xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 0c3df9ed)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136 	shadow_ring_context = kmap(page);
137 
138 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144 					      + RING_CTX_OFF(name.val),\
145 					      &shadow_ring_context->name.val, 4);\
146 		shadow_ring_context->name.val |= 0xffff << 16;\
147 	}
148 
149 	COPY_REG_MASKED(ctx_ctrl);
150 	COPY_REG(ctx_timestamp);
151 
152 	if (ring_id == RCS) {
153 		COPY_REG(bb_per_ctx_ptr);
154 		COPY_REG(rcs_indirect_ctx);
155 		COPY_REG(rcs_indirect_ctx_offset);
156 	}
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159 
160 	intel_gvt_hypervisor_read_gpa(vgpu,
161 			workload->ring_context_gpa +
162 			sizeof(*shadow_ring_context),
163 			(void *)shadow_ring_context +
164 			sizeof(*shadow_ring_context),
165 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168 	kunmap(page);
169 
170 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171 		return 0;
172 
173 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174 			workload->ctx_desc.lrca);
175 
176 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177 
178 	context_page_num = context_page_num >> PAGE_SHIFT;
179 
180 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
181 		context_page_num = 19;
182 
183 	i = 2;
184 	while (i < context_page_num) {
185 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186 				(u32)((workload->ctx_desc.lrca + i) <<
187 				I915_GTT_PAGE_SHIFT));
188 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189 			gvt_vgpu_err("Invalid guest context descriptor\n");
190 			return -EFAULT;
191 		}
192 
193 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194 		dst = kmap(page);
195 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196 				I915_GTT_PAGE_SIZE);
197 		kunmap(page);
198 		i++;
199 	}
200 	return 0;
201 }
202 
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205 	return i915_gem_context_force_single_submission(req->gem_context);
206 }
207 
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212 	i915_reg_t reg;
213 
214 	reg = RING_INSTDONE(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 	reg = RING_ACTHD_UDW(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221 
222 static int shadow_context_status_change(struct notifier_block *nb,
223 		unsigned long action, void *data)
224 {
225 	struct i915_request *req = data;
226 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227 				shadow_ctx_notifier_block[req->engine->id]);
228 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229 	enum intel_engine_id ring_id = req->engine->id;
230 	struct intel_vgpu_workload *workload;
231 	unsigned long flags;
232 
233 	if (!is_gvt_request(req)) {
234 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236 		    scheduler->engine_owner[ring_id]) {
237 			/* Switch ring from vGPU to host. */
238 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239 					      NULL, ring_id);
240 			scheduler->engine_owner[ring_id] = NULL;
241 		}
242 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243 
244 		return NOTIFY_OK;
245 	}
246 
247 	workload = scheduler->current_workload[ring_id];
248 	if (unlikely(!workload))
249 		return NOTIFY_OK;
250 
251 	switch (action) {
252 	case INTEL_CONTEXT_SCHEDULE_IN:
253 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255 			/* Switch ring from host to vGPU or vGPU to vGPU. */
256 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257 					      workload->vgpu, ring_id);
258 			scheduler->engine_owner[ring_id] = workload->vgpu;
259 		} else
260 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261 				      ring_id, workload->vgpu->id);
262 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263 		atomic_set(&workload->shadow_ctx_active, 1);
264 		break;
265 	case INTEL_CONTEXT_SCHEDULE_OUT:
266 		save_ring_hw_state(workload->vgpu, ring_id);
267 		atomic_set(&workload->shadow_ctx_active, 0);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		break;
272 	default:
273 		WARN_ON(1);
274 		return NOTIFY_OK;
275 	}
276 	wake_up(&workload->shadow_ctx_status_wq);
277 	return NOTIFY_OK;
278 }
279 
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282 	u64 desc = 0;
283 
284 	desc = ce->lrc_desc;
285 
286 	/* Update bits 0-11 of the context descriptor which includes flags
287 	 * like GEN8_CTX_* cached in desc_template
288 	 */
289 	desc &= U64_MAX << 12;
290 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291 
292 	ce->lrc_desc = desc;
293 }
294 
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297 	struct intel_vgpu *vgpu = workload->vgpu;
298 	struct i915_request *req = workload->req;
299 	void *shadow_ring_buffer_va;
300 	u32 *cs;
301 
302 	if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915))
303 		&& is_inhibit_context(req->hw_context))
304 		intel_vgpu_restore_inhibit_context(vgpu, req);
305 
306 	/* allocate shadow ring buffer */
307 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
308 	if (IS_ERR(cs)) {
309 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
310 			workload->rb_len);
311 		return PTR_ERR(cs);
312 	}
313 
314 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
315 
316 	/* get shadow ring buffer va */
317 	workload->shadow_ring_buffer_va = cs;
318 
319 	memcpy(cs, shadow_ring_buffer_va,
320 			workload->rb_len);
321 
322 	cs += workload->rb_len / sizeof(u32);
323 	intel_ring_advance(workload->req, cs);
324 
325 	return 0;
326 }
327 
328 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
329 {
330 	if (!wa_ctx->indirect_ctx.obj)
331 		return;
332 
333 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
334 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
335 }
336 
337 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
338 					 struct i915_gem_context *ctx)
339 {
340 	struct intel_vgpu_mm *mm = workload->shadow_mm;
341 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
342 	int i = 0;
343 
344 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
345 		return -1;
346 
347 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
348 		px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
349 	} else {
350 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
351 			px_dma(ppgtt->pdp.page_directory[i]) =
352 				mm->ppgtt_mm.shadow_pdps[i];
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 /**
360  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
361  * shadow it as well, include ringbuffer,wa_ctx and ctx.
