xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 113094f7)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS0)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136 	shadow_ring_context = kmap(page);
137 
138 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144 					      + RING_CTX_OFF(name.val),\
145 					      &shadow_ring_context->name.val, 4);\
146 		shadow_ring_context->name.val |= 0xffff << 16;\
147 	}
148 
149 	COPY_REG_MASKED(ctx_ctrl);
150 	COPY_REG(ctx_timestamp);
151 
152 	if (ring_id == RCS0) {
153 		COPY_REG(bb_per_ctx_ptr);
154 		COPY_REG(rcs_indirect_ctx);
155 		COPY_REG(rcs_indirect_ctx_offset);
156 	}
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159 
160 	intel_gvt_hypervisor_read_gpa(vgpu,
161 			workload->ring_context_gpa +
162 			sizeof(*shadow_ring_context),
163 			(void *)shadow_ring_context +
164 			sizeof(*shadow_ring_context),
165 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168 	kunmap(page);
169 
170 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171 		return 0;
172 
173 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174 			workload->ctx_desc.lrca);
175 
176 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177 
178 	context_page_num = context_page_num >> PAGE_SHIFT;
179 
180 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
181 		context_page_num = 19;
182 
183 	i = 2;
184 	while (i < context_page_num) {
185 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186 				(u32)((workload->ctx_desc.lrca + i) <<
187 				I915_GTT_PAGE_SHIFT));
188 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189 			gvt_vgpu_err("Invalid guest context descriptor\n");
190 			return -EFAULT;
191 		}
192 
193 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194 		dst = kmap(page);
195 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196 				I915_GTT_PAGE_SIZE);
197 		kunmap(page);
198 		i++;
199 	}
200 	return 0;
201 }
202 
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205 	return i915_gem_context_force_single_submission(req->gem_context);
206 }
207 
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212 	i915_reg_t reg;
213 
214 	reg = RING_INSTDONE(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 	reg = RING_ACTHD_UDW(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221 
222 static int shadow_context_status_change(struct notifier_block *nb,
223 		unsigned long action, void *data)
224 {
225 	struct i915_request *req = data;
226 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227 				shadow_ctx_notifier_block[req->engine->id]);
228 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229 	enum intel_engine_id ring_id = req->engine->id;
230 	struct intel_vgpu_workload *workload;
231 	unsigned long flags;
232 
233 	if (!is_gvt_request(req)) {
234 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236 		    scheduler->engine_owner[ring_id]) {
237 			/* Switch ring from vGPU to host. */
238 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239 					      NULL, ring_id);
240 			scheduler->engine_owner[ring_id] = NULL;
241 		}
242 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243 
244 		return NOTIFY_OK;
245 	}
246 
247 	workload = scheduler->current_workload[ring_id];
248 	if (unlikely(!workload))
249 		return NOTIFY_OK;
250 
251 	switch (action) {
252 	case INTEL_CONTEXT_SCHEDULE_IN:
253 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255 			/* Switch ring from host to vGPU or vGPU to vGPU. */
256 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257 					      workload->vgpu, ring_id);
258 			scheduler->engine_owner[ring_id] = workload->vgpu;
259 		} else
260 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261 				      ring_id, workload->vgpu->id);
262 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263 		atomic_set(&workload->shadow_ctx_active, 1);
264 		break;
265 	case INTEL_CONTEXT_SCHEDULE_OUT:
266 		save_ring_hw_state(workload->vgpu, ring_id);
267 		atomic_set(&workload->shadow_ctx_active, 0);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		break;
272 	default:
273 		WARN_ON(1);
274 		return NOTIFY_OK;
275 	}
276 	wake_up(&workload->shadow_ctx_status_wq);
277 	return NOTIFY_OK;
278 }
279 
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282 	u64 desc = 0;
283 
284 	desc = ce->lrc_desc;
285 
286 	/* Update bits 0-11 of the context descriptor which includes flags
287 	 * like GEN8_CTX_* cached in desc_template
288 	 */
289 	desc &= U64_MAX << 12;
290 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291 
292 	ce->lrc_desc = desc;
293 }
294 
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297 	struct intel_vgpu *vgpu = workload->vgpu;
298 	struct i915_request *req = workload->req;
299 	void *shadow_ring_buffer_va;
300 	u32 *cs;
301 	int err;
302 
303 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
304 		intel_vgpu_restore_inhibit_context(vgpu, req);
305 
306 	/*
307 	 * To track whether a request has started on HW, we can emit a
308 	 * breadcrumb at the beginning of the request and check its
309 	 * timeline's HWSP to see if the breadcrumb has advanced past the
310 	 * start of this request. Actually, the request must have the
311 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
312 	 * scheduler might get a wrong state of it during reset. Since the
313 	 * requests from gvt always set the has_init_breadcrumb flag, here
314 	 * need to do the emit_init_breadcrumb for all the requests.
