1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Zhi Wang <zhi.a.wang@intel.com> 25 * 26 * Contributors: 27 * Ping Gao <ping.a.gao@intel.com> 28 * Tina Zhang <tina.zhang@intel.com> 29 * Chanbin Du <changbin.du@intel.com> 30 * Min He <min.he@intel.com> 31 * Bing Niu <bing.niu@intel.com> 32 * Zhenyu Wang <zhenyuw@linux.intel.com> 33 * 34 */ 35 36 #include <linux/kthread.h> 37 38 #include "i915_drv.h" 39 #include "gvt.h" 40 41 #define RING_CTX_OFF(x) \ 42 offsetof(struct execlist_ring_context, x) 43 44 static void set_context_pdp_root_pointer( 45 struct execlist_ring_context *ring_context, 46 u32 pdp[8]) 47 { 48 int i; 49 50 for (i = 0; i < 8; i++) 51 ring_context->pdps[i].val = pdp[7 - i]; 52 } 53 54 static void update_shadow_pdps(struct intel_vgpu_workload *workload) 55 { 56 struct drm_i915_gem_object *ctx_obj = 57 workload->req->hw_context->state->obj; 58 struct execlist_ring_context *shadow_ring_context; 59 struct page *page; 60 61 if (WARN_ON(!workload->shadow_mm)) 62 return; 63 64 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) 65 return; 66 67 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 68 shadow_ring_context = kmap(page); 69 set_context_pdp_root_pointer(shadow_ring_context, 70 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); 71 kunmap(page); 72 } 73 74 /* 75 * when populating shadow ctx from guest, we should not overrride oa related 76 * registers, so that they will not be overlapped by guest oa configs. Thus 77 * made it possible to capture oa data from host for both host and guests. 78 */ 79 static void sr_oa_regs(struct intel_vgpu_workload *workload, 80 u32 *reg_state, bool save) 81 { 82 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; 83 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 84 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 85 int i = 0; 86 u32 flex_mmio[] = { 87 i915_mmio_reg_offset(EU_PERF_CNTL0), 88 i915_mmio_reg_offset(EU_PERF_CNTL1), 89 i915_mmio_reg_offset(EU_PERF_CNTL2), 90 i915_mmio_reg_offset(EU_PERF_CNTL3), 91 i915_mmio_reg_offset(EU_PERF_CNTL4), 92 i915_mmio_reg_offset(EU_PERF_CNTL5), 93 i915_mmio_reg_offset(EU_PERF_CNTL6), 94 }; 95 96 if (workload->ring_id != RCS) 97 return; 98 99 if (save) { 100 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; 101 102 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 103 u32 state_offset = ctx_flexeu0 + i * 2; 104 105 workload->flex_mmio[i] = reg_state[state_offset + 1]; 106 } 107 } else { 108 reg_state[ctx_oactxctrl] = 109 i915_mmio_reg_offset(GEN8_OACTXCONTROL); 110 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; 111 112 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { 113 u32 state_offset = ctx_flexeu0 + i * 2; 114 u32 mmio = flex_mmio[i]; 115 116 reg_state[state_offset] = mmio; 117 reg_state[state_offset + 1] = workload->flex_mmio[i]; 118 } 119 } 120 } 121 122 static int populate_shadow_context(struct intel_vgpu_workload *workload) 123 { 124 struct intel_vgpu *vgpu = workload->vgpu; 125 struct intel_gvt *gvt = vgpu->gvt; 126 int ring_id = workload->ring_id; 127 struct drm_i915_gem_object *ctx_obj = 128 workload->req->hw_context->state->obj; 129 struct execlist_ring_context *shadow_ring_context; 130 struct page *page; 131 void *dst; 132 unsigned long context_gpa, context_page_num; 133 int i; 134 135 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 136 shadow_ring_context = kmap(page); 137 138 sr_oa_regs(workload, (u32 *)shadow_ring_context, true); 139 #define COPY_REG(name) \ 140 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 141 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 142 #define COPY_REG_MASKED(name) {\ 143 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ 144 + RING_CTX_OFF(name.val),\ 145 &shadow_ring_context->name.val, 4);\ 146 shadow_ring_context->name.val |= 0xffff << 16;\ 147 } 148 149 COPY_REG_MASKED(ctx_ctrl); 150 COPY_REG(ctx_timestamp); 151 152 if (ring_id == RCS) { 153 COPY_REG(bb_per_ctx_ptr); 154 COPY_REG(rcs_indirect_ctx); 155 COPY_REG(rcs_indirect_ctx_offset); 156 } 157 #undef COPY_REG 158 #undef COPY_REG_MASKED 159 160 intel_gvt_hypervisor_read_gpa(vgpu, 161 workload->ring_context_gpa + 162 sizeof(*shadow_ring_context), 163 (void *)shadow_ring_context + 164 sizeof(*shadow_ring_context), 165 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 166 167 sr_oa_regs(workload, (u32 *)shadow_ring_context, false); 168 kunmap(page); 169 170 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val)) 171 return 0; 172 173 gvt_dbg_sched("ring id %d workload lrca %x", ring_id, 174 workload->ctx_desc.lrca); 175 176 context_page_num = gvt->dev_priv->engine[ring_id]->context_size; 177 178 context_page_num = context_page_num >> PAGE_SHIFT; 179 180 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS) 181 context_page_num = 19; 182 183 i = 2; 184 while (i < context_page_num) { 185 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 186 (u32)((workload->ctx_desc.lrca + i) << 187 I915_GTT_PAGE_SHIFT)); 188 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 189 gvt_vgpu_err("Invalid guest context descriptor\n"); 190 return -EFAULT; 191 } 192 193 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 194 dst = kmap(page); 195 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, 