0)
590 		return 0;
591 
592 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
593 				       0, CACHELINE_BYTES, 0);
594 	if (IS_ERR(vma))
595 		return PTR_ERR(vma);
596 
597 	/* FIXME: we are not tracking our pinned VMA leaving it
598 	 * up to the core to fix up the stray pin_count upon
599 	 * free.
600 	 */
601 
602 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
603 
604 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
605 	memset(per_ctx_va, 0, CACHELINE_BYTES);
606 
607 	update_wa_ctx_2_shadow_ctx(wa_ctx);
608 	return 0;
609 }
610 
611 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
612 {
613 	vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
614 		workload->rb_start;
615 }
616 
617 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
618 {
619 	struct intel_vgpu_shadow_bb *bb, *pos;
620 
621 	if (list_empty(&workload->shadow_bb))
622 		return;
623 
624 	bb = list_first_entry(&workload->shadow_bb,
625 			struct intel_vgpu_shadow_bb, list);
626 
627 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
628 		if (bb->obj) {
629 			if (bb->accessing)
630 				i915_gem_object_finish_access(bb->obj);
631 
632 			if (bb->va && !IS_ERR(bb->va))
633 				i915_gem_object_unpin_map(bb->obj);
634 
635 			if (bb->vma && !IS_ERR(bb->vma))
636 				i915_vma_unpin(bb->vma);
637 
638 			i915_gem_object_put(bb->obj);
639 		}
640 		list_del(&bb->list);
641 		kfree(bb);
642 	}
643 }
644 
645 static int
646 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
647 {
648 	struct intel_vgpu *vgpu = workload->vgpu;
649 	struct intel_vgpu_mm *m;
650 	int ret = 0;
651 
652 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
653 	if (ret) {
654 		gvt_vgpu_err("fail to vgpu pin mm\n");
655 		return ret;
656 	}
657 
658 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
659 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
660 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
661 		return -EINVAL;
662 	}
663 
664 	if (!list_empty(&workload->lri_shadow_mm)) {
665 		list_for_each_entry(m, &workload->lri_shadow_mm,
666 				    ppgtt_mm.link) {
667 			ret = intel_vgpu_pin_mm(m);
668 			if (ret) {
669 				list_for_each_entry_from_reverse(m,
670 								 &workload->lri_shadow_mm,
671 								 ppgtt_mm.link)
672 					intel_vgpu_unpin_mm(m);
673 				gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
674 				break;
675 			}
676 		}
677 	}
678 
679 	if (ret)
680 		intel_vgpu_unpin_mm(workload->shadow_mm);
681 
682 	return ret;
683 }
684 
685 static void
686 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
687 {
688 	struct intel_vgpu_mm *m;
689 
690 	if (!list_empty(&workload->lri_shadow_mm)) {
691 		list_for_each_entry(m, &workload->lri_shadow_mm,
692 				    ppgtt_mm.link)
693 			intel_vgpu_unpin_mm(m);
694 	}
695 	intel_vgpu_unpin_mm(workload->shadow_mm);
696 }
697 
698 static int prepare_workload(struct intel_vgpu_workload *workload)
699 {
700 	struct intel_vgpu *vgpu = workload->vgpu;
701 	struct intel_vgpu_submission *s = &vgpu->submission;
702 	int ret = 0;
703 
704 	ret = intel_vgpu_shadow_mm_pin(workload);
705 	if (ret) {
706 		gvt_vgpu_err("fail to pin shadow mm\n");
707 		return ret;
708 	}
709 
710 	update_shadow_pdps(workload);
711 
712 	set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
713 
714 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
715 	if (ret) {
716 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
717 		goto err_unpin_mm;
718 	}
719 
720 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
721 	if (ret) {
722 		gvt_vgpu_err("fail to flush post shadow\n");
723 		goto err_unpin_mm;
724 	}
725 
726 	ret = copy_workload_to_ring_buffer(workload);
727 	if (ret) {
728 		gvt_vgpu_err("fail to generate request\n");
729 		goto err_unpin_mm;
730 	}
731 
732 	ret = prepare_shadow_batch_buffer(workload);
733 	if (ret) {
734 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
735 		goto err_unpin_mm;
736 	}
737 
738 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
739 	if (ret) {
740 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
741 		goto err_shadow_batch;
742 	}
743 
744 	if (workload->prepare) {
745 		ret = workload->prepare(workload);
746 		if (ret)
747 			goto err_shadow_wa_ctx;
748 	}
749 
750 	return 0;
751 err_shadow_wa_ctx:
752 	release_shadow_wa_ctx(&workload->wa_ctx);
753 err_shadow_batch:
754 	release_shadow_batch_buffer(workload);
755 err_unpin_mm:
756 	intel_vgpu_shadow_mm_unpin(workload);
757 	return ret;
758 }
759 
760 static int dispatch_workload(struct intel_vgpu_workload *workload)
761 {
762 	struct intel_vgpu *vgpu = workload->vgpu;
763 	struct i915_request *rq;
764 	int ret;
765 
766 	gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
767 		      workload->engine->name, workload);
768 
769 	mutex_lock(&vgpu->vgpu_lock);
770 
771 	ret = intel_gvt_workload_req_alloc(workload);
772 	if (ret)
773 		goto err_req;
774 
775 	ret = intel_gvt_scan_and_shadow_workload(workload);
776 	if (ret)
777 		goto out;
778 
779 	ret = populate_shadow_context(workload);
780 	if (ret) {
781 		release_shadow_wa_ctx(&workload->wa_ctx);
782 		goto out;
783 	}
784 
785 	ret = prepare_workload(workload);
786 out:
787 	if (ret) {
788 		/* We might still need to add request with
789 		 * clean ctx to retire it properly..