315 	 */
316 	if (req->engine->emit_init_breadcrumb) {
317 		err = req->engine->emit_init_breadcrumb(req);
318 		if (err) {
319 			gvt_vgpu_err("fail to emit init breadcrumb\n");
320 			return err;
321 		}
322 	}
323 
324 	/* allocate shadow ring buffer */
325 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
326 	if (IS_ERR(cs)) {
327 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
328 			workload->rb_len);
329 		return PTR_ERR(cs);
330 	}
331 
332 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
333 
334 	/* get shadow ring buffer va */
335 	workload->shadow_ring_buffer_va = cs;
336 
337 	memcpy(cs, shadow_ring_buffer_va,
338 			workload->rb_len);
339 
340 	cs += workload->rb_len / sizeof(u32);
341 	intel_ring_advance(workload->req, cs);
342 
343 	return 0;
344 }
345 
346 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
347 {
348 	if (!wa_ctx->indirect_ctx.obj)
349 		return;
350 
351 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
352 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
353 
354 	wa_ctx->indirect_ctx.obj = NULL;
355 	wa_ctx->indirect_ctx.shadow_va = NULL;
356 }
357 
358 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
359 					 struct i915_gem_context *ctx)
360 {
361 	struct intel_vgpu_mm *mm = workload->shadow_mm;
362 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
363 	int i = 0;
364 
365 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
366 		return -EINVAL;
367 
368 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
369 		px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
370 	} else {
371 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
372 			px_dma(ppgtt->pdp.page_directory[i]) =
373 				mm->ppgtt_mm.shadow_pdps[i];
374 		}
375 	}
376 
377 	return 0;
378 }
379 
380 static int
381 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
382 {
383 	struct intel_vgpu *vgpu = workload->vgpu;
384 	struct intel_vgpu_submission *s = &vgpu->submission;
385 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
386 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
387 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
388 	struct i915_request *rq;
389 	int ret = 0;
390 
391 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
392 
393 	if (workload->req)
394 		goto out;
395 
396 	rq = i915_request_alloc(engine, shadow_ctx);
397 	if (IS_ERR(rq)) {
398 		gvt_vgpu_err("fail to allocate gem request\n");
399 		ret = PTR_ERR(rq);
400 		goto out;
401 	}
402 	workload->req = i915_request_get(rq);
403 out:
404 	return ret;
405 }
406 
407 /**
408  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
409  * shadow it as well, include ringbuffer,wa_ctx and ctx.
410  * @workload: an abstract entity for each execlist submission.
411  *
412  * This function is called before the workload submitting to i915, to make
413  * sure the content of the workload is valid.
414  */
415 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
416 {
417 	struct intel_vgpu *vgpu = workload->vgpu;
418 	struct intel_vgpu_submission *s = &vgpu->submission;
419 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
420 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
421 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
422 	struct intel_context *ce;
423 	int ret;
424 
425 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
426 
427 	if (workload->shadow)
428 		return 0;
429 
430 	/* pin shadow context by gvt even the shadow context will be pinned
431 	 * when i915 alloc request. That is because gvt will update the guest
432 	 * context from shadow context when workload is completed, and at that
433 	 * moment, i915 may already unpined the shadow context to make the
434 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
435 	 * the guest context, gvt can unpin the shadow_ctx safely.
436 	 */
437 	ce = intel_context_pin(shadow_ctx, engine);
438 	if (IS_ERR(ce)) {
439 		gvt_vgpu_err("fail to pin shadow context\n");
440 		return PTR_ERR(ce);
441 	}
442 
443 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
444 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
445 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
446 
447 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
448 		shadow_context_descriptor_update(ce);
449 
450 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
451 	if (ret)
452 		goto err_unpin;
453 
454 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
455 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
456 		if (ret)
457 			goto err_shadow;
458 	}
459 
460 	workload->shadow = true;
461 	return 0;
462 err_shadow:
463 	release_shadow_wa_ctx(&workload->wa_ctx);
464 err_unpin:
465 	intel_context_unpin(ce);
466 	return ret;
467 }
468 
469 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
470 
471 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
472 {
473 	struct intel_gvt *gvt = workload->vgpu->gvt;
474 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
475 	struct intel_vgpu_shadow_bb *bb;
476 	int ret;
477 
478 	list_for_each_entry(bb, &workload->shadow_bb, list) {
479 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
480 		 * is only updated into ring_scan_buffer, not real ring address
481 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
482 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
483 		 * in copy_workload_to_ring_buffer.