196 I915_GTT_PAGE_SIZE); 197 kunmap(page); 198 i++; 199 } 200 return 0; 201 } 202 203 static inline bool is_gvt_request(struct i915_request *req) 204 { 205 return i915_gem_context_force_single_submission(req->gem_context); 206 } 207 208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id) 209 { 210 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 211 u32 ring_base = dev_priv->engine[ring_id]->mmio_base; 212 i915_reg_t reg; 213 214 reg = RING_INSTDONE(ring_base); 215 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 216 reg = RING_ACTHD(ring_base); 217 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 218 reg = RING_ACTHD_UDW(ring_base); 219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg); 220 } 221 222 static int shadow_context_status_change(struct notifier_block *nb, 223 unsigned long action, void *data) 224 { 225 struct i915_request *req = data; 226 struct intel_gvt *gvt = container_of(nb, struct intel_gvt, 227 shadow_ctx_notifier_block[req->engine->id]); 228 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 229 enum intel_engine_id ring_id = req->engine->id; 230 struct intel_vgpu_workload *workload; 231 unsigned long flags; 232 233 if (!is_gvt_request(req)) { 234 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 235 if (action == INTEL_CONTEXT_SCHEDULE_IN && 236 scheduler->engine_owner[ring_id]) { 237 /* Switch ring from vGPU to host. */ 238 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 239 NULL, ring_id); 240 scheduler->engine_owner[ring_id] = NULL; 241 } 242 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 243 244 return NOTIFY_OK; 245 } 246 247 workload = scheduler->current_workload[ring_id]; 248 if (unlikely(!workload)) 249 return NOTIFY_OK; 250 251 switch (action) { 252 case INTEL_CONTEXT_SCHEDULE_IN: 253 spin_lock_irqsave(&scheduler->mmio_context_lock, flags); 254 if (workload->vgpu != scheduler->engine_owner[ring_id]) { 255 /* Switch ring from host to vGPU or vGPU to vGPU. */ 256 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], 257 workload->vgpu, ring_id); 258 scheduler->engine_owner[ring_id] = workload->vgpu; 259 } else 260 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", 261 ring_id, workload->vgpu->id); 262 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); 263 atomic_set(&workload->shadow_ctx_active, 1); 264 break; 265 case INTEL_CONTEXT_SCHEDULE_OUT: 266 save_ring_hw_state(workload->vgpu, ring_id); 267 atomic_set(&workload->shadow_ctx_active, 0); 268 break; 269 case INTEL_CONTEXT_SCHEDULE_PREEMPTED: 270 save_ring_hw_state(workload->vgpu, ring_id); 271 break; 272 default: 273 WARN_ON(1); 274 return NOTIFY_OK; 275 } 276 wake_up(&workload->shadow_ctx_status_wq); 277 return NOTIFY_OK; 278 } 279 280 static void shadow_context_descriptor_update(struct intel_context *ce) 281 { 282 u64 desc = 0; 283 284 desc = ce->lrc_desc; 285 286 /* Update bits 0-11 of the context descriptor which includes flags 287 * like GEN8_CTX_* cached in desc_template 288 */ 289 desc &= U64_MAX << 12; 290 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1); 291 292 ce->lrc_desc = desc; 293 } 294 295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) 296 { 297 struct intel_vgpu *vgpu = workload->vgpu; 298 struct i915_request *req = workload->req; 299 void *shadow_ring_buffer_va; 300 u32 *cs; 301 302 if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)) 303 && is_inhibit_context(req->hw_context)) 304 intel_vgpu_restore_inhibit_context(vgpu, req); 305 306 /* allocate shadow ring buffer */ 307 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); 308 if (IS_ERR(cs)) { 309 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", 310 workload->rb_len); 311 return PTR_ERR(cs); 312 } 313 314 shadow_ring_buffer_va = workload->shadow_ring_buffer_va; 315 316 /* get shadow ring buffer va */ 317 workload->shadow_ring_buffer_va = cs; 318 319 memcpy(cs, shadow_ring_buffer_va, 320 workload->rb_len); 321 322 cs += workload->rb_len / sizeof(u32); 323 intel_ring_advance(workload->req, cs); 324 325 return 0; 326 } 327 328 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 329 { 330 if (!wa_ctx->indirect_ctx.obj) 331 return; 332 333 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); 334 i915_gem_object_put(wa_ctx->indirect_ctx.obj); 335 } 336 337 /** 338 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and 339 * shadow it as well, include ringbuffer,wa_ctx and ctx. 340 * @workload: an abstract entity for each execlist submission. 341 * 342 * This function is called before the workload submitting to i915, to make 343 * sure the content of the workload is valid. 344 */ 345 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) 346 { 347 struct intel_vgpu *vgpu = workload->vgpu; 348 struct intel_vgpu_submission *s = &vgpu->submission; 349 struct i915_gem_context *shadow_ctx = s->shadow_ctx; 350 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 351 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id]; 352 struct intel_context *ce; 353 struct i915_request *rq; 354 int ret; 355 356 lockdep_assert_held(&dev_priv->drm.struct_mutex); 357 358 if (workload->req) 359 return 0; 360 361 /* pin shadow context by gvt even the shadow context will be pinned 362 * when i915 alloc request. That is because gvt will update the guest 363 * context from shadow context when workload is completed, and at that 364 * moment, i915 may already unpined the shadow context to make the 365 * shadow_ctx pages invalid. So gvt need to pin itself. After update 366 * the guest context, gvt can unpin the shadow_ctx safely. 