790 		 */
791 		rq = fetch_and_zero(&workload->req);
792 		i915_request_put(rq);
793 	}
794 
795 	if (!IS_ERR_OR_NULL(workload->req)) {
796 		gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
797 			      workload->engine->name, workload->req);
798 		i915_request_add(workload->req);
799 		workload->dispatched = true;
800 	}
801 err_req:
802 	if (ret)
803 		workload->status = ret;
804 	mutex_unlock(&vgpu->vgpu_lock);
805 	return ret;
806 }
807 
808 static struct intel_vgpu_workload *
809 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
810 {
811 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
812 	struct intel_vgpu_workload *workload = NULL;
813 
814 	mutex_lock(&gvt->sched_lock);
815 
816 	/*
817 	 * no current vgpu / will be scheduled out / no workload
818 	 * bail out
819 	 */
820 	if (!scheduler->current_vgpu) {
821 		gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
822 		goto out;
823 	}
824 
825 	if (scheduler->need_reschedule) {
826 		gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
827 		goto out;
828 	}
829 
830 	if (!scheduler->current_vgpu->active ||
831 	    list_empty(workload_q_head(scheduler->current_vgpu, engine)))
832 		goto out;
833 
834 	/*
835 	 * still have current workload, maybe the workload disptacher
836 	 * fail to submit it for some reason, resubmit it.
837 	 */
838 	if (scheduler->current_workload[engine->id]) {
839 		workload = scheduler->current_workload[engine->id];
840 		gvt_dbg_sched("ring %s still have current workload %p\n",
841 			      engine->name, workload);
842 		goto out;
843 	}
844 
845 	/*
846 	 * pick a workload as current workload
847 	 * once current workload is set, schedule policy routines
848 	 * will wait the current workload is finished when trying to
849 	 * schedule out a vgpu.
850 	 */
851 	scheduler->current_workload[engine->id] =
852 		list_first_entry(workload_q_head(scheduler->current_vgpu,
853 						 engine),
854 				 struct intel_vgpu_workload, list);
855 
856 	workload = scheduler->current_workload[engine->id];
857 
858 	gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
859 
860 	atomic_inc(&workload->vgpu->submission.running_workload_num);
861 out:
862 	mutex_unlock(&gvt->sched_lock);
863 	return workload;
864 }
865 
866 static void update_guest_pdps(struct intel_vgpu *vgpu,
867 			      u64 ring_context_gpa, u32 pdp[8])
868 {
869 	u64 gpa;
870 	int i;
871 
872 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
873 
874 	for (i = 0; i < 8; i++)
875 		intel_gvt_hypervisor_write_gpa(vgpu,
876 				gpa + i * 8, &pdp[7 - i], 4);
877 }
878 
879 static __maybe_unused bool
880 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
881 {
882 	if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
883 		u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
884 
885 		if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
886 			gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
887 			return false;
888 		}
889 		return true;
890 	} else {
891 		/* see comment in LRI handler in cmd_parser.c */
892 		gvt_dbg_mm("invalid shadow mm type\n");
893 		return false;
894 	}
895 }
896 
897 static void update_guest_context(struct intel_vgpu_workload *workload)
898 {
899 	struct i915_request *rq = workload->req;
900 	struct intel_vgpu *vgpu = workload->vgpu;
901 	struct execlist_ring_context *shadow_ring_context;
902 	struct intel_context *ctx = workload->req->context;
903 	void *context_base;
904 	void *src;
905 	unsigned long context_gpa, context_page_num;
906 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
907 	unsigned long gpa_size; /* size of consecutive GPAs*/
908 	int i;
909 	u32 ring_base;
910 	u32 head, tail;
911 	u16 wrap_count;
912 
913 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
914 		      workload->ctx_desc.lrca);
915 
916 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
917 
918 	head = workload->rb_head;
919 	tail = workload->rb_tail;
920 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
921 
922 	if (tail < head) {
923 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
