1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "i915_drv.h" 39 #include "gvt.h" 40 41 #define RING_CTX_OFF(x) \ 42 offsetof(struct execlist_ring_context, x) 43 44 static void set_context_pdp_root_pointer( 45 struct execlist_ring_context *ring_context, 46 u32 pdp[8]) 47 { 48 int i; 49 50 for (i = 0; i < 8; i++) 51 ring_context->pdps[i].val = pdp[7 - i]; 52 } 53 54 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 55 { 56 struct drm_i915_gem_object *ctx_obj = 57 workload->req->hw_context->state->obj; 58 struct execlist_ring_context *shadow_ring_context; 59 struct page *page; 60 61 if (WARN_ON(!workload->shadow_mm)) 62 return; 63 64 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 65 return; 66 67 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 68 shadow_ring_context = kmap(page); 69 set_context_pdp_root_pointer(shadow_ring_context, 70 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 71 kunmap(page); 72 } 73 74 /* 75 * when populating shadow ctx from guest, we should not overrride oa related 76 * registers, so that they will not be overlapped by guest oa configs. Thus 77 * made it possible to capture oa data from host for both host and guests. 78 */ 79 static void sr_oa_regs(struct intel_vgpu_workload *workload, 80 u32 *reg_state, bool save) 81 { 82 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 83 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 84 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 85 int i = 0; 86 u32 flex_mmio[] = { 87 i915_mmio_reg_offset(EU_PERF_CNTL0), 88 i915_mmio_reg_offset(EU_PERF_CNTL1), 89 i915_mmio_reg_offset(EU_PERF_CNTL2), 90 i915_mmio_reg_offset(EU_PERF_CNTL3), 91 i915_mmio_reg_offset(EU_PERF_CNTL4), 92 i915_mmio_reg_offset(EU_PERF_CNTL5), 93 i915_mmio_reg_offset(EU_PERF_CNTL6), 94 }; 95 96 if (workload->ring_id != RCS0) 97 return; 98 99 if (save) { 100 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 101 102 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 103 u32 state_offset = ctx_flexeu0 + i * 2; 104 105 workload->flex_mmio[i] = reg_state[state_offset + 1]; 106 } 107 } else { 108 reg_state[ctx_oactxctrl] = 109 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 110 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 111 112 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 113 u32 state_offset = ctx_flexeu0 + i * 2; 114 u32 mmio = flex_mmio[i]; 115 116 reg_state[state_offset] = mmio; 117 reg_state[state_offset + 1] = workload->flex_mmio[i]; 118 } 119 } 120 } 121 122 static int populate_shadow_context(struct intel_vgpu_workload *workload) 123 { 124 struct intel_vgpu *vgpu = workload->vgpu; 125 struct intel_gvt *gvt = vgpu->gvt; 126 int ring_id = workload->ring_id; 127 struct drm_i915_gem_object *ctx_obj = 128 workload->req->hw_context->state->obj; 129 struct execlist_ring_context *shadow_ring_context; 130 struct page *page; 131 void *dst; 132 unsigned long context_gpa, context_page_num; 133 int i; 134 135 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 136 shadow_ring_context = kmap(page); 137 138 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 139 #define COPY_REG(name) \ 140 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 141 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 142 #define COPY_REG_MASKED(name) {\ 143 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 144 + RING_CTX_OFF(name.val),\ 145 &shadow_ring_context->name.val, 4);\ 146 shadow_ring_context->name.val |= 0xffff << 16;\ 147 } 148 149 COPY_REG_MASKED(ctx_ctrl); 150 COPY_REG(ctx_timestamp); 151 152 if (ring_id == RCS0) { 153 COPY_REG(bb_per_ctx_ptr); 154 COPY_REG(rcs_indirect_ctx); 155 COPY_REG(rcs_indirect_ctx_offset); 156 } 157 #undef COPY_REG 158 #undef COPY_REG_MASKED 159 160 intel_gvt_hypervisor_read_gpa(vgpu, 161 workload->ring_context_gpa + 162 sizeof(*shadow_ring_context), 163 (void *)shadow_ring_context + 164 sizeof(*shadow_ring_context), 165 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 166 167 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 168 kunmap(page); 169 170 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 171 return 0; 172 173 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 174 workload->ctx_desc.lrca); 175 176 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 177 178 context_page_num = context_page_num >> PAGE_SHIFT; 179 180 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0) 181 context_page_num = 19; 182 183 i = 2; 184 while (i < context_page_num) { 185 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 186 (u32)((workload->ctx_desc.lrca + i) << 187 I915_GTT_PAGE_SHIFT)); 188 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 189 gvt_vgpu_err("Invalid guest context descriptor\n"); 190 return -EFAULT; 191 } 192 193 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 194 dst = kmap(page); 195 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 196 I915_GTT_PAGE_SIZE); 197 kunmap(page); 198 i++; 199 } 200 return 0; 201 } 202 203 static inline bool is_gvt_request(struct i915_request *req) 204 { 205 return i915_gem_context_force_single_submission(req->gem_context); 206 } 207 208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 209 { 210 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 211 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 212 i915_reg_t reg; 213 214 reg = RING_INSTDONE(ring_base); 215 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 216 reg = RING_ACTHD(ring_base); 217 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 218 reg = RING_ACTHD_UDW(ring_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 220 } 221 222 static int shadow_context_status_change(struct notifier_block *nb, 223 unsigned long