367 */ 368 ce = intel_context_pin(shadow_ctx, engine); 369 if (IS_ERR(ce)) { 370 gvt_vgpu_err("fail to pin shadow context\n"); 371 return PTR_ERR(ce); 372 } 373 374 shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); 375 shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode << 376 GEN8_CTX_ADDRESSING_MODE_SHIFT; 377 378 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated)) 379 shadow_context_descriptor_update(ce); 380 381 ret = intel_gvt_scan_and_shadow_ringbuffer(workload); 382 if (ret) 383 goto err_unpin; 384 385 if ((workload->ring_id == RCS) && 386 (workload->wa_ctx.indirect_ctx.size != 0)) { 387 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); 388 if (ret) 389 goto err_shadow; 390 } 391 392 rq = i915_request_alloc(engine, shadow_ctx); 393 if (IS_ERR(rq)) { 394 gvt_vgpu_err("fail to allocate gem request\n"); 395 ret = PTR_ERR(rq); 396 goto err_shadow; 397 } 398 workload->req = i915_request_get(rq); 399 400 ret = populate_shadow_context(workload); 401 if (ret) 402 goto err_req; 403 404 return 0; 405 err_req: 406 rq = fetch_and_zero(&workload->req); 407 i915_request_put(rq); 408 err_shadow: 409 release_shadow_wa_ctx(&workload->wa_ctx); 410 err_unpin: 411 intel_context_unpin(ce); 412 return ret; 413 } 414 415 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); 416 417 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) 418 { 419 struct intel_gvt *gvt = workload->vgpu->gvt; 420 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 421 struct intel_vgpu_shadow_bb *bb; 422 int ret; 423 424 list_for_each_entry(bb, &workload->shadow_bb, list) { 425 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va 426 * is only updated into ring_scan_buffer, not real ring address 427 * allocated in later copy_workload_to_ring_buffer. pls be noted 428 * shadow_ring_buffer_va is now pointed to real ring buffer va 429 * in copy_workload_to_ring_buffer. 430 */ 431 432 if (bb->bb_offset) 433 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va 434 + bb->bb_offset; 435 436 if (bb->ppgtt) { 437 /* for non-priv bb, scan&shadow is only for 438 * debugging purpose, so the content of shadow bb 439 * is the same as original bb. Therefore, 440 * here, rather than switch to shadow bb's gma 441 * address, we directly use original batch buffer's 442 * gma address, and send original bb to hardware 443 * directly 444 */ 445 if (bb->clflush & CLFLUSH_AFTER) { 446 drm_clflush_virt_range(bb->va, 447 bb->obj->base.size); 448 bb->clflush &= ~CLFLUSH_AFTER; 449 } 450 i915_gem_obj_finish_shmem_access(bb->obj); 451 bb->accessing = false; 452 453 } else { 454 bb->vma = i915_gem_object_ggtt_pin(bb->obj, 455 NULL, 0, 0, 0); 456 if (IS_ERR(bb->vma)) { 457 ret = PTR_ERR(bb->vma); 458 goto err; 459 } 460 461 /* relocate shadow batch buffer */ 462 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); 463 if (gmadr_bytes == 8) 464 bb->bb_start_cmd_va[2] = 0; 465 466 /* No one is going to touch shadow bb from now on. */ 467 if (bb->clflush & CLFLUSH_AFTER) { 468 drm_clflush_virt_range(bb->va, 469 bb->obj->base.size); 470 bb->clflush &= ~CLFLUSH_AFTER; 471 } 472 473 ret = i915_gem_object_set_to_gtt_domain(bb->obj, 474 false); 475 if (ret) 476 goto err; 477 478 i915_gem_obj_finish_shmem_access(bb->obj); 479 bb->accessing = false; 480 481 ret = i915_vma_move_to_active(bb->vma, 482 workload->req, 483 0); 484 if (ret) 485 goto err; 486 } 487 } 488 return 0; 489 err: 490 release_shadow_batch_buffer(workload); 491 return ret; 492 } 493 494 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) 495 { 496 struct intel_vgpu_workload *workload = 497 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); 498 struct i915_request *rq = workload->req; 499 struct execlist_ring_context *shadow_ring_context = 500 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state; 501 502 shadow_ring_context->bb_per_ctx_ptr.val = 503 (shadow_ring_context->bb_per_ctx_ptr.val & 504 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; 505 shadow_ring_context->rcs_indirect_ctx.val = 506 (shadow_ring_context->rcs_indirect_ctx.val & 507 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; 508 } 509 510 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 511 { 512 struct i915_vma *vma; 513 unsigned char *per_ctx_va = 514 (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 515 wa_ctx->indirect_ctx.size; 516 517 if (wa_ctx->indirect_ctx.size == 0) 518 return 0; 519 520 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, 521 0, CACHELINE_BYTES, 0); 522 if (IS_ERR(vma)) 523 return PTR_ERR(vma); 524 525 /* FIXME: we are not tracking our pinned VMA leaving it 526 * up to the core to fix up the stray pin_count upon 527 * free. 528 */ 529 530 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); 531 532 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); 533 memset(per_ctx_va, 0, CACHELINE_BYTES); 534 535 update_wa_ctx_2_shadow_ctx(wa_ctx); 