1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "i915_drv.h" 39 #include "gvt.h" 40 41 #define RING_CTX_OFF(x) \ 42 offsetof(struct execlist_ring_context, x) 43 44 static void set_context_pdp_root_pointer( 45 struct execlist_ring_context *ring_context, 46 u32 pdp[8]) 47 { 48 int i; 49 50 for (i = 0; i < 8; i++) 51 ring_context->pdps[i].val = pdp[7 - i]; 52 } 53 54 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 55 { 56 struct drm_i915_gem_object *ctx_obj = 57 workload->req->hw_context->state->obj; 58 struct execlist_ring_context *shadow_ring_context; 59 struct page *page; 60 61 if (WARN_ON(!workload->shadow_mm)) 62 return; 63 64 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 65 return; 66 67 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 68 shadow_ring_context = kmap(page); 69 set_context_pdp_root_pointer(shadow_ring_context, 70 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 71 kunmap(page); 72 } 73 74 /* 75 * when populating shadow ctx from guest, we should not overrride oa related 76 * registers, so that they will not be overlapped by guest oa configs. Thus 77 * made it possible to capture oa data from host for both host and guests. 78 */ 79 static void sr_oa_regs(struct intel_vgpu_workload *workload, 80 u32 *reg_state, bool save) 81 { 82 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 83 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 84 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 85 int i = 0; 86 u32 flex_mmio[] = { 87 i915_mmio_reg_offset(EU_PERF_CNTL0), 88 i915_mmio_reg_offset(EU_PERF_CNTL1), 89 i915_mmio_reg_offset(EU_PERF_CNTL2), 90 i915_mmio_reg_offset(EU_PERF_CNTL3), 91 i915_mmio_reg_offset(EU_PERF_CNTL4), 92 i915_mmio_reg_offset(EU_PERF_CNTL5), 93 i915_mmio_reg_offset(EU_PERF_CNTL6), 94 }; 95 96 if (workload->ring_id != RCS) 97 return; 98 99 if (save) { 100 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 101 102 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 103 u32 state_offset = ctx_flexeu0 + i * 2; 104 105 workload->flex_mmio[i] = reg_state[state_offset + 1]; 106 } 107 } else { 108 reg_state[ctx_oactxctrl] = 109 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 110 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 111 112 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 113 u32 state_offset = ctx_flexeu0 + i * 2; 114 u32 mmio = flex_mmio[i]; 115 116 reg_state[state_offset] = mmio; 117 reg_state[state_offset + 1] = workload->flex_mmio[i]; 118 } 119 } 120 } 121 122 static int populate_shadow_context(struct intel_vgpu_workload *workload) 123 { 124 struct intel_vgpu *vgpu = workload->vgpu; 125 struct intel_gvt *gvt = vgpu->gvt; 126 int ring_id = workload->ring_id; 127 struct drm_i915_gem_object *ctx_obj = 128 workload->req->hw_context->state->obj; 129 struct execlist_ring_context *shadow_ring_context; 130 struct page *page; 131 void *dst; 132 unsigned long context_gpa, context_page_num; 133 int i; 134 135 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 136 shadow_ring_context = kmap(page); 137 138 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 139 #define COPY_REG(name) \ 140 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 141 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 142 #define COPY_REG_MASKED(name) {\ 143 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 144 + RING_CTX_OFF(name.val),\ 145 &shadow_ring_context->name.val, 4);\ 146 shadow_ring_context->name.val |= 0xffff << 16;\ 147 } 148 149 COPY_REG_MASKED(ctx_ctrl); 150 COPY_REG(ctx_timestamp); 151 152 if (ring_id == RCS) { 153 COPY_REG(bb_per_ctx_ptr); 154 COPY_REG(rcs_indirect_ctx); 155 COPY_REG(rcs_indirect_ctx_offset); 156 } 157 #undef COPY_REG 158 #undef COPY_REG_MASKED 159 160 intel_gvt_hypervisor_read_gpa(vgpu, 161 workload->ring_context_gpa + 162 sizeof(*shadow_ring_context), 163 (void *)shadow_ring_context + 164 sizeof(*shadow_ring_context), 165 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 166 167 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 168 kunmap(page); 169 170 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 171 return 0; 172 173 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 174 workload->ctx_desc.lrca); 175 176 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 177 178 context_page_num = context_page_num >> PAGE_SHIFT; 179 180 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS) 181 context_page_num = 19; 182 183 i = 2; 184 while (i < context_page_num) { 185 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 186 (u32)((workload->ctx_desc.lrca + i) << 187 I915_GTT_PAGE_SHIFT)); 188 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 189 gvt_vgpu_err("Invalid guest context descriptor\n"); 190 return -EFAULT; 191 } 192 193 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 194 dst = kmap(page); 195 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 196 I915_GTT_PAGE_SIZE); 197 kunmap(page); 198 i++; 199 } 200 return 0; 201 } 202 203 static inline bool is_gvt_request(struct i915_request *req) 204 { 205 return i915_gem_context_force_single_submission(req->gem_context); 206 } 207 208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 209 { 210 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 211 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 212 i915_reg_t reg; 213 214 reg = RING_INSTDONE(ring_base); 215 