1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "gem/i915_gem_pm.h" 39 #include "gt/intel_context.h" 40 #include "gt/intel_execlists_submission.h" 41 #include "gt/intel_lrc.h" 42 #include "gt/intel_ring.h" 43 44 #include "i915_drv.h" 45 #include "i915_gem_gtt.h" 46 #include "gvt.h" 47 48 #define RING_CTX_OFF(x) \ 49 offsetof(struct execlist_ring_context, x) 50 51 static void set_context_pdp_root_pointer( 52 struct execlist_ring_context *ring_context, 53 u32 pdp[8]) 54 { 55 int i; 56 57 for (i = 0; i < 8; i++) 58 ring_context->pdps[i].val = pdp[7 - i]; 59 } 60 61 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 62 { 63 struct execlist_ring_context *shadow_ring_context; 64 struct intel_context *ctx = workload->req->context; 65 66 if (WARN_ON(!workload->shadow_mm)) 67 return; 68 69 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 70 return; 71 72 shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state; 73 set_context_pdp_root_pointer(shadow_ring_context, 74 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 75 } 76 77 /* 78 * when populating shadow ctx from guest, we should not overrride oa related 79 * registers, so that they will not be overlapped by guest oa configs. Thus 80 * made it possible to capture oa data from host for both host and guests. 81 */ 82 static void sr_oa_regs(struct intel_vgpu_workload *workload, 83 u32 *reg_state, bool save) 84 { 85 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; 86 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; 87 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; 88 int i = 0; 89 u32 flex_mmio[] = { 90 i915_mmio_reg_offset(EU_PERF_CNTL0), 91 i915_mmio_reg_offset(EU_PERF_CNTL1), 92 i915_mmio_reg_offset(EU_PERF_CNTL2), 93 i915_mmio_reg_offset(EU_PERF_CNTL3), 94 i915_mmio_reg_offset(EU_PERF_CNTL4), 95 i915_mmio_reg_offset(EU_PERF_CNTL5), 96 i915_mmio_reg_offset(EU_PERF_CNTL6), 97 }; 98 99 if (workload->engine->id != RCS0) 100 return; 101 102 if (save) { 103 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 104 105 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 106 u32 state_offset = ctx_flexeu0 + i * 2; 107 108 workload->flex_mmio[i] = reg_state[state_offset + 1]; 109 } 110 } else { 111 reg_state[ctx_oactxctrl] = 112 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 113 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 114 115 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 116 u32 state_offset = ctx_flexeu0 + i * 2; 117 u32 mmio = flex_mmio[i]; 118 119 reg_state[state_offset] = mmio; 120 reg_state[state_offset + 1] = workload->flex_mmio[i]; 121 } 122 } 123 } 124 125 static int populate_shadow_context(struct intel_vgpu_workload *workload) 126 { 127 struct intel_vgpu *vgpu = workload->vgpu; 128 struct intel_gvt *gvt = vgpu->gvt; 129 struct intel_context *ctx = workload->req->context; 130 struct execlist_ring_context *shadow_ring_context; 131 void *dst; 132 void *context_base; 133 unsigned long context_gpa, context_page_num; 134 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 135 unsigned long gpa_size; /* size of consecutive GPAs */ 136 struct intel_vgpu_submission *s = &vgpu->submission; 137 int i; 138 bool skip = false; 139 int ring_id = workload->engine->id; 140 int ret; 141 142 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 143 144 context_base = (void *) ctx->lrc_reg_state - 145 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 146 147 shadow_ring_context = (void *) ctx->lrc_reg_state; 148 149 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 150 #define COPY_REG(name) \ 151 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 152 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 153 #define COPY_REG_MASKED(name) {\ 154 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 155 + RING_CTX_OFF(name.val),\ 156 &shadow_ring_context->name.val, 4);\ 157 shadow_ring_context->name.val |= 0xffff << 16;\ 158 } 159 160 COPY_REG_MASKED(ctx_ctrl); 161 COPY_REG(ctx_timestamp); 162 163 if (workload->engine->id == RCS0) { 164 COPY_REG(bb_per_ctx_ptr); 165 COPY_REG(rcs_indirect_ctx); 166 COPY_REG(rcs_indirect_ctx_offset); 167 } else if (workload->engine->id == BCS0) 168 intel_gvt_hypervisor_read_gpa(vgpu, 169 workload->ring_context_gpa + 170 BCS_TILE_REGISTER_VAL_OFFSET, 171 (void *)shadow_ring_context + 172 BCS_TILE_REGISTER_VAL_OFFSET, 4); 173 #undef COPY_REG 174 #undef COPY_REG_MASKED 175 176 /* don't copy Ring Context (the first 0x50 dwords), 177 * only copy the Engine Context part from guest 178 */ 179 intel_gvt_hypervisor_read_gpa(vgpu, 180 workload->ring_context_gpa + 181 RING_CTX_SIZE, 182 (void *)shadow_ring_context + 183 RING_CTX_SIZE, 184 I915_GTT_PAGE_SIZE - RING_CTX_SIZE); 185 186 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 187 188 gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx", 189 workload->engine->name, workload->ctx_desc.lrca, 190 workload->ctx_desc.context_id, 191 workload->ring_context_gpa); 192 193 /* only need to ensure this context is not pinned/unpinned during the 194 * period from last submission to this this submission. 195 * Upon reaching this function, the currently submitted context is not 196 * supposed to get unpinned. If a misbehaving guest driver ever does 197 * this, it would corrupt itself. 198 */ 199 if (s->last_ctx[ring_id].valid && 200 (s->last_ctx[ring_id].lrca == 201 workload->ctx_desc.lrca) && 202 (s->last_ctx[ring_id].ring_context_gpa == 203 workload->ring_context_gpa)) 204 skip = true; 205 206 s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca; 207 s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa; 208 209 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip) 210 return 0; 211 212 s->last_ctx[ring_id].valid = false; 213 context_page_num = workload->engine->context_size; 214 context_page_num = context_page_num >> PAGE_SHIFT; 215 216 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0) 217 context_page_num = 19; 218 219 /* find consecutive GPAs from gma until the first inconsecutive GPA. 220 * read from the continuous GPAs into dst virtual address 221 */ 222 gpa_size = 0; 223 for (i = 2; i < context_page_num; i++) { 224 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 225 (u32)((workload->ctx_desc.lrca + i) << 226 I915_GTT_PAGE_SHIFT)); 227 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 228 gvt_vgpu_err("Invalid guest context descriptor\n"); 229 return -EFAULT; 230 } 231 232 if (gpa_size == 0) { 233 