xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "i915_drv.h"
39 #include "gvt.h"
40 
41 #define RING_CTX_OFF(x) \
42 	offsetof(struct execlist_ring_context, x)
43 
44 static void set_context_pdp_root_pointer(
45 		struct execlist_ring_context *ring_context,
46 		u32 pdp[8])
47 {
48 	int i;
49 
50 	for (i = 0; i < 8; i++)
51 		ring_context->pdps[i].val = pdp[7 - i];
52 }
53 
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56 	struct drm_i915_gem_object *ctx_obj =
57 		workload->req->hw_context->state->obj;
58 	struct execlist_ring_context *shadow_ring_context;
59 	struct page *page;
60 
61 	if (WARN_ON(!workload->shadow_mm))
62 		return;
63 
64 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65 		return;
66 
67 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 	shadow_ring_context = kmap(page);
69 	set_context_pdp_root_pointer(shadow_ring_context,
70 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71 	kunmap(page);
72 }
73 
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 		u32 *reg_state, bool save)
81 {
82 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85 	int i = 0;
86 	u32 flex_mmio[] = {
87 		i915_mmio_reg_offset(EU_PERF_CNTL0),
88 		i915_mmio_reg_offset(EU_PERF_CNTL1),
89 		i915_mmio_reg_offset(EU_PERF_CNTL2),
90 		i915_mmio_reg_offset(EU_PERF_CNTL3),
91 		i915_mmio_reg_offset(EU_PERF_CNTL4),
92 		i915_mmio_reg_offset(EU_PERF_CNTL5),
93 		i915_mmio_reg_offset(EU_PERF_CNTL6),
94 	};
95 
96 	if (workload->ring_id != RCS)
97 		return;
98 
99 	if (save) {
100 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101 
102 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 			u32 state_offset = ctx_flexeu0 + i * 2;
104 
105 			workload->flex_mmio[i] = reg_state[state_offset + 1];
106 		}
107 	} else {
108 		reg_state[ctx_oactxctrl] =
109 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111 
112 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 			u32 state_offset = ctx_flexeu0 + i * 2;
114 			u32 mmio = flex_mmio[i];
115 
116 			reg_state[state_offset] = mmio;
117 			reg_state[state_offset + 1] = workload->flex_mmio[i];
118 		}
119 	}
120 }
121 
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124 	struct intel_vgpu *vgpu = workload->vgpu;
125 	struct intel_gvt *gvt = vgpu->gvt;
126 	int ring_id = workload->ring_id;
127 	struct drm_i915_gem_object *ctx_obj =
128 		workload->req->hw_context->state->obj;
129 	struct execlist_ring_context *shadow_ring_context;
130 	struct page *page;
131 	void *dst;
132 	unsigned long context_gpa, context_page_num;
133 	int i;
134 
135 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136 	shadow_ring_context = kmap(page);
137 
138 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144 					      + RING_CTX_OFF(name.val),\
145 					      &shadow_ring_context->name.val, 4);\
146 		shadow_ring_context->name.val |= 0xffff << 16;\
147 	}
148 
149 	COPY_REG_MASKED(ctx_ctrl);
150 	COPY_REG(ctx_timestamp);
151 
152 	if (ring_id == RCS) {
153 		COPY_REG(bb_per_ctx_ptr);
154 		COPY_REG(rcs_indirect_ctx);
155 		COPY_REG(rcs_indirect_ctx_offset);
156 	}
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159 
160 	intel_gvt_hypervisor_read_gpa(vgpu,
161 			workload->ring_context_gpa +
162 			sizeof(*shadow_ring_context),
163 			(void *)shadow_ring_context +
164 			sizeof(*shadow_ring_context),
165 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166 
167 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168 	kunmap(page);
169 
170 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171 		return 0;
172 
173 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174 			workload->ctx_desc.lrca);
175 
176 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177 
178 	context_page_num = context_page_num >> PAGE_SHIFT;
179 
180 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
181 		context_page_num = 19;
182 
183 	i = 2;
184 	while (i < context_page_num) {
185 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186 				(u32)((workload->ctx_desc.lrca + i) <<
187 				I915_GTT_PAGE_SHIFT));
188 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189 			gvt_vgpu_err("Invalid guest context descriptor\n");
190 			return -EFAULT;
191 		}
192 
193 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194 		dst = kmap(page);
195 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196 				I915_GTT_PAGE_SIZE);
197 		kunmap(page);
198 		i++;
199 	}
200 	return 0;
201 }
202 
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205 	return i915_gem_context_force_single_submission(req->gem_context);
206 }
207 
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212 	i915_reg_t reg;
213 
214 	reg = RING_INSTDONE(ring_base);
215 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 	reg = RING_ACTHD(ring_base);
217 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 	reg = RING_ACTHD_UDW(ring_base);
219 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221 
222 static int shadow_context_status_change(struct notifier_block *nb,
223 		unsigned long action, void *data)
224 {
225 	struct i915_request *req = data;