action, void *data) 224 { 225 struct i915_request *req = data; 226 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 227 shadow_ctx_notifier_block[req->engine->id]); 228 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 229 enum intel_engine_id ring_id = req->engine->id; 230 struct intel_vgpu_workload *workload; 231 unsigned long flags; 232 233 if (!is_gvt_request(req)) { 234 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 235 if (action == INTEL_CONTEXT_SCHEDULE_IN && 236 scheduler->engine_owner[ring_id]) { 237 /* Switch ring from vGPU to host. */ 238 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 239 NULL, ring_id); 240 scheduler->engine_owner[ring_id] = NULL; 241 } 242 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 243 244 return NOTIFY_OK; 245 } 246 247 workload = scheduler->current_workload[ring_id]; 248 if (unlikely(!workload)) 249 return NOTIFY_OK; 250 251 switch (action) { 252 case INTEL_CONTEXT_SCHEDULE_IN: 253 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 254 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 255 /* Switch ring from host to vGPU or vGPU to vGPU. */ 256 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 257 workload->vgpu, ring_id); 258 scheduler->engine_owner[ring_id] = workload->vgpu; 259 } else 260 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 261 ring_id, workload->vgpu->id); 262 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 263 atomic_set(&workload->shadow_ctx_active, 1); 264 break; 265 case INTEL_CONTEXT_SCHEDULE_OUT: 266 save_ring_hw_state(workload->vgpu, ring_id); 267 atomic_set(&workload->shadow_ctx_active, 0); 268 break; 269 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 270 save_ring_hw_state(workload->vgpu, ring_id); 271 break; 272 default: 273 WARN_ON(1); 274 return NOTIFY_OK; 275 } 276 wake_up(&workload->shadow_ctx_status_wq); 277 return NOTIFY_OK; 278 } 279 280 static void shadow_context_descriptor_update(struct intel_context *ce) 281 { 282 u64 desc = 0; 283 284 desc = ce->lrc_desc; 285 286 /* Update bits 0-11 of the context descriptor which includes flags 287 * like GEN8_CTX_* cached in desc_template 288 */ 289 desc &= U64_MAX << 12; 290 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1); 291 292 ce->lrc_desc = desc; 293 } 294 295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 296 { 297 struct intel_vgpu *vgpu = workload->vgpu; 298 struct i915_request *req = workload->req; 299 void *shadow_ring_buffer_va; 300 u32 *cs; 301 int err; 302 303 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context)) 304 intel_vgpu_restore_inhibit_context(vgpu, req); 305 306 /* 307 * To track whether a request has started on HW, we can emit a 308 * breadcrumb at the beginning of the request and check its 309 * timeline's HWSP to see if the breadcrumb has advanced past the 310 * start of this request. Actually, the request must have the 311 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 312 * scheduler might get a wrong state of it during reset. Since the 313 * requests from gvt always set the has_init_breadcrumb flag, here 314 * need to do the emit_init_breadcrumb for all the requests. 315 */ 316 if (req->engine->emit_init_breadcrumb) { 317 err = req->engine->emit_init_breadcrumb(req); 318 if (err) { 319 gvt_vgpu_err("fail to emit init breadcrumb\n"); 320 return err; 321 } 322 } 323 324 /* allocate shadow ring buffer */ 325 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 326 if (IS_ERR(cs)) { 327 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 328 workload->rb_len); 329 return PTR_ERR(cs); 330 } 331 332 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 333 334 /* get shadow ring buffer va */ 335 workload->shadow_ring_buffer_va = cs; 336 337 memcpy(cs, shadow_ring_buffer_va, 338 workload->rb_len); 339 340 cs += workload->rb_len / sizeof(u32); 341 intel_ring_advance(workload->req, cs); 342 343 return 0; 344 } 345 346 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 347 { 348 if (!wa_ctx->indirect_ctx.obj) 349 return; 350 351 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 352 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 353 354 wa_ctx->indirect_ctx.obj = NULL; 355 wa_ctx->indirect_ctx.shadow_va = NULL; 356 } 357 358 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 359 struct i915_gem_context *ctx) 360 { 361 struct intel_vgpu_mm *mm = workload->shadow_mm; 362 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; 363 int i = 0; 364 365 if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed) 366 return -EINVAL; 367 368 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 369 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0]; 370 } else { 371 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 372 px_dma(ppgtt->pdp.page_directory[i]) = 373 mm->ppgtt_mm.shadow_pdps[i]; 374 } 375 } 376 377 return 0; 378 } 379 380 static int 381 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 382 { 383 struct intel_vgpu *vgpu = workload->vgpu; 384 struct intel_vgpu_submission *s = &vgpu->submission; 385 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 386 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 387 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 388 struct i915_request *rq; 389 int ret = 0; 390 391 lockdep_assert_held(&dev_priv->drm.struct_mutex); 392 393 if (workload->req) 394 goto out; 395 396 rq = i915_request_alloc(engine, shadow_ctx); 397 if (IS_ERR(rq)) { 398 gvt_vgpu_err("fail to allocate gem request\n"); 399 ret = PTR_ERR(rq); 400 goto out; 401 } 402 workload->req = i915_request_get(rq); 403 out: 404 return ret; 405 } 406 407 /** 408 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 409 * shadow it as well, include ringbuffer,wa_ctx and ctx. 410 * @workload: an abstract entity for each execlist submission. 