gpa_base = context_gpa; 234 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 235 } else if (context_gpa != gpa_base + gpa_size) 236 goto read; 237 238 gpa_size += I915_GTT_PAGE_SIZE; 239 240 if (i == context_page_num - 1) 241 goto read; 242 243 continue; 244 245 read: 246 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size); 247 gpa_base = context_gpa; 248 gpa_size = I915_GTT_PAGE_SIZE; 249 dst = context_base + (i << I915_GTT_PAGE_SHIFT); 250 } 251 ret = intel_gvt_scan_engine_context(workload); 252 if (ret) { 253 gvt_vgpu_err("invalid cmd found in guest context pages\n"); 254 return ret; 255 } 256 s->last_ctx[ring_id].valid = true; 257 return 0; 258 } 259 260 static inline bool is_gvt_request(struct i915_request *rq) 261 { 262 return intel_context_force_single_submission(rq->context); 263 } 264 265 static void save_ring_hw_state(struct intel_vgpu *vgpu, 266 const struct intel_engine_cs *engine) 267 { 268 struct intel_uncore *uncore = engine->uncore; 269 i915_reg_t reg; 270 271 reg = RING_INSTDONE(engine->mmio_base); 272 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 273 intel_uncore_read(uncore, reg); 274 275 reg = RING_ACTHD(engine->mmio_base); 276 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 277 intel_uncore_read(uncore, reg); 278 279 reg = RING_ACTHD_UDW(engine->mmio_base); 280 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = 281 intel_uncore_read(uncore, reg); 282 } 283 284 static int shadow_context_status_change(struct notifier_block *nb, 285 unsigned long action, void *data) 286 { 287 struct i915_request *rq = data; 288 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 289 shadow_ctx_notifier_block[rq->engine->id]); 290 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 291 enum intel_engine_id ring_id = rq->engine->id; 292 struct intel_vgpu_workload *workload; 293 unsigned long flags; 294 295 if (!is_gvt_request(rq)) { 296 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 297 if (action == INTEL_CONTEXT_SCHEDULE_IN && 298 scheduler->engine_owner[ring_id]) { 299 /* Switch ring from vGPU to host. */ 300 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 301 NULL, rq->engine); 302 scheduler->engine_owner[ring_id] = NULL; 303 } 304 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 305 306 return NOTIFY_OK; 307 } 308 309 workload = scheduler->current_workload[ring_id]; 310 if (unlikely(!workload)) 311 return NOTIFY_OK; 312 313 switch (action) { 314 case INTEL_CONTEXT_SCHEDULE_IN: 315 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 316 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 317 /* Switch ring from host to vGPU or vGPU to vGPU. */ 318 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 319 workload->vgpu, rq->engine); 320 scheduler->engine_owner[ring_id] = workload->vgpu; 321 } else 322 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 323 ring_id, workload->vgpu->id); 324 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 325 atomic_set(&workload->shadow_ctx_active, 1); 326 break; 327 case INTEL_CONTEXT_SCHEDULE_OUT: 328 save_ring_hw_state(workload->vgpu, rq->engine); 329 atomic_set(&workload->shadow_ctx_active, 0); 330 break; 331 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 332 save_ring_hw_state(workload->vgpu, rq->engine); 333 break; 334 default: 335 WARN_ON(1); 336 return NOTIFY_OK; 337 } 338 wake_up(&workload->shadow_ctx_status_wq); 339 return NOTIFY_OK; 340 } 341 342 static void 343 shadow_context_descriptor_update(struct intel_context *ce, 344 struct intel_vgpu_workload *workload) 345 { 346 u64 desc = ce->lrc.desc; 347 348 /* 349 * Update bits 0-11 of the context descriptor which includes flags 350 * like GEN8_CTX_* cached in desc_template 351 */ 352 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT); 353 desc |= (u64)workload->ctx_desc.addressing_mode << 354 GEN8_CTX_ADDRESSING_MODE_SHIFT; 355 356 ce->lrc.desc = desc; 357 } 358 359 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 360 { 361 struct intel_vgpu *vgpu = workload->vgpu; 362 struct i915_request *req = workload->req; 363 void *shadow_ring_buffer_va; 364 u32 *cs; 365 int err; 366 367 if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context)) 368 intel_vgpu_restore_inhibit_context(vgpu, req); 369 370 /* 371 * To track whether a request has started on HW, we can emit a 372 * breadcrumb at the beginning of the request and check its 373 * timeline's HWSP to see if the breadcrumb has advanced past the 374 * start of this request. Actually, the request must have the 375 * init_breadcrumb if its timeline set has_init_bread_crumb, or the 376 * scheduler might get a wrong state of it during reset. Since the 377 * requests from gvt always set the has_init_breadcrumb flag, here 378 * need to do the emit_init_breadcrumb for all the requests. 379 */ 380 if (req->engine->emit_init_breadcrumb) { 381 err = req->engine->emit_init_breadcrumb(req); 382 if (err) { 383 gvt_vgpu_err("fail to emit init breadcrumb\n"); 384 return err; 385 } 386 } 387 388 /* allocate shadow ring buffer */ 389 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 390 if (IS_ERR(cs)) { 391 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 392 workload->rb_len); 393 return PTR_ERR(cs); 394 } 395 396 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 397 398 /* get shadow ring buffer va */ 399 workload->shadow_ring_buffer_va = cs; 400 401 memcpy(cs, shadow_ring_buffer_va, 402 workload->rb_len); 403 404 cs += workload->rb_len / sizeof(u32); 405 intel_ring_advance(workload->req, cs); 406 407 return 0; 408 } 409 410 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 411 { 412 if (!wa_ctx->indirect_ctx.obj) 413 return; 414 415 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 416 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 417 418 wa_ctx->indirect_ctx.obj = NULL; 419 wa_ctx->indirect_ctx.shadow_va = NULL; 420 } 421 422 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr) 423 { 424 struct scatterlist *sg = pd->pt.base->mm.pages->sgl; 425 426 /* This is not a good idea */ 427 sg->dma_address = addr; 428 } 429 430 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, 431 struct intel_context *ce) 432 { 433 struct intel_vgpu_mm *mm = workload->shadow_mm; 434 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); 435 int i = 0; 436 437 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 438 set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]); 439 } else { 