226 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227 				shadow_ctx_notifier_block[req->engine->id]);
228 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229 	enum intel_engine_id ring_id = req->engine->id;
230 	struct intel_vgpu_workload *workload;
231 	unsigned long flags;
232 
233 	if (!is_gvt_request(req)) {
234 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236 		    scheduler->engine_owner[ring_id]) {
237 			/* Switch ring from vGPU to host. */
238 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239 					      NULL, ring_id);
240 			scheduler->engine_owner[ring_id] = NULL;
241 		}
242 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243 
244 		return NOTIFY_OK;
245 	}
246 
247 	workload = scheduler->current_workload[ring_id];
248 	if (unlikely(!workload))
249 		return NOTIFY_OK;
250 
251 	switch (action) {
252 	case INTEL_CONTEXT_SCHEDULE_IN:
253 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255 			/* Switch ring from host to vGPU or vGPU to vGPU. */
256 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257 					      workload->vgpu, ring_id);
258 			scheduler->engine_owner[ring_id] = workload->vgpu;
259 		} else
260 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261 				      ring_id, workload->vgpu->id);
262 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263 		atomic_set(&workload->shadow_ctx_active, 1);
264 		break;
265 	case INTEL_CONTEXT_SCHEDULE_OUT:
266 		save_ring_hw_state(workload->vgpu, ring_id);
267 		atomic_set(&workload->shadow_ctx_active, 0);
268 		break;
269 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270 		save_ring_hw_state(workload->vgpu, ring_id);
271 		break;
272 	default:
273 		WARN_ON(1);
274 		return NOTIFY_OK;
275 	}
276 	wake_up(&workload->shadow_ctx_status_wq);
277 	return NOTIFY_OK;
278 }
279 
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282 	u64 desc = 0;
283 
284 	desc = ce->lrc_desc;
285 
286 	/* Update bits 0-11 of the context descriptor which includes flags
287 	 * like GEN8_CTX_* cached in desc_template
288 	 */
289 	desc &= U64_MAX << 12;
290 	desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291 
292 	ce->lrc_desc = desc;
293 }
294 
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297 	struct intel_vgpu *vgpu = workload->vgpu;
298 	struct i915_request *req = workload->req;
299 	void *shadow_ring_buffer_va;
300 	u32 *cs;
301 
302 	if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)
303 		|| IS_COFFEELAKE(req->i915))
304 		&& is_inhibit_context(req->hw_context))
305 		intel_vgpu_restore_inhibit_context(vgpu, req);
306 
307 	/* allocate shadow ring buffer */
308 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
309 	if (IS_ERR(cs)) {
310 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
311 			workload->rb_len);
312 		return PTR_ERR(cs);
313 	}
314 
315 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
316 
317 	/* get shadow ring buffer va */
318 	workload->shadow_ring_buffer_va = cs;
319 
320 	memcpy(cs, shadow_ring_buffer_va,
321 			workload->rb_len);
322 
323 	cs += workload->rb_len / sizeof(u32);
324 	intel_ring_advance(workload->req, cs);
325 
326 	return 0;
327 }
328 
329 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
330 {
331 	if (!wa_ctx->indirect_ctx.obj)
332 		return;
333 
334 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
335 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
336 
337 	wa_ctx->indirect_ctx.obj = NULL;
338 	wa_ctx->indirect_ctx.shadow_va = NULL;
339 }
340 
341 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
342 					 struct i915_gem_context *ctx)
343 {
344 	struct intel_vgpu_mm *mm = workload->shadow_mm;
345 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
346 	int i = 0;
347 
348 	if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
349 		return -EINVAL;
350 
351 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
352 		px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
353 	} else {
354 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
355 			px_dma(ppgtt->pdp.page_directory[i]) =
356 				mm->ppgtt_mm.shadow_pdps[i];
357 		}
358 	}
359 
360 	return 0;
361 }
362 
363 static int
364 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
365 {
366 	struct intel_vgpu *vgpu = workload->vgpu;
367 	struct intel_vgpu_submission *s = &vgpu->submission;
368 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
369 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
370 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
371 	struct i915_request *rq;
372 	int ret = 0;
373 
374 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
375 
376 	if (workload->req)
377 		goto out;
378 
379 	rq = i915_request_alloc(engine, shadow_ctx);
380 	if (IS_ERR(rq)) {
381 		gvt_vgpu_err("fail to allocate gem request\n");
382 		ret = PTR_ERR(rq);
383 		goto out;
384 	}
385 	workload->req = i915_request_get(rq);
386 out:
387 	return ret;
388 }
389 
390 /**
391  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
392  * shadow it as well, include ringbuffer,wa_ctx and ctx.