536 return 0; 537 } 538 539 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) 540 { 541 struct intel_vgpu *vgpu = workload->vgpu; 542 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 543 struct intel_vgpu_shadow_bb *bb, *pos; 544 545 if (list_empty(&workload->shadow_bb)) 546 return; 547 548 bb = list_first_entry(&workload->shadow_bb, 549 struct intel_vgpu_shadow_bb, list); 550 551 mutex_lock(&dev_priv->drm.struct_mutex); 552 553 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { 554 if (bb->obj) { 555 if (bb->accessing) 556 i915_gem_obj_finish_shmem_access(bb->obj); 557 558 if (bb->va && !IS_ERR(bb->va)) 559 i915_gem_object_unpin_map(bb->obj); 560 561 if (bb->vma && !IS_ERR(bb->vma)) { 562 i915_vma_unpin(bb->vma); 563 i915_vma_close(bb->vma); 564 } 565 __i915_gem_object_release_unless_active(bb->obj); 566 } 567 list_del(&bb->list); 568 kfree(bb); 569 } 570 571 mutex_unlock(&dev_priv->drm.struct_mutex); 572 } 573 574 static int prepare_workload(struct intel_vgpu_workload *workload) 575 { 576 struct intel_vgpu *vgpu = workload->vgpu; 577 int ret = 0; 578 579 ret = intel_vgpu_pin_mm(workload->shadow_mm); 580 if (ret) { 581 gvt_vgpu_err("fail to vgpu pin mm\n"); 582 return ret; 583 } 584 585 update_shadow_pdps(workload); 586 587 ret = intel_vgpu_sync_oos_pages(workload->vgpu); 588 if (ret) { 589 gvt_vgpu_err("fail to vgpu sync oos pages\n"); 590 goto err_unpin_mm; 591 } 592 593 ret = intel_vgpu_flush_post_shadow(workload->vgpu); 594 if (ret) { 595 gvt_vgpu_err("fail to flush post shadow\n"); 596 goto err_unpin_mm; 597 } 598 599 ret = copy_workload_to_ring_buffer(workload); 600 if (ret) { 601 gvt_vgpu_err("fail to generate request\n"); 602 goto err_unpin_mm; 603 } 604 605 ret = prepare_shadow_batch_buffer(workload); 606 if (ret) { 607 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); 608 goto err_unpin_mm; 609 } 610 611 ret = prepare_shadow_wa_ctx(&workload->wa_ctx); 612 if (ret) { 613 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); 614 goto err_shadow_batch; 615 } 616 617 if (workload->prepare) { 618 ret = workload->prepare(workload); 619 if (ret) 620 goto err_shadow_wa_ctx; 621 } 622 623 return 0; 624 err_shadow_wa_ctx: 625 release_shadow_wa_ctx(&workload->wa_ctx); 626 err_shadow_batch: 627 release_shadow_batch_buffer(workload); 628 err_unpin_mm: 629 intel_vgpu_unpin_mm(workload->shadow_mm); 630 return ret; 631 } 632 633 static int dispatch_workload(struct intel_vgpu_workload *workload) 634 { 635 struct intel_vgpu *vgpu = workload->vgpu; 636 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 637 int ring_id = workload->ring_id; 638 int ret; 639 640 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", 641 ring_id, workload); 642 643 mutex_lock(&vgpu->vgpu_lock); 644 mutex_lock(&dev_priv->drm.struct_mutex); 645 646 ret = intel_gvt_scan_and_shadow_workload(workload); 647 if (ret) 648 goto out; 649 650 ret = prepare_workload(workload); 651 652 out: 653 if (ret) 654 workload->status = ret; 655 656 if (!IS_ERR_OR_NULL(workload->req)) { 657 gvt_dbg_sched("ring id %d submit workload to i915 %p\n", 658 ring_id, workload->req); 659 i915_request_add(workload->req); 660 workload->dispatched = true; 661 } 662 663 mutex_unlock(&dev_priv->drm.struct_mutex); 664 mutex_unlock(&vgpu->vgpu_lock); 665 return ret; 666 } 667 668 static struct intel_vgpu_workload *pick_next_workload( 669 struct intel_gvt *gvt, int ring_id) 670 { 671 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 672 struct intel_vgpu_workload *workload = NULL; 673 674 mutex_lock(&gvt->sched_lock); 675 676 /* 677 * no current vgpu / will be scheduled out / no workload 678 * bail out 679 */ 680 if (!scheduler->current_vgpu) { 681 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); 682 goto out; 683 } 684 685 if (scheduler->need_reschedule) { 686 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); 687 goto out; 688 } 689 690 if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) 691 goto out; 692 693 /* 694 * still have current workload, maybe the workload disptacher 695 * fail to submit it for some reason, resubmit it. 696 */ 697 if (scheduler->current_workload[ring_id]) { 698 workload = scheduler->current_workload[ring_id]; 699 gvt_dbg_sched("ring id %d still have current workload %p\n", 700 ring_id, workload); 701 goto out; 702 } 703 704 /* 705 * pick a workload as current workload 706 * once current workload is set, schedule policy routines 707 * will wait the current workload is finished when trying to 708 * schedule out a vgpu. 709 */ 710 scheduler->current_workload[ring_id] = container_of( 711 workload_q_head(scheduler->current_vgpu, ring_id)->next, 712 struct intel_vgpu_workload, list); 713 714 workload = scheduler->current_workload[ring_id]; 715 716 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); 717 718 atomic_inc(&workload->vgpu->submission.running_workload_num); 719 out: 720 mutex_unlock(&gvt->sched_lock); 721 return workload; 722 } 723 724 static void update_guest_context(struct intel_vgpu_workload *workload) 725 { 726 struct i915_request *rq = workload->req; 727 struct intel_vgpu *vgpu = workload->vgpu; 728 struct intel_gvt *gvt = vgpu->gvt; 729 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj; 730 struct