484 		 */
485 
486 		if (bb->bb_offset)
487 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
488 				+ bb->bb_offset;
489 
490 		if (bb->ppgtt) {
491 			/* for non-priv bb, scan&shadow is only for
492 			 * debugging purpose, so the content of shadow bb
493 			 * is the same as original bb. Therefore,
494 			 * here, rather than switch to shadow bb's gma
495 			 * address, we directly use original batch buffer's
496 			 * gma address, and send original bb to hardware
497 			 * directly
498 			 */
499 			if (bb->clflush & CLFLUSH_AFTER) {
500 				drm_clflush_virt_range(bb->va,
501 						bb->obj->base.size);
502 				bb->clflush &= ~CLFLUSH_AFTER;
503 			}
504 			i915_gem_obj_finish_shmem_access(bb->obj);
505 			bb->accessing = false;
506 
507 		} else {
508 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
509 					NULL, 0, 0, 0);
510 			if (IS_ERR(bb->vma)) {
511 				ret = PTR_ERR(bb->vma);
512 				goto err;
513 			}
514 
515 			/* relocate shadow batch buffer */
516 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
517 			if (gmadr_bytes == 8)
518 				bb->bb_start_cmd_va[2] = 0;
519 
520 			/* No one is going to touch shadow bb from now on. */
521 			if (bb->clflush & CLFLUSH_AFTER) {
522 				drm_clflush_virt_range(bb->va,
523 						bb->obj->base.size);
524 				bb->clflush &= ~CLFLUSH_AFTER;
525 			}
526 
527 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
528 					false);
529 			if (ret)
530 				goto err;
531 
532 			i915_gem_obj_finish_shmem_access(bb->obj);
533 			bb->accessing = false;
534 
535 			ret = i915_vma_move_to_active(bb->vma,
536 						      workload->req,
537 						      0);
538 			if (ret)
539 				goto err;
540 		}
541 	}
542 	return 0;
543 err:
544 	release_shadow_batch_buffer(workload);
545 	return ret;
546 }
547 
548 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
549 {
550 	struct intel_vgpu_workload *workload =
551 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
552 	struct i915_request *rq = workload->req;
553 	struct execlist_ring_context *shadow_ring_context =
554 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
555 
556 	shadow_ring_context->bb_per_ctx_ptr.val =
557 		(shadow_ring_context->bb_per_ctx_ptr.val &
558 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
559 	shadow_ring_context->rcs_indirect_ctx.val =
560 		(shadow_ring_context->rcs_indirect_ctx.val &
561 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
562 }
563 
564 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
565 {
566 	struct i915_vma *vma;
567 	unsigned char *per_ctx_va =
568 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
569 		wa_ctx->indirect_ctx.size;
570 
571 	if (wa_ctx->indirect_ctx.size == 0)
572 		return 0;
573 
574 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
575 				       0, CACHELINE_BYTES, 0);
576 	if (IS_ERR(vma))
577 		return PTR_ERR(vma);
578 
579 	/* FIXME: we are not tracking our pinned VMA leaving it
580 	 * up to the core to fix up the stray pin_count upon
581 	 * free.
582 	 */
583 
584 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
585 
586 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
587 	memset(per_ctx_va, 0, CACHELINE_BYTES);
588 
589 	update_wa_ctx_2_shadow_ctx(wa_ctx);
590 	return 0;
591 }
592 
593 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
594 {
595 	struct intel_vgpu *vgpu = workload->vgpu;
596 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
597 	struct intel_vgpu_shadow_bb *bb, *pos;
598 
599 	if (list_empty(&workload->shadow_bb))
600 		return;
601 
602 	bb = list_first_entry(&workload->shadow_bb,
603 			struct intel_vgpu_shadow_bb, list);
604 
605 	mutex_lock(&dev_priv->drm.struct_mutex);
606 
607 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
608 		if (bb->obj) {
609 			if (bb->accessing)
610 				i915_gem_obj_finish_shmem_access(bb->obj);
611 
612 			if (bb->va && !IS_ERR(bb->va))
613 				i915_gem_object_unpin_map(bb->obj);
614 
615 			if (bb->vma && !IS_ERR(bb->vma)) {
616 				i915_vma_unpin(bb->vma);
617 				i915_vma_close(bb->vma);
618 			}
619 			__i915_gem_object_release_unless_active(bb->obj);
620 		}
621 		list_del(&bb->list);
622 		kfree(bb);
623 	}
624 
625 	mutex_unlock(&dev_priv->drm.struct_mutex);
626 }
627 
628 static int prepare_workload(struct intel_vgpu_workload *workload)
629 {
630 	struct intel_vgpu *vgpu = workload->vgpu;
631 	int ret = 0;
632 
633 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
634 	if (ret) {
635 		gvt_vgpu_err("fail to vgpu pin mm\n");
636 		return ret;
637 	}
638 
639 	update_shadow_pdps(workload);
640 
641 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
642 	if (ret) {
643 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
644 		goto err_unpin_mm;
645 	}
646 
647 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
648 	if (ret) {
649 		gvt_vgpu_err("fail to flush post shadow\n");
650 		goto err_unpin_mm;
651 	}
652 
653 	ret = copy_workload_to_ring_buffer(workload);
654 	if (ret) {
655 		gvt_vgpu_err("fail to generate request\n");
656 		goto err_unpin_mm;
657 	}
658 
659 	ret = prepare_shadow_batch_buffer(workload);
660 	if (ret) {
661 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
662 		goto err_unpin_mm;
663 	}
664 
665 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
666 	if (ret) {
667 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
668 		goto err_shadow_batch;
669 	}
670 
671 	if (workload->prepare) {
672 		ret = workload->prepare(workload);
673 		if (ret)
674 			goto err_shadow_wa_ctx;
675 	}
676 
677 	return 0;
678 err_shadow_wa_ctx:
679 	release_shadow_wa_ctx(&workload->wa_ctx);
680 err_shadow_batch:
681 	release_shadow_batch_buffer(workload);
682 err_unpin_mm:
683 	intel_vgpu_unpin_mm(workload->shadow_mm);
684 	return ret;
685 }
686 
687 static int dispatch_workload(struct intel_vgpu_workload *workload)
688 {
689 	struct intel_vgpu *vgpu = workload->vgpu;
690 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
691 	struct intel_vgpu_submission *s = &vgpu->submission;
692 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
693 	struct i915_request *rq;
694 	int ring_id = workload->ring_id;
695 	int ret;
696 
697 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
698 		ring_id, workload);
699 
700 	mutex_lock(&vgpu->vgpu_lock);
701 	mutex_lock(&dev_priv->drm.struct_mutex);
702 
703 	ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
704 	if (ret < 0) {
705 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
706 		goto err_req;
707 	}
708 
709 	ret = intel_gvt_workload_req_alloc(workload);
710 	if (ret)
711 		goto err_req;
712 
713 	ret = intel_gvt_scan_and_shadow_workload(workload);
714 	if (ret)
715 		goto out;
716 
717 	ret = populate_shadow_context(workload);
718 	if (ret) {
719 		release_shadow_wa_ctx(&workload->wa_ctx);
720 		goto out;
721 	}
722 
723 	ret = prepare_workload(workload);
724 out:
725 	if (ret) {
726 		/* We might still need to add request with
727 		 * clean ctx to retire it properly..