362  * @workload: an abstract entity for each execlist submission.
363  *
364  * This function is called before the workload submitting to i915, to make
365  * sure the content of the workload is valid.
366  */
367 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
368 {
369 	struct intel_vgpu *vgpu = workload->vgpu;
370 	struct intel_vgpu_submission *s = &vgpu->submission;
371 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
372 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
373 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
374 	struct intel_context *ce;
375 	struct i915_request *rq;
376 	int ret;
377 
378 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
379 
380 	if (workload->req)
381 		return 0;
382 
383 	ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
384 	if (ret < 0) {
385 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
386 		return ret;
387 	}
388 
389 	/* pin shadow context by gvt even the shadow context will be pinned
390 	 * when i915 alloc request. That is because gvt will update the guest
391 	 * context from shadow context when workload is completed, and at that
392 	 * moment, i915 may already unpined the shadow context to make the
393 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
394 	 * the guest context, gvt can unpin the shadow_ctx safely.
395 	 */
396 	ce = intel_context_pin(shadow_ctx, engine);
397 	if (IS_ERR(ce)) {
398 		gvt_vgpu_err("fail to pin shadow context\n");
399 		return PTR_ERR(ce);
400 	}
401 
402 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
403 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
404 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
405 
406 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
407 		shadow_context_descriptor_update(ce);
408 
409 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
410 	if (ret)
411 		goto err_unpin;
412 
413 	if ((workload->ring_id == RCS) &&
414 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
415 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
416 		if (ret)
417 			goto err_shadow;
418 	}
419 
420 	rq = i915_request_alloc(engine, shadow_ctx);
421 	if (IS_ERR(rq)) {
422 		gvt_vgpu_err("fail to allocate gem request\n");
423 		ret = PTR_ERR(rq);
424 		goto err_shadow;
425 	}
426 	workload->req = i915_request_get(rq);
427 
428 	ret = populate_shadow_context(workload);
429 	if (ret)
430 		goto err_req;
431 
432 	return 0;
433 err_req:
434 	rq = fetch_and_zero(&workload->req);
435 	i915_request_put(rq);
436 err_shadow:
437 	release_shadow_wa_ctx(&workload->wa_ctx);
438 err_unpin:
439 	intel_context_unpin(ce);
440 	return ret;
441 }
442 
443 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
444 
445 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
446 {
447 	struct intel_gvt *gvt = workload->vgpu->gvt;
448 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
449 	struct intel_vgpu_shadow_bb *bb;
450 	int ret;
451 
452 	list_for_each_entry(bb, &workload->shadow_bb, list) {
453 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
454 		 * is only updated into ring_scan_buffer, not real ring address
455 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
456 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
457 		 * in copy_workload_to_ring_buffer.