execlist_ring_context *shadow_ring_context; 731 struct page *page; 732 void *src; 733 unsigned long context_gpa, context_page_num; 734 int i; 735 736 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, 737 workload->ctx_desc.lrca); 738 739 context_page_num = rq->engine->context_size; 740 context_page_num = context_page_num >> PAGE_SHIFT; 741 742 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS) 743 context_page_num = 19; 744 745 i = 2; 746 747 while (i < context_page_num) { 748 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 749 (u32)((workload->ctx_desc.lrca + i) << 750 I915_GTT_PAGE_SHIFT)); 751 if (context_gpa == INTEL_GVT_INVALID_ADDR) { 752 gvt_vgpu_err("invalid guest context descriptor\n"); 753 return; 754 } 755 756 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i); 757 src = kmap(page); 758 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, 759 I915_GTT_PAGE_SIZE); 760 kunmap(page); 761 i++; 762 } 763 764 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + 765 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); 766 767 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 768 shadow_ring_context = kmap(page); 769 770 #define COPY_REG(name) \ 771 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ 772 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) 773 774 COPY_REG(ctx_ctrl); 775 COPY_REG(ctx_timestamp); 776 777 #undef COPY_REG 778 779 intel_gvt_hypervisor_write_gpa(vgpu, 780 workload->ring_context_gpa + 781 sizeof(*shadow_ring_context), 782 (void *)shadow_ring_context + 783 sizeof(*shadow_ring_context), 784 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); 785 786 kunmap(page); 787 } 788 789 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, 790 unsigned long engine_mask) 791 { 792 struct intel_vgpu_submission *s = &vgpu->submission; 793 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 794 struct intel_engine_cs *engine; 795 struct intel_vgpu_workload *pos, *n; 796 unsigned int tmp; 797 798 /* free the unsubmited workloads in the queues. */ 799 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) { 800 list_for_each_entry_safe(pos, n, 801 &s->workload_q_head[engine->id], list) { 802 list_del_init(&pos->list); 803 intel_vgpu_destroy_workload(pos); 804 } 805 clear_bit(engine->id, s->shadow_ctx_desc_updated); 806 } 807 } 808 809 static void complete_current_workload(struct intel_gvt *gvt, int ring_id) 810 { 811 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 812 struct intel_vgpu_workload *workload = 813 scheduler->current_workload[ring_id]; 814 struct intel_vgpu *vgpu = workload->vgpu; 815 struct intel_vgpu_submission *s = &vgpu->submission; 816 struct i915_request *rq = workload->req; 817 int event; 818 819 mutex_lock(&vgpu->vgpu_lock); 820 mutex_lock(&gvt->sched_lock); 821 822 /* For the workload w/ request, needs to wait for the context 823 * switch to make sure request is completed. 824 * For the workload w/o request, directly complete the workload. 825 */ 826 if (rq) { 827 wait_event(workload->shadow_ctx_status_wq, 828 !atomic_read(&workload->shadow_ctx_active)); 829 830 /* If this request caused GPU hang, req->fence.error will 831 * be set to -EIO. Use -EIO to set workload status so 832 * that when this request caused GPU hang, didn't trigger 833 * context switch interrupt to guest. 834 */ 835 if (likely(workload->status == -EINPROGRESS)) { 836 if (workload->req->fence.error == -EIO) 837 workload->status = -EIO; 838 else 839 workload->status = 0; 840 } 841 842 if (!workload->status && !(vgpu->resetting_eng & 843 ENGINE_MASK(ring_id))) { 844 update_guest_context(workload); 845 846 for_each_set_bit(event, workload->pending_events, 847 INTEL_GVT_EVENT_MAX) 848 intel_vgpu_trigger_virtual_event(vgpu, event); 849 } 850 851 /* unpin shadow ctx as the shadow_ctx update is done */ 852 mutex_lock(&rq->i915->drm.struct_mutex); 853 intel_context_unpin(rq->hw_context); 854 mutex_unlock(&rq->i915->drm.struct_mutex); 855 856 i915_request_put(fetch_and_zero(&workload->req)); 857 } 858 859 gvt_dbg_sched("ring id %d complete workload %p status %d\n", 860 ring_id, workload, workload->status); 861 862 scheduler->current_workload[ring_id] = NULL; 863 864 list_del_init(&workload->list); 865 866 if (!workload->status) { 867 release_shadow_batch_buffer(workload); 868 release_shadow_wa_ctx(&workload->wa_ctx); 869 } 870 871 if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) { 872 /* if workload->status is not successful means HW GPU 873 * has occurred GPU hang or something wrong with i915/GVT, 874 * and GVT won't inject context switch interrupt to guest. 875 * So this error is a vGPU hang actually to the guest. 876 * According to this we should emunlate a vGPU hang. If 877 * there are pending workloads which are already submitted 878 * from guest, we should clean them up like HW GPU does. 879 * 880 * if it is in middle of engine resetting, the pending 881 * workloads won't be submitted to HW GPU and will be 882 * cleaned up during the resetting process later, so doing 883 * the workload clean up here doesn't have any impact. 