728 		 */
729 		rq = fetch_and_zero(&workload->req);
730 		i915_request_put(rq);
731 	}
732 
733 	if (!IS_ERR_OR_NULL(workload->req)) {
734 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
735 				ring_id, workload->req);
736 		i915_request_add(workload->req);
737 		workload->dispatched = true;
738 	}
739 err_req:
740 	if (ret)
741 		workload->status = ret;
742 	mutex_unlock(&dev_priv->drm.struct_mutex);
743 	mutex_unlock(&vgpu->vgpu_lock);
744 	return ret;
745 }
746 
747 static struct intel_vgpu_workload *pick_next_workload(
748 		struct intel_gvt *gvt, int ring_id)
749 {
750 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
751 	struct intel_vgpu_workload *workload = NULL;
752 
753 	mutex_lock(&gvt->sched_lock);
754 
755 	/*
756 	 * no current vgpu / will be scheduled out / no workload
757 	 * bail out
758 	 */
759 	if (!scheduler->current_vgpu) {
760 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
761 		goto out;
762 	}
763 
764 	if (scheduler->need_reschedule) {
765 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
766 		goto out;
767 	}
768 
769 	if (!scheduler->current_vgpu->active ||
770 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
771 		goto out;
772 
773 	/*
774 	 * still have current workload, maybe the workload disptacher
775 	 * fail to submit it for some reason, resubmit it.
776 	 */
777 	if (scheduler->current_workload[ring_id]) {
778 		workload = scheduler->current_workload[ring_id];
779 		gvt_dbg_sched("ring id %d still have current workload %p\n",
780 				ring_id, workload);
781 		goto out;
782 	}
783 
784 	/*
785 	 * pick a workload as current workload
786 	 * once current workload is set, schedule policy routines
787 	 * will wait the current workload is finished when trying to
788 	 * schedule out a vgpu.
789 	 */
790 	scheduler->current_workload[ring_id] = container_of(
791 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
792 			struct intel_vgpu_workload, list);
793 
794 	workload = scheduler->current_workload[ring_id];
795 
796 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
797 
798 	atomic_inc(&workload->vgpu->submission.running_workload_num);
799 out:
800 	mutex_unlock(&gvt->sched_lock);
801 	return workload;
802 }
803 
804 static void update_guest_context(struct intel_vgpu_workload *workload)
805 {
806 	struct i915_request *rq = workload->req;
807 	struct intel_vgpu *vgpu = workload->vgpu;
808 	struct intel_gvt *gvt = vgpu->gvt;
809 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
810 	struct execlist_ring_context *shadow_ring_context;
811 	struct page *page;
812 	void *src;
813 	unsigned long context_gpa, context_page_num;
814 	int i;
815 	struct drm_i915_private *dev_priv = gvt->dev_priv;
816 	u32 ring_base;
817 	u32 head, tail;
818 	u16 wrap_count;
819 
820 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
821 		      workload->ctx_desc.lrca);
822 
823 	head = workload->rb_head;
824 	tail = workload->rb_tail;
825 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
826 
827 	if (tail < head) {
828 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
829 			wrap_count = 0;
830 		else
831 			wrap_count += 1;
832 	}
833 
834 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
835 
836 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
837 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
838 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
839 
840 	context_page_num = rq->engine->context_size;
841 	context_page_num = context_page_num >> PAGE_SHIFT;
842 
843 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
844 		context_page_num = 19;
845 
846 	i = 2;
847 
848 	while (i < context_page_num) {
849 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
850 				(u32)((workload->ctx_desc.lrca + i) <<
851 					I915_GTT_PAGE_SHIFT));
852 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
853 			gvt_vgpu_err("invalid guest context descriptor\n");
854 			return;
855 		}
856 
857 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
858 		src = kmap(page);
859 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
860 				I915_GTT_PAGE_SIZE);
861 		kunmap(page);
862 		i++;
863 	}
864 