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 216 reg = RING_ACTHD(ring_base); 217 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 218 reg = RING_ACTHD_UDW(ring_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 220 } 221 222 static int shadow_context_status_change(struct notifier_block *nb, 223 unsigned long action, void *data) 224 { 225 struct i915_request *req = data; 226 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 227 shadow_ctx_notifier_block[req->engine->id]); 228 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 229 enum intel_engine_id ring_id = req->engine->id; 230 struct intel_vgpu_workload *workload; 231 unsigned long flags; 232 233 if (!is_gvt_request(req)) { 234 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 235 if (action == INTEL_CONTEXT_SCHEDULE_IN && 236 scheduler->engine_owner[ring_id]) { 237 /* Switch ring from vGPU to host. */ 238 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 239 NULL, ring_id); 240 scheduler->engine_owner[ring_id] = NULL; 241 } 242 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 243 244 return NOTIFY_OK; 245 } 246 247 workload = scheduler->current_workload[ring_id]; 248 if (unlikely(!workload)) 249 return NOTIFY_OK; 250 251 switch (action) { 252 case INTEL_CONTEXT_SCHEDULE_IN: 253 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 254 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 255 /* Switch ring from host to vGPU or vGPU to vGPU. */ 256 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 257 workload->vgpu, ring_id); 258 scheduler->engine_owner[ring_id] = workload->vgpu; 259 } else 260 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 261 ring_id, workload->vgpu->id); 262 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 263 atomic_set(&workload->shadow_ctx_active, 1); 264 break; 265 case INTEL_CONTEXT_SCHEDULE_OUT: 266 save_ring_hw_state(workload->vgpu, ring_id); 267 atomic_set(&workload->shadow_ctx_active, 0); 268 break; 269 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 270 save_ring_hw_state(workload->vgpu, ring_id); 271 break; 272 default: 273 WARN_ON(1); 274 return NOTIFY_OK; 275 } 276 wake_up(&workload->shadow_ctx_status_wq); 277 return NOTIFY_OK; 278 } 279 280 static void shadow_context_descriptor_update(struct intel_context *ce) 281 { 282 u64 desc = 0; 283 284 desc = ce->lrc_desc; 285 286 /* Update bits 0-11 of the context descriptor which includes flags 287 * like GEN8_CTX_* cached in desc_template 288 */ 289 desc &= U64_MAX << 12; 290 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1); 291 292 ce->lrc_desc = desc; 293 } 294 295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 296 { 297 struct intel_vgpu *vgpu = workload->vgpu; 298 struct i915_request *req = workload->req; 299 void *shadow_ring_buffer_va; 300 u32 *cs; 301 302 if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)) 303 && is_inhibit_context(req->hw_context)) 304 intel_vgpu_restore_inhibit_context(vgpu, req); 305 306 /* allocate shadow ring buffer */ 307 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 308 if (IS_ERR(cs)) { 309 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 310 workload->rb_len); 311 return PTR_ERR(cs); 312 } 313 314 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 315 316 /* get shadow ring buffer va */ 317 workload->shadow_ring_buffer_va = cs; 318 319 memcpy(cs, shadow_ring_buffer_va, 320 workload->rb_len); 321 322 cs += workload->rb_len / sizeof(u32); 323 intel_ring_advance(workload->req, cs); 324 325 return 0; 326 } 327 328 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 329 { 330 if (!wa_ctx->indirect_ctx.obj) 331 return; 332 333 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 334 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 335 } 336 337 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 338 struct i915_gem_context *ctx) 339 { 340 struct intel_vgpu_mm *mm = workload->shadow_mm; 341 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; 342 int i = 0; 343 344 if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed) 345 return -1; 346 347 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 348 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0]; 349 } else { 350 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 351 px_dma(ppgtt->pdp.page_directory[i]) = 352 mm->ppgtt_mm.shadow_pdps[i]; 353 } 354 } 355 356 return 0; 357 } 358 359 /** 360 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 361 * shadow it as well, include ringbuffer,wa_ctx and ctx. 362 * @workload: an abstract entity for each execlist submission. 363 * 364 * This function is called before the workload submitting to i915, to make 365 * sure the content of the workload is valid. 366 */ 367 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 368 { 369 struct intel_vgpu *vgpu = workload->vgpu; 370 struct intel_vgpu_submission *s = &vgpu->submission; 371 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 372 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 373 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 374 struct intel_context *ce; 375 struct i915_request *rq; 376 int ret; 377 378 lockdep_assert_held(&dev_priv->drm.struct_mutex); 379 380 if (workload->req) 381 return 0; 382 383 ret = set_context_ppgtt_from_shadow(workload, shadow_ctx); 384 if (ret < 0) { 385 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 386 return ret; 387 } 388 389 /* pin shadow context by gvt even the shadow context will be pinned 390 * when i915 alloc request. That is because gvt will update the guest 391 * context from shadow context when workload is completed, and at that 392 * moment, i915 may already unpined the shadow context to make the 393 * shadow_ctx pages invalid. So gvt need to pin itself. After update 394 * the guest context, gvt can unpin the shadow_ctx safely. 