884 **/ 885 intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id)); 886 } 887 888 workload->complete(workload); 889 890 atomic_dec(&s->running_workload_num); 891 wake_up(&scheduler->workload_complete_wq); 892 893 if (gvt->scheduler.need_reschedule) 894 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); 895 896 mutex_unlock(&gvt->sched_lock); 897 mutex_unlock(&vgpu->vgpu_lock); 898 } 899 900 struct workload_thread_param { 901 struct intel_gvt *gvt; 902 int ring_id; 903 }; 904 905 static int workload_thread(void *priv) 906 { 907 struct workload_thread_param *p = (struct workload_thread_param *)priv; 908 struct intel_gvt *gvt = p->gvt; 909 int ring_id = p->ring_id; 910 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 911 struct intel_vgpu_workload *workload = NULL; 912 struct intel_vgpu *vgpu = NULL; 913 int ret; 914 bool need_force_wake = IS_SKYLAKE(gvt->dev_priv) 915 || IS_KABYLAKE(gvt->dev_priv) 916 || IS_BROXTON(gvt->dev_priv); 917 DEFINE_WAIT_FUNC(wait, woken_wake_function); 918 919 kfree(p); 920 921 gvt_dbg_core("workload thread for ring %d started\n", ring_id); 922 923 while (!kthread_should_stop()) { 924 add_wait_queue(&scheduler->waitq[ring_id], &wait); 925 do { 926 workload = pick_next_workload(gvt, ring_id); 927 if (workload) 928 break; 929 wait_woken(&wait, TASK_INTERRUPTIBLE, 930 MAX_SCHEDULE_TIMEOUT); 931 } while (!kthread_should_stop()); 932 remove_wait_queue(&scheduler->waitq[ring_id], &wait); 933 934 if (!workload) 935 break; 936 937 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", 938 workload->ring_id, workload, 939 workload->vgpu->id); 940 941 intel_runtime_pm_get(gvt->dev_priv); 942 943 gvt_dbg_sched("ring id %d will dispatch workload %p\n", 944 workload->ring_id, workload); 945 946 if (need_force_wake) 947 intel_uncore_forcewake_get(gvt->dev_priv, 948 FORCEWAKE_ALL); 949 950 ret = dispatch_workload(workload); 951 952 if (ret) { 953 vgpu = workload->vgpu; 954 gvt_vgpu_err("fail to dispatch workload, skip\n"); 955 goto complete; 956 } 957 958 gvt_dbg_sched("ring id %d wait workload %p\n", 959 workload->ring_id, workload); 960 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); 961 962 complete: 963 gvt_dbg_sched("will complete workload %p, status: %d\n", 964 workload, workload->status); 965 966 complete_current_workload(gvt, ring_id); 967 968 if (need_force_wake) 969 intel_uncore_forcewake_put(gvt->dev_priv, 970 FORCEWAKE_ALL); 971 972 intel_runtime_pm_put(gvt->dev_priv); 973 if (ret && (vgpu_is_vm_unhealthy(ret))) 974 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 975 } 976 return 0; 977 } 978 979 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) 980 { 981 struct intel_vgpu_submission *s = &vgpu->submission; 982 struct intel_gvt *gvt = vgpu->gvt; 983 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 984 985 if (atomic_read(&s->running_workload_num)) { 986 gvt_dbg_sched("wait vgpu idle\n"); 987 988 wait_event(scheduler->workload_complete_wq, 989 !atomic_read(&s->running_workload_num)); 990 } 991 } 992 993 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) 994 { 995 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 996 struct intel_engine_cs *engine; 997 enum intel_engine_id i; 998 999 gvt_dbg_core("clean workload scheduler\n"); 1000 1001 for_each_engine(engine, gvt->dev_priv, i) { 1002 atomic_notifier_chain_unregister( 1003 &engine->context_status_notifier, 1004 &gvt->shadow_ctx_notifier_block[i]); 1005 kthread_stop(scheduler->thread[i]); 1006 } 1007 } 1008 1009 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) 1010 { 1011 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 1012 struct workload_thread_param *param = NULL; 1013 struct intel_engine_cs *engine; 1014 enum intel_engine_id i; 1015 int ret; 1016 1017 gvt_dbg_core("init workload scheduler\n"); 1018 1019 init_waitqueue_head(&scheduler->workload_complete_wq); 1020 1021 for_each_engine(engine, gvt->dev_priv, i) { 1022 init_waitqueue_head(&scheduler->waitq[i]); 1023 1024 param = kzalloc(sizeof(*param), GFP_KERNEL); 1025 if (!param) { 1026 ret = -ENOMEM; 1027 goto err; 1028 } 1029 1030 param->gvt = gvt; 1031 param->ring_id = i; 1032 1033 scheduler->thread[i] = kthread_run(workload_thread, param, 1034 "gvt workload %d", i); 1035 if (IS_ERR(scheduler->thread[i])) { 1036 gvt_err("fail to create workload thread\n"); 1037 ret = PTR_ERR(scheduler->thread[i]); 1038 goto err; 1039 } 1040 1041 gvt->shadow_ctx_notifier_block[i].notifier_call = 1042 shadow_context_status_change; 1043 atomic_notifier_chain_register(&engine->context_status_notifier, 1044 &gvt->shadow_ctx_notifier_block[i]); 1045 } 1046 return 0; 1047 err: 1048 intel_gvt_clean_workload_scheduler(gvt); 1049 kfree(param); 1050 param = NULL; 1051 return ret; 1052 } 1053 1054 /** 1055 * intel_vgpu_clean_submission - free submission-related resource for vGPU 1056 * @vgpu: a vGPU 1057 * 1058 * This function is called when a vGPU is being destroyed. 1059 * 1060 */ 1061 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) 1062 { 1063 struct intel_vgpu_submission *s = &vgpu->submission; 1064 1065 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); 1066 i915_gem_context_put(s->shadow_ctx); 1067 kmem_cache_destroy(s->workloads); 1068 } 1069 1070 1071 /** 1072 * intel_vgpu_reset_submission - reset submission-related resource for vGPU 1073 * @vgpu: a vGPU 1074 * @engine_mask: engines expected to be reset 1075 * 1076 * This function is called when a vGPU is being destroyed. 