411 * 412 * This function is called before the workload submitting to i915, to make 413 * sure the content of the workload is valid. 414 */ 415 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 416 { 417 struct intel_vgpu *vgpu = workload->vgpu; 418 struct intel_vgpu_submission *s = &vgpu->submission; 419 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 420 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 421 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 422 struct intel_context *ce; 423 int ret; 424 425 lockdep_assert_held(&dev_priv->drm.struct_mutex); 426 427 if (workload->shadow) 428 return 0; 429 430 /* pin shadow context by gvt even the shadow context will be pinned 431 * when i915 alloc request. That is because gvt will update the guest 432 * context from shadow context when workload is completed, and at that 433 * moment, i915 may already unpined the shadow context to make the 434 * shadow_ctx pages invalid. So gvt need to pin itself. After update 435 * the guest context, gvt can unpin the shadow_ctx safely. 436 */ 437 ce = intel_context_pin(shadow_ctx, engine); 438 if (IS_ERR(ce)) { 439 gvt_vgpu_err("fail to pin shadow context\n"); 440 return PTR_ERR(ce); 441 } 442 443 shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 444 shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode << 445 GEN8_CTX_ADDRESSING_MODE_SHIFT; 446 447 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 448 shadow_context_descriptor_update(ce); 449 450 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 451 if (ret) 452 goto err_unpin; 453 454 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) { 455 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 456 if (ret) 457 goto err_shadow; 458 } 459 460 workload->shadow = true; 461 return 0; 462 err_shadow: 463 release_shadow_wa_ctx(&workload->wa_ctx); 464 err_unpin: 465 intel_context_unpin(ce); 466 return ret; 467 } 468 469 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 470 471 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 472 { 473 struct intel_gvt *gvt = workload->vgpu->gvt; 474 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 475 struct intel_vgpu_shadow_bb *bb; 476 int ret; 477 478 list_for_each_entry(bb, &workload->shadow_bb, list) { 479 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 480 * is only updated into ring_scan_buffer, not real ring address 481 * allocated in later copy_workload_to_ring_buffer. pls be noted 482 * shadow_ring_buffer_va is now pointed to real ring buffer va 483 * in copy_workload_to_ring_buffer. 484 */ 485 486 if (bb->bb_offset) 487 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 488 + bb->bb_offset; 489 490 if (bb->ppgtt) { 491 /* for non-priv bb, scan&shadow is only for 492 * debugging purpose, so the content of shadow bb 493 * is the same as original bb. Therefore, 494 * here, rather than switch to shadow bb's gma 495 * address, we directly use original batch buffer's 496 * gma address, and send original bb to hardware 497 * directly 498 */ 499 if (bb->clflush & CLFLUSH_AFTER) { 500 drm_clflush_virt_range(bb->va, 501 bb->obj->base.size); 502 bb->clflush &= ~CLFLUSH_AFTER; 503 } 504 i915_gem_obj_finish_shmem_access(bb->obj); 505 bb->accessing = false; 506 507 } else { 508 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 509 NULL, 0, 0, 0); 510 if (IS_ERR(bb->vma)) { 511 ret = PTR_ERR(bb->vma); 512 goto err; 513 } 514 515 /* relocate shadow batch buffer */ 516 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 517 if (gmadr_bytes == 8) 518 bb->bb_start_cmd_va[2] = 0; 519 520 /* No one is going to touch shadow bb from now on. */ 521 if (bb->clflush & CLFLUSH_AFTER) { 522 drm_clflush_virt_range(bb->va, 523 bb->obj->base.size); 524 bb->clflush &= ~CLFLUSH_AFTER; 525 } 526 527 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 528 false); 529 if (ret) 530 goto err; 531 532 i915_gem_obj_finish_shmem_access(bb->obj); 533 bb->accessing = false; 534 535 ret = i915_vma_move_to_active(bb->vma, 536 workload->req, 537 0); 538 if (ret) 539 goto err; 540 } 541 } 542 return 0; 543 err: 544 release_shadow_batch_buffer(workload); 545 return ret; 546 } 547 548 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 549 { 550 struct intel_vgpu_workload *workload = 551 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 552 struct i915_request *rq = workload->req; 553 struct execlist_ring_context *shadow_ring_context = 554 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 555 556 shadow_ring_context->bb_per_ctx_ptr.val = 557 (shadow_ring_context->bb_per_ctx_ptr.val & 558 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 559 shadow_ring_context->rcs_indirect_ctx.val = 560 (shadow_ring_context->rcs_indirect_ctx.val & 561 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 562 } 563 564 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 565 { 566 struct i915_vma *vma; 567 unsigned char *per_ctx_va = 568 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 569 wa_ctx->indirect_ctx.size; 570 571 if (wa_ctx->indirect_ctx.size == 0) 572 return 0; 573 574 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 575 0, CACHELINE_BYTES, 0); 576 if (IS_ERR(vma)) 577 return PTR_ERR(vma); 578 579 /* FIXME: we are not tracking our pinned VMA leaving it 580 * up to the core to fix up the stray pin_count upon 581 * free. 582 */ 583 584 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 585 586 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 587 memset(per_ctx_va, 0, CACHELINE_BYTES); 588 589 update_wa_ctx_2_shadow_ctx(wa_ctx); 590 return 0; 591 } 592 