395 */ 396 ce = intel_context_pin(shadow_ctx, engine); 397 if (IS_ERR(ce)) { 398 gvt_vgpu_err("fail to pin shadow context\n"); 399 return PTR_ERR(ce); 400 } 401 402 shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 403 shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode << 404 GEN8_CTX_ADDRESSING_MODE_SHIFT; 405 406 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 407 shadow_context_descriptor_update(ce); 408 409 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 410 if (ret) 411 goto err_unpin; 412 413 if ((workload->ring_id == RCS) && 414 (workload->wa_ctx.indirect_ctx.size != 0)) { 415 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 416 if (ret) 417 goto err_shadow; 418 } 419 420 rq = i915_request_alloc(engine, shadow_ctx); 421 if (IS_ERR(rq)) { 422 gvt_vgpu_err("fail to allocate gem request\n"); 423 ret = PTR_ERR(rq); 424 goto err_shadow; 425 } 426 workload->req = i915_request_get(rq); 427 428 ret = populate_shadow_context(workload); 429 if (ret) 430 goto err_req; 431 432 return 0; 433 err_req: 434 rq = fetch_and_zero(&workload->req); 435 i915_request_put(rq); 436 err_shadow: 437 release_shadow_wa_ctx(&workload->wa_ctx); 438 err_unpin: 439 intel_context_unpin(ce); 440 return ret; 441 } 442 443 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 444 445 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 446 { 447 struct intel_gvt *gvt = workload->vgpu->gvt; 448 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 449 struct intel_vgpu_shadow_bb *bb; 450 int ret; 451 452 list_for_each_entry(bb, &workload->shadow_bb, list) { 453 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 454 * is only updated into ring_scan_buffer, not real ring address 455 * allocated in later copy_workload_to_ring_buffer. pls be noted 456 * shadow_ring_buffer_va is now pointed to real ring buffer va 457 * in copy_workload_to_ring_buffer. 458 */ 459 460 if (bb->bb_offset) 461 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 462 + bb->bb_offset; 463 464 if (bb->ppgtt) { 465 /* for non-priv bb, scan&shadow is only for 466 * debugging purpose, so the content of shadow bb 467 * is the same as original bb. Therefore, 468 * here, rather than switch to shadow bb's gma 469 * address, we directly use original batch buffer's 470 * gma address, and send original bb to hardware 471 * directly 472 */ 473 if (bb->clflush & CLFLUSH_AFTER) { 474 drm_clflush_virt_range(bb->va, 475 bb->obj->base.size); 476 bb->clflush &= ~CLFLUSH_AFTER; 477 } 478 i915_gem_obj_finish_shmem_access(bb->obj); 479 bb->accessing = false; 480 481 } else { 482 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 483 NULL, 0, 0, 0); 484 if (IS_ERR(bb->vma)) { 485 ret = PTR_ERR(bb->vma); 486 goto err; 487 } 488 489 /* relocate shadow batch buffer */ 490 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 491 if (gmadr_bytes == 8) 492 bb->bb_start_cmd_va[2] = 0; 493 494 /* No one is going to touch shadow bb from now on. */ 495 if (bb->clflush & CLFLUSH_AFTER) { 496 drm_clflush_virt_range(bb->va, 497 bb->obj->base.size); 498 bb->clflush &= ~CLFLUSH_AFTER; 499 } 500 501 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 502 false); 503 if (ret) 504 goto err; 505 506 i915_gem_obj_finish_shmem_access(bb->obj); 507 bb->accessing = false; 508 509 ret = i915_vma_move_to_active(bb->vma, 510 workload->req, 511 0); 512 if (ret) 513 goto err; 514 } 515 } 516 return 0; 517 err: 518 release_shadow_batch_buffer(workload); 519 return ret; 520 } 521 522 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 523 { 524 struct intel_vgpu_workload *workload = 525 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 526 struct i915_request *rq = workload->req; 527 struct execlist_ring_context *shadow_ring_context = 528 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 529 530 shadow_ring_context->bb_per_ctx_ptr.val = 531 (shadow_ring_context->bb_per_ctx_ptr.val & 532 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 533 shadow_ring_context->rcs_indirect_ctx.val = 534 (shadow_ring_context->rcs_indirect_ctx.val & 535 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 536 } 537 538 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 539 { 540 struct i915_vma *vma; 541 unsigned char *per_ctx_va = 542 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 543 wa_ctx->indirect_ctx.size; 544 545 if (wa_ctx->indirect_ctx.size == 0) 546 return 0; 547 548 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 549 0, CACHELINE_BYTES, 0); 550 if (IS_ERR(vma)) 551 return PTR_ERR(vma); 552 553 /* FIXME: we are not tracking our pinned VMA leaving it 554 * up to the core to fix up the stray pin_count upon 555 * free. 556 */ 557 558 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 559 560 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 561 memset(per_ctx_va, 0, CACHELINE_BYTES); 562 563 update_wa_ctx_2_shadow_ctx(wa_ctx); 564 return 0; 565 } 566 567 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 