458 		 */
459 
460 		if (bb->bb_offset)
461 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
462 				+ bb->bb_offset;
463 
464 		if (bb->ppgtt) {
465 			/* for non-priv bb, scan&shadow is only for
466 			 * debugging purpose, so the content of shadow bb
467 			 * is the same as original bb. Therefore,
468 			 * here, rather than switch to shadow bb's gma
469 			 * address, we directly use original batch buffer's
470 			 * gma address, and send original bb to hardware
471 			 * directly
472 			 */
473 			if (bb->clflush & CLFLUSH_AFTER) {
474 				drm_clflush_virt_range(bb->va,
475 						bb->obj->base.size);
476 				bb->clflush &= ~CLFLUSH_AFTER;
477 			}
478 			i915_gem_obj_finish_shmem_access(bb->obj);
479 			bb->accessing = false;
480 
481 		} else {
482 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
483 					NULL, 0, 0, 0);
484 			if (IS_ERR(bb->vma)) {
485 				ret = PTR_ERR(bb->vma);
486 				goto err;
487 			}
488 
489 			/* relocate shadow batch buffer */
490 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
491 			if (gmadr_bytes == 8)
492 				bb->bb_start_cmd_va[2] = 0;
493 
494 			/* No one is going to touch shadow bb from now on. */
495 			if (bb->clflush & CLFLUSH_AFTER) {
496 				drm_clflush_virt_range(bb->va,
497 						bb->obj->base.size);
498 				bb->clflush &= ~CLFLUSH_AFTER;
499 			}
500 
501 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
502 					false);
503 			if (ret)
504 				goto err;
505 
506 			i915_gem_obj_finish_shmem_access(bb->obj);
507 			bb->accessing = false;
508 
509 			ret = i915_vma_move_to_active(bb->vma,
510 						      workload->req,
511 						      0);
512 			if (ret)
513 				goto err;
514 		}
515 	}
516 	return 0;
517 err:
518 	release_shadow_batch_buffer(workload);
519 	return ret;
520 }
521 
522 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
523 {
524 	struct intel_vgpu_workload *workload =
525 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
526 	struct i915_request *rq = workload->req;
527 	struct execlist_ring_context *shadow_ring_context =
528 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
529 
530 	shadow_ring_context->bb_per_ctx_ptr.val =
531 		(shadow_ring_context->bb_per_ctx_ptr.val &
532 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
533 	shadow_ring_context->rcs_indirect_ctx.val =
534 		(shadow_ring_context->rcs_indirect_ctx.val &
535 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
536 }
537 
538 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
539 {
540 	struct i915_vma *vma;
541 	unsigned char *per_ctx_va =
542 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
543 		wa_ctx->indirect_ctx.size;
544 
545 	if (wa_ctx->indirect_ctx.size == 0)
546 		return 0;
547 
548 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
549 				       0, CACHELINE_BYTES, 0);
550 	if (IS_ERR(vma))
551 		return PTR_ERR(vma);
552 
553 	/* FIXME: we are not tracking our pinned VMA leaving it
554 	 * up to the core to fix up the stray pin_count upon
555 	 * free.
556 	 */
557 
558 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
559 
560 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
561 	memset(per_ctx_va, 0, CACHELINE_BYTES);
562 
563 	update_wa_ctx_2_shadow_ctx(wa_ctx);
564 	return 0;
565 }
566 
567 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
568 {
569 	struct intel_vgpu *vgpu = workload->vgpu;
570 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
571 	struct intel_vgpu_shadow_bb *bb, *pos;
572 
573 	if (list_empty(&workload->shadow_bb))
574 		return;
575 
576 	bb = list_first_entry(&workload->shadow_bb,
577 			struct intel_vgpu_shadow_bb, list);
578 
579 	mutex_lock(&dev_priv->drm.struct_mutex);
580 
581 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
582 		if (bb->obj) {
583 			if (bb->accessing)
584 				i915_gem_obj_finish_shmem_access(bb->obj);
585 
586 			if (bb->va && !IS_ERR(bb->va))
587 				i915_gem_object_unpin_map(bb->obj);
588 
589 			if (bb->vma && !IS_ERR(bb->vma)) {
590 				i915_vma_unpin(bb->vma);
591 				i915_vma_close(bb->vma);
592 			}
593 			__i915_gem_object_release_unless_active(bb->obj);
594 		}
595 		list_del(&bb->list);
596 		kfree(bb);
597 	}
598 
599 	mutex_unlock(&dev_priv->drm.struct_mutex);
600 }
601 
602 static int prepare_workload(struct intel_vgpu_workload *workload)
603 {
604 	struct intel_vgpu *vgpu = workload->vgpu;
605 	int ret = 0;
606 
607 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
608 	if (ret) {
609 		gvt_vgpu_err("fail to vgpu pin mm\n");
610 		return ret;
611 	}
612 
613 	update_shadow_pdps(workload);
614 
615 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
616 	if (ret) {
617 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
618 		goto err_unpin_mm;
619 	}
620 
621 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
622 	if (ret) {
623 		gvt_vgpu_err("fail to flush post shadow\n");
624 		goto err_unpin_mm;
625 	}
626 
627 	ret = copy_workload_to_ring_buffer(workload);
628 	if (ret) {
629 		gvt_vgpu_err("fail to generate request\n");
630 		goto err_unpin_mm;
631 	}
632 
633 	ret = prepare_shadow_batch_buffer(workload);
634 	if (ret) {
635 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
636 		goto err_unpin_mm;
637 	}
638 
639 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
640 	if (ret) {
641 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
642 		goto err_shadow_batch;
643 	}
644 
645 	if (workload->prepare) {
646 		ret = workload->prepare(workload);
647 		if (ret)
648 			goto err_shadow_wa_ctx;
649 	}
650 
651 	return 0;
652 err_shadow_wa_ctx:
653 	release_shadow_wa_ctx(&workload->wa_ctx);
654 err_shadow_batch:
655 	release_shadow_batch_buffer(workload);
656 err_unpin_mm:
657 	intel_vgpu_unpin_mm(workload->shadow_mm);
658 	return ret;
659 }
660 
661 static int dispatch_workload(struct intel_vgpu_workload *workload)
662 {