924 			wrap_count = 0;
925 		else
926 			wrap_count += 1;
927 	}
928 
929 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
930 
931 	ring_base = rq->engine->mmio_base;
932 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
933 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
934 
935 	context_page_num = rq->engine->context_size;
936 	context_page_num = context_page_num >> PAGE_SHIFT;
937 
938 	if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
939 		context_page_num = 19;
940 
941 	context_base = (void *) ctx->lrc_reg_state -
942 			(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
943 
944 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
945 	 * write to the consecutive GPAs from src virtual address
946 	 */
947 	gpa_size = 0;
948 	for (i = 2; i < context_page_num; i++) {
949 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
950 				(u32)((workload->ctx_desc.lrca + i) <<
951 					I915_GTT_PAGE_SHIFT));
952 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
953 			gvt_vgpu_err("invalid guest context descriptor\n");
954 			return;
955 		}
956 
957 		if (gpa_size == 0) {
958 			gpa_base = context_gpa;
959 			src = context_base + (i << I915_GTT_PAGE_SHIFT);
960 		} else if (context_gpa != gpa_base + gpa_size)
961 			goto write;
962 
963 		gpa_size += I915_GTT_PAGE_SIZE;
964 
965 		if (i == context_page_num - 1)
966 			goto write;
967 
968 		continue;
969 
970 write:
971 		intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
972 		gpa_base = context_gpa;
973 		gpa_size = I915_GTT_PAGE_SIZE;
974 		src = context_base + (i << I915_GTT_PAGE_SHIFT);
975 	}
976 
977 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
978 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
979 
980 	shadow_ring_context = (void *) ctx->lrc_reg_state;
981 
982 	if (!list_empty(&workload->lri_shadow_mm)) {
983 		struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
984 							  struct intel_vgpu_mm,
985 							  ppgtt_mm.link);
986 		GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
987 		update_guest_pdps(vgpu, workload->ring_context_gpa,
988 				  (void *)m->ppgtt_mm.guest_pdps);
989 	}
990 
991 #define COPY_REG(name) \
992 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
993 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
994 
995 	COPY_REG(ctx_ctrl);
996 	COPY_REG(ctx_timestamp);
997 
998 #undef COPY_REG
999 
1000 	intel_gvt_hypervisor_write_gpa(vgpu,
1001 			workload->ring_context_gpa +
1002 			sizeof(*shadow_ring_context),
1003 			(void *)shadow_ring_context +
1004 			sizeof(*shadow_ring_context),
1005 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
1006 }
1007 
1008 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
1009 				intel_engine_mask_t engine_mask)
1010 {
1011 	struct intel_vgpu_submission *s = &vgpu->submission;
1012 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1013 	struct intel_engine_cs *engine;
1014 	struct intel_vgpu_workload *pos, *n;
1015 	intel_engine_mask_t tmp;
1016 
1017 	/* free the unsubmited workloads in the queues. */
1018 	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
1019 		list_for_each_entry_safe(pos, n,
1020 			&s->workload_q_head[engine->id], list) {
1021 			list_del_init(&pos->list);
1022 			intel_vgpu_destroy_workload(pos);
1023 		}
1024 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
1025 	}
1026 }
1027 
1028 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1029 {
1030 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1031 	struct intel_vgpu_workload *workload =
1032 		scheduler->current_workload[ring_id];
1033 	struct intel_vgpu *vgpu = workload->vgpu;
1034 	struct intel_vgpu_submission *s = &vgpu->submission;
1035 	struct i915_request *rq = workload->req;
1036 	int event;
1037 
1038 	mutex_lock(&vgpu->vgpu_lock);
1039 	mutex_lock(&gvt->sched_lock);
1040 
1041 	/* For the workload w/ request, needs to wait for the context
1042 	 * switch to make sure request is completed.
1043 	 * For the workload w/o request, directly complete the workload.