440 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { 441 struct i915_page_directory * const pd = 442 i915_pd_entry(ppgtt->pd, i); 443 /* skip now as current i915 ppgtt alloc won't allocate 444 top level pdp for non 4-level table, won't impact 445 shadow ppgtt. */ 446 if (!pd) 447 break; 448 449 set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]); 450 } 451 } 452 } 453 454 static int 455 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) 456 { 457 struct intel_vgpu *vgpu = workload->vgpu; 458 struct intel_vgpu_submission *s = &vgpu->submission; 459 struct i915_request *rq; 460 461 if (workload->req) 462 return 0; 463 464 rq = i915_request_create(s->shadow[workload->engine->id]); 465 if (IS_ERR(rq)) { 466 gvt_vgpu_err("fail to allocate gem request\n"); 467 return PTR_ERR(rq); 468 } 469 470 workload->req = i915_request_get(rq); 471 return 0; 472 } 473 474 /** 475 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 476 * shadow it as well, include ringbuffer,wa_ctx and ctx. 477 * @workload: an abstract entity for each execlist submission. 478 * 479 * This function is called before the workload submitting to i915, to make 480 * sure the content of the workload is valid. 481 */ 482 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 483 { 484 struct intel_vgpu *vgpu = workload->vgpu; 485 struct intel_vgpu_submission *s = &vgpu->submission; 486 int ret; 487 488 lockdep_assert_held(&vgpu->vgpu_lock); 489 490 if (workload->shadow) 491 return 0; 492 493 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated)) 494 shadow_context_descriptor_update(s->shadow[workload->engine->id], 495 workload); 496 497 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 498 if (ret) 499 return ret; 500 501 if (workload->engine->id == RCS0 && 502 workload->wa_ctx.indirect_ctx.size) { 503 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 504 if (ret) 505 goto err_shadow; 506 } 507 508 workload->shadow = true; 509 return 0; 510 511 err_shadow: 512 release_shadow_wa_ctx(&workload->wa_ctx); 513 return ret; 514 } 515 516 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 517 518 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 519 { 520 struct intel_gvt *gvt = workload->vgpu->gvt; 521 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 522 struct intel_vgpu_shadow_bb *bb; 523 int ret; 524 525 list_for_each_entry(bb, &workload->shadow_bb, list) { 526 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 527 * is only updated into ring_scan_buffer, not real ring address 528 * allocated in later copy_workload_to_ring_buffer. pls be noted 529 * shadow_ring_buffer_va is now pointed to real ring buffer va 530 * in copy_workload_to_ring_buffer. 531 */ 532 533 if (bb->bb_offset) 534 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 535 + bb->bb_offset; 536 537 /* 538 * For non-priv bb, scan&shadow is only for 539 * debugging purpose, so the content of shadow bb 540 * is the same as original bb. Therefore, 541 * here, rather than switch to shadow bb's gma 542 * address, we directly use original batch buffer's 543 * gma address, and send original bb to hardware 544 * directly 545 */ 546 if (!bb->ppgtt) { 547 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 548 NULL, 0, 0, 0); 549 if (IS_ERR(bb->vma)) { 550 ret = PTR_ERR(bb->vma); 551 goto err; 552 } 553 554 /* relocate shadow batch buffer */ 555 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 556 if (gmadr_bytes == 8) 557 bb->bb_start_cmd_va[2] = 0; 558 559 ret = i915_vma_move_to_active(bb->vma, 560 workload->req, 561 0); 562 if (ret) 563 goto err; 564 } 565 566 /* No one is going to touch shadow bb from now on. */ 567 i915_gem_object_flush_map(bb->obj); 568 } 569 return 0; 570 err: 571 release_shadow_batch_buffer(workload); 572 return ret; 573 } 574 575 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 576 { 577 struct intel_vgpu_workload *workload = 578 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 579 struct i915_request *rq = workload->req; 580 struct execlist_ring_context *shadow_ring_context = 581 (struct execlist_ring_context *)rq->context->lrc_reg_state; 582 583 shadow_ring_context->bb_per_ctx_ptr.val = 584 (shadow_ring_context->bb_per_ctx_ptr.val & 585 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 586 shadow_ring_context->rcs_indirect_ctx.val = 587 (shadow_ring_context->rcs_indirect_ctx.val & 588 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 589 } 590 591 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 592 { 593 struct i915_vma *vma; 594 unsigned char *per_ctx_va = 595 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 596 wa_ctx->indirect_ctx.size; 597 598 if (wa_ctx->indirect_ctx.size == 0) 599 return 0; 600 601 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 602 0, CACHELINE_BYTES, 0); 603 if (IS_ERR(vma)) 604 return PTR_ERR(vma); 605 606 /* FIXME: we are not tracking our pinned VMA leaving it 607 * up to the core to fix up the stray pin_count upon 608 * free. 609 */ 610 611 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 612 613 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 614 memset(per_ctx_va, 0, CACHELINE_BYTES); 615 616 update_wa_ctx_2_shadow_ctx(wa_ctx); 617 return 0; 618 } 619 620 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) 621 { 622 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) = 623 workload->rb_start; 624 } 625 626 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 627 { 628 struct intel_vgpu_shadow_bb *bb, *pos; 629 630 if (list_empty(&workload->shadow_bb)) 631 return; 632 633 bb = list_first_entry(&workload->shadow_bb, 634 struct intel_vgpu_shadow_bb, list); 635 636 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 637 if (bb->obj) { 638 if (bb->va && !IS_ERR(bb->va)) 639 i915_gem_object_unpin_map(bb->obj); 640 641 if (bb->vma && !IS_ERR(bb->vma)) 642 i915_vma_unpin(bb->vma); 643 644 i915_gem_object_put(bb->obj); 645 } 646 list_del(&bb->list); 647 kfree(bb); 648 } 649 } 650 651 static int 652 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload) 653 { 654 struct intel_vgpu *vgpu = workload->vgpu; 655 struct intel_vgpu_mm *m; 656 int ret = 0; 657 658 ret = intel_vgpu_pin_mm(workload->shadow_mm); 659 if (ret) { 660 gvt_vgpu_err("fail to vgpu pin mm\n"); 661 return ret; 662 } 663 664 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || 665 !workload->shadow_mm->ppgtt_mm.shadowed) { 666 gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); 