1077 * 1078 */ 1079 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, 1080 unsigned long engine_mask) 1081 { 1082 struct intel_vgpu_submission *s = &vgpu->submission; 1083 1084 if (!s->active) 1085 return; 1086 1087 intel_vgpu_clean_workloads(vgpu, engine_mask); 1088 s->ops->reset(vgpu, engine_mask); 1089 } 1090 1091 /** 1092 * intel_vgpu_setup_submission - setup submission-related resource for vGPU 1093 * @vgpu: a vGPU 1094 * 1095 * This function is called when a vGPU is being created. 1096 * 1097 * Returns: 1098 * Zero on success, negative error code if failed. 1099 * 1100 */ 1101 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) 1102 { 1103 struct intel_vgpu_submission *s = &vgpu->submission; 1104 enum intel_engine_id i; 1105 struct intel_engine_cs *engine; 1106 int ret; 1107 1108 s->shadow_ctx = i915_gem_context_create_gvt( 1109 &vgpu->gvt->dev_priv->drm); 1110 if (IS_ERR(s->shadow_ctx)) 1111 return PTR_ERR(s->shadow_ctx); 1112 1113 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); 1114 1115 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", 1116 sizeof(struct intel_vgpu_workload), 0, 1117 SLAB_HWCACHE_ALIGN, 1118 offsetof(struct intel_vgpu_workload, rb_tail), 1119 sizeof_field(struct intel_vgpu_workload, rb_tail), 1120 NULL); 1121 1122 if (!s->workloads) { 1123 ret = -ENOMEM; 1124 goto out_shadow_ctx; 1125 } 1126 1127 for_each_engine(engine, vgpu->gvt->dev_priv, i) 1128 INIT_LIST_HEAD(&s->workload_q_head[i]); 1129 1130 atomic_set(&s->running_workload_num, 0); 1131 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); 1132 1133 return 0; 1134 1135 out_shadow_ctx: 1136 i915_gem_context_put(s->shadow_ctx); 1137 return ret; 1138 } 1139 1140 /** 1141 * intel_vgpu_select_submission_ops - select virtual submission interface 1142 * @vgpu: a vGPU 1143 * @engine_mask: either ALL_ENGINES or target engine mask 1144 * @interface: expected vGPU virtual submission interface 1145 * 1146 * This function is called when guest configures submission interface. 1147 * 1148 * Returns: 1149 * Zero on success, negative error code if failed. 1150 * 1151 */ 1152 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, 1153 unsigned long engine_mask, 1154 unsigned int interface) 1155 { 1156 struct intel_vgpu_submission *s = &vgpu->submission; 1157 const struct intel_vgpu_submission_ops *ops[] = { 1158 [INTEL_VGPU_EXECLIST_SUBMISSION] = 1159 &intel_vgpu_execlist_submission_ops, 1160 }; 1161 int ret; 1162 1163 if (WARN_ON(interface >= ARRAY_SIZE(ops))) 1164 return -EINVAL; 1165 1166 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES)) 1167 return -EINVAL; 1168 1169 if (s->active) 1170 s->ops->clean(vgpu, engine_mask); 1171 1172 if (interface == 0) { 1173 s->ops = NULL; 1174 s->virtual_submission_interface = 0; 1175 s->active = false; 1176 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); 1177 return 0; 1178 } 1179 1180 ret = ops[interface]->init(vgpu, engine_mask); 1181 if (ret) 1182 return ret; 1183 1184 s->ops = ops[interface]; 1185 s->virtual_submission_interface = interface; 1186 s->active = true; 1187 1188 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", 1189 vgpu->id, s->ops->name); 1190 1191 return 0; 1192 } 1193 1194 /** 1195 * intel_vgpu_destroy_workload - destroy a vGPU workload 1196 * @workload: workload to destroy 1197 * 1198 * This function is called when destroy a vGPU workload. 1199 * 1200 */ 1201 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) 1202 { 1203 struct intel_vgpu_submission *s = &workload->vgpu->submission; 1204 1205 if (workload->shadow_mm) 1206 intel_vgpu_mm_put(workload->shadow_mm); 1207 1208 kmem_cache_free(s->workloads, workload); 1209 } 1210 1211 static struct intel_vgpu_workload * 1212 alloc_workload(struct intel_vgpu *vgpu) 1213 { 1214 struct intel_vgpu_submission *s = &vgpu->submission; 1215 struct intel_vgpu_workload *workload; 1216 1217 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); 1218 if (!workload) 1219 return ERR_PTR(-ENOMEM); 1220 1221 INIT_LIST_HEAD(&workload->list); 1222 INIT_LIST_HEAD(&workload->shadow_bb); 1223 1224 init_waitqueue_head(&workload->shadow_ctx_status_wq); 1225 atomic_set(&workload->shadow_ctx_active, 0); 1226 1227 workload->status = -EINPROGRESS; 1228 workload->vgpu = vgpu; 1229 1230 return workload; 1231 } 1232 1233 #define RING_CTX_OFF(x) \ 1234 offsetof(struct execlist_ring_context, x) 1235 1236 static void read_guest_pdps(struct intel_vgpu *vgpu, 1237 u64 ring_context_gpa, u32 pdp[8]) 1238 { 1239 u64 gpa; 1240 int i; 1241 1242 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); 1243 1244 for (i = 0; i < 8; i++) 1245 intel_gvt_hypervisor_read_gpa(vgpu, 1246 gpa + i * 8, &pdp[7 - i], 4); 1247 } 1248 1249 static int prepare_mm(struct intel_vgpu_workload *workload) 1250 { 1251 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; 1252 struct intel_vgpu_mm *mm; 1253 struct intel_vgpu *vgpu = workload->vgpu; 1254 intel_gvt_gtt_type_t root_entry_type; 1255 u64 pdps[GVT_RING_CTX_NR_PDPS]; 1256 1257 switch (desc->addressing_mode) { 1258 case 1: /* legacy 32-bit */ 1259 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1260 break; 1261 case 3: /* legacy 64-bit */ 1262 