393  * @workload: an abstract entity for each execlist submission.
394  *
395  * This function is called before the workload submitting to i915, to make
396  * sure the content of the workload is valid.
397  */
398 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
399 {
400 	struct intel_vgpu *vgpu = workload->vgpu;
401 	struct intel_vgpu_submission *s = &vgpu->submission;
402 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
403 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
404 	struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
405 	struct intel_context *ce;
406 	int ret;
407 
408 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
409 
410 	if (workload->shadow)
411 		return 0;
412 
413 	/* pin shadow context by gvt even the shadow context will be pinned
414 	 * when i915 alloc request. That is because gvt will update the guest
415 	 * context from shadow context when workload is completed, and at that
416 	 * moment, i915 may already unpined the shadow context to make the
417 	 * shadow_ctx pages invalid. So gvt need to pin itself. After update
418 	 * the guest context, gvt can unpin the shadow_ctx safely.
419 	 */
420 	ce = intel_context_pin(shadow_ctx, engine);
421 	if (IS_ERR(ce)) {
422 		gvt_vgpu_err("fail to pin shadow context\n");
423 		return PTR_ERR(ce);
424 	}
425 
426 	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
427 	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
428 				    GEN8_CTX_ADDRESSING_MODE_SHIFT;
429 
430 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
431 		shadow_context_descriptor_update(ce);
432 
433 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
434 	if (ret)
435 		goto err_unpin;
436 
437 	if ((workload->ring_id == RCS) &&
438 	    (workload->wa_ctx.indirect_ctx.size != 0)) {
439 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
440 		if (ret)
441 			goto err_shadow;
442 	}
443 
444 	workload->shadow = true;
445 	return 0;
446 err_shadow:
447 	release_shadow_wa_ctx(&workload->wa_ctx);
448 err_unpin:
449 	intel_context_unpin(ce);
450 	return ret;
451 }
452 
453 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
454 
455 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
456 {
457 	struct intel_gvt *gvt = workload->vgpu->gvt;
458 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
459 	struct intel_vgpu_shadow_bb *bb;
460 	int ret;
461 
462 	list_for_each_entry(bb, &workload->shadow_bb, list) {
463 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
464 		 * is only updated into ring_scan_buffer, not real ring address
465 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
466 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
467 		 * in copy_workload_to_ring_buffer.