667 return -EINVAL; 668 } 669 670 if (!list_empty(&workload->lri_shadow_mm)) { 671 list_for_each_entry(m, &workload->lri_shadow_mm, 672 ppgtt_mm.link) { 673 ret = intel_vgpu_pin_mm(m); 674 if (ret) { 675 list_for_each_entry_from_reverse(m, 676 &workload->lri_shadow_mm, 677 ppgtt_mm.link) 678 intel_vgpu_unpin_mm(m); 679 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n"); 680 break; 681 } 682 } 683 } 684 685 if (ret) 686 intel_vgpu_unpin_mm(workload->shadow_mm); 687 688 return ret; 689 } 690 691 static void 692 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload) 693 { 694 struct intel_vgpu_mm *m; 695 696 if (!list_empty(&workload->lri_shadow_mm)) { 697 list_for_each_entry(m, &workload->lri_shadow_mm, 698 ppgtt_mm.link) 699 intel_vgpu_unpin_mm(m); 700 } 701 intel_vgpu_unpin_mm(workload->shadow_mm); 702 } 703 704 static int prepare_workload(struct intel_vgpu_workload *workload) 705 { 706 struct intel_vgpu *vgpu = workload->vgpu; 707 struct intel_vgpu_submission *s = &vgpu->submission; 708 int ret = 0; 709 710 ret = intel_vgpu_shadow_mm_pin(workload); 711 if (ret) { 712 gvt_vgpu_err("fail to pin shadow mm\n"); 713 return ret; 714 } 715 716 update_shadow_pdps(workload); 717 718 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]); 719 720 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 721 if (ret) { 722 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 723 goto err_unpin_mm; 724 } 725 726 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 727 if (ret) { 728 gvt_vgpu_err("fail to flush post shadow\n"); 729 goto err_unpin_mm; 730 } 731 732 ret = copy_workload_to_ring_buffer(workload); 733 if (ret) { 734 gvt_vgpu_err("fail to generate request\n"); 735 goto err_unpin_mm; 736 } 737 738 ret = prepare_shadow_batch_buffer(workload); 739 if (ret) { 740 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 741 goto err_unpin_mm; 742 } 743 744 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 745 if (ret) { 746 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 747 goto err_shadow_batch; 748 } 749 750 if (workload->prepare) { 751 ret = workload->prepare(workload); 752 if (ret) 753 goto err_shadow_wa_ctx; 754 } 755 756 return 0; 757 err_shadow_wa_ctx: 758 release_shadow_wa_ctx(&workload->wa_ctx); 759 err_shadow_batch: 760 release_shadow_batch_buffer(workload); 761 err_unpin_mm: 762 intel_vgpu_shadow_mm_unpin(workload); 763 return ret; 764 } 765 766 static int dispatch_workload(struct intel_vgpu_workload *workload) 767 { 768 struct intel_vgpu *vgpu = workload->vgpu; 769 struct i915_request *rq; 770 int ret; 771 772 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n", 773 workload->engine->name, workload); 774 775 mutex_lock(&vgpu->vgpu_lock); 776 777 ret = intel_gvt_workload_req_alloc(workload); 778 if (ret) 779 goto err_req; 780 781 ret = intel_gvt_scan_and_shadow_workload(workload); 782 if (ret) 783 goto out; 784 785 ret = populate_shadow_context(workload); 786 if (ret) { 787 release_shadow_wa_ctx(&workload->wa_ctx); 788 goto out; 789 } 790 791 ret = prepare_workload(workload); 792 out: 793 if (ret) { 794 /* We might still need to add request with 795 * clean ctx to retire it properly.. 796 */ 797 rq = fetch_and_zero(&workload->req); 798 i915_request_put(rq); 799 } 800 801 if (!IS_ERR_OR_NULL(workload->req)) { 802 gvt_dbg_sched("ring id %s submit workload to i915 %p\n", 803 workload->engine->name, workload->req); 804 i915_request_add(workload->req); 805 workload->dispatched = true; 806 } 807 err_req: 808 if (ret) 809 workload->status = ret; 810 mutex_unlock(&vgpu->vgpu_lock); 811 return ret; 812 } 813 814 static struct intel_vgpu_workload * 815 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine) 816 { 817 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 818 struct intel_vgpu_workload *workload = NULL; 819 820 mutex_lock(&gvt->sched_lock); 821 822 /* 823 * no current vgpu / will be scheduled out / no workload 824 * bail out 825 */ 826 if (!scheduler->current_vgpu) { 827 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name); 828 goto out; 829 } 830 831 if (scheduler->need_reschedule) { 832 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name); 833 goto out; 834 } 835 836 if (!scheduler->current_vgpu->active || 837 list_empty(workload_q_head(scheduler->current_vgpu, engine))) 838 goto out; 839 840 /* 841 * still have current workload, maybe the workload disptacher 842 * fail to submit it for some reason, resubmit it. 843 */ 844 if (scheduler->current_workload[engine->id]) { 845 workload = scheduler->current_workload[engine->id]; 846 gvt_dbg_sched("ring %s still have current workload %p\n", 847 engine->name, workload); 848 goto out; 849 } 850 851 /* 852 * pick a workload as current workload 853 * once current workload is set, schedule policy routines 854 * will wait the current workload is finished when trying to 855 * schedule out a vgpu. 856 */ 857 scheduler->current_workload[engine->id] = 858 list_first_entry(workload_q_head(scheduler->current_vgpu, 859 engine), 860 struct intel_vgpu_workload, list); 861 862 workload = scheduler->current_workload[engine->id]; 863 864 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload); 865 866 atomic_inc(&workload->vgpu->submission.running_workload_num); 867 out: 868 mutex_unlock(&gvt->sched_lock); 869 return workload; 870 } 871 872 static void update_guest_pdps(struct intel_vgpu *vgpu, 873 u64 ring_context_gpa, u32 pdp[8]) 874 { 875 u64 gpa; 876 int i; 877 878 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 879 880 for (i = 0; i < 8; i++) 881 intel_gvt_hypervisor_write_gpa(vgpu, 882 gpa + i * 8, &pdp[7 - i], 4); 883 } 884 885 static __maybe_unused bool 886 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m) 887 { 888 if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 889 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32; 890 891 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) { 892 gvt_dbg_mm("4-level context ppgtt not match LRI command\n"); 893 return false; 894 } 895 return true; 896 } else { 897 /* see comment in LRI handler in cmd_parser.c */ 898 gvt_dbg_mm("invalid shadow mm type\n"); 899 return false; 900 } 901 } 902 903 static void update_guest_context(struct intel_vgpu_workload *workload) 904 { 905 struct i915_request *rq = workload->req; 906 struct intel_vgpu *vgpu = workload->vgpu; 907 struct execlist_ring_context *shadow_ring_context; 908 struct intel_context *ctx = workload->req->context; 