865 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
866 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
867 
868 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
869 	shadow_ring_context = kmap(page);
870 
871 #define COPY_REG(name) \
872 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
873 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
874 
875 	COPY_REG(ctx_ctrl);
876 	COPY_REG(ctx_timestamp);
877 
878 #undef COPY_REG
879 
880 	intel_gvt_hypervisor_write_gpa(vgpu,
881 			workload->ring_context_gpa +
882 			sizeof(*shadow_ring_context),
883 			(void *)shadow_ring_context +
884 			sizeof(*shadow_ring_context),
885 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
886 
887 	kunmap(page);
888 }
889 
890 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
891 				intel_engine_mask_t engine_mask)
892 {
893 	struct intel_vgpu_submission *s = &vgpu->submission;
894 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
895 	struct intel_engine_cs *engine;
896 	struct intel_vgpu_workload *pos, *n;
897 	intel_engine_mask_t tmp;
898 
899 	/* free the unsubmited workloads in the queues. */
900 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
901 		list_for_each_entry_safe(pos, n,
902 			&s->workload_q_head[engine->id], list) {
903 			list_del_init(&pos->list);
904 			intel_vgpu_destroy_workload(pos);
905 		}
906 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
907 	}
908 }
909 
910 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
911 {
912 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
913 	struct intel_vgpu_workload *workload =
914 		scheduler->current_workload[ring_id];
915 	struct intel_vgpu *vgpu = workload->vgpu;
916 	struct intel_vgpu_submission *s = &vgpu->submission;
917 	struct i915_request *rq = workload->req;
918 	int event;
919 
920 	mutex_lock(&vgpu->vgpu_lock);
921 	mutex_lock(&gvt->sched_lock);
922 
923 	/* For the workload w/ request, needs to wait for the context
924 	 * switch to make sure request is completed.
925 	 * For the workload w/o request, directly complete the workload.
926 	 */
927 	if (rq) {
928 		wait_event(workload->shadow_ctx_status_wq,
929 			   !atomic_read(&workload->shadow_ctx_active));
930 
931 		/* If this request caused GPU hang, req->fence.error will
932 		 * be set to -EIO. Use -EIO to set workload status so
933 		 * that when this request caused GPU hang, didn't trigger
934 		 * context switch interrupt to guest.
935 		 */
936 		if (likely(workload->status == -EINPROGRESS)) {
937 			if (workload->req->fence.error == -EIO)
938 				workload->status = -EIO;
939 			else
940 				workload->status = 0;
941 		}
942 
943 		if (!workload->status &&
944 		    !(vgpu->resetting_eng & BIT(ring_id))) {
945 			update_guest_context(workload);
946 
947 			for_each_set_bit(event, workload->pending_events,
948 					 INTEL_GVT_EVENT_MAX)
949 				intel_vgpu_trigger_virtual_event(vgpu, event);
950 		}
951 
952 		/* unpin shadow ctx as the shadow_ctx update is done */
953 		mutex_lock(&rq->i915->drm.struct_mutex);
954 		intel_context_unpin(rq->hw_context);
955 		mutex_unlock(&rq->i915->drm.struct_mutex);
956 
957 		i915_request_put(fetch_and_zero(&workload->req));
958 	}
959 
960 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
961 			ring_id, workload, workload->status);
962 
963 	scheduler->current_workload[ring_id] = NULL;
964 
965 	list_del_init(&workload->list);
966 
967 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
968 		/* if workload->status is not successful means HW GPU
969 		 * has occurred GPU hang or something wrong with i915/GVT,
970 		 * and GVT won't inject context switch interrupt to guest.
971 		 * So this error is a vGPU hang actually to the guest.
972 		 * According to this we should emunlate a vGPU hang. If
973 		 * there are pending workloads which are already submitted
974 		 * from guest, we should clean them up like HW GPU does.
975 		 *
976 		 * if it is in middle of engine resetting, the pending
977 		 * workloads won't be submitted to HW GPU and will be
978 		 * cleaned up during the resetting process later, so doing
979 		 * the workload clean up here doesn't have any impact.