593 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 594 { 595 struct intel_vgpu *vgpu = workload->vgpu; 596 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 597 struct intel_vgpu_shadow_bb *bb, *pos; 598 599 if (list_empty(&workload->shadow_bb)) 600 return; 601 602 bb = list_first_entry(&workload->shadow_bb, 603 struct intel_vgpu_shadow_bb, list); 604 605 mutex_lock(&dev_priv->drm.struct_mutex); 606 607 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 608 if (bb->obj) { 609 if (bb->accessing) 610 i915_gem_obj_finish_shmem_access(bb->obj); 611 612 if (bb->va && !IS_ERR(bb->va)) 613 i915_gem_object_unpin_map(bb->obj); 614 615 if (bb->vma && !IS_ERR(bb->vma)) { 616 i915_vma_unpin(bb->vma); 617 i915_vma_close(bb->vma); 618 } 619 __i915_gem_object_release_unless_active(bb->obj); 620 } 621 list_del(&bb->list); 622 kfree(bb); 623 } 624 625 mutex_unlock(&dev_priv->drm.struct_mutex); 626 } 627 628 static int prepare_workload(struct intel_vgpu_workload *workload) 629 { 630 struct intel_vgpu *vgpu = workload->vgpu; 631 int ret = 0; 632 633 ret = intel_vgpu_pin_mm(workload->shadow_mm); 634 if (ret) { 635 gvt_vgpu_err("fail to vgpu pin mm\n"); 636 return ret; 637 } 638 639 update_shadow_pdps(workload); 640 641 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 642 if (ret) { 643 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 644 goto err_unpin_mm; 645 } 646 647 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 648 if (ret) { 649 gvt_vgpu_err("fail to flush post shadow\n"); 650 goto err_unpin_mm; 651 } 652 653 ret = copy_workload_to_ring_buffer(workload); 654 if (ret) { 655 gvt_vgpu_err("fail to generate request\n"); 656 goto err_unpin_mm; 657 } 658 659 ret = prepare_shadow_batch_buffer(workload); 660 if (ret) { 661 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 662 goto err_unpin_mm; 663 } 664 665 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 666 if (ret) { 667 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 668 goto err_shadow_batch; 669 } 670 671 if (workload->prepare) { 672 ret = workload->prepare(workload); 673 if (ret) 674 goto err_shadow_wa_ctx; 675 } 676 677 return 0; 678 err_shadow_wa_ctx: 679 release_shadow_wa_ctx(&workload->wa_ctx); 680 err_shadow_batch: 681 release_shadow_batch_buffer(workload); 682 err_unpin_mm: 683 intel_vgpu_unpin_mm(workload->shadow_mm); 684 return ret; 685 } 686 687 static int dispatch_workload(struct intel_vgpu_workload *workload) 688 { 689 struct intel_vgpu *vgpu = workload->vgpu; 690 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 691 struct intel_vgpu_submission *s = &vgpu->submission; 692 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 693 struct i915_request *rq; 694 int ring_id = workload->ring_id; 695 int ret; 696 697 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 698 ring_id, workload); 699 700 mutex_lock(&vgpu->vgpu_lock); 701 mutex_lock(&dev_priv->drm.struct_mutex); 702 703 ret = set_context_ppgtt_from_shadow(workload, shadow_ctx); 704 if (ret < 0) { 705 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 706 goto err_req; 707 } 708 709 ret = intel_gvt_workload_req_alloc(workload); 710 if (ret) 711 goto err_req; 712 713 ret = intel_gvt_scan_and_shadow_workload(workload); 714 if (ret) 715 goto out; 716 717 ret = populate_shadow_context(workload); 718 if (ret) { 719 release_shadow_wa_ctx(&workload->wa_ctx); 720 goto out; 721 } 722 723 ret = prepare_workload(workload); 724 out: 725 if (ret) { 726 /* We might still need to add request with 727 * clean ctx to retire it properly.. 728 */ 729 rq = fetch_and_zero(&workload->req); 730 i915_request_put(rq); 731 } 732 733 if (!IS_ERR_OR_NULL(workload->req)) { 734 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 735 ring_id, workload->req); 736 i915_request_add(workload->req); 737 workload->dispatched = true; 738 } 739 err_req: 740 if (ret) 741 workload->status = ret; 742 mutex_unlock(&dev_priv->drm.struct_mutex); 743 mutex_unlock(&vgpu->vgpu_lock); 744 return ret; 745 } 746 747 static struct intel_vgpu_workload *pick_next_workload( 748 struct intel_gvt *gvt, int ring_id) 749 { 750 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 751 struct intel_vgpu_workload *workload = NULL; 752 753 mutex_lock(&gvt->sched_lock); 754 755 /* 756 * no current vgpu / will be scheduled out / no workload 757 * bail out 758 */ 759 if (!scheduler->current_vgpu) { 760 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 761 goto out; 762 } 763 764 if (scheduler->need_reschedule) { 765 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 766 goto out; 767 } 768 769 if (!scheduler->current_vgpu->active || 770 list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 771 goto out; 772 773 /* 774 * still have current workload, maybe the workload disptacher 775 * fail to submit it for some reason, resubmit it. 776 */ 777 if (scheduler->current_workload[ring_id]) { 778 workload = scheduler->current_workload[ring_id]; 779 gvt_dbg_sched("ring id %d still have current workload %p\n", 780 ring_id, workload); 781 goto out; 782 } 783 784 /* 785 * pick a workload as current workload 786 * once current workload is set, schedule policy routines 787 * will wait the current workload is finished when trying to 788 * schedule out a vgpu. 789 */ 790 scheduler->current_workload[ring_id] = container_of( 791 workload_q_head(scheduler->current_vgpu, ring_id)->next, 792 struct intel_vgpu_workload, list); 793 794 workload = scheduler->current_workload[ring_id]; 795 796 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 797 798 atomic_inc(&workload->vgpu->submission.running_workload_num); 799 out: 800 mutex_unlock(&gvt->sched_lock); 801 return workload; 802 } 803 804 