1044 	 */
1045 	if (rq) {
1046 		wait_event(workload->shadow_ctx_status_wq,
1047 			   !atomic_read(&workload->shadow_ctx_active));
1048 
1049 		/* If this request caused GPU hang, req->fence.error will
1050 		 * be set to -EIO. Use -EIO to set workload status so
1051 		 * that when this request caused GPU hang, didn't trigger
1052 		 * context switch interrupt to guest.
1053 		 */
1054 		if (likely(workload->status == -EINPROGRESS)) {
1055 			if (workload->req->fence.error == -EIO)
1056 				workload->status = -EIO;
1057 			else
1058 				workload->status = 0;
1059 		}
1060 
1061 		if (!workload->status &&
1062 		    !(vgpu->resetting_eng & BIT(ring_id))) {
1063 			update_guest_context(workload);
1064 
1065 			for_each_set_bit(event, workload->pending_events,
1066 					 INTEL_GVT_EVENT_MAX)
1067 				intel_vgpu_trigger_virtual_event(vgpu, event);
1068 		}
1069 
1070 		i915_request_put(fetch_and_zero(&workload->req));
1071 	}
1072 
1073 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1074 			ring_id, workload, workload->status);
1075 
1076 	scheduler->current_workload[ring_id] = NULL;
1077 
1078 	list_del_init(&workload->list);
1079 
1080 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1081 		/* if workload->status is not successful means HW GPU
1082 		 * has occurred GPU hang or something wrong with i915/GVT,
1083 		 * and GVT won't inject context switch interrupt to guest.
1084 		 * So this error is a vGPU hang actually to the guest.
1085 		 * According to this we should emunlate a vGPU hang. If
1086 		 * there are pending workloads which are already submitted
1087 		 * from guest, we should clean them up like HW GPU does.
1088 		 *
1089 		 * if it is in middle of engine resetting, the pending
1090 		 * workloads won't be submitted to HW GPU and will be
1091 		 * cleaned up during the resetting process later, so doing
1092 		 * the workload clean up here doesn't have any impact.
1093 		 **/
1094 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1095 	}
1096 
1097 	workload->complete(workload);
1098 
1099 	intel_vgpu_shadow_mm_unpin(workload);
1100 	intel_vgpu_destroy_workload(workload);
1101 
1102 	atomic_dec(&s->running_workload_num);
1103 	wake_up(&scheduler->workload_complete_wq);
1104 
1105 	if (gvt->scheduler.need_reschedule)
1106 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1107 
1108 	mutex_unlock(&gvt->sched_lock);
1109 	mutex_unlock(&vgpu->vgpu_lock);
1110 }
1111 
1112 static int workload_thread(void *arg)
1113 {
1114 	struct intel_engine_cs *engine = arg;
1115 	const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1116 	struct intel_gvt *gvt = engine->i915->gvt;
1117 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1118 	struct intel_vgpu_workload *workload = NULL;
1119 	struct intel_vgpu *vgpu = NULL;
1120 	int ret;
1121 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1122 
1123 	gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1124 
1125 	while (!kthread_should_stop()) {
1126 		intel_wakeref_t wakeref;
1127 
1128 		add_wait_queue(&scheduler->waitq[engine->id], &wait);
1129 		do {
1130 			workload = pick_next_workload(gvt, engine);
1131 			if (workload)
1132 				break;
1133 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1134 				   MAX_SCHEDULE_TIMEOUT);
1135 		} while (!kthread_should_stop());
1136 		remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1137 
1138 		if (!workload)
1139 			break;
1140 
1141 		gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1142 			      engine->name, workload,
1143 			      workload->vgpu->id);
1144 
1145 		wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1146 
1147 		gvt_dbg_sched("ring %s will dispatch workload %p\n",
1148 			      engine->name, workload);
1149 
1150 		if (need_force_wake)
1151 			intel_uncore_forcewake_get(engine->uncore,
1152 						   FORCEWAKE_ALL);
1153 		/*
1154 		 * Update the vReg of the vGPU which submitted this
1155 		 * workload. The vGPU may use these registers for checking
1156 		 * the context state. The value comes from GPU commands
1157 		 * in this workload.