909 void *context_base; 910 void *src; 911 unsigned long context_gpa, context_page_num; 912 unsigned long gpa_base; /* first gpa of consecutive GPAs */ 913 unsigned long gpa_size; /* size of consecutive GPAs*/ 914 int i; 915 u32 ring_base; 916 u32 head, tail; 917 u16 wrap_count; 918 919 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 920 workload->ctx_desc.lrca); 921 922 GEM_BUG_ON(!intel_context_is_pinned(ctx)); 923 924 head = workload->rb_head; 925 tail = workload->rb_tail; 926 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; 927 928 if (tail < head) { 929 if (wrap_count == RB_HEAD_WRAP_CNT_MAX) 930 wrap_count = 0; 931 else 932 wrap_count += 1; 933 } 934 935 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; 936 937 ring_base = rq->engine->mmio_base; 938 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; 939 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; 940 941 context_page_num = rq->engine->context_size; 942 context_page_num = context_page_num >> PAGE_SHIFT; 943 944 if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0) 945 context_page_num = 19; 946 947 context_base = (void *) ctx->lrc_reg_state - 948 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); 949 950 /* find consecutive GPAs from gma until the first inconsecutive GPA. 951 * write to the consecutive GPAs from src virtual address 952 */ 953 gpa_size = 0; 954 for (i = 2; i < context_page_num; i++) { 955 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 956 (u32)((workload->ctx_desc.lrca + i) << 957 I915_GTT_PAGE_SHIFT)); 958 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 959 gvt_vgpu_err("invalid guest context descriptor\n"); 960 return; 961 } 962 963 if (gpa_size == 0) { 964 gpa_base = context_gpa; 965 src = context_base + (i << I915_GTT_PAGE_SHIFT); 966 } else if (context_gpa != gpa_base + gpa_size) 967 goto write; 968 969 gpa_size += I915_GTT_PAGE_SIZE; 970 971 if (i == context_page_num - 1) 972 goto write; 973 974 continue; 975 976 write: 977 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size); 978 gpa_base = context_gpa; 979 gpa_size = I915_GTT_PAGE_SIZE; 980 src = context_base + (i << I915_GTT_PAGE_SHIFT); 981 } 982 983 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 984 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 985 986 shadow_ring_context = (void *) ctx->lrc_reg_state; 987 988 if (!list_empty(&workload->lri_shadow_mm)) { 989 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm, 990 struct intel_vgpu_mm, 991 ppgtt_mm.link); 992 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m)); 993 update_guest_pdps(vgpu, workload->ring_context_gpa, 994 (void *)m->ppgtt_mm.guest_pdps); 995 } 996 997 #define COPY_REG(name) \ 998 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 999 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 1000 1001 COPY_REG(ctx_ctrl); 1002 COPY_REG(ctx_timestamp); 1003 1004 #undef COPY_REG 1005 1006 intel_gvt_hypervisor_write_gpa(vgpu, 1007 workload->ring_context_gpa + 1008 sizeof(*shadow_ring_context), 1009 (void *)shadow_ring_context + 1010 sizeof(*shadow_ring_context), 1011 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 1012 } 1013 1014 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 1015 intel_engine_mask_t engine_mask) 1016 { 1017 struct intel_vgpu_submission *s = &vgpu->submission; 1018 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1019 struct intel_engine_cs *engine; 1020 struct intel_vgpu_workload *pos, *n; 1021 intel_engine_mask_t tmp; 1022 1023 /* free the unsubmited workloads in the queues. */ 1024 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) { 1025 list_for_each_entry_safe(pos, n, 1026 &s->workload_q_head[engine->id], list) { 1027 list_del_init(&pos->list); 1028 intel_vgpu_destroy_workload(pos); 1029 } 1030 clear_bit(engine->id, s->shadow_ctx_desc_updated); 1031 } 1032 } 1033 1034 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 1035 { 1036 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1037 struct intel_vgpu_workload *workload = 1038 scheduler->current_workload[ring_id]; 1039 struct intel_vgpu *vgpu = workload->vgpu; 1040 struct intel_vgpu_submission *s = &vgpu->submission; 1041 struct i915_request *rq = workload->req; 1042 int event; 1043 1044 mutex_lock(&vgpu->vgpu_lock); 1045 mutex_lock(&gvt->sched_lock); 1046 1047 /* For the workload w/ request, needs to wait for the context 1048 * switch to make sure request is completed. 1049 * For the workload w/o request, directly complete the workload. 1050 */ 1051 if (rq) { 1052 wait_event(workload->shadow_ctx_status_wq, 1053 !atomic_read(&workload->shadow_ctx_active)); 1054 1055 /* If this request caused GPU hang, req->fence.error will 1056 * be set to -EIO. Use -EIO to set workload status so 1057 * that when this request caused GPU hang, didn't trigger 1058 * context switch interrupt to guest. 1059 */ 1060 if (likely(workload->status == -EINPROGRESS)) { 1061 if (workload->req->fence.error == -EIO) 1062 workload->status = -EIO; 1063 else 1064 workload->status = 0; 1065 } 1066 1067 if (!workload->status && 1068 !(vgpu->resetting_eng & BIT(ring_id))) { 1069 update_guest_context(workload); 1070 1071 for_each_set_bit(event, workload->pending_events, 1072 INTEL_GVT_EVENT_MAX) 1073 intel_vgpu_trigger_virtual_event(vgpu, event); 1074 } 1075 1076 i915_request_put(fetch_and_zero(&workload->req)); 1077 } 1078 1079 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 1080 ring_id, workload, workload->status); 1081 1082 scheduler->current_workload[ring_id] = NULL; 1083 1084 list_del_init(&workload->list); 1085 1086 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { 1087 /* if workload->status is not successful means HW GPU 1088 * has occurred GPU hang or something wrong with i915/GVT, 1089 * and GVT won't inject context switch interrupt to guest. 1090 * So this error is a vGPU hang actually to the guest. 1091 * According to this we should emunlate a vGPU hang. If 1092 * there are pending workloads which are already submitted 1093 * from guest, we should clean them up like HW GPU does. 1094 * 1095 * if it is in middle of engine resetting, the pending 1096 * workloads won't be submitted to HW GPU and will be 1097 * cleaned up during the resetting process later, so doing 1098 * the workload clean up here doesn't have any impact. 