static void update_guest_context(struct intel_vgpu_workload *workload) 805 { 806 struct i915_request *rq = workload->req; 807 struct intel_vgpu *vgpu = workload->vgpu; 808 struct intel_gvt *gvt = vgpu->gvt; 809 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 810 struct execlist_ring_context *shadow_ring_context; 811 struct page *page; 812 void *src; 813 unsigned long context_gpa, context_page_num; 814 int i; 815 struct drm_i915_private *dev_priv = gvt->dev_priv; 816 u32 ring_base; 817 u32 head, tail; 818 u16 wrap_count; 819 820 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 821 workload->ctx_desc.lrca); 822 823 head = workload->rb_head; 824 tail = workload->rb_tail; 825 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 826 827 if (tail < head) { 828 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 829 wrap_count = 0; 830 else 831 wrap_count += 1; 832 } 833 834 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 835 836 ring_base = dev_priv->engine[workload->ring_id]->mmio_base; 837 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 838 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 839 840 context_page_num = rq->engine->context_size; 841 context_page_num = context_page_num >> PAGE_SHIFT; 842 843 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0) 844 context_page_num = 19; 845 846 i = 2; 847 848 while (i < context_page_num) { 849 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 850 (u32)((workload->ctx_desc.lrca + i) << 851 I915_GTT_PAGE_SHIFT)); 852 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 853 gvt_vgpu_err("invalid guest context descriptor\n"); 854 return; 855 } 856 857 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 858 src = kmap(page); 859 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 860 I915_GTT_PAGE_SIZE); 861 kunmap(page); 862 i++; 863 } 864 865 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 866 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 867 868 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 869 shadow_ring_context = kmap(page); 870 871 #define COPY_REG(name) \ 872 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 873 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 874 875 COPY_REG(ctx_ctrl); 876 COPY_REG(ctx_timestamp); 877 878 #undef COPY_REG 879 880 intel_gvt_hypervisor_write_gpa(vgpu, 881 workload->ring_context_gpa + 882 sizeof(*shadow_ring_context), 883 (void *)shadow_ring_context + 884 sizeof(*shadow_ring_context), 885 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 886 887 kunmap(page); 888 } 889 890 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 891 intel_engine_mask_t engine_mask) 892 { 893 struct intel_vgpu_submission *s = &vgpu->submission; 894 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 895 struct intel_engine_cs *engine; 896 struct intel_vgpu_workload *pos, *n; 897 intel_engine_mask_t tmp; 898 899 /* free the unsubmited workloads in the queues. */ 900 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 901 list_for_each_entry_safe(pos, n, 902 &s->workload_q_head[engine->id], list) { 903 list_del_init(&pos->list); 904 intel_vgpu_destroy_workload(pos); 905 } 906 clear_bit(engine->id, s->shadow_ctx_desc_updated); 907 } 908 } 909 910 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 911 { 912 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 913 struct intel_vgpu_workload *workload = 914 scheduler->current_workload[ring_id]; 915 struct intel_vgpu *vgpu = workload->vgpu; 916 struct intel_vgpu_submission *s = &vgpu->submission; 917 struct i915_request *rq = workload->req; 918 int event; 919 920 mutex_lock(&vgpu->vgpu_lock); 921 mutex_lock(&gvt->sched_lock); 922 923 /* For the workload w/ request, needs to wait for the context 924 * switch to make sure request is completed. 925 * For the workload w/o request, directly complete the workload. 926 */ 927 if (rq) { 928 wait_event(workload->shadow_ctx_status_wq, 929 !atomic_read(&workload->shadow_ctx_active)); 930 931 /* If this request caused GPU hang, req->fence.error will 932 * be set to -EIO. Use -EIO to set workload status so 933 * that when this request caused GPU hang, didn't trigger 934 * context switch interrupt to guest. 935 */ 936 if (likely(workload->status == -EINPROGRESS)) { 937 if (workload->req->fence.error == -EIO) 938 workload->status = -EIO; 939 else 940 workload->status = 0; 941 } 942 943 if (!workload->status && 944 !(vgpu->resetting_eng & BIT(ring_id))) { 945 update_guest_context(workload); 946 947 for_each_set_bit(event, workload->pending_events, 948 INTEL_GVT_EVENT_MAX) 949 intel_vgpu_trigger_virtual_event(vgpu, event); 950 } 951 952 /* unpin shadow ctx as the shadow_ctx update is done */ 953 mutex_lock(&rq->i915->drm.struct_mutex); 954 intel_context_unpin(rq->hw_context); 955 mutex_unlock(&rq->i915->drm.struct_mutex); 956 957 i915_request_put(fetch_and_zero(&workload->req)); 958 } 959 960 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 961 ring_id, workload, workload->status); 962 963 scheduler->current_workload[ring_id] = NULL; 964 965 list_del_init(&workload->list); 966 967 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 968 /* if workload->status is not successful means HW GPU 969 * has occurred GPU hang or something wrong with i915/GVT, 970 * and GVT won't inject context switch interrupt to guest. 971 * So this error is a vGPU hang actually to the guest. 972 * According to this we should emunlate a vGPU hang. If 973 * there are pending workloads which are already submitted 974 * from guest, we should clean them up like HW GPU does. 975 * 976 * if it is in middle of engine resetting, the pending 977 * workloads won't be submitted to HW GPU and will be 978 * cleaned up during the resetting process later, so doing 979 * the workload clean up here doesn't have any impact. 