980 		 **/
981 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
982 	}
983 
984 	workload->complete(workload);
985 
986 	atomic_dec(&s->running_workload_num);
987 	wake_up(&scheduler->workload_complete_wq);
988 
989 	if (gvt->scheduler.need_reschedule)
990 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
991 
992 	mutex_unlock(&gvt->sched_lock);
993 	mutex_unlock(&vgpu->vgpu_lock);
994 }
995 
996 struct workload_thread_param {
997 	struct intel_gvt *gvt;
998 	int ring_id;
999 };
1000 
1001 static int workload_thread(void *priv)
1002 {
1003 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
1004 	struct intel_gvt *gvt = p->gvt;
1005 	int ring_id = p->ring_id;
1006 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1007 	struct intel_vgpu_workload *workload = NULL;
1008 	struct intel_vgpu *vgpu = NULL;
1009 	int ret;
1010 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
1011 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1012 
1013 	kfree(p);
1014 
1015 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
1016 
1017 	while (!kthread_should_stop()) {
1018 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
1019 		do {
1020 			workload = pick_next_workload(gvt, ring_id);
1021 			if (workload)
1022 				break;
1023 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1024 				   MAX_SCHEDULE_TIMEOUT);
1025 		} while (!kthread_should_stop());
1026 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1027 
1028 		if (!workload)
1029 			break;
1030 
1031 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1032 				workload->ring_id, workload,
1033 				workload->vgpu->id);
1034 
1035 		intel_runtime_pm_get(gvt->dev_priv);
1036 
1037 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1038 				workload->ring_id, workload);
1039 
1040 		if (need_force_wake)
1041 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1042 					FORCEWAKE_ALL);
1043 
1044 		ret = dispatch_workload(workload);
1045 
1046 		if (ret) {
1047 			vgpu = workload->vgpu;
1048 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1049 			goto complete;
1050 		}
1051 
1052 		gvt_dbg_sched("ring id %d wait workload %p\n",
1053 				workload->ring_id, workload);
1054 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1055 
1056 complete:
1057 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1058 				workload, workload->status);
1059 
1060 		complete_current_workload(gvt, ring_id);
1061 
1062 		if (need_force_wake)
1063 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1064 					FORCEWAKE_ALL);
1065 
1066 		intel_runtime_pm_put_unchecked(gvt->dev_priv);
1067 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1068 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1069 	}
1070 	return 0;
1071 }
1072 
1073 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1074 {
1075 	struct intel_vgpu_submission *s = &vgpu->submission;
1076 	struct intel_gvt *gvt = vgpu->gvt;
1077 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1078 
1079 	if (atomic_read(&s->running_workload_num)) {
1080 		gvt_dbg_sched("wait vgpu idle\n");
1081 
1082 		wait_event(scheduler->workload_complete_wq,
1083 				!atomic_read(&s->running_workload_num));
1084 	}
1085 }
1086 
1087 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1088 {
1089 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1090 	struct intel_engine_cs *engine;
1091 	enum intel_engine_id i;
1092 
1093 	gvt_dbg_core("clean workload scheduler\n");
1094 
1095 	for_each_engine(engine, gvt->dev_priv, i) {
1096 		atomic_notifier_chain_unregister(
1097 					&engine->context_status_notifier,
1098 					&gvt->shadow_ctx_notifier_block[i]);
1099 		kthread_stop(scheduler->thread[i]);
1100 	}
1101 }
1102 
1103 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1104 {
1105 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1106 	struct workload_thread_param *param = NULL;
1107 	struct intel_engine_cs *engine;
1108 	enum intel_engine_id i;
1109 	int ret;
1110 
1111 	gvt_dbg_core("init workload scheduler\n");
1112 
1113 	init_waitqueue_head(&scheduler->workload_complete_wq);
1114 
1115 	for_each_engine(engine, gvt->dev_priv, i) {
1116 		init_waitqueue_head(&scheduler->waitq[i]);
1117 
1118 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1119 		if (!param) {
1120 			ret = -ENOMEM;
1121 			goto err;
1122 		}
1123 
1124 		param->gvt = gvt;
1125 		param->ring_id = i;
1126 
1127 		scheduler->thread[i] = kthread_run(workload_thread, param,
1128 			"gvt workload %d", i);
1129 		if (IS_ERR(scheduler->thread[i])) {
1130 			gvt_err("fail to create workload thread\n");
1131 			ret = PTR_ERR(scheduler->thread[i]);
1132 			goto err;
1133 		}
1134 
1135 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1136 					shadow_context_status_change;
1137 		atomic_notifier_chain_register(&engine->context_status_notifier,
1138 					&gvt->shadow_ctx_notifier_block[i]);
1139 	}
1140 	return 0;
1141 err:
1142 	intel_gvt_clean_workload_scheduler(gvt);
1143 	kfree(param);
1144 	param = NULL;
1145 	return ret;
1146 }
1147 
1148 static void
1149 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1150 {
1151 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1152 	int i;
1153 
1154 	if (i915_vm_is_4lvl(&i915_ppgtt->vm)) {
1155 		px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1156 	} else {
1157 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1158 			px_dma(i915_ppgtt->pdp.page_directory[i]) =
1159 						s->i915_context_pdps[i];
1160 	}
1161 }
1162 
1163 /**
1164  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1165  * @vgpu: a vGPU
1166  *
1167  * This function is called when a vGPU is being destroyed.
1168  *
1169  */
1170 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1171 {
1172 	struct intel_vgpu_submission *s = &vgpu->submission;
1173 
1174 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1175 	i915_context_ppgtt_root_restore(s);
1176 	i915_gem_context_put(s->shadow_ctx);
1177 	kmem_cache_destroy(s->workloads);
1178 }
1179 
1180 
1181 /**
1182  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1183  * @vgpu: a vGPU
1184  * @engine_mask: engines expected to be reset
1185  *
1186  * This function is called when a vGPU is being destroyed.
1187  *
1188  */
1189 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1190 				 intel_engine_mask_t engine_mask)
1191 {
1192 	struct intel_vgpu_submission *s = &vgpu->submission;
1193 
1194 	if (!s->active)
1195 		return;
1196 
1197 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1198 	s->ops->reset(vgpu, engine_mask);
1199 }
1200 
1201 static void
1202 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1203 {
1204 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1205 	int i;
1206 
1207 	if (i915_vm_is_4lvl(&i915_ppgtt->vm))
1208 		s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1209 	else {
1210 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1211 			s->i915_context_pdps[i] =
1212 				px_dma(i915_ppgtt->pdp.page_directory[i]);
1213 	}
1214 }
1215 
1216 /**
1217  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1218  * @vgpu: a vGPU
1219  *
1220  * This function is called when a vGPU is being created.