568 { 569 struct intel_vgpu *vgpu = workload->vgpu; 570 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 571 struct intel_vgpu_shadow_bb *bb, *pos; 572 573 if (list_empty(&workload->shadow_bb)) 574 return; 575 576 bb = list_first_entry(&workload->shadow_bb, 577 struct intel_vgpu_shadow_bb, list); 578 579 mutex_lock(&dev_priv->drm.struct_mutex); 580 581 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 582 if (bb->obj) { 583 if (bb->accessing) 584 i915_gem_obj_finish_shmem_access(bb->obj); 585 586 if (bb->va && !IS_ERR(bb->va)) 587 i915_gem_object_unpin_map(bb->obj); 588 589 if (bb->vma && !IS_ERR(bb->vma)) { 590 i915_vma_unpin(bb->vma); 591 i915_vma_close(bb->vma); 592 } 593 __i915_gem_object_release_unless_active(bb->obj); 594 } 595 list_del(&bb->list); 596 kfree(bb); 597 } 598 599 mutex_unlock(&dev_priv->drm.struct_mutex); 600 } 601 602 static int prepare_workload(struct intel_vgpu_workload *workload) 603 { 604 struct intel_vgpu *vgpu = workload->vgpu; 605 int ret = 0; 606 607 ret = intel_vgpu_pin_mm(workload->shadow_mm); 608 if (ret) { 609 gvt_vgpu_err("fail to vgpu pin mm\n"); 610 return ret; 611 } 612 613 update_shadow_pdps(workload); 614 615 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 616 if (ret) { 617 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 618 goto err_unpin_mm; 619 } 620 621 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 622 if (ret) { 623 gvt_vgpu_err("fail to flush post shadow\n"); 624 goto err_unpin_mm; 625 } 626 627 ret = copy_workload_to_ring_buffer(workload); 628 if (ret) { 629 gvt_vgpu_err("fail to generate request\n"); 630 goto err_unpin_mm; 631 } 632 633 ret = prepare_shadow_batch_buffer(workload); 634 if (ret) { 635 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 636 goto err_unpin_mm; 637 } 638 639 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 640 if (ret) { 641 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 642 goto err_shadow_batch; 643 } 644 645 if (workload->prepare) { 646 ret = workload->prepare(workload); 647 if (ret) 648 goto err_shadow_wa_ctx; 649 } 650 651 return 0; 652 err_shadow_wa_ctx: 653 release_shadow_wa_ctx(&workload->wa_ctx); 654 err_shadow_batch: 655 release_shadow_batch_buffer(workload); 656 err_unpin_mm: 657 intel_vgpu_unpin_mm(workload->shadow_mm); 658 return ret; 659 } 660 661 static int dispatch_workload(struct intel_vgpu_workload *workload) 662 { 663 struct intel_vgpu *vgpu = workload->vgpu; 664 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 665 int ring_id = workload->ring_id; 666 int ret; 667 668 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 669 ring_id, workload); 670 671 mutex_lock(&vgpu->vgpu_lock); 672 mutex_lock(&dev_priv->drm.struct_mutex); 673 674 ret = intel_gvt_scan_and_shadow_workload(workload); 675 if (ret) 676 goto out; 677 678 ret = prepare_workload(workload); 679 680 out: 681 if (ret) 682 workload->status = ret; 683 684 if (!IS_ERR_OR_NULL(workload->req)) { 685 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 686 ring_id, workload->req); 687 i915_request_add(workload->req); 688 workload->dispatched = true; 689 } 690 691 mutex_unlock(&dev_priv->drm.struct_mutex); 692 mutex_unlock(&vgpu->vgpu_lock); 693 return ret; 694 } 695 696 static struct intel_vgpu_workload *pick_next_workload( 697 struct intel_gvt *gvt, int ring_id) 698 { 699 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 700 struct intel_vgpu_workload *workload = NULL; 701 702 mutex_lock(&gvt->sched_lock); 703 704 /* 705 * no current vgpu / will be scheduled out / no workload 706 * bail out 707 */ 708 if (!scheduler->current_vgpu) { 709 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 710 goto out; 711 } 712 713 if (scheduler->need_reschedule) { 714 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 715 goto out; 716 } 717 718 if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 719 goto out; 720 721 /* 722 * still have current workload, maybe the workload disptacher 723 * fail to submit it for some reason, resubmit it. 724 */ 725 if (scheduler->current_workload[ring_id]) { 726 workload = scheduler->current_workload[ring_id]; 727 gvt_dbg_sched("ring id %d still have current workload %p\n", 728 ring_id, workload); 729 goto out; 730 } 731 732 /* 733 * pick a workload as current workload 734 * once current workload is set, schedule policy routines 735 * will wait the current workload is finished when trying to 736 * schedule out a vgpu. 737 */ 738 scheduler->current_workload[ring_id] = container_of( 739 workload_q_head(scheduler->current_vgpu, ring_id)->next, 740 struct intel_vgpu_workload, list); 741 742 workload = scheduler->current_workload[ring_id]; 743 744 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 745 746 atomic_inc(&workload->vgpu->submission.running_workload_num); 747 out: 748 mutex_unlock(&gvt->sched_lock); 749 return workload; 750 } 751 752 static void update_guest_context(struct intel_vgpu_workload *workload) 753 { 754 struct i915_request *rq = workload->req; 755 struct intel_vgpu *vgpu = workload->vgpu; 756 struct intel_gvt *gvt = vgpu->gvt; 757 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 758 struct execlist_ring_context *shadow_ring_context; 759 struct page *page; 760 void *src; 761 unsigned long context_gpa, context_page_num; 762 int i; 763 764 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 765 