663 	struct intel_vgpu *vgpu = workload->vgpu;
664 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
665 	int ring_id = workload->ring_id;
666 	int ret;
667 
668 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
669 		ring_id, workload);
670 
671 	mutex_lock(&vgpu->vgpu_lock);
672 	mutex_lock(&dev_priv->drm.struct_mutex);
673 
674 	ret = intel_gvt_scan_and_shadow_workload(workload);
675 	if (ret)
676 		goto out;
677 
678 	ret = prepare_workload(workload);
679 
680 out:
681 	if (ret)
682 		workload->status = ret;
683 
684 	if (!IS_ERR_OR_NULL(workload->req)) {
685 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
686 				ring_id, workload->req);
687 		i915_request_add(workload->req);
688 		workload->dispatched = true;
689 	}
690 
691 	mutex_unlock(&dev_priv->drm.struct_mutex);
692 	mutex_unlock(&vgpu->vgpu_lock);
693 	return ret;
694 }
695 
696 static struct intel_vgpu_workload *pick_next_workload(
697 		struct intel_gvt *gvt, int ring_id)
698 {
699 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
700 	struct intel_vgpu_workload *workload = NULL;
701 
702 	mutex_lock(&gvt->sched_lock);
703 
704 	/*
705 	 * no current vgpu / will be scheduled out / no workload
706 	 * bail out
707 	 */
708 	if (!scheduler->current_vgpu) {
709 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
710 		goto out;
711 	}
712 
713 	if (scheduler->need_reschedule) {
714 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
715 		goto out;
716 	}
717 
718 	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
719 		goto out;
720 
721 	/*
722 	 * still have current workload, maybe the workload disptacher
723 	 * fail to submit it for some reason, resubmit it.
724 	 */
725 	if (scheduler->current_workload[ring_id]) {
726 		workload = scheduler->current_workload[ring_id];
727 		gvt_dbg_sched("ring id %d still have current workload %p\n",
728 				ring_id, workload);
729 		goto out;
730 	}
731 
732 	/*
733 	 * pick a workload as current workload
734 	 * once current workload is set, schedule policy routines
735 	 * will wait the current workload is finished when trying to
736 	 * schedule out a vgpu.
737 	 */
738 	scheduler->current_workload[ring_id] = container_of(
739 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
740 			struct intel_vgpu_workload, list);
741 
742 	workload = scheduler->current_workload[ring_id];
743 
744 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
745 
746 	atomic_inc(&workload->vgpu->submission.running_workload_num);
747 out:
748 	mutex_unlock(&gvt->sched_lock);
749 	return workload;
750 }
751 
752 static void update_guest_context(struct intel_vgpu_workload *workload)
753 {
754 	struct i915_request *rq = workload->req;
755 	struct intel_vgpu *vgpu = workload->vgpu;
756 	struct intel_gvt *gvt = vgpu->gvt;
757 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
758 	struct execlist_ring_context *shadow_ring_context;
759 	struct page *page;
760 	void *src;
761 	unsigned long context_gpa, context_page_num;
762 	int i;
763 
764 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
765 		      workload->ctx_desc.lrca);
766 
767 	context_page_num = rq->engine->context_size;
768 	context_page_num = context_page_num >> PAGE_SHIFT;
769 
770 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS)
771 		context_page_num = 19;
772 
773 	i = 2;
774 
775 	while (i < context_page_num) {
776 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
777 				(u32)((workload->ctx_desc.lrca + i) <<
778 					I915_GTT_PAGE_SHIFT));
779 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
780 			gvt_vgpu_err("invalid guest context descriptor\n");
781 			return;
782 		}
783 
784 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
785 		src = kmap(page);
786 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
787 				I915_GTT_PAGE_SIZE);
788 		kunmap(page);
789 		i++;
790 	}
791 
792 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
793 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
794 
795 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
796 	shadow_ring_context = kmap(page);
797 
798 #define COPY_REG(name) \
799 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
800 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
801 
802 	COPY_REG(ctx_ctrl);
803 	COPY_REG(ctx_timestamp);
804 
805 #undef COPY_REG
806 
807 	intel_gvt_hypervisor_write_gpa(vgpu,
808 			workload->ring_context_gpa +
809 			sizeof(*shadow_ring_context),
810 			(void *)shadow_ring_context +
811 			sizeof(*shadow_ring_context),
812 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
813 
814 	kunmap(page);
815 }
816 
817 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
818 				unsigned long engine_mask)
819 {
820 	struct intel_vgpu_submission *s = &vgpu->submission;
821 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
822 	struct intel_engine_cs *engine;
823 	struct intel_vgpu_workload *pos, *n;
824 	unsigned int tmp;
825 
826 	/* free the unsubmited workloads in the queues. */
827 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
828 		list_for_each_entry_safe(pos, n,
829 			&s->workload_q_head[engine->id], list) {
830 			list_del_init(&pos->list);
831 			intel_vgpu_destroy_workload(pos);
832 		}
833 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
834 	}
835 }
836 
837 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
838 {
839 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
840 	struct intel_vgpu_workload *workload =
841 		scheduler->current_workload[ring_id];
842 	struct intel_vgpu *vgpu = workload->vgpu;
843 	struct intel_vgpu_submission *s = &vgpu->submission;
844 	struct i915_request *rq = workload->req;
845 	int event;
846 
847 	mutex_lock(&vgpu->vgpu_lock);
848 	mutex_lock(&gvt->sched_lock);
849 
850 	/* For the workload w/ request, needs to wait for the context
851 	 * switch to make sure request is completed.