1221  *
1222  * Returns:
1223  * Zero on success, negative error code if failed.
1224  *
1225  */
1226 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1227 {
1228 	struct intel_vgpu_submission *s = &vgpu->submission;
1229 	enum intel_engine_id i;
1230 	struct intel_engine_cs *engine;
1231 	int ret;
1232 
1233 	s->shadow_ctx = i915_gem_context_create_gvt(
1234 			&vgpu->gvt->dev_priv->drm);
1235 	if (IS_ERR(s->shadow_ctx))
1236 		return PTR_ERR(s->shadow_ctx);
1237 
1238 	i915_context_ppgtt_root_save(s);
1239 
1240 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1241 
1242 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1243 						  sizeof(struct intel_vgpu_workload), 0,
1244 						  SLAB_HWCACHE_ALIGN,
1245 						  offsetof(struct intel_vgpu_workload, rb_tail),
1246 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1247 						  NULL);
1248 
1249 	if (!s->workloads) {
1250 		ret = -ENOMEM;
1251 		goto out_shadow_ctx;
1252 	}
1253 
1254 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1255 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1256 
1257 	atomic_set(&s->running_workload_num, 0);
1258 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1259 
1260 	return 0;
1261 
1262 out_shadow_ctx:
1263 	i915_gem_context_put(s->shadow_ctx);
1264 	return ret;
1265 }
1266 
1267 /**
1268  * intel_vgpu_select_submission_ops - select virtual submission interface
1269  * @vgpu: a vGPU
1270  * @engine_mask: either ALL_ENGINES or target engine mask
1271  * @interface: expected vGPU virtual submission interface
1272  *
1273  * This function is called when guest configures submission interface.
1274  *
1275  * Returns:
1276  * Zero on success, negative error code if failed.
1277  *
1278  */
1279 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1280 				     intel_engine_mask_t engine_mask,
1281 				     unsigned int interface)
1282 {
1283 	struct intel_vgpu_submission *s = &vgpu->submission;
1284 	const struct intel_vgpu_submission_ops *ops[] = {
1285 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1286 			&intel_vgpu_execlist_submission_ops,
1287 	};
1288 	int ret;
1289 
1290 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1291 		return -EINVAL;
1292 
1293 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1294 		return -EINVAL;
1295 
1296 	if (s->active)
1297 		s->ops->clean(vgpu, engine_mask);
1298 
1299 	if (interface == 0) {
1300 		s->ops = NULL;
1301 		s->virtual_submission_interface = 0;
1302 		s->active = false;
1303 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1304 		return 0;
1305 	}
1306 
1307 	ret = ops[interface]->init(vgpu, engine_mask);
1308 	if (ret)
1309 		return ret;
1310 
1311 	s->ops = ops[interface];
1312 	s->virtual_submission_interface = interface;
1313 	s->active = true;
1314 
1315 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1316 			vgpu->id, s->ops->name);
1317 
1318 	return 0;
1319 }
1320 
1321 /**
1322  * intel_vgpu_destroy_workload - destroy a vGPU workload
1323  * @workload: workload to destroy
1324  *
1325  * This function is called when destroy a vGPU workload.
1326  *
1327  */
1328 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1329 {
1330 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1331 
1332 	release_shadow_batch_buffer(workload);
1333 	release_shadow_wa_ctx(&workload->wa_ctx);
1334 
1335 	if (workload->shadow_mm)
1336 		intel_vgpu_mm_put(workload->shadow_mm);
1337 
1338 	kmem_cache_free(s->workloads, workload);
1339 }
1340 
1341 static struct intel_vgpu_workload *
1342 alloc_workload(struct intel_vgpu *vgpu)
1343 {
1344 	struct intel_vgpu_submission *s = &vgpu->submission;
1345 	struct intel_vgpu_workload *workload;
1346 
1347 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1348 	if (!workload)
1349 		return ERR_PTR(-ENOMEM);
1350 
1351 	INIT_LIST_HEAD(&workload->list);
1352 	INIT_LIST_HEAD(&workload->shadow_bb);
1353 
1354 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1355 	atomic_set(&workload->shadow_ctx_active, 0);
1356 
1357 	workload->status = -EINPROGRESS;
1358 	workload->vgpu = vgpu;
1359 
1360 	return workload;
1361 }
1362 
1363 #define RING_CTX_OFF(x) \
1364 	offsetof(struct execlist_ring_context, x)
1365 
1366 static void read_guest_pdps(struct intel_vgpu *vgpu,
1367 		u64 ring_context_gpa, u32 pdp[8])
1368 {
1369 	u64 gpa;
1370 	int i;
1371 
1372 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1373 
1374 	for (i = 0; i < 8; i++)
1375 		intel_gvt_hypervisor_read_gpa(vgpu,
1376 				gpa + i * 8, &pdp[7 - i], 4);
1377 }
1378 
1379 static int prepare_mm(struct intel_vgpu_workload *workload)
1380 {
1381 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1382 	struct intel_vgpu_mm *mm;
1383 	struct intel_vgpu *vgpu = workload->vgpu;
1384 	enum intel_gvt_gtt_type root_entry_type;
1385 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1386 
1387 	switch (desc->addressing_mode) {
1388 	case 1: /* legacy 32-bit */
1389 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1390 		break;
1391 	case 3: /* legacy 64-bit */
1392 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1393 		break;
1394 	default:
1395 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1396 		return -EINVAL;
1397 	}
1398 
1399 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1400 
1401 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1402 	if (IS_ERR(mm))
1403 		return PTR_ERR(mm);
1404 
1405 	workload->shadow_mm = mm;
1406 	return 0;
1407 }
1408 
1409 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1410 		((a)->lrca == (b)->lrca))
1411 
1412 #define get_last_workload(q) \
1413 	(list_empty(q) ? NULL : container_of(q->prev, \
1414 	struct intel_vgpu_workload, list))
1415 /**
1416  * intel_vgpu_create_workload - create a vGPU workload
1417  * @vgpu: a vGPU
1418  * @ring_id: ring index
1419  * @desc: a guest context descriptor
1420  *
1421  * This function is called when creating a vGPU workload.