workload->ctx_desc.lrca); 766 767 context_page_num = rq->engine->context_size; 768 context_page_num = context_page_num >> PAGE_SHIFT; 769 770 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS) 771 context_page_num = 19; 772 773 i = 2; 774 775 while (i < context_page_num) { 776 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 777 (u32)((workload->ctx_desc.lrca + i) << 778 I915_GTT_PAGE_SHIFT)); 779 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 780 gvt_vgpu_err("invalid guest context descriptor\n"); 781 return; 782 } 783 784 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 785 src = kmap(page); 786 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 787 I915_GTT_PAGE_SIZE); 788 kunmap(page); 789 i++; 790 } 791 792 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 793 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 794 795 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 796 shadow_ring_context = kmap(page); 797 798 #define COPY_REG(name) \ 799 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 800 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 801 802 COPY_REG(ctx_ctrl); 803 COPY_REG(ctx_timestamp); 804 805 #undef COPY_REG 806 807 intel_gvt_hypervisor_write_gpa(vgpu, 808 workload->ring_context_gpa + 809 sizeof(*shadow_ring_context), 810 (void *)shadow_ring_context + 811 sizeof(*shadow_ring_context), 812 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 813 814 kunmap(page); 815 } 816 817 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 818 unsigned long engine_mask) 819 { 820 struct intel_vgpu_submission *s = &vgpu->submission; 821 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 822 struct intel_engine_cs *engine; 823 struct intel_vgpu_workload *pos, *n; 824 unsigned int tmp; 825 826 /* free the unsubmited workloads in the queues. */ 827 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 828 list_for_each_entry_safe(pos, n, 829 &s->workload_q_head[engine->id], list) { 830 list_del_init(&pos->list); 831 intel_vgpu_destroy_workload(pos); 832 } 833 clear_bit(engine->id, s->shadow_ctx_desc_updated); 834 } 835 } 836 837 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 838 { 839 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 840 struct intel_vgpu_workload *workload = 841 scheduler->current_workload[ring_id]; 842 struct intel_vgpu *vgpu = workload->vgpu; 843 struct intel_vgpu_submission *s = &vgpu->submission; 844 struct i915_request *rq = workload->req; 845 int event; 846 847 mutex_lock(&vgpu->vgpu_lock); 848 mutex_lock(&gvt->sched_lock); 849 850 /* For the workload w/ request, needs to wait for the context 851 * switch to make sure request is completed. 852 * For the workload w/o request, directly complete the workload. 853 */ 854 if (rq) { 855 wait_event(workload->shadow_ctx_status_wq, 856 !atomic_read(&workload->shadow_ctx_active)); 857 858 /* If this request caused GPU hang, req->fence.error will 859 * be set to -EIO. Use -EIO to set workload status so 860 * that when this request caused GPU hang, didn't trigger 861 * context switch interrupt to guest. 862 */ 863 if (likely(workload->status == -EINPROGRESS)) { 864 if (workload->req->fence.error == -EIO) 865 workload->status = -EIO; 866 else 867 workload->status = 0; 868 } 869 870 if (!workload->status && !(vgpu->resetting_eng & 871 ENGINE_MASK(ring_id))) { 872 update_guest_context(workload); 873 874 for_each_set_bit(event, workload->pending_events, 875 INTEL_GVT_EVENT_MAX) 876 intel_vgpu_trigger_virtual_event(vgpu, event); 877 } 878 879 /* unpin shadow ctx as the shadow_ctx update is done */ 880 mutex_lock(&rq->i915->drm.struct_mutex); 881 intel_context_unpin(rq->hw_context); 882 mutex_unlock(&rq->i915->drm.struct_mutex); 883 884 i915_request_put(fetch_and_zero(&workload->req)); 885 } 886 887 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 888 ring_id, workload, workload->status); 889 890 scheduler->current_workload[ring_id] = NULL; 891 892 list_del_init(&workload->list); 893 894 if (!workload->status) { 895 release_shadow_batch_buffer(workload); 896 release_shadow_wa_ctx(&workload->wa_ctx); 897 } 898 899 if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) { 900 /* if workload->status is not successful means HW GPU 901 * has occurred GPU hang or something wrong with i915/GVT, 902 * and GVT won't inject context switch interrupt to guest. 903 * So this error is a vGPU hang actually to the guest. 904 * According to this we should emunlate a vGPU hang. If 905 * there are pending workloads which are already submitted 906 * from guest, we should clean them up like HW GPU does. 907 * 908 * if it is in middle of engine resetting, the pending 909 * workloads won't be submitted to HW GPU and will be 910 * cleaned up during the resetting process later, so doing 911 * the workload clean up here doesn't have any impact. 