1099 **/ 1100 intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); 1101 } 1102 1103 workload->complete(workload); 1104 1105 intel_vgpu_shadow_mm_unpin(workload); 1106 intel_vgpu_destroy_workload(workload); 1107 1108 atomic_dec(&s->running_workload_num); 1109 wake_up(&scheduler->workload_complete_wq); 1110 1111 if (gvt->scheduler.need_reschedule) 1112 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 1113 1114 mutex_unlock(&gvt->sched_lock); 1115 mutex_unlock(&vgpu->vgpu_lock); 1116 } 1117 1118 static int workload_thread(void *arg) 1119 { 1120 struct intel_engine_cs *engine = arg; 1121 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9; 1122 struct intel_gvt *gvt = engine->i915->gvt; 1123 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1124 struct intel_vgpu_workload *workload = NULL; 1125 struct intel_vgpu *vgpu = NULL; 1126 int ret; 1127 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1128 1129 gvt_dbg_core("workload thread for ring %s started\n", engine->name); 1130 1131 while (!kthread_should_stop()) { 1132 intel_wakeref_t wakeref; 1133 1134 add_wait_queue(&scheduler->waitq[engine->id], &wait); 1135 do { 1136 workload = pick_next_workload(gvt, engine); 1137 if (workload) 1138 break; 1139 wait_woken(&wait, TASK_INTERRUPTIBLE, 1140 MAX_SCHEDULE_TIMEOUT); 1141 } while (!kthread_should_stop()); 1142 remove_wait_queue(&scheduler->waitq[engine->id], &wait); 1143 1144 if (!workload) 1145 break; 1146 1147 gvt_dbg_sched("ring %s next workload %p vgpu %d\n", 1148 engine->name, workload, 1149 workload->vgpu->id); 1150 1151 wakeref = intel_runtime_pm_get(engine->uncore->rpm); 1152 1153 gvt_dbg_sched("ring %s will dispatch workload %p\n", 1154 engine->name, workload); 1155 1156 if (need_force_wake) 1157 intel_uncore_forcewake_get(engine->uncore, 1158 FORCEWAKE_ALL); 1159 /* 1160 * Update the vReg of the vGPU which submitted this 1161 * workload. The vGPU may use these registers for checking 1162 * the context state. The value comes from GPU commands 1163 * in this workload. 1164 */ 1165 update_vreg_in_ctx(workload); 1166 1167 ret = dispatch_workload(workload); 1168 1169 if (ret) { 1170 vgpu = workload->vgpu; 1171 gvt_vgpu_err("fail to dispatch workload, skip\n"); 1172 goto complete; 1173 } 1174 1175 gvt_dbg_sched("ring %s wait workload %p\n", 1176 engine->name, workload); 1177 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 1178 1179 complete: 1180 gvt_dbg_sched("will complete workload %p, status: %d\n", 1181 workload, workload->status); 1182 1183 complete_current_workload(gvt, engine->id); 1184 1185 if (need_force_wake) 1186 intel_uncore_forcewake_put(engine->uncore, 1187 FORCEWAKE_ALL); 1188 1189 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1190 if (ret && (vgpu_is_vm_unhealthy(ret))) 1191 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1192 } 1193 return 0; 1194 } 1195 1196 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 1197 { 1198 struct intel_vgpu_submission *s = &vgpu->submission; 1199 struct intel_gvt *gvt = vgpu->gvt; 1200 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1201 1202 if (atomic_read(&s->running_workload_num)) { 1203 gvt_dbg_sched("wait vgpu idle\n"); 1204 1205 wait_event(scheduler->workload_complete_wq, 1206 !atomic_read(&s->running_workload_num)); 1207 } 1208 } 1209 1210 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 1211 { 1212 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1213 struct intel_engine_cs *engine; 1214 enum intel_engine_id i; 1215 1216 gvt_dbg_core("clean workload scheduler\n"); 1217 1218 for_each_engine(engine, gvt->gt, i) { 1219 atomic_notifier_chain_unregister( 1220 &engine->context_status_notifier, 1221 &gvt->shadow_ctx_notifier_block[i]); 1222 kthread_stop(scheduler->thread[i]); 1223 } 1224 } 1225 1226 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1227 { 1228 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1229 struct intel_engine_cs *engine; 1230 enum intel_engine_id i; 1231 int ret; 1232 1233 gvt_dbg_core("init workload scheduler\n"); 1234 1235 init_waitqueue_head(&scheduler->workload_complete_wq); 1236 1237 for_each_engine(engine, gvt->gt, i) { 1238 init_waitqueue_head(&scheduler->waitq[i]); 1239 1240 scheduler->thread[i] = kthread_run(workload_thread, engine, 1241 "gvt:%s", engine->name); 1242 if (IS_ERR(scheduler->thread[i])) { 1243 gvt_err("fail to create workload thread\n"); 1244 ret = PTR_ERR(scheduler->thread[i]); 1245 goto err; 1246 } 1247 1248 gvt->shadow_ctx_notifier_block[i].notifier_call = 1249 shadow_context_status_change; 1250 atomic_notifier_chain_register(&engine->context_status_notifier, 1251 &gvt->shadow_ctx_notifier_block[i]); 1252 } 1253 1254 return 0; 1255 1256 err: 1257 intel_gvt_clean_workload_scheduler(gvt); 1258 return ret; 1259 } 1260 1261 static void 1262 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, 1263 struct i915_ppgtt *ppgtt) 1264 { 1265 int i; 1266 1267 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1268 set_dma_address(ppgtt->pd, s->i915_context_pml4); 1269 } else { 1270 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1271 struct i915_page_directory * const pd = 1272 i915_pd_entry(ppgtt->pd, i); 1273 1274 set_dma_address(pd, s->i915_context_pdps[i]); 1275 } 1276 } 1277 } 1278 1279 /** 1280 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1281 * @vgpu: a vGPU 1282 * 1283 * This function is called when a vGPU is being destroyed. 1284 * 1285 */ 1286 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1287 { 1288 struct intel_vgpu_submission *s = &vgpu->submission; 1289 struct intel_engine_cs *engine; 1290 enum intel_engine_id id; 1291 1292 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1293 1294 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); 1295 for_each_engine(engine, vgpu->gvt->gt, id) 1296 intel_context_put(s->shadow[id]); 1297 1298 kmem_cache_destroy(s->workloads); 1299 } 1300 1301 1302 /** 1303 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1304 * @vgpu: a vGPU 1305 * @engine_mask: engines expected to be reset 1306 * 1307 * This function is called when a vGPU is being destroyed. 1308 * 1309 */ 1310 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1311 intel_engine_mask_t engine_mask) 1312 { 1313 struct intel_vgpu_submission *s = &vgpu->submission; 1314 1315 if (!s->active) 1316 return; 1317 1318 intel_vgpu_clean_workloads(vgpu, engine_mask); 1319 s->ops->reset(vgpu, engine_mask); 1320 } 1321 1322 static void 1323 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, 1324 struct i915_ppgtt *ppgtt) 1325 { 1326 int i; 1327 1328 if (i915_vm_is_4lvl(&ppgtt->vm)) { 1329 s->i915_context_pml4 = px_dma(ppgtt->pd); 1330 } else { 1331 for (i = 0; i < GEN8_3LVL_PDPES; i++) { 1332 struct i915_page_directory * const pd = 1333 i915_pd_entry(ppgtt->pd, i); 1334 1335 s->i915_context_pdps[i] = px_dma(pd); 1336 } 1337 } 1338 } 1339 1340 /** 1341 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1342 * @vgpu: a vGPU 1343 * 1344 * This function is called when a vGPU is being created. 