1158 		 */
1159 		update_vreg_in_ctx(workload);
1160 
1161 		ret = dispatch_workload(workload);
1162 
1163 		if (ret) {
1164 			vgpu = workload->vgpu;
1165 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1166 			goto complete;
1167 		}
1168 
1169 		gvt_dbg_sched("ring %s wait workload %p\n",
1170 			      engine->name, workload);
1171 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1172 
1173 complete:
1174 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1175 			      workload, workload->status);
1176 
1177 		complete_current_workload(gvt, engine->id);
1178 
1179 		if (need_force_wake)
1180 			intel_uncore_forcewake_put(engine->uncore,
1181 						   FORCEWAKE_ALL);
1182 
1183 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1184 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1185 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1186 	}
1187 	return 0;
1188 }
1189 
1190 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1191 {
1192 	struct intel_vgpu_submission *s = &vgpu->submission;
1193 	struct intel_gvt *gvt = vgpu->gvt;
1194 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1195 
1196 	if (atomic_read(&s->running_workload_num)) {
1197 		gvt_dbg_sched("wait vgpu idle\n");
1198 
1199 		wait_event(scheduler->workload_complete_wq,
1200 				!atomic_read(&s->running_workload_num));
1201 	}
1202 }
1203 
1204 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1205 {
1206 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1207 	struct intel_engine_cs *engine;
1208 	enum intel_engine_id i;
1209 
1210 	gvt_dbg_core("clean workload scheduler\n");
1211 
1212 	for_each_engine(engine, gvt->gt, i) {
1213 		atomic_notifier_chain_unregister(
1214 					&engine->context_status_notifier,
1215 					&gvt->shadow_ctx_notifier_block[i]);
1216 		kthread_stop(scheduler->thread[i]);
1217 	}
1218 }
1219 
1220 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1221 {
1222 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1223 	struct intel_engine_cs *engine;
1224 	enum intel_engine_id i;
1225 	int ret;
1226 
1227 	gvt_dbg_core("init workload scheduler\n");
1228 
1229 	init_waitqueue_head(&scheduler->workload_complete_wq);
1230 
1231 	for_each_engine(engine, gvt->gt, i) {
1232 		init_waitqueue_head(&scheduler->waitq[i]);
1233 
1234 		scheduler->thread[i] = kthread_run(workload_thread, engine,
1235 						   "gvt:%s", engine->name);
1236 		if (IS_ERR(scheduler->thread[i])) {
1237 			gvt_err("fail to create workload thread\n");
1238 			ret = PTR_ERR(scheduler->thread[i]);
1239 			goto err;
1240 		}
1241 
1242 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1243 					shadow_context_status_change;
1244 		atomic_notifier_chain_register(&engine->context_status_notifier,
1245 					&gvt->shadow_ctx_notifier_block[i]);
1246 	}
1247 
1248 	return 0;
1249 
1250 err:
1251 	intel_gvt_clean_workload_scheduler(gvt);
1252 	return ret;
1253 }
1254 
1255 static void
1256 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1257 				struct i915_ppgtt *ppgtt)
1258 {
1259 	int i;
1260 
1261 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1262 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1263 	} else {
1264 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1265 			struct i915_page_directory * const pd =
1266 				i915_pd_entry(ppgtt->pd, i);
1267 
1268 			px_dma(pd) = s->i915_context_pdps[i];
1269 		}
1270 	}
1271 }
1272 
1273 /**
1274  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1275  * @vgpu: a vGPU
1276  *
1277  * This function is called when a vGPU is being destroyed.
1278  *
1279  */
1280 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1281 {
1282 	struct intel_vgpu_submission *s = &vgpu->submission;
1283 	struct intel_engine_cs *engine;
1284 	enum intel_engine_id id;
1285 
1286 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1287 
1288 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1289 	for_each_engine(engine, vgpu->gvt->gt, id)
1290 		intel_context_unpin(s->shadow[id]);
1291 
1292 	kmem_cache_destroy(s->workloads);
1293 }
1294 
1295 
1296 /**
1297  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1298  * @vgpu: a vGPU
1299  * @engine_mask: engines expected to be reset
1300  *
1301  * This function is called when a vGPU is being destroyed.
1302  *
1303  */
1304 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1305 				 intel_engine_mask_t engine_mask)
1306 {
1307 	struct intel_vgpu_submission *s = &vgpu->submission;
1308 
1309 	if (!s->active)
1310 		return;
1311 
1312 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1313 	s->ops->reset(vgpu, engine_mask);
1314 }
1315 
1316 static void
1317 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1318 			     struct i915_ppgtt *ppgtt)
1319 {
1320 	int i;
1321 
1322 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1323 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1324 	} else {
1325 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1326 			struct i915_page_directory * const pd =
1327 				i915_pd_entry(ppgtt->pd, i);
1328 
1329 			s->i915_context_pdps[i] = px_dma(pd);
1330 		}
1331 	}
1332 }
1333 
1334 /**
1335  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1336  * @vgpu: a vGPU
1337  *
1338  * This function is called when a vGPU is being created.