852 	 * For the workload w/o request, directly complete the workload.
853 	 */
854 	if (rq) {
855 		wait_event(workload->shadow_ctx_status_wq,
856 			   !atomic_read(&workload->shadow_ctx_active));
857 
858 		/* If this request caused GPU hang, req->fence.error will
859 		 * be set to -EIO. Use -EIO to set workload status so
860 		 * that when this request caused GPU hang, didn't trigger
861 		 * context switch interrupt to guest.
862 		 */
863 		if (likely(workload->status == -EINPROGRESS)) {
864 			if (workload->req->fence.error == -EIO)
865 				workload->status = -EIO;
866 			else
867 				workload->status = 0;
868 		}
869 
870 		if (!workload->status && !(vgpu->resetting_eng &
871 					   ENGINE_MASK(ring_id))) {
872 			update_guest_context(workload);
873 
874 			for_each_set_bit(event, workload->pending_events,
875 					 INTEL_GVT_EVENT_MAX)
876 				intel_vgpu_trigger_virtual_event(vgpu, event);
877 		}
878 
879 		/* unpin shadow ctx as the shadow_ctx update is done */
880 		mutex_lock(&rq->i915->drm.struct_mutex);
881 		intel_context_unpin(rq->hw_context);
882 		mutex_unlock(&rq->i915->drm.struct_mutex);
883 
884 		i915_request_put(fetch_and_zero(&workload->req));
885 	}
886 
887 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
888 			ring_id, workload, workload->status);
889 
890 	scheduler->current_workload[ring_id] = NULL;
891 
892 	list_del_init(&workload->list);
893 
894 	if (!workload->status) {
895 		release_shadow_batch_buffer(workload);
896 		release_shadow_wa_ctx(&workload->wa_ctx);
897 	}
898 
899 	if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
900 		/* if workload->status is not successful means HW GPU
901 		 * has occurred GPU hang or something wrong with i915/GVT,
902 		 * and GVT won't inject context switch interrupt to guest.
903 		 * So this error is a vGPU hang actually to the guest.
904 		 * According to this we should emunlate a vGPU hang. If
905 		 * there are pending workloads which are already submitted
906 		 * from guest, we should clean them up like HW GPU does.
907 		 *
908 		 * if it is in middle of engine resetting, the pending
909 		 * workloads won't be submitted to HW GPU and will be
910 		 * cleaned up during the resetting process later, so doing
911 		 * the workload clean up here doesn't have any impact.
912 		 **/
913 		intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id));
914 	}
915 
916 	workload->complete(workload);
917 
918 	atomic_dec(&s->running_workload_num);
919 	wake_up(&scheduler->workload_complete_wq);
920 
921 	if (gvt->scheduler.need_reschedule)
922 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
923 
924 	mutex_unlock(&gvt->sched_lock);
925 	mutex_unlock(&vgpu->vgpu_lock);
926 }
927 
928 struct workload_thread_param {
929 	struct intel_gvt *gvt;
930 	int ring_id;
931 };
932 
933 static int workload_thread(void *priv)
934 {
935 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
936 	struct intel_gvt *gvt = p->gvt;
937 	int ring_id = p->ring_id;
938 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
939 	struct intel_vgpu_workload *workload = NULL;
940 	struct intel_vgpu *vgpu = NULL;
941 	int ret;
942 	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
943 			|| IS_KABYLAKE(gvt->dev_priv)
944 			|| IS_BROXTON(gvt->dev_priv);
945 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
946 
947 	kfree(p);
948 
949 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
950 
951 	while (!kthread_should_stop()) {
952 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
953 		do {
954 			workload = pick_next_workload(gvt, ring_id);
955 			if (workload)
956 				break;
957 			wait_woken(&wait, TASK_INTERRUPTIBLE,
958 				   MAX_SCHEDULE_TIMEOUT);
959 		} while (!kthread_should_stop());
960 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
961 
962 		if (!workload)
963 			break;
964 
965 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
966 				workload->ring_id, workload,
967 				workload->vgpu->id);
968 
969 		intel_runtime_pm_get(gvt->dev_priv);
970 
971 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
972 				workload->ring_id, workload);
973 
974 		if (need_force_wake)
975 			intel_uncore_forcewake_get(gvt->dev_priv,
976 					FORCEWAKE_ALL);
977 
978 		ret = dispatch_workload(workload);
979 
980 		if (ret) {
981 			vgpu = workload->vgpu;
982 			gvt_vgpu_err("fail to dispatch workload, skip\n");
983 			goto complete;
984 		}
985 
986 		gvt_dbg_sched("ring id %d wait workload %p\n",
987 				workload->ring_id, workload);
988 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
989 
990 complete:
991 		gvt_dbg_sched("will complete workload %p, status: %d\n",
992 				workload, workload->status);
993 
994 		complete_current_workload(gvt, ring_id);