468 		 */
469 
470 		if (bb->bb_offset)
471 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
472 				+ bb->bb_offset;
473 
474 		if (bb->ppgtt) {
475 			/* for non-priv bb, scan&shadow is only for
476 			 * debugging purpose, so the content of shadow bb
477 			 * is the same as original bb. Therefore,
478 			 * here, rather than switch to shadow bb's gma
479 			 * address, we directly use original batch buffer's
480 			 * gma address, and send original bb to hardware
481 			 * directly
482 			 */
483 			if (bb->clflush & CLFLUSH_AFTER) {
484 				drm_clflush_virt_range(bb->va,
485 						bb->obj->base.size);
486 				bb->clflush &= ~CLFLUSH_AFTER;
487 			}
488 			i915_gem_obj_finish_shmem_access(bb->obj);
489 			bb->accessing = false;
490 
491 		} else {
492 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
493 					NULL, 0, 0, 0);
494 			if (IS_ERR(bb->vma)) {
495 				ret = PTR_ERR(bb->vma);
496 				goto err;
497 			}
498 
499 			/* relocate shadow batch buffer */
500 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
501 			if (gmadr_bytes == 8)
502 				bb->bb_start_cmd_va[2] = 0;
503 
504 			/* No one is going to touch shadow bb from now on. */
505 			if (bb->clflush & CLFLUSH_AFTER) {
506 				drm_clflush_virt_range(bb->va,
507 						bb->obj->base.size);
508 				bb->clflush &= ~CLFLUSH_AFTER;
509 			}
510 
511 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
512 					false);
513 			if (ret)
514 				goto err;
515 
516 			i915_gem_obj_finish_shmem_access(bb->obj);
517 			bb->accessing = false;
518 
519 			ret = i915_vma_move_to_active(bb->vma,
520 						      workload->req,
521 						      0);
522 			if (ret)
523 				goto err;
524 		}
525 	}
526 	return 0;
527 err:
528 	release_shadow_batch_buffer(workload);
529 	return ret;
530 }
531 
532 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
533 {
534 	struct intel_vgpu_workload *workload =
535 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
536 	struct i915_request *rq = workload->req;
537 	struct execlist_ring_context *shadow_ring_context =
538 		(struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
539 
540 	shadow_ring_context->bb_per_ctx_ptr.val =
541 		(shadow_ring_context->bb_per_ctx_ptr.val &
542 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
543 	shadow_ring_context->rcs_indirect_ctx.val =
544 		(shadow_ring_context->rcs_indirect_ctx.val &
545 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
546 }
547 
548 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
549 {
550 	struct i915_vma *vma;
551 	unsigned char *per_ctx_va =
552 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
553 		wa_ctx->indirect_ctx.size;
554 
555 	if (wa_ctx->indirect_ctx.size == 0)
556 		return 0;
557 
558 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
559 				       0, CACHELINE_BYTES, 0);
560 	if (IS_ERR(vma))
561 		return PTR_ERR(vma);
562 
563 	/* FIXME: we are not tracking our pinned VMA leaving it
564 	 * up to the core to fix up the stray pin_count upon
565 	 * free.
566 	 */
567 
568 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
569 
570 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
571 	memset(per_ctx_va, 0, CACHELINE_BYTES);
572 
573 	update_wa_ctx_2_shadow_ctx(wa_ctx);
574 	return 0;
575 }
576 
577 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
578 {
579 	struct intel_vgpu *vgpu = workload->vgpu;
580 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
581 	struct intel_vgpu_shadow_bb *bb, *pos;
582 
583 	if (list_empty(&workload->shadow_bb))
584 		return;
585 
586 	bb = list_first_entry(&workload->shadow_bb,
587 			struct intel_vgpu_shadow_bb, list);
588 
589 	mutex_lock(&dev_priv->drm.struct_mutex);
590 
591 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
592 		if (bb->obj) {
593 			if (bb->accessing)
594 				i915_gem_obj_finish_shmem_access(bb->obj);
595 
596 			if (bb->va && !IS_ERR(bb->va))
597 				i915_gem_object_unpin_map(bb->obj);
598 
599 			if (bb->vma && !IS_ERR(bb->vma)) {
600 				i915_vma_unpin(bb->vma);
601 				i915_vma_close(bb->vma);
602 			}
603 			__i915_gem_object_release_unless_active(bb->obj);
604 		}
605 		list_del(&bb->list);
606 		kfree(bb);
607 	}
608 
609 	mutex_unlock(&dev_priv->drm.struct_mutex);
610 }
611 
612 static int prepare_workload(struct intel_vgpu_workload *workload)
613 {
614 	struct intel_vgpu *vgpu = workload->vgpu;
615 	int ret = 0;