1339  *
1340  * Returns:
1341  * Zero on success, negative error code if failed.
1342  *
1343  */
1344 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1345 {
1346 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1347 	struct intel_vgpu_submission *s = &vgpu->submission;
1348 	struct intel_engine_cs *engine;
1349 	struct i915_ppgtt *ppgtt;
1350 	enum intel_engine_id i;
1351 	int ret;
1352 
1353 	ppgtt = i915_ppgtt_create(&i915->gt);
1354 	if (IS_ERR(ppgtt))
1355 		return PTR_ERR(ppgtt);
1356 
1357 	i915_context_ppgtt_root_save(s, ppgtt);
1358 
1359 	for_each_engine(engine, vgpu->gvt->gt, i) {
1360 		struct intel_context *ce;
1361 
1362 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1363 		s->shadow[i] = ERR_PTR(-EINVAL);
1364 
1365 		ce = intel_context_create(engine);
1366 		if (IS_ERR(ce)) {
1367 			ret = PTR_ERR(ce);
1368 			goto out_shadow_ctx;
1369 		}
1370 
1371 		i915_vm_put(ce->vm);
1372 		ce->vm = i915_vm_get(&ppgtt->vm);
1373 		intel_context_set_single_submission(ce);
1374 
1375 		/* Max ring buffer size */
1376 		if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1377 			const unsigned int ring_size = 512 * SZ_4K;
1378 
1379 			ce->ring = __intel_context_ring_size(ring_size);
1380 		}
1381 
1382 		ret = intel_context_pin(ce);
1383 		intel_context_put(ce);
1384 		if (ret)
1385 			goto out_shadow_ctx;
1386 
1387 		s->shadow[i] = ce;
1388 	}
1389 
1390 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1391 
1392 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1393 						  sizeof(struct intel_vgpu_workload), 0,
1394 						  SLAB_HWCACHE_ALIGN,
1395 						  offsetof(struct intel_vgpu_workload, rb_tail),
1396 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1397 						  NULL);
1398 
1399 	if (!s->workloads) {
1400 		ret = -ENOMEM;
1401 		goto out_shadow_ctx;
1402 	}
1403 
1404 	atomic_set(&s->running_workload_num, 0);
1405 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1406 
1407 	memset(s->last_ctx, 0, sizeof(s->last_ctx));
1408 
1409 	i915_vm_put(&ppgtt->vm);
1410 	return 0;
1411 
1412 out_shadow_ctx:
1413 	i915_context_ppgtt_root_restore(s, ppgtt);
1414 	for_each_engine(engine, vgpu->gvt->gt, i) {
1415 		if (IS_ERR(s->shadow[i]))
1416 			break;
1417 
1418 		intel_context_unpin(s->shadow[i]);
1419 		intel_context_put(s->shadow[i]);
1420 	}
1421 	i915_vm_put(&ppgtt->vm);
1422 	return ret;
1423 }
1424 
1425 /**
1426  * intel_vgpu_select_submission_ops - select virtual submission interface
1427  * @vgpu: a vGPU
1428  * @engine_mask: either ALL_ENGINES or target engine mask
1429  * @interface: expected vGPU virtual submission interface
1430  *
1431  * This function is called when guest configures submission interface.
1432  *
1433  * Returns:
1434  * Zero on success, negative error code if failed.
1435  *
1436  */
1437 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1438 				     intel_engine_mask_t engine_mask,
1439 				     unsigned int interface)
1440 {
1441 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1442 	struct intel_vgpu_submission *s = &vgpu->submission;
1443 	const struct intel_vgpu_submission_ops *ops[] = {
1444 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1445 			&intel_vgpu_execlist_submission_ops,
1446 	};
1447 	int ret;
1448 
1449 	if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1450 		return -EINVAL;
1451 
1452 	if (drm_WARN_ON(&i915->drm,
1453 			interface == 0 && engine_mask != ALL_ENGINES))
1454 		return -EINVAL;
1455 
1456 	if (s->active)
1457 		s->ops->clean(vgpu, engine_mask);
1458 
1459 	if (interface == 0) {
1460 		s->ops = NULL;
1461 		s->virtual_submission_interface = 0;
1462 		s->active = false;
1463 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1464 		return 0;
1465 	}
1466 
1467 	ret = ops[interface]->init(vgpu, engine_mask);
1468 	if (ret)
1469 		return ret;
1470 
1471 	s->ops = ops[interface];
1472 	s->virtual_submission_interface = interface;
1473 	s->active = true;
1474 
1475 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1476 			vgpu->id, s->ops->name);
1477 
1478 	return 0;
1479 }
1480 
1481 /**
1482  * intel_vgpu_destroy_workload - destroy a vGPU workload
1483  * @workload: workload to destroy
1484  *
1485  * This function is called when destroy a vGPU workload.