1345 * 1346 * Returns: 1347 * Zero on success, negative error code if failed. 1348 * 1349 */ 1350 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1351 { 1352 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1353 struct intel_vgpu_submission *s = &vgpu->submission; 1354 struct intel_engine_cs *engine; 1355 struct i915_ppgtt *ppgtt; 1356 enum intel_engine_id i; 1357 int ret; 1358 1359 ppgtt = i915_ppgtt_create(&i915->gt); 1360 if (IS_ERR(ppgtt)) 1361 return PTR_ERR(ppgtt); 1362 1363 i915_context_ppgtt_root_save(s, ppgtt); 1364 1365 for_each_engine(engine, vgpu->gvt->gt, i) { 1366 struct intel_context *ce; 1367 1368 INIT_LIST_HEAD(&s->workload_q_head[i]); 1369 s->shadow[i] = ERR_PTR(-EINVAL); 1370 1371 ce = intel_context_create(engine); 1372 if (IS_ERR(ce)) { 1373 ret = PTR_ERR(ce); 1374 goto out_shadow_ctx; 1375 } 1376 1377 i915_vm_put(ce->vm); 1378 ce->vm = i915_vm_get(&ppgtt->vm); 1379 intel_context_set_single_submission(ce); 1380 1381 /* Max ring buffer size */ 1382 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) { 1383 const unsigned int ring_size = 512 * SZ_4K; 1384 1385 ce->ring = __intel_context_ring_size(ring_size); 1386 } 1387 1388 s->shadow[i] = ce; 1389 } 1390 1391 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1392 1393 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1394 sizeof(struct intel_vgpu_workload), 0, 1395 SLAB_HWCACHE_ALIGN, 1396 offsetof(struct intel_vgpu_workload, rb_tail), 1397 sizeof_field(struct intel_vgpu_workload, rb_tail), 1398 NULL); 1399 1400 if (!s->workloads) { 1401 ret = -ENOMEM; 1402 goto out_shadow_ctx; 1403 } 1404 1405 atomic_set(&s->running_workload_num, 0); 1406 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1407 1408 memset(s->last_ctx, 0, sizeof(s->last_ctx)); 1409 1410 i915_vm_put(&ppgtt->vm); 1411 return 0; 1412 1413 out_shadow_ctx: 1414 i915_context_ppgtt_root_restore(s, ppgtt); 1415 for_each_engine(engine, vgpu->gvt->gt, i) { 1416 if (IS_ERR(s->shadow[i])) 1417 break; 1418 1419 intel_context_put(s->shadow[i]); 1420 } 1421 i915_vm_put(&ppgtt->vm); 1422 return ret; 1423 } 1424 1425 /** 1426 * intel_vgpu_select_submission_ops - select virtual submission interface 1427 * @vgpu: a vGPU 1428 * @engine_mask: either ALL_ENGINES or target engine mask 1429 * @interface: expected vGPU virtual submission interface 1430 * 1431 * This function is called when guest configures submission interface. 1432 * 1433 * Returns: 1434 * Zero on success, negative error code if failed. 1435 * 1436 */ 1437 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1438 intel_engine_mask_t engine_mask, 1439 unsigned int interface) 1440 { 1441 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1442 struct intel_vgpu_submission *s = &vgpu->submission; 1443 const struct intel_vgpu_submission_ops *ops[] = { 1444 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1445 &intel_vgpu_execlist_submission_ops, 1446 }; 1447 int ret; 1448 1449 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops))) 1450 return -EINVAL; 1451 1452 if (drm_WARN_ON(&i915->drm, 1453 interface == 0 && engine_mask != ALL_ENGINES)) 1454 return -EINVAL; 1455 1456 if (s->active) 1457 s->ops->clean(vgpu, engine_mask); 1458 1459 if (interface == 0) { 1460 s->ops = NULL; 1461 s->virtual_submission_interface = 0; 1462 s->active = false; 1463 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1464 return 0; 1465 } 1466 1467 ret = ops[interface]->init(vgpu, engine_mask); 1468 if (ret) 1469 return ret; 1470 1471 s->ops = ops[interface]; 1472 s->virtual_submission_interface = interface; 1473 s->active = true; 1474 1475 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1476 vgpu->id, s->ops->name); 1477 1478 return 0; 1479 } 1480 1481 /** 1482 * intel_vgpu_destroy_workload - destroy a vGPU workload 1483 * @workload: workload to destroy 1484 * 1485 * This function is called when destroy a vGPU workload. 1486 * 1487 */ 1488 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1489 { 1490 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1491 1492 intel_context_unpin(s->shadow[workload->engine->id]); 1493 release_shadow_batch_buffer(workload); 1494 release_shadow_wa_ctx(&workload->wa_ctx); 1495 1496 if (!list_empty(&workload->lri_shadow_mm)) { 1497 struct intel_vgpu_mm *m, *mm; 1498 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm, 1499 ppgtt_mm.link) { 1500 list_del(&m->ppgtt_mm.link); 1501 intel_vgpu_mm_put(m); 1502 } 1503 } 1504 1505 GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm)); 1506 if (workload->shadow_mm) 1507 intel_vgpu_mm_put(workload->shadow_mm); 1508 1509 kmem_cache_free(s->workloads, workload); 1510 } 1511 1512 static struct intel_vgpu_workload * 1513 alloc_workload(struct intel_vgpu *vgpu) 1514 { 1515 struct intel_vgpu_submission *s = &vgpu->submission; 1516 struct intel_vgpu_workload *workload; 1517 1518 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1519 if (!workload) 1520 return ERR_PTR(-ENOMEM); 1521 1522 INIT_LIST_HEAD(&workload->list); 1523 INIT_LIST_HEAD(&workload->shadow_bb); 1524 INIT_LIST_HEAD(&workload->lri_shadow_mm); 1525 1526 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1527 atomic_set(&workload->shadow_ctx_active, 0); 1528 1529 workload->status = -EINPROGRESS; 1530 workload->vgpu = vgpu; 1531 1532 return workload; 1533 } 1534 1535 #define RING_CTX_OFF(x) \ 1536 offsetof(struct execlist_ring_context, x) 1537 1538 static void read_guest_pdps(struct intel_vgpu *vgpu, 1539 u64 ring_context_gpa, u32 pdp[8]) 1540 { 1541 u64 gpa; 1542 int i; 1543 1544 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1545 1546 for (i = 0; i < 8; i++) 1547 intel_gvt_hypervisor_read_gpa(vgpu, 1548 gpa + i * 8, &pdp[7 - i], 4); 1549 } 1550 1551 static int prepare_mm(struct intel_vgpu_workload *workload) 1552 { 1553 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1554 struct intel_vgpu_mm *mm; 1555 struct intel_vgpu *vgpu = workload->vgpu; 1556 enum intel_gvt_gtt_type root_entry_type; 1557 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1558 1559 switch (desc->addressing_mode) { 1560 case 1: /* legacy 32-bit */ 1561 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1562 break; 1563 case 3: /* legacy 64-bit */ 1564 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1565 break; 1566 default: 1567 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1568 return -EINVAL; 1569 } 1570 1571 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1572 1573 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1574 if (IS_ERR(mm)) 1575 return PTR_ERR(mm); 1576 1577 workload->shadow_mm = mm; 1578 return 0; 1579 } 1580 1581 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1582 ((a)->lrca == (b)->lrca)) 1583 1584 /** 1585 * intel_vgpu_create_workload - create a vGPU workload 1586 * @vgpu: a vGPU 1587 * @engine: the engine 1588 * @desc: a guest context descriptor 1589 * 1590 * This function is called when creating a vGPU workload. 