912 **/ 913 intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id)); 914 } 915 916 workload->complete(workload); 917 918 atomic_dec(&s->running_workload_num); 919 wake_up(&scheduler->workload_complete_wq); 920 921 if (gvt->scheduler.need_reschedule) 922 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 923 924 mutex_unlock(&gvt->sched_lock); 925 mutex_unlock(&vgpu->vgpu_lock); 926 } 927 928 struct workload_thread_param { 929 struct intel_gvt *gvt; 930 int ring_id; 931 }; 932 933 static int workload_thread(void *priv) 934 { 935 struct workload_thread_param *p = (struct workload_thread_param *)priv; 936 struct intel_gvt *gvt = p->gvt; 937 int ring_id = p->ring_id; 938 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 939 struct intel_vgpu_workload *workload = NULL; 940 struct intel_vgpu *vgpu = NULL; 941 int ret; 942 bool need_force_wake = IS_SKYLAKE(gvt->dev_priv) 943 || IS_KABYLAKE(gvt->dev_priv) 944 || IS_BROXTON(gvt->dev_priv); 945 DEFINE_WAIT_FUNC(wait, woken_wake_function); 946 947 kfree(p); 948 949 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 950 951 while (!kthread_should_stop()) { 952 add_wait_queue(&scheduler->waitq[ring_id], &wait); 953 do { 954 workload = pick_next_workload(gvt, ring_id); 955 if (workload) 956 break; 957 wait_woken(&wait, TASK_INTERRUPTIBLE, 958 MAX_SCHEDULE_TIMEOUT); 959 } while (!kthread_should_stop()); 960 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 961 962 if (!workload) 963 break; 964 965 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 966 workload->ring_id, workload, 967 workload->vgpu->id); 968 969 intel_runtime_pm_get(gvt->dev_priv); 970 971 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 972 workload->ring_id, workload); 973 974 if (need_force_wake) 975 intel_uncore_forcewake_get(gvt->dev_priv, 976 FORCEWAKE_ALL); 977 978 ret = dispatch_workload(workload); 979 980 if (ret) { 981 vgpu = workload->vgpu; 982 gvt_vgpu_err("fail to dispatch workload, skip\n"); 983 goto complete; 984 } 985 986 gvt_dbg_sched("ring id %d wait workload %p\n", 987 workload->ring_id, workload); 988 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 989 990 complete: 991 gvt_dbg_sched("will complete workload %p, status: %d\n", 992 workload, workload->status); 993 994 complete_current_workload(gvt, ring_id); 995 996 if (need_force_wake) 997 intel_uncore_forcewake_put(gvt->dev_priv, 998 FORCEWAKE_ALL); 999 1000 intel_runtime_pm_put(gvt->dev_priv); 1001 if (ret && (vgpu_is_vm_unhealthy(ret))) 1002 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1003 } 1004 return 0; 1005 } 1006 1007 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1008 { 1009 struct intel_vgpu_submission *s = &vgpu->submission; 1010 struct intel_gvt *gvt = vgpu->gvt; 1011 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1012 1013 if (atomic_read(&s->running_workload_num)) { 1014 gvt_dbg_sched("wait vgpu idle\n"); 1015 1016 wait_event(scheduler->workload_complete_wq, 1017 !atomic_read(&s->running_workload_num)); 1018 } 1019 } 1020 1021 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1022 { 1023 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1024 struct intel_engine_cs *engine; 1025 enum intel_engine_id i; 1026 1027 gvt_dbg_core("clean workload scheduler\n"); 1028 1029 for_each_engine(engine, gvt->dev_priv, i) { 1030 atomic_notifier_chain_unregister( 1031 &engine->context_status_notifier, 1032 &gvt->shadow_ctx_notifier_block[i]); 1033 kthread_stop(scheduler->thread[i]); 1034 } 1035 } 1036 1037 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1038 { 1039 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1040 struct workload_thread_param *param = NULL; 1041 struct intel_engine_cs *engine; 1042 enum intel_engine_id i; 1043 int ret; 1044 1045 gvt_dbg_core("init workload scheduler\n"); 1046 1047 init_waitqueue_head(&scheduler->workload_complete_wq); 1048 1049 for_each_engine(engine, gvt->dev_priv, i) { 1050 init_waitqueue_head(&scheduler->waitq[i]); 1051 1052 param = kzalloc(sizeof(*param), GFP_KERNEL); 1053 if (!param) { 1054 ret = -ENOMEM; 1055 goto err; 1056 } 1057 1058 param->gvt = gvt; 1059 param->ring_id = i; 1060 1061 scheduler->thread[i] = kthread_run(workload_thread, param, 1062 "gvt workload %d", i); 1063 if (IS_ERR(scheduler->thread[i])) { 1064 gvt_err("fail to create workload thread\n"); 1065 ret = PTR_ERR(scheduler->thread[i]); 1066 goto err; 1067 } 1068 1069 gvt->shadow_ctx_notifier_block[i].notifier_call = 1070 shadow_context_status_change; 1071 atomic_notifier_chain_register(&engine->context_status_notifier, 1072 &gvt->shadow_ctx_notifier_block[i]); 1073 } 1074 return 0; 1075 err: 1076 intel_gvt_clean_workload_scheduler(gvt); 1077 kfree(param); 1078 param = NULL; 1079 return ret; 1080 } 1081 1082 static void 1083 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s) 1084 { 1085 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1086 int i; 1087 1088 if (i915_vm_is_48bit(&i915_ppgtt->vm)) 1089 px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4; 1090 else { 1091 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1092 px_dma(i915_ppgtt->pdp.page_directory[i]) = 1093 s->i915_context_pdps[i]; 1094 } 1095 } 1096 1097 /** 1098 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1099 * @vgpu: a vGPU 1100 * 1101 * This function is called when a vGPU is being destroyed. 1102 * 1103 */ 1104 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1105 { 1106 struct intel_vgpu_submission *s = &vgpu->submission; 1107 1108 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1109 i915_context_ppgtt_root_restore(s); 1110 i915_gem_context_put(s->shadow_ctx); 1111 kmem_cache_destroy(s->workloads); 1112 } 1113 1114 1115 /** 1116 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1117 * @vgpu: a vGPU 1118 * @engine_mask: engines expected to be reset 1119 * 1120 * This function is called when a vGPU is being destroyed. 