1486  *
1487  */
1488 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1489 {
1490 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1491 
1492 	release_shadow_batch_buffer(workload);
1493 	release_shadow_wa_ctx(&workload->wa_ctx);
1494 
1495 	if (!list_empty(&workload->lri_shadow_mm)) {
1496 		struct intel_vgpu_mm *m, *mm;
1497 		list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1498 					 ppgtt_mm.link) {
1499 			list_del(&m->ppgtt_mm.link);
1500 			intel_vgpu_mm_put(m);
1501 		}
1502 	}
1503 
1504 	GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1505 	if (workload->shadow_mm)
1506 		intel_vgpu_mm_put(workload->shadow_mm);
1507 
1508 	kmem_cache_free(s->workloads, workload);
1509 }
1510 
1511 static struct intel_vgpu_workload *
1512 alloc_workload(struct intel_vgpu *vgpu)
1513 {
1514 	struct intel_vgpu_submission *s = &vgpu->submission;
1515 	struct intel_vgpu_workload *workload;
1516 
1517 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1518 	if (!workload)
1519 		return ERR_PTR(-ENOMEM);
1520 
1521 	INIT_LIST_HEAD(&workload->list);
1522 	INIT_LIST_HEAD(&workload->shadow_bb);
1523 	INIT_LIST_HEAD(&workload->lri_shadow_mm);
1524 
1525 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1526 	atomic_set(&workload->shadow_ctx_active, 0);
1527 
1528 	workload->status = -EINPROGRESS;
1529 	workload->vgpu = vgpu;
1530 
1531 	return workload;
1532 }
1533 
1534 #define RING_CTX_OFF(x) \
1535 	offsetof(struct execlist_ring_context, x)
1536 
1537 static void read_guest_pdps(struct intel_vgpu *vgpu,
1538 		u64 ring_context_gpa, u32 pdp[8])
1539 {
1540 	u64 gpa;
1541 	int i;
1542 
1543 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1544 
1545 	for (i = 0; i < 8; i++)
1546 		intel_gvt_hypervisor_read_gpa(vgpu,
1547 				gpa + i * 8, &pdp[7 - i], 4);
1548 }
1549 
1550 static int prepare_mm(struct intel_vgpu_workload *workload)
1551 {
1552 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1553 	struct intel_vgpu_mm *mm;
1554 	struct intel_vgpu *vgpu = workload->vgpu;
1555 	enum intel_gvt_gtt_type root_entry_type;
1556 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1557 
1558 	switch (desc->addressing_mode) {
1559 	case 1: /* legacy 32-bit */
1560 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1561 		break;
1562 	case 3: /* legacy 64-bit */
1563 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1564 		break;
1565 	default:
1566 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1567 		return -EINVAL;
1568 	}
1569 
1570 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1571 
1572 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1573 	if (IS_ERR(mm))
1574 		return PTR_ERR(mm);
1575 
1576 	workload->shadow_mm = mm;
1577 	return 0;
1578 }
1579 
1580 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1581 		((a)->lrca == (b)->lrca))
1582 
1583 /**
1584  * intel_vgpu_create_workload - create a vGPU workload
1585  * @vgpu: a vGPU
1586  * @engine: the engine
1587  * @desc: a guest context descriptor
1588  *
1589  * This function is called when creating a vGPU workload.
1590  *
1591  * Returns:
1592  * struct intel_vgpu_workload * on success, negative error code in
1593  * pointer if failed.