980 **/ 981 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 982 } 983 984 workload->complete(workload); 985 986 atomic_dec(&s->running_workload_num); 987 wake_up(&scheduler->workload_complete_wq); 988 989 if (gvt->scheduler.need_reschedule) 990 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 991 992 mutex_unlock(&gvt->sched_lock); 993 mutex_unlock(&vgpu->vgpu_lock); 994 } 995 996 struct workload_thread_param { 997 struct intel_gvt *gvt; 998 int ring_id; 999 }; 1000 1001 static int workload_thread(void *priv) 1002 { 1003 struct workload_thread_param *p = (struct workload_thread_param *)priv; 1004 struct intel_gvt *gvt = p->gvt; 1005 int ring_id = p->ring_id; 1006 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1007 struct intel_vgpu_workload *workload = NULL; 1008 struct intel_vgpu *vgpu = NULL; 1009 int ret; 1010 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9); 1011 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1012 1013 kfree(p); 1014 1015 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 1016 1017 while (!kthread_should_stop()) { 1018 add_wait_queue(&scheduler->waitq[ring_id], &wait); 1019 do { 1020 workload = pick_next_workload(gvt, ring_id); 1021 if (workload) 1022 break; 1023 wait_woken(&wait, TASK_INTERRUPTIBLE, 1024 MAX_SCHEDULE_TIMEOUT); 1025 } while (!kthread_should_stop()); 1026 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 1027 1028 if (!workload) 1029 break; 1030 1031 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 1032 workload->ring_id, workload, 1033 workload->vgpu->id); 1034 1035 intel_runtime_pm_get(gvt->dev_priv); 1036 1037 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 1038 workload->ring_id, workload); 1039 1040 if (need_force_wake) 1041 intel_uncore_forcewake_get(&gvt->dev_priv->uncore, 1042 FORCEWAKE_ALL); 1043 1044 ret = dispatch_workload(workload); 1045 1046 if (ret) { 1047 vgpu = workload->vgpu; 1048 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1049 goto complete; 1050 } 1051 1052 gvt_dbg_sched("ring id %d wait workload %p\n", 1053 workload->ring_id, workload); 1054 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1055 1056 complete: 1057 gvt_dbg_sched("will complete workload %p, status: %d\n", 1058 workload, workload->status); 1059 1060 complete_current_workload(gvt, ring_id); 1061 1062 if (need_force_wake) 1063 intel_uncore_forcewake_put(&gvt->dev_priv->uncore, 1064 FORCEWAKE_ALL); 1065 1066 intel_runtime_pm_put_unchecked(gvt->dev_priv); 1067 if (ret && (vgpu_is_vm_unhealthy(ret))) 1068 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1069 } 1070 return 0; 1071 } 1072 1073 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1074 { 1075 struct intel_vgpu_submission *s = &vgpu->submission; 1076 struct intel_gvt *gvt = vgpu->gvt; 1077 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1078 1079 if (atomic_read(&s->running_workload_num)) { 1080 gvt_dbg_sched("wait vgpu idle\n"); 1081 1082 wait_event(scheduler->workload_complete_wq, 1083 !atomic_read(&s->running_workload_num)); 1084 } 1085 } 1086 1087 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1088 { 1089 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1090 struct intel_engine_cs *engine; 1091 enum intel_engine_id i; 1092 1093 gvt_dbg_core("clean workload scheduler\n"); 1094 1095 for_each_engine(engine, gvt->dev_priv, i) { 1096 atomic_notifier_chain_unregister( 1097 &engine->context_status_notifier, 1098 &gvt->shadow_ctx_notifier_block[i]); 1099 kthread_stop(scheduler->thread[i]); 1100 } 1101 } 1102 1103 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1104 { 1105 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1106 struct workload_thread_param *param = NULL; 1107 struct intel_engine_cs *engine; 1108 enum intel_engine_id i; 1109 int ret; 1110 1111 gvt_dbg_core("init workload scheduler\n"); 1112 1113 init_waitqueue_head(&scheduler->workload_complete_wq); 1114 1115 for_each_engine(engine, gvt->dev_priv, i) { 1116 init_waitqueue_head(&scheduler->waitq[i]); 1117 1118 param = kzalloc(sizeof(*param), GFP_KERNEL); 1119 if (!param) { 1120 ret = -ENOMEM; 1121 goto err; 1122 } 1123 1124 param->gvt = gvt; 1125 param->ring_id = i; 1126 1127 scheduler->thread[i] = kthread_run(workload_thread, param, 1128 "gvt workload %d", i); 1129 if (IS_ERR(scheduler->thread[i])) { 1130 gvt_err("fail to create workload thread\n"); 1131 ret = PTR_ERR(scheduler->thread[i]); 1132 goto err; 1133 } 1134 1135 gvt->shadow_ctx_notifier_block[i].notifier_call = 1136 shadow_context_status_change; 1137 atomic_notifier_chain_register(&engine->context_status_notifier, 1138 &gvt->shadow_ctx_notifier_block[i]); 1139 } 1140 return 0; 1141 err: 1142 intel_gvt_clean_workload_scheduler(gvt); 1143 kfree(param); 1144 param = NULL; 1145 return ret; 1146 } 1147 1148 static void 1149 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s) 1150 { 1151 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1152 int i; 1153 1154 if (i915_vm_is_4lvl(&i915_ppgtt->vm)) { 1155 px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4; 1156 } else { 1157 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1158 px_dma(i915_ppgtt->pdp.page_directory[i]) = 1159 s->i915_context_pdps[i]; 1160 } 1161 } 1162 1163 /** 1164 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1165 * @vgpu: a vGPU 1166 * 1167 * This function is called when a vGPU is being destroyed. 