1121 * 1122 */ 1123 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1124 unsigned long engine_mask) 1125 { 1126 struct intel_vgpu_submission *s = &vgpu->submission; 1127 1128 if (!s->active) 1129 return; 1130 1131 intel_vgpu_clean_workloads(vgpu, engine_mask); 1132 s->ops->reset(vgpu, engine_mask); 1133 } 1134 1135 static void 1136 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s) 1137 { 1138 struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt; 1139 int i; 1140 1141 if (i915_vm_is_48bit(&i915_ppgtt->vm)) 1142 s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4); 1143 else { 1144 for (i = 0; i < GEN8_3LVL_PDPES; i++) 1145 s->i915_context_pdps[i] = 1146 px_dma(i915_ppgtt->pdp.page_directory[i]); 1147 } 1148 } 1149 1150 /** 1151 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1152 * @vgpu: a vGPU 1153 * 1154 * This function is called when a vGPU is being created. 1155 * 1156 * Returns: 1157 * Zero on success, negative error code if failed. 1158 * 1159 */ 1160 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1161 { 1162 struct intel_vgpu_submission *s = &vgpu->submission; 1163 enum intel_engine_id i; 1164 struct intel_engine_cs *engine; 1165 int ret; 1166 1167 s->shadow_ctx = i915_gem_context_create_gvt( 1168 &vgpu->gvt->dev_priv->drm); 1169 if (IS_ERR(s->shadow_ctx)) 1170 return PTR_ERR(s->shadow_ctx); 1171 1172 i915_context_ppgtt_root_save(s); 1173 1174 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1175 1176 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1177 sizeof(struct intel_vgpu_workload), 0, 1178 SLAB_HWCACHE_ALIGN, 1179 offsetof(struct intel_vgpu_workload, rb_tail), 1180 sizeof_field(struct intel_vgpu_workload, rb_tail), 1181 NULL); 1182 1183 if (!s->workloads) { 1184 ret = -ENOMEM; 1185 goto out_shadow_ctx; 1186 } 1187 1188 for_each_engine(engine, vgpu->gvt->dev_priv, i) 1189 INIT_LIST_HEAD(&s->workload_q_head[i]); 1190 1191 atomic_set(&s->running_workload_num, 0); 1192 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1193 1194 return 0; 1195 1196 out_shadow_ctx: 1197 i915_gem_context_put(s->shadow_ctx); 1198 return ret; 1199 } 1200 1201 /** 1202 * intel_vgpu_select_submission_ops - select virtual submission interface 1203 * @vgpu: a vGPU 1204 * @engine_mask: either ALL_ENGINES or target engine mask 1205 * @interface: expected vGPU virtual submission interface 1206 * 1207 * This function is called when guest configures submission interface. 1208 * 1209 * Returns: 1210 * Zero on success, negative error code if failed. 1211 * 1212 */ 1213 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1214 unsigned long engine_mask, 1215 unsigned int interface) 1216 { 1217 struct intel_vgpu_submission *s = &vgpu->submission; 1218 const struct intel_vgpu_submission_ops *ops[] = { 1219 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1220 &intel_vgpu_execlist_submission_ops, 1221 }; 1222 int ret; 1223 1224 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1225 return -EINVAL; 1226 1227 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1228 return -EINVAL; 1229 1230 if (s->active) 1231 s->ops->clean(vgpu, engine_mask); 1232 1233 if (interface == 0) { 1234 s->ops = NULL; 1235 s->virtual_submission_interface = 0; 1236 s->active = false; 1237 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1238 return 0; 1239 } 1240 1241 ret = ops[interface]->init(vgpu, engine_mask); 1242 if (ret) 1243 return ret; 1244 1245 s->ops = ops[interface]; 1246 s->virtual_submission_interface = interface; 1247 s->active = true; 1248 1249 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1250 vgpu->id, s->ops->name); 1251 1252 return 0; 1253 } 1254 1255 /** 1256 * intel_vgpu_destroy_workload - destroy a vGPU workload 1257 * @workload: workload to destroy 1258 * 1259 * This function is called when destroy a vGPU workload. 1260 * 1261 */ 1262 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1263 { 1264 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1265 1266 if (workload->shadow_mm) 1267 intel_vgpu_mm_put(workload->shadow_mm); 1268 1269 kmem_cache_free(s->workloads, workload); 1270 } 1271 1272 static struct intel_vgpu_workload * 1273 alloc_workload(struct intel_vgpu *vgpu) 1274 { 1275 struct intel_vgpu_submission *s = &vgpu->submission; 1276 struct intel_vgpu_workload *workload; 1277 1278 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1279 if (!workload) 1280 return ERR_PTR(-ENOMEM); 1281 1282 INIT_LIST_HEAD(&workload->list); 1283 INIT_LIST_HEAD(&workload->shadow_bb); 1284 1285 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1286 atomic_set(&workload->shadow_ctx_active, 0); 1287 1288 workload->status = -EINPROGRESS; 1289 workload->vgpu = vgpu; 1290 1291 return workload; 1292 } 1293 1294 #define RING_CTX_OFF(x) \ 1295 offsetof(struct execlist_ring_context, x) 1296 1297 static void read_guest_pdps(struct intel_vgpu *vgpu, 1298 u64 ring_context_gpa, u32 pdp[8]) 1299 { 1300 u64 gpa; 1301 int i; 1302 1303 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1304 1305 for (i = 0; i < 8; i++) 1306 intel_gvt_hypervisor_read_gpa(vgpu, 1307 gpa + i * 8, &pdp[7 - i], 4); 1308 } 1309 1310 static int prepare_mm(struct intel_vgpu_workload *workload) 1311 { 1312 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1313 struct intel_vgpu_mm *mm; 1314 struct intel_vgpu *vgpu = workload->vgpu; 1315 intel_gvt_gtt_type_t root_entry_type; 1316 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1317 