1594  *
1595  */
1596 struct intel_vgpu_workload *
1597 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1598 			   const struct intel_engine_cs *engine,
1599 			   struct execlist_ctx_descriptor_format *desc)
1600 {
1601 	struct intel_vgpu_submission *s = &vgpu->submission;
1602 	struct list_head *q = workload_q_head(vgpu, engine);
1603 	struct intel_vgpu_workload *last_workload = NULL;
1604 	struct intel_vgpu_workload *workload = NULL;
1605 	u64 ring_context_gpa;
1606 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1607 	u32 guest_head;
1608 	int ret;
1609 
1610 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1611 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1612 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1613 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1614 		return ERR_PTR(-EINVAL);
1615 	}
1616 
1617 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1618 			RING_CTX_OFF(ring_header.val), &head, 4);
1619 
1620 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1621 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1622 
1623 	guest_head = head;
1624 
1625 	head &= RB_HEAD_OFF_MASK;
1626 	tail &= RB_TAIL_OFF_MASK;
1627 
1628 	list_for_each_entry_reverse(last_workload, q, list) {
1629 
1630 		if (same_context(&last_workload->ctx_desc, desc)) {
1631 			gvt_dbg_el("ring %s cur workload == last\n",
1632 				   engine->name);
1633 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1634 				   last_workload->rb_tail);
1635 			/*
1636 			 * cannot use guest context head pointer here,
1637 			 * as it might not be updated at this time
1638 			 */
1639 			head = last_workload->rb_tail;
1640 			break;
1641 		}
1642 	}
1643 
1644 	gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1645 
1646 	/* record some ring buffer register values for scan and shadow */
1647 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1648 			RING_CTX_OFF(rb_start.val), &start, 4);
1649 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1650 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1651 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1652 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1653 
1654 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1655 				_RING_CTL_BUF_SIZE(ctl))) {
1656 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1657 		return ERR_PTR(-EINVAL);
1658 	}
1659 
1660 	workload = alloc_workload(vgpu);
1661 	if (IS_ERR(workload))
1662 		return workload;
1663 
1664 	workload->engine = engine;
1665 	workload->ctx_desc = *desc;
1666 	workload->ring_context_gpa = ring_context_gpa;
1667 	workload->rb_head = head;
1668 	workload->guest_rb_head = guest_head;
1669 	workload->rb_tail = tail;
1670 	workload->rb_start = start;
1671 	workload->rb_ctl = ctl;
1672 
1673 	if (engine->id == RCS0) {
1674 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1675 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1676 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1677 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1678 
1679 		workload->wa_ctx.indirect_ctx.guest_gma =
1680 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1681 		workload->wa_ctx.indirect_ctx.size =
1682 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1683 			CACHELINE_BYTES;
1684 
1685 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1686 			if (!intel_gvt_ggtt_validate_range(vgpu,
1687 				workload->wa_ctx.indirect_ctx.guest_gma,
1688 				workload->wa_ctx.indirect_ctx.size)) {
1689 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1690 				    workload->wa_ctx.indirect_ctx.guest_gma);
1691 				kmem_cache_free(s->workloads, workload);
1692 				return ERR_PTR(-EINVAL);
1693 			}
1694 		}
1695 
1696 		workload->wa_ctx.per_ctx.guest_gma =
1697 			per_ctx & PER_CTX_ADDR_MASK;
1698 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1699 		if (workload->wa_ctx.per_ctx.valid) {
1700 			if (!intel_gvt_ggtt_validate_range(vgpu,
1701 				workload->wa_ctx.per_ctx.guest_gma,
1702 				CACHELINE_BYTES)) {
1703 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1704 					workload->wa_ctx.per_ctx.guest_gma);
1705 				kmem_cache_free(s->workloads, workload);
1706 				return ERR_PTR(-EINVAL);
1707 			}
1708 		}
1709 	}
1710 
1711 	gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1712 		   workload, engine->name, head, tail, start, ctl);
1713 
1714 	ret = prepare_mm(workload);
1715 	if (ret) {
1716 		kmem_cache_free(s->workloads, workload);
1717 		return ERR_PTR(ret);
1718 	}
1719 
1720 	/* Only scan and shadow the first workload in the queue
1721 	 * as there is only one pre-allocated buf-obj for shadow.
1722 	 */
1723 	if (list_empty(q)) {
1724 		intel_wakeref_t wakeref;
1725 
1726 		with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1727 			ret = intel_gvt_scan_and_shadow_workload(workload);
1728 	}
1729 
1730 	if (ret) {
1731 		if (vgpu_is_vm_unhealthy(ret))
1732 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1733 		intel_vgpu_destroy_workload(workload);
1734 		return ERR_PTR(ret);
1735 	}
1736 
1737 	return workload;
1738 }
1739 
1740 /**
1741  * intel_vgpu_queue_workload - Qeue a vGPU workload
1742  * @workload: the workload to queue in
1743  */
1744 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1745 {
1746 	list_add_tail(&workload->list,
1747 		      workload_q_head(workload->vgpu, workload->engine));
1748 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1749 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1750 }
1751