1168 * 1169 */ 1170 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1171 { 1172 struct intel_vgpu_submission *s = &vgpu->submission; 1173 1174 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1175 i915_context_ppgtt_root_restore(s); 1176 i915_gem_context_put(s->shadow_ctx); 1177 kmem_cache_destroy(s->workloads); 1178 } 1179 1180 1181 /** 1182 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1183 * @vgpu: a vGPU 1184 * @engine_mask: engines expected to be reset 1185 * 1186 * This function is called when a vGPU is being destroyed. 1187 * 1188 */ 1189 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1190 intel_engine_mask_t engine_mask) 1191 { 1192 struct intel_vgpu_submission *s = &vgpu->submission; 1193 1194 if (!s->active) 1195 return; 1196 1197 intel_vgpu_clean_workloads(vgpu, engine_mask); 1198 s->ops->reset(vgpu, engine_mask); 1199 } 1200 1201 static void 1202 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s) 1203 { 1204 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1205 int i; 1206 1207 if (i915_vm_is_4lvl(&i915_ppgtt->vm)) 1208 s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4); 1209 else { 1210 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1211 s->i915_context_pdps[i] = 1212 px_dma(i915_ppgtt->pdp.page_directory[i]); 1213 } 1214 } 1215 1216 /** 1217 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1218 * @vgpu: a vGPU 1219 * 1220 * This function is called when a vGPU is being created. 1221 * 1222 * Returns: 1223 * Zero on success, negative error code if failed. 1224 * 1225 */ 1226 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1227 { 1228 struct intel_vgpu_submission *s = &vgpu->submission; 1229 enum intel_engine_id i; 1230 struct intel_engine_cs *engine; 1231 int ret; 1232 1233 s->shadow_ctx = i915_gem_context_create_gvt( 1234 &vgpu->gvt->dev_priv->drm); 1235 if (IS_ERR(s->shadow_ctx)) 1236 return PTR_ERR(s->shadow_ctx); 1237 1238 i915_context_ppgtt_root_save(s); 1239 1240 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1241 1242 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1243 sizeof(struct intel_vgpu_workload), 0, 1244 SLAB_HWCACHE_ALIGN, 1245 offsetof(struct intel_vgpu_workload, rb_tail), 1246 sizeof_field(struct intel_vgpu_workload, rb_tail), 1247 NULL); 1248 1249 if (!s->workloads) { 1250 ret = -ENOMEM; 1251 goto out_shadow_ctx; 1252 } 1253 1254 for_each_engine(engine, vgpu->gvt->dev_priv, i) 1255 INIT_LIST_HEAD(&s->workload_q_head[i]); 1256 1257 atomic_set(&s->running_workload_num, 0); 1258 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1259 1260 return 0; 1261 1262 out_shadow_ctx: 1263 i915_gem_context_put(s->shadow_ctx); 1264 return ret; 1265 } 1266 1267 /** 1268 * intel_vgpu_select_submission_ops - select virtual submission interface 1269 * @vgpu: a vGPU 1270 * @engine_mask: either ALL_ENGINES or target engine mask 1271 * @interface: expected vGPU virtual submission interface 1272 * 1273 * This function is called when guest configures submission interface. 1274 * 1275 * Returns: 1276 * Zero on success, negative error code if failed. 1277 * 1278 */ 1279 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1280 intel_engine_mask_t engine_mask, 1281 unsigned int interface) 1282 { 1283 struct intel_vgpu_submission *s = &vgpu->submission; 1284 const struct intel_vgpu_submission_ops *ops[] = { 1285 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1286 &intel_vgpu_execlist_submission_ops, 1287 }; 1288 int ret; 1289 1290 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1291 return -EINVAL; 1292 1293 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1294 return -EINVAL; 1295 1296 if (s->active) 1297 s->ops->clean(vgpu, engine_mask); 1298 1299 if (interface == 0) { 1300 s->ops = NULL; 1301 s->virtual_submission_interface = 0; 1302 s->active = false; 1303 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1304 return 0; 1305 } 1306 1307 ret = ops[interface]->init(vgpu, engine_mask); 1308 if (ret) 1309 return ret; 1310 1311 s->ops = ops[interface]; 1312 s->virtual_submission_interface = interface; 1313 s->active = true; 1314 1315 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1316 vgpu->id, s->ops->name); 1317 1318 return 0; 1319 } 1320 1321 /** 1322 * intel_vgpu_destroy_workload - destroy a vGPU workload 1323 * @workload: workload to destroy 1324 * 1325 * This function is called when destroy a vGPU workload. 1326 * 1327 */ 1328 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1329 { 1330 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1331 1332 release_shadow_batch_buffer(workload); 1333 release_shadow_wa_ctx(&workload->wa_ctx); 1334 1335 if (workload->shadow_mm) 1336 intel_vgpu_mm_put(workload->shadow_mm); 1337 1338 kmem_cache_free(s->workloads, workload); 1339 } 1340 1341 static struct intel_vgpu_workload * 1342 alloc_workload(struct intel_vgpu *vgpu) 1343 { 1344 struct intel_vgpu_submission *s = &vgpu->submission; 1345 struct intel_vgpu_workload *workload; 1346 1347 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1348 if (!workload) 1349 return ERR_PTR(-ENOMEM); 1350 1351 INIT_LIST_HEAD(&workload->list); 1352 INIT_LIST_HEAD(&workload->shadow_bb); 1353 1354 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1355 atomic_set(&workload->shadow_ctx_active, 0); 1356 1357 workload->status = -EINPROGRESS; 1358 workload->vgpu = vgpu; 1359 1360 return workload; 1361 } 1362 1363 #define RING_CTX_OFF(x) \ 1364 offsetof(struct execlist_ring_context, x) 1365 1366 static void read_guest_pdps(struct intel_vgpu *vgpu, 1367 u64 ring_context_gpa, u32 pdp[8]) 1368 { 1369 u64 gpa; 1370 int i; 1371 1372 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1373 1374 for (i = 0; i < 8; i++) 1375 intel_gvt_hypervisor_read_gpa(vgpu, 1376 gpa + i * 8, &pdp[7 - i], 4); 1377 } 1378 1379 static int prepare_mm(struct intel_vgpu_workload *workload) 1380 { 1381 