616 
617 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
618 	if (ret) {
619 		gvt_vgpu_err("fail to vgpu pin mm\n");
620 		return ret;
621 	}
622 
623 	update_shadow_pdps(workload);
624 
625 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
626 	if (ret) {
627 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
628 		goto err_unpin_mm;
629 	}
630 
631 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
632 	if (ret) {
633 		gvt_vgpu_err("fail to flush post shadow\n");
634 		goto err_unpin_mm;
635 	}
636 
637 	ret = copy_workload_to_ring_buffer(workload);
638 	if (ret) {
639 		gvt_vgpu_err("fail to generate request\n");
640 		goto err_unpin_mm;
641 	}
642 
643 	ret = prepare_shadow_batch_buffer(workload);
644 	if (ret) {
645 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
646 		goto err_unpin_mm;
647 	}
648 
649 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
650 	if (ret) {
651 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
652 		goto err_shadow_batch;
653 	}
654 
655 	if (workload->prepare) {
656 		ret = workload->prepare(workload);
657 		if (ret)
658 			goto err_shadow_wa_ctx;
659 	}
660 
661 	return 0;
662 err_shadow_wa_ctx:
663 	release_shadow_wa_ctx(&workload->wa_ctx);
664 err_shadow_batch:
665 	release_shadow_batch_buffer(workload);
666 err_unpin_mm:
667 	intel_vgpu_unpin_mm(workload->shadow_mm);
668 	return ret;
669 }
670 
671 static int dispatch_workload(struct intel_vgpu_workload *workload)
672 {
673 	struct intel_vgpu *vgpu = workload->vgpu;
674 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
675 	struct intel_vgpu_submission *s = &vgpu->submission;
676 	struct i915_gem_context *shadow_ctx = s->shadow_ctx;
677 	struct i915_request *rq;
678 	int ring_id = workload->ring_id;
679 	int ret;
680 
681 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
682 		ring_id, workload);
683 
684 	mutex_lock(&vgpu->vgpu_lock);
685 	mutex_lock(&dev_priv->drm.struct_mutex);
686 
687 	ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
688 	if (ret < 0) {
689 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
690 		goto err_req;
691 	}
692 
693 	ret = intel_gvt_workload_req_alloc(workload);
694 	if (ret)
695 		goto err_req;
696 
697 	ret = intel_gvt_scan_and_shadow_workload(workload);
698 	if (ret)
699 		goto out;
700 
701 	ret = populate_shadow_context(workload);
702 	if (ret) {
703 		release_shadow_wa_ctx(&workload->wa_ctx);
704 		goto out;
705 	}
706 
707 	ret = prepare_workload(workload);
708 out:
709 	if (ret) {
710 		/* We might still need to add request with
711 		 * clean ctx to retire it properly..
712 		 */
713 		rq = fetch_and_zero(&workload->req);
714 		i915_request_put(rq);
715 	}
716 
717 	if (!IS_ERR_OR_NULL(workload->req)) {
718 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
719 				ring_id, workload->req);
720 		i915_request_add(workload->req);
721 		workload->dispatched = true;
722 	}
723 err_req:
724 	if (ret)
725 		workload->status = ret;
726 	mutex_unlock(&dev_priv->drm.struct_mutex);
727 	mutex_unlock(&vgpu->vgpu_lock);
728 	return ret;
729 }
730 
731 static struct intel_vgpu_workload *pick_next_workload(
732 		struct intel_gvt *gvt, int ring_id)
733 {
734 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
735 	struct intel_vgpu_workload *workload = NULL;
736 
737 	mutex_lock(&gvt->sched_lock);
738 
739 	/*
740 	 * no current vgpu / will be scheduled out / no workload
741 	 * bail out
742 	 */
743 	if (!scheduler->current_vgpu) {
744 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
745 		goto out;
746 	}
747 
748 	if (scheduler->need_reschedule) {
749 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
750 		goto out;
751 	}
752 
753 	if (!scheduler->current_vgpu->active ||
754 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
755 		goto out;
756 
757 	/*
758 	 * still have current workload, maybe the workload disptacher
759 	 * fail to submit it for some reason, resubmit it.
760 	 */
761 	if (scheduler->current_workload[ring_id]) {
762 		workload = scheduler->current_workload[ring_id];
763 		gvt_dbg_sched("ring id %d still have current workload %p\n",
764 				ring_id, workload);
765 		goto out;
766 	}
767 
768 	/*
769 	 * pick a workload as current workload
770 	 * once current workload is set, schedule policy routines
771 	 * will wait the current workload is finished when trying to
772 	 * schedule out a vgpu.