995 
996 		if (need_force_wake)
997 			intel_uncore_forcewake_put(gvt->dev_priv,
998 					FORCEWAKE_ALL);
999 
1000 		intel_runtime_pm_put(gvt->dev_priv);
1001 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1002 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1003 	}
1004 	return 0;
1005 }
1006 
1007 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1008 {
1009 	struct intel_vgpu_submission *s = &vgpu->submission;
1010 	struct intel_gvt *gvt = vgpu->gvt;
1011 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1012 
1013 	if (atomic_read(&s->running_workload_num)) {
1014 		gvt_dbg_sched("wait vgpu idle\n");
1015 
1016 		wait_event(scheduler->workload_complete_wq,
1017 				!atomic_read(&s->running_workload_num));
1018 	}
1019 }
1020 
1021 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1022 {
1023 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1024 	struct intel_engine_cs *engine;
1025 	enum intel_engine_id i;
1026 
1027 	gvt_dbg_core("clean workload scheduler\n");
1028 
1029 	for_each_engine(engine, gvt->dev_priv, i) {
1030 		atomic_notifier_chain_unregister(
1031 					&engine->context_status_notifier,
1032 					&gvt->shadow_ctx_notifier_block[i]);
1033 		kthread_stop(scheduler->thread[i]);
1034 	}
1035 }
1036 
1037 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1038 {
1039 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1040 	struct workload_thread_param *param = NULL;
1041 	struct intel_engine_cs *engine;
1042 	enum intel_engine_id i;
1043 	int ret;
1044 
1045 	gvt_dbg_core("init workload scheduler\n");
1046 
1047 	init_waitqueue_head(&scheduler->workload_complete_wq);
1048 
1049 	for_each_engine(engine, gvt->dev_priv, i) {
1050 		init_waitqueue_head(&scheduler->waitq[i]);
1051 
1052 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1053 		if (!param) {
1054 			ret = -ENOMEM;
1055 			goto err;
1056 		}
1057 
1058 		param->gvt = gvt;
1059 		param->ring_id = i;
1060 
1061 		scheduler->thread[i] = kthread_run(workload_thread, param,
1062 			"gvt workload %d", i);
1063 		if (IS_ERR(scheduler->thread[i])) {
1064 			gvt_err("fail to create workload thread\n");
1065 			ret = PTR_ERR(scheduler->thread[i]);
1066 			goto err;
1067 		}
1068 
1069 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1070 					shadow_context_status_change;
1071 		atomic_notifier_chain_register(&engine->context_status_notifier,
1072 					&gvt->shadow_ctx_notifier_block[i]);
1073 	}
1074 	return 0;
1075 err:
1076 	intel_gvt_clean_workload_scheduler(gvt);
1077 	kfree(param);
1078 	param = NULL;
1079 	return ret;
1080 }
1081 
1082 static void
1083 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1084 {
1085 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1086 	int i;
1087 
1088 	if (i915_vm_is_48bit(&i915_ppgtt->vm))
1089 		px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1090 	else {
1091 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1092 			px_dma(i915_ppgtt->pdp.page_directory[i]) =
1093 						s->i915_context_pdps[i];
1094 	}
1095 }
1096 
1097 /**
1098  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1099  * @vgpu: a vGPU
1100  *
1101  * This function is called when a vGPU is being destroyed.
1102  *
1103  */
1104 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1105 {
1106 	struct intel_vgpu_submission *s = &vgpu->submission;
1107 
1108 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1109 	i915_context_ppgtt_root_restore(s);
1110 	i915_gem_context_put(s->shadow_ctx);
1111 	kmem_cache_destroy(s->workloads);
1112 }
1113 
1114 
1115 /**
1116  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1117  * @vgpu: a vGPU
1118  * @engine_mask: engines expected to be reset
1119  *
1120  * This function is called when a vGPU is being destroyed.
1121  *
1122  */
1123 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1124 		unsigned long engine_mask)
1125 {
1126 	struct intel_vgpu_submission *s = &vgpu->submission;
1127 
1128 	if (!s->active)
1129 		return;
1130 
1131 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1132 	s->ops->reset(vgpu, engine_mask);
1133 }
1134 
1135 static void
1136 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1137 {
1138 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1139 	int i;
1140 
1141 	if (i915_vm_is_48bit(&i915_ppgtt->vm))
1142 		s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1143 	else {
1144 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1145 			s->i915_context_pdps[i] =
1146 				px_dma(i915_ppgtt->pdp.page_directory[i]);
1147 	}
1148 }
1149 
1150 /**
1151  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1152  * @vgpu: a vGPU
1153  *
1154  * This function is called when a vGPU is being created.