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1382 struct intel_vgpu_mm *mm; 1383 struct intel_vgpu *vgpu = workload->vgpu; 1384 enum intel_gvt_gtt_type root_entry_type; 1385 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1386 1387 switch (desc->addressing_mode) { 1388 case 1: /* legacy 32-bit */ 1389 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1390 break; 1391 case 3: /* legacy 64-bit */ 1392 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1393 break; 1394 default: 1395 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1396 return -EINVAL; 1397 } 1398 1399 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1400 1401 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1402 if (IS_ERR(mm)) 1403 return PTR_ERR(mm); 1404 1405 workload->shadow_mm = mm; 1406 return 0; 1407 } 1408 1409 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1410 ((a)->lrca == (b)->lrca)) 1411 1412 #define get_last_workload(q) \ 1413 (list_empty(q) ? NULL : container_of(q->prev, \ 1414 struct intel_vgpu_workload, list)) 1415 /** 1416 * intel_vgpu_create_workload - create a vGPU workload 1417 * @vgpu: a vGPU 1418 * @ring_id: ring index 1419 * @desc: a guest context descriptor 1420 * 1421 * This function is called when creating a vGPU workload. 1422 * 1423 * Returns: 1424 * struct intel_vgpu_workload * on success, negative error code in 1425 * pointer if failed. 1426 * 1427 */ 1428 struct intel_vgpu_workload * 1429 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1430 struct execlist_ctx_descriptor_format *desc) 1431 { 1432 struct intel_vgpu_submission *s = &vgpu->submission; 1433 struct list_head *q = workload_q_head(vgpu, ring_id); 1434 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1435 struct intel_vgpu_workload *workload = NULL; 1436 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1437 u64 ring_context_gpa; 1438 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1439 u32 guest_head; 1440 int ret; 1441 1442 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1443 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1444 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1445 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1446 return ERR_PTR(-EINVAL); 1447 } 1448 1449 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1450 RING_CTX_OFF(ring_header.val), &head, 4); 1451 1452 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1453 RING_CTX_OFF(ring_tail.val), &tail, 4); 1454 1455 guest_head = head; 1456 1457 head &= RB_HEAD_OFF_MASK; 1458 tail &= RB_TAIL_OFF_MASK; 1459 1460 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1461 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1462 gvt_dbg_el("ctx head %x real head %lx\n", head, 1463 last_workload->rb_tail); 1464 /* 1465 * cannot use guest context head pointer here, 1466 * as it might not be updated at this time 1467 */ 1468 head = last_workload->rb_tail; 1469 } 1470 1471 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1472 1473 /* record some ring buffer register values for scan and shadow */ 1474 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1475 RING_CTX_OFF(rb_start.val), &start, 4); 1476 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1477 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1478 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1479 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1480 1481 workload = alloc_workload(vgpu); 1482 if (IS_ERR(workload)) 1483 return workload; 1484 1485 workload->ring_id = ring_id; 1486 workload->ctx_desc = *desc; 1487 workload->ring_context_gpa = ring_context_gpa; 1488 workload->rb_head = head; 1489 workload->guest_rb_head = guest_head; 1490 workload->rb_tail = tail; 1491 workload->rb_start = start; 1492 workload->rb_ctl = ctl; 1493 1494 if (ring_id == RCS0) { 1495 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1496 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1497 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1498 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1499 1500 workload->wa_ctx.indirect_ctx.guest_gma = 1501 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1502 workload->wa_ctx.indirect_ctx.size = 1503 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1504 CACHELINE_BYTES; 1505 workload->wa_ctx.per_ctx.guest_gma = 1506 per_ctx & PER_CTX_ADDR_MASK; 1507 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1508 } 1509 1510 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1511 workload, ring_id, head, tail, start, ctl); 1512 1513 ret = prepare_mm(workload); 1514 if (ret) { 1515 kmem_cache_free(s->workloads, workload); 1516 return ERR_PTR(ret); 1517 } 1518 1519 /* Only scan and shadow the first workload in the queue 1520 * as there is only one pre-allocated buf-obj for shadow. 1521 */ 1522 if (list_empty(workload_q_head(vgpu, ring_id))) { 1523 intel_runtime_pm_get(dev_priv); 1524 mutex_lock(&dev_priv->drm.struct_mutex); 1525 ret = intel_gvt_scan_and_shadow_workload(workload); 1526 mutex_unlock(&dev_priv->drm.struct_mutex); 1527 intel_runtime_pm_put_unchecked(dev_priv); 1528 } 1529 1530 if (ret) { 1531 if (vgpu_is_vm_unhealthy(ret)) 1532 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1533 intel_vgpu_destroy_workload(workload); 1534 return ERR_PTR(ret); 1535 } 1536 1537 return workload; 1538 } 1539 1540 /** 1541 * intel_vgpu_queue_workload - Qeue a vGPU workload 1542 * @workload: the workload to queue in 1543 */ 1544 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1545 { 1546 list_add_tail(&workload->list, 1547 workload_q_head(workload->vgpu, workload->ring_id)); 1548 intel_gvt_kick_schedule(workload->vgpu->gvt); 1549 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1550 } 1551