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1263 break; 1264 default: 1265 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); 1266 return -EINVAL; 1267 } 1268 1269 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); 1270 1271 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); 1272 if (IS_ERR(mm)) 1273 return PTR_ERR(mm); 1274 1275 workload->shadow_mm = mm; 1276 return 0; 1277 } 1278 1279 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ 1280 ((a)->lrca == (b)->lrca)) 1281 1282 #define get_last_workload(q) \ 1283 (list_empty(q) ? NULL : container_of(q->prev, \ 1284 struct intel_vgpu_workload, list)) 1285 /** 1286 * intel_vgpu_create_workload - create a vGPU workload 1287 * @vgpu: a vGPU 1288 * @ring_id: ring index 1289 * @desc: a guest context descriptor 1290 * 1291 * This function is called when creating a vGPU workload. 1292 * 1293 * Returns: 1294 * struct intel_vgpu_workload * on success, negative error code in 1295 * pointer if failed. 1296 * 1297 */ 1298 struct intel_vgpu_workload * 1299 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id, 1300 struct execlist_ctx_descriptor_format *desc) 1301 { 1302 struct intel_vgpu_submission *s = &vgpu->submission; 1303 struct list_head *q = workload_q_head(vgpu, ring_id); 1304 struct intel_vgpu_workload *last_workload = get_last_workload(q); 1305 struct intel_vgpu_workload *workload = NULL; 1306 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1307 u64 ring_context_gpa; 1308 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; 1309 int ret; 1310 1311 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, 1312 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); 1313 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { 1314 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); 1315 return ERR_PTR(-EINVAL); 1316 } 1317 1318 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1319 RING_CTX_OFF(ring_header.val), &head, 4); 1320 1321 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1322 RING_CTX_OFF(ring_tail.val), &tail, 4); 1323 1324 head &= RB_HEAD_OFF_MASK; 1325 tail &= RB_TAIL_OFF_MASK; 1326 1327 if (last_workload && same_context(&last_workload->ctx_desc, desc)) { 1328 gvt_dbg_el("ring id %d cur workload == last\n", ring_id); 1329 gvt_dbg_el("ctx head %x real head %lx\n", head, 1330 last_workload->rb_tail); 1331 /* 1332 * cannot use guest context head pointer here, 1333 * as it might not be updated at this time 1334 */ 1335 head = last_workload->rb_tail; 1336 } 1337 1338 gvt_dbg_el("ring id %d begin a new workload\n", ring_id); 1339 1340 /* record some ring buffer register values for scan and shadow */ 1341 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1342 RING_CTX_OFF(rb_start.val), &start, 4); 1343 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1344 RING_CTX_OFF(rb_ctrl.val), &ctl, 4); 1345 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1346 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); 1347 1348 workload = alloc_workload(vgpu); 1349 if (IS_ERR(workload)) 1350 return workload; 1351 1352 workload->ring_id = ring_id; 1353 workload->ctx_desc = *desc; 1354 workload->ring_context_gpa = ring_context_gpa; 1355 workload->rb_head = head; 1356 workload->rb_tail = tail; 1357 workload->rb_start = start; 1358 workload->rb_ctl = ctl; 1359 1360 if (ring_id == RCS) { 1361 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1362 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); 1363 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + 1364 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); 1365 1366 workload->wa_ctx.indirect_ctx.guest_gma = 1367 indirect_ctx & INDIRECT_CTX_ADDR_MASK; 1368 workload->wa_ctx.indirect_ctx.size = 1369 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * 1370 CACHELINE_BYTES; 1371 workload->wa_ctx.per_ctx.guest_gma = 1372 per_ctx & PER_CTX_ADDR_MASK; 1373 workload->wa_ctx.per_ctx.valid = per_ctx & 1; 1374 } 1375 1376 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n", 1377 workload, ring_id, head, tail, start, ctl); 1378 1379 ret = prepare_mm(workload); 1380 if (ret) { 1381 kmem_cache_free(s->workloads, workload); 1382 return ERR_PTR(ret); 1383 } 1384 1385 /* Only scan and shadow the first workload in the queue 1386 * as there is only one pre-allocated buf-obj for shadow. 1387 */ 1388 if (list_empty(workload_q_head(vgpu, ring_id))) { 1389 intel_runtime_pm_get(dev_priv); 1390 mutex_lock(&dev_priv->drm.struct_mutex); 1391 ret = intel_gvt_scan_and_shadow_workload(workload); 1392 mutex_unlock(&dev_priv->drm.struct_mutex); 1393 intel_runtime_pm_put(dev_priv); 1394 } 1395 1396 if (ret && (vgpu_is_vm_unhealthy(ret))) { 1397 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); 1398 intel_vgpu_destroy_workload(workload); 1399 return ERR_PTR(ret); 1400 } 1401 1402 return workload; 1403 } 1404 1405 /** 1406 * intel_vgpu_queue_workload - Qeue a vGPU workload 1407 * @workload: the workload to queue in 1408 */ 1409 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) 1410 { 1411 list_add_tail(&workload->list, 1412 workload_q_head(workload->vgpu, workload->ring_id)); 1413 intel_gvt_kick_schedule(workload->vgpu->gvt); 1414 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]); 1415 } 1416