1155  *
1156  * Returns:
1157  * Zero on success, negative error code if failed.
1158  *
1159  */
1160 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1161 {
1162 	struct intel_vgpu_submission *s = &vgpu->submission;
1163 	enum intel_engine_id i;
1164 	struct intel_engine_cs *engine;
1165 	int ret;
1166 
1167 	s->shadow_ctx = i915_gem_context_create_gvt(
1168 			&vgpu->gvt->dev_priv->drm);
1169 	if (IS_ERR(s->shadow_ctx))
1170 		return PTR_ERR(s->shadow_ctx);
1171 
1172 	i915_context_ppgtt_root_save(s);
1173 
1174 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1175 
1176 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1177 						  sizeof(struct intel_vgpu_workload), 0,
1178 						  SLAB_HWCACHE_ALIGN,
1179 						  offsetof(struct intel_vgpu_workload, rb_tail),
1180 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1181 						  NULL);
1182 
1183 	if (!s->workloads) {
1184 		ret = -ENOMEM;
1185 		goto out_shadow_ctx;
1186 	}
1187 
1188 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1189 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1190 
1191 	atomic_set(&s->running_workload_num, 0);
1192 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1193 
1194 	return 0;
1195 
1196 out_shadow_ctx:
1197 	i915_gem_context_put(s->shadow_ctx);
1198 	return ret;
1199 }
1200 
1201 /**
1202  * intel_vgpu_select_submission_ops - select virtual submission interface
1203  * @vgpu: a vGPU
1204  * @engine_mask: either ALL_ENGINES or target engine mask
1205  * @interface: expected vGPU virtual submission interface
1206  *
1207  * This function is called when guest configures submission interface.
1208  *
1209  * Returns:
1210  * Zero on success, negative error code if failed.
1211  *
1212  */
1213 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1214 				     unsigned long engine_mask,
1215 				     unsigned int interface)
1216 {
1217 	struct intel_vgpu_submission *s = &vgpu->submission;
1218 	const struct intel_vgpu_submission_ops *ops[] = {
1219 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1220 			&intel_vgpu_execlist_submission_ops,
1221 	};
1222 	int ret;
1223 
1224 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1225 		return -EINVAL;
1226 
1227 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1228 		return -EINVAL;
1229 
1230 	if (s->active)
1231 		s->ops->clean(vgpu, engine_mask);
1232 
1233 	if (interface == 0) {
1234 		s->ops = NULL;
1235 		s->virtual_submission_interface = 0;
1236 		s->active = false;
1237 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1238 		return 0;
1239 	}
1240 
1241 	ret = ops[interface]->init(vgpu, engine_mask);
1242 	if (ret)
1243 		return ret;
1244 
1245 	s->ops = ops[interface];
1246 	s->virtual_submission_interface = interface;
1247 	s->active = true;
1248 
1249 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1250 			vgpu->id, s->ops->name);
1251 
1252 	return 0;
1253 }
1254 
1255 /**
1256  * intel_vgpu_destroy_workload - destroy a vGPU workload
1257  * @workload: workload to destroy
1258  *
1259  * This function is called when destroy a vGPU workload.
1260  *
1261  */
1262 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1263 {
1264 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1265 
1266 	if (workload->shadow_mm)
1267 		intel_vgpu_mm_put(workload->shadow_mm);
1268 
1269 	kmem_cache_free(s->workloads, workload);
1270 }
1271 
1272 static struct intel_vgpu_workload *
1273 alloc_workload(struct intel_vgpu *vgpu)
1274 {
1275 	struct intel_vgpu_submission *s = &vgpu->submission;
1276 	struct intel_vgpu_workload *workload;
1277 
1278 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1279 	if (!workload)
1280 		return ERR_PTR(-ENOMEM);
1281 
1282 	INIT_LIST_HEAD(&workload->list);
1283 	INIT_LIST_HEAD(&workload->shadow_bb);
1284 
1285 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1286 	atomic_set(&workload->shadow_ctx_active, 0);
1287 
1288 	workload->status = -EINPROGRESS;
1289 	workload->vgpu = vgpu;
1290 
1291 	return workload;
1292 }
1293 
1294 #define RING_CTX_OFF(x) \
1295 	offsetof(struct execlist_ring_context, x)
1296 
1297 static void read_guest_pdps(struct intel_vgpu *vgpu,
1298 		u64 ring_context_gpa, u32 pdp[8])
1299 {
1300 	u64 gpa;
1301 	int i;
1302 
1303 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1304 
1305 	for (i = 0; i < 8; i++)
1306 		intel_gvt_hypervisor_read_gpa(vgpu,
1307 				gpa + i * 8, &pdp[7 - i], 4);
1308 }
1309 
1310 static int prepare_mm(struct intel_vgpu_workload *workload)
1311 {
1312 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1313 	struct intel_vgpu_mm *mm;
1314 	struct intel_vgpu *vgpu = workload->vgpu;
1315 	intel_gvt_gtt_type_t root_entry_type;
1316 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1317 
1318 	switch (desc->addressing_mode) {
1319 	case 1: /* legacy 32-bit */
1320 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1321 		break;
1322 	case 3: /* legacy 64-bit */
1323 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1324 		break;
1325 	default:
1326 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1327 		return -EINVAL;
1328 	}
1329 
1330 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1331 
1332 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1333 	if (IS_ERR(mm))
1334 		return PTR_ERR(mm);
1335 
1336 	workload->shadow_mm = mm;
1337 	return 0;
1338 }
1339 
1340 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1341 		((a)->lrca == (b)->lrca))
1342 
1343 #define get_last_workload(q) \
1344 	(list_empty(q) ? NULL : container_of(q->prev, \
1345 	struct intel_vgpu_workload, list))
1346 /**
1347  * intel_vgpu_create_workload - create a vGPU workload
1348  * @vgpu: a vGPU
1349  * @ring_id: ring index
1350  * @desc: a guest context descriptor
1351  *
1352  * This function is called when creating a vGPU workload.