1422  *
1423  * Returns:
1424  * struct intel_vgpu_workload * on success, negative error code in
1425  * pointer if failed.
1426  *
1427  */
1428 struct intel_vgpu_workload *
1429 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1430 			   struct execlist_ctx_descriptor_format *desc)
1431 {
1432 	struct intel_vgpu_submission *s = &vgpu->submission;
1433 	struct list_head *q = workload_q_head(vgpu, ring_id);
1434 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1435 	struct intel_vgpu_workload *workload = NULL;
1436 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1437 	u64 ring_context_gpa;
1438 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1439 	u32 guest_head;
1440 	int ret;
1441 
1442 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1443 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1444 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1445 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1446 		return ERR_PTR(-EINVAL);
1447 	}
1448 
1449 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1450 			RING_CTX_OFF(ring_header.val), &head, 4);
1451 
1452 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1453 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1454 
1455 	guest_head = head;
1456 
1457 	head &= RB_HEAD_OFF_MASK;
1458 	tail &= RB_TAIL_OFF_MASK;
1459 
1460 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1461 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1462 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1463 				last_workload->rb_tail);
1464 		/*
1465 		 * cannot use guest context head pointer here,
1466 		 * as it might not be updated at this time
1467 		 */
1468 		head = last_workload->rb_tail;
1469 	}
1470 
1471 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1472 
1473 	/* record some ring buffer register values for scan and shadow */
1474 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1475 			RING_CTX_OFF(rb_start.val), &start, 4);
1476 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1477 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1478 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1479 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1480 
1481 	workload = alloc_workload(vgpu);
1482 	if (IS_ERR(workload))
1483 		return workload;
1484 
1485 	workload->ring_id = ring_id;
1486 	workload->ctx_desc = *desc;
1487 	workload->ring_context_gpa = ring_context_gpa;
1488 	workload->rb_head = head;
1489 	workload->guest_rb_head = guest_head;
1490 	workload->rb_tail = tail;
1491 	workload->rb_start = start;
1492 	workload->rb_ctl = ctl;
1493 
1494 	if (ring_id == RCS0) {
1495 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1496 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1497 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1498 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1499 
1500 		workload->wa_ctx.indirect_ctx.guest_gma =
1501 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1502 		workload->wa_ctx.indirect_ctx.size =
1503 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1504 			CACHELINE_BYTES;
1505 		workload->wa_ctx.per_ctx.guest_gma =
1506 			per_ctx & PER_CTX_ADDR_MASK;
1507 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1508 	}
1509 
1510 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1511 			workload, ring_id, head, tail, start, ctl);
1512 
1513 	ret = prepare_mm(workload);
1514 	if (ret) {
1515 		kmem_cache_free(s->workloads, workload);
1516 		return ERR_PTR(ret);
1517 	}
1518 
1519 	/* Only scan and shadow the first workload in the queue
1520 	 * as there is only one pre-allocated buf-obj for shadow.
1521 	 */
1522 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1523 		intel_runtime_pm_get(dev_priv);
1524 		mutex_lock(&dev_priv->drm.struct_mutex);
1525 		ret = intel_gvt_scan_and_shadow_workload(workload);
1526 		mutex_unlock(&dev_priv->drm.struct_mutex);
1527 		intel_runtime_pm_put_unchecked(dev_priv);
1528 	}
1529 
1530 	if (ret) {
1531 		if (vgpu_is_vm_unhealthy(ret))
1532 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1533 		intel_vgpu_destroy_workload(workload);
1534 		return ERR_PTR(ret);
1535 	}
1536 
1537 	return workload;
1538 }
1539 
1540 /**
1541  * intel_vgpu_queue_workload - Qeue a vGPU workload
1542  * @workload: the workload to queue in
1543  */
1544 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1545 {
1546 	list_add_tail(&workload->list,
1547 		workload_q_head(workload->vgpu, workload->ring_id));
1548 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1549 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1550 }
1551