1591 * 1592 * Returns: 1593 * struct intel_vgpu_workload * on success, negative error code in 1594 * pointer if failed. 1595 * 1596 */ 1597 struct intel_vgpu_workload * 1598 intel_vgpu_create_workload(struct intel_vgpu *vgpu, 1599 const struct intel_engine_cs *engine, 1600 struct execlist_ctx_descriptor_format *desc) 1601 { 1602 struct intel_vgpu_submission *s = &vgpu->submission; 1603 struct list_head *q = workload_q_head(vgpu, engine); 1604 struct intel_vgpu_workload *last_workload = NULL; 1605 struct intel_vgpu_workload *workload = NULL; 1606 u64 ring_context_gpa; 1607 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1608 u32 guest_head; 1609 int ret; 1610 1611 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1612 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1613 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1614 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1615 return ERR_PTR(-EINVAL); 1616 } 1617 1618 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1619 RING_CTX_OFF(ring_header.val), &head, 4); 1620 1621 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1622 RING_CTX_OFF(ring_tail.val), &tail, 4); 1623 1624 guest_head = head; 1625 1626 head &= RB_HEAD_OFF_MASK; 1627 tail &= RB_TAIL_OFF_MASK; 1628 1629 list_for_each_entry_reverse(last_workload, q, list) { 1630 1631 if (same_context(&last_workload->ctx_desc, desc)) { 1632 gvt_dbg_el("ring %s cur workload == last\n", 1633 engine->name); 1634 gvt_dbg_el("ctx head %x real head %lx\n", head, 1635 last_workload->rb_tail); 1636 /* 1637 * cannot use guest context head pointer here, 1638 * as it might not be updated at this time 1639 */ 1640 head = last_workload->rb_tail; 1641 break; 1642 } 1643 } 1644 1645 gvt_dbg_el("ring %s begin a new workload\n", engine->name); 1646 1647 /* record some ring buffer register values for scan and shadow */ 1648 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1649 RING_CTX_OFF(rb_start.val), &start, 4); 1650 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1651 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1652 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1653 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1654 1655 if (!intel_gvt_ggtt_validate_range(vgpu, start, 1656 _RING_CTL_BUF_SIZE(ctl))) { 1657 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); 1658 return ERR_PTR(-EINVAL); 1659 } 1660 1661 workload = alloc_workload(vgpu); 1662 if (IS_ERR(workload)) 1663 return workload; 1664 1665 workload->engine = engine; 1666 workload->ctx_desc = *desc; 1667 workload->ring_context_gpa = ring_context_gpa; 1668 workload->rb_head = head; 1669 workload->guest_rb_head = guest_head; 1670 workload->rb_tail = tail; 1671 workload->rb_start = start; 1672 workload->rb_ctl = ctl; 1673 1674 if (engine->id == RCS0) { 1675 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1676 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1677 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1678 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1679 1680 workload->wa_ctx.indirect_ctx.guest_gma = 1681 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1682 workload->wa_ctx.indirect_ctx.size = 1683 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1684 CACHELINE_BYTES; 1685 1686 if (workload->wa_ctx.indirect_ctx.size != 0) { 1687 if (!intel_gvt_ggtt_validate_range(vgpu, 1688 workload->wa_ctx.indirect_ctx.guest_gma, 1689 workload->wa_ctx.indirect_ctx.size)) { 1690 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", 1691 workload->wa_ctx.indirect_ctx.guest_gma); 1692 kmem_cache_free(s->workloads, workload); 1693 return ERR_PTR(-EINVAL); 1694 } 1695 } 1696 1697 workload->wa_ctx.per_ctx.guest_gma = 1698 per_ctx & PER_CTX_ADDR_MASK; 1699 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1700 if (workload->wa_ctx.per_ctx.valid) { 1701 if (!intel_gvt_ggtt_validate_range(vgpu, 1702 workload->wa_ctx.per_ctx.guest_gma, 1703 CACHELINE_BYTES)) { 1704 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", 1705 workload->wa_ctx.per_ctx.guest_gma); 1706 kmem_cache_free(s->workloads, workload); 1707 return ERR_PTR(-EINVAL); 1708 } 1709 } 1710 } 1711 1712 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n", 1713 workload, engine->name, head, tail, start, ctl); 1714 1715 ret = prepare_mm(workload); 1716 if (ret) { 1717 kmem_cache_free(s->workloads, workload); 1718 return ERR_PTR(ret); 1719 } 1720 1721 /* Only scan and shadow the first workload in the queue 1722 * as there is only one pre-allocated buf-obj for shadow. 1723 */ 1724 if (list_empty(q)) { 1725 intel_wakeref_t wakeref; 1726 1727 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref) 1728 ret = intel_gvt_scan_and_shadow_workload(workload); 1729 } 1730 1731 if (ret) { 1732 if (vgpu_is_vm_unhealthy(ret)) 1733 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1734 intel_vgpu_destroy_workload(workload); 1735 return ERR_PTR(ret); 1736 } 1737 1738 ret = intel_context_pin(s->shadow[engine->id]); 1739 if (ret) { 1740 intel_vgpu_destroy_workload(workload); 1741 return ERR_PTR(ret); 1742 } 1743 1744 return workload; 1745 } 1746 1747 /** 1748 * intel_vgpu_queue_workload - Qeue a vGPU workload 1749 * @workload: the workload to queue in 1750 */ 1751 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1752 { 1753 list_add_tail(&workload->list, 1754 workload_q_head(workload->vgpu, workload->engine)); 1755 intel_gvt_kick_schedule(workload->vgpu->gvt); 1756 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]); 1757 } 1758