1353  *
1354  * Returns:
1355  * struct intel_vgpu_workload * on success, negative error code in
1356  * pointer if failed.
1357  *
1358  */
1359 struct intel_vgpu_workload *
1360 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1361 			   struct execlist_ctx_descriptor_format *desc)
1362 {
1363 	struct intel_vgpu_submission *s = &vgpu->submission;
1364 	struct list_head *q = workload_q_head(vgpu, ring_id);
1365 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1366 	struct intel_vgpu_workload *workload = NULL;
1367 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1368 	u64 ring_context_gpa;
1369 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1370 	int ret;
1371 
1372 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1373 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1374 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1375 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1376 		return ERR_PTR(-EINVAL);
1377 	}
1378 
1379 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1380 			RING_CTX_OFF(ring_header.val), &head, 4);
1381 
1382 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1383 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1384 
1385 	head &= RB_HEAD_OFF_MASK;
1386 	tail &= RB_TAIL_OFF_MASK;
1387 
1388 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1389 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1390 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1391 				last_workload->rb_tail);
1392 		/*
1393 		 * cannot use guest context head pointer here,
1394 		 * as it might not be updated at this time
1395 		 */
1396 		head = last_workload->rb_tail;
1397 	}
1398 
1399 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1400 
1401 	/* record some ring buffer register values for scan and shadow */
1402 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1403 			RING_CTX_OFF(rb_start.val), &start, 4);
1404 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1405 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1406 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1407 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1408 
1409 	workload = alloc_workload(vgpu);
1410 	if (IS_ERR(workload))
1411 		return workload;
1412 
1413 	workload->ring_id = ring_id;
1414 	workload->ctx_desc = *desc;
1415 	workload->ring_context_gpa = ring_context_gpa;
1416 	workload->rb_head = head;
1417 	workload->rb_tail = tail;
1418 	workload->rb_start = start;
1419 	workload->rb_ctl = ctl;
1420 
1421 	if (ring_id == RCS) {
1422 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1423 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1424 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1425 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1426 
1427 		workload->wa_ctx.indirect_ctx.guest_gma =
1428 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1429 		workload->wa_ctx.indirect_ctx.size =
1430 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1431 			CACHELINE_BYTES;
1432 		workload->wa_ctx.per_ctx.guest_gma =
1433 			per_ctx & PER_CTX_ADDR_MASK;
1434 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1435 	}
1436 
1437 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1438 			workload, ring_id, head, tail, start, ctl);
1439 
1440 	ret = prepare_mm(workload);
1441 	if (ret) {
1442 		kmem_cache_free(s->workloads, workload);
1443 		return ERR_PTR(ret);
1444 	}
1445 
1446 	/* Only scan and shadow the first workload in the queue
1447 	 * as there is only one pre-allocated buf-obj for shadow.
1448 	 */
1449 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1450 		intel_runtime_pm_get(dev_priv);
1451 		mutex_lock(&dev_priv->drm.struct_mutex);
1452 		ret = intel_gvt_scan_and_shadow_workload(workload);
1453 		mutex_unlock(&dev_priv->drm.struct_mutex);
1454 		intel_runtime_pm_put(dev_priv);
1455 	}
1456 
1457 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1458 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1459 		intel_vgpu_destroy_workload(workload);
1460 		return ERR_PTR(ret);
1461 	}
1462 
1463 	return workload;
1464 }
1465 
1466 /**
1467  * intel_vgpu_queue_workload - Qeue a vGPU workload
1468  * @workload: the workload to queue in
1469  */
1470 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1471 {
1472 	list_add_tail(&workload->list,
1473 		workload_q_head(workload->vgpu, workload->ring_id));
1474 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1475 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1476 }
1477