1318 switch (desc->addressing_mode) { 1319 case 1: /* legacy 32-bit */ 1320 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1321 break; 1322 case 3: /* legacy 64-bit */ 1323 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1324 break; 1325 default: 1326 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1327 return -EINVAL; 1328 } 1329 1330 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1331 1332 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1333 if (IS_ERR(mm)) 1334 return PTR_ERR(mm); 1335 1336 workload->shadow_mm = mm; 1337 return 0; 1338 } 1339 1340 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1341 ((a)->lrca == (b)->lrca)) 1342 1343 #define get_last_workload(q) \ 1344 (list_empty(q) ? NULL : container_of(q->prev, \ 1345 struct intel_vgpu_workload, list)) 1346 /** 1347 * intel_vgpu_create_workload - create a vGPU workload 1348 * @vgpu: a vGPU 1349 * @ring_id: ring index 1350 * @desc: a guest context descriptor 1351 * 1352 * This function is called when creating a vGPU workload. 1353 * 1354 * Returns: 1355 * struct intel_vgpu_workload * on success, negative error code in 1356 * pointer if failed. 1357 * 1358 */ 1359 struct intel_vgpu_workload * 1360 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1361 struct execlist_ctx_descriptor_format *desc) 1362 { 1363 struct intel_vgpu_submission *s = &vgpu->submission; 1364 struct list_head *q = workload_q_head(vgpu, ring_id); 1365 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1366 struct intel_vgpu_workload *workload = NULL; 1367 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1368 u64 ring_context_gpa; 1369 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1370 int ret; 1371 1372 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1373 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1374 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1375 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1376 return ERR_PTR(-EINVAL); 1377 } 1378 1379 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1380 RING_CTX_OFF(ring_header.val), &head, 4); 1381 1382 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1383 RING_CTX_OFF(ring_tail.val), &tail, 4); 1384 1385 head &= RB_HEAD_OFF_MASK; 1386 tail &= RB_TAIL_OFF_MASK; 1387 1388 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1389 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1390 gvt_dbg_el("ctx head %x real head %lx\n", head, 1391 last_workload->rb_tail); 1392 /* 1393 * cannot use guest context head pointer here, 1394 * as it might not be updated at this time 1395 */ 1396 head = last_workload->rb_tail; 1397 } 1398 1399 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1400 1401 /* record some ring buffer register values for scan and shadow */ 1402 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1403 RING_CTX_OFF(rb_start.val), &start, 4); 1404 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1405 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1406 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1407 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1408 1409 workload = alloc_workload(vgpu); 1410 if (IS_ERR(workload)) 1411 return workload; 1412 1413 workload->ring_id = ring_id; 1414 workload->ctx_desc = *desc; 1415 workload->ring_context_gpa = ring_context_gpa; 1416 workload->rb_head = head; 1417 workload->rb_tail = tail; 1418 workload->rb_start = start; 1419 workload->rb_ctl = ctl; 1420 1421 if (ring_id == RCS) { 1422 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1423 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1424 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1425 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1426 1427 workload->wa_ctx.indirect_ctx.guest_gma = 1428 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1429 workload->wa_ctx.indirect_ctx.size = 1430 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1431 CACHELINE_BYTES; 1432 workload->wa_ctx.per_ctx.guest_gma = 1433 per_ctx & PER_CTX_ADDR_MASK; 1434 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1435 } 1436 1437 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1438 workload, ring_id, head, tail, start, ctl); 1439 1440 ret = prepare_mm(workload); 1441 if (ret) { 1442 kmem_cache_free(s->workloads, workload); 1443 return ERR_PTR(ret); 1444 } 1445 1446 /* Only scan and shadow the first workload in the queue 1447 * as there is only one pre-allocated buf-obj for shadow. 1448 */ 1449 if (list_empty(workload_q_head(vgpu, ring_id))) { 1450 intel_runtime_pm_get(dev_priv); 1451 mutex_lock(&dev_priv->drm.struct_mutex); 1452 ret = intel_gvt_scan_and_shadow_workload(workload); 1453 mutex_unlock(&dev_priv->drm.struct_mutex); 1454 intel_runtime_pm_put(dev_priv); 1455 } 1456 1457 if (ret && (vgpu_is_vm_unhealthy(ret))) { 1458 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1459 intel_vgpu_destroy_workload(workload); 1460 return ERR_PTR(ret); 1461 } 1462 1463 return workload; 1464 } 1465 1466 /** 1467 * intel_vgpu_queue_workload - Qeue a vGPU workload 1468 * @workload: the workload to queue in 1469 */ 1470 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1471 { 1472 list_add_tail(&workload->list, 1473 workload_q_head(workload->vgpu, workload->ring_id)); 1474 intel_gvt_kick_schedule(workload->vgpu->gvt); 1475 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1476 } 1477