773 	 */
774 	scheduler->current_workload[ring_id] = container_of(
775 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
776 			struct intel_vgpu_workload, list);
777 
778 	workload = scheduler->current_workload[ring_id];
779 
780 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
781 
782 	atomic_inc(&workload->vgpu->submission.running_workload_num);
783 out:
784 	mutex_unlock(&gvt->sched_lock);
785 	return workload;
786 }
787 
788 static void update_guest_context(struct intel_vgpu_workload *workload)
789 {
790 	struct i915_request *rq = workload->req;
791 	struct intel_vgpu *vgpu = workload->vgpu;
792 	struct intel_gvt *gvt = vgpu->gvt;
793 	struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
794 	struct execlist_ring_context *shadow_ring_context;
795 	struct page *page;
796 	void *src;
797 	unsigned long context_gpa, context_page_num;
798 	int i;
799 
800 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
801 		      workload->ctx_desc.lrca);
802 
803 	context_page_num = rq->engine->context_size;
804 	context_page_num = context_page_num >> PAGE_SHIFT;
805 
806 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS)
807 		context_page_num = 19;
808 
809 	i = 2;
810 
811 	while (i < context_page_num) {
812 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
813 				(u32)((workload->ctx_desc.lrca + i) <<
814 					I915_GTT_PAGE_SHIFT));
815 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
816 			gvt_vgpu_err("invalid guest context descriptor\n");
817 			return;
818 		}
819 
820 		page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
821 		src = kmap(page);
822 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
823 				I915_GTT_PAGE_SIZE);
824 		kunmap(page);
825 		i++;
826 	}
827 
828 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
829 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
830 
831 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
832 	shadow_ring_context = kmap(page);
833 
834 #define COPY_REG(name) \
835 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
836 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
837 
838 	COPY_REG(ctx_ctrl);
839 	COPY_REG(ctx_timestamp);
840 
841 #undef COPY_REG
842 
843 	intel_gvt_hypervisor_write_gpa(vgpu,
844 			workload->ring_context_gpa +
845 			sizeof(*shadow_ring_context),
846 			(void *)shadow_ring_context +
847 			sizeof(*shadow_ring_context),
848 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
849 
850 	kunmap(page);
851 }
852 
853 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
854 				unsigned long engine_mask)
855 {
856 	struct intel_vgpu_submission *s = &vgpu->submission;
857 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
858 	struct intel_engine_cs *engine;
859 	struct intel_vgpu_workload *pos, *n;
860 	unsigned int tmp;
861 
862 	/* free the unsubmited workloads in the queues. */
863 	for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
864 		list_for_each_entry_safe(pos, n,
865 			&s->workload_q_head[engine->id], list) {
866 			list_del_init(&pos->list);
867 			intel_vgpu_destroy_workload(pos);
868 		}
869 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
870 	}
871 }
872 
873 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
874 {
875 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
876 	struct intel_vgpu_workload *workload =
877 		scheduler->current_workload[ring_id];
878 	struct intel_vgpu *vgpu = workload->vgpu;
879 	struct intel_vgpu_submission *s = &vgpu->submission;
880 	struct i915_request *rq = workload->req;
881 	int event;
882 
883 	mutex_lock(&vgpu->vgpu_lock);
884 	mutex_lock(&gvt->sched_lock);
885 
886 	/* For the workload w/ request, needs to wait for the context
887 	 * switch to make sure request is completed.
888 	 * For the workload w/o request, directly complete the workload.
889 	 */
890 	if (rq) {
891 		wait_event(workload->shadow_ctx_status_wq,
892 			   !atomic_read(&workload->shadow_ctx_active));
893 
894 		/* If this request caused GPU hang, req->fence.error will
895 		 * be set to -EIO. Use -EIO to set workload status so
896 		 * that when this request caused GPU hang, didn't trigger
897 		 * context switch interrupt to guest.
898 		 */
899 		if (likely(workload->status == -EINPROGRESS)) {
900 			if (workload->req->fence.error == -EIO)
901 				workload->status = -EIO;
902 			else
903 				workload->status = 0;
904 		}
905 
906 		if (!workload->status && !(vgpu->resetting_eng &
907 					   ENGINE_MASK(ring_id))) {
908 			update_guest_context(workload);
909 
910 			for_each_set_bit(event, workload->pending_events,
911 					 INTEL_GVT_EVENT_MAX)
912 				intel_vgpu_trigger_virtual_event(vgpu, event);
913 		}
914 
915 		/* unpin shadow ctx as the shadow_ctx update is done */
916 		mutex_lock(&rq->i915->drm.struct_mutex);
917 		intel_context_unpin(rq->hw_context);
918 		mutex_unlock(&rq->i915->drm.struct_mutex);
919 
920 		i915_request_put(fetch_and_zero(&workload->req));
921 	}
922 
923 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
924 			ring_id, workload, workload->status);
925 
926 	scheduler->current_workload[ring_id] = NULL;
927 
928 	list_del_init(&workload->list);
929 
930 	if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
931 		/* if workload->status is not successful means HW GPU
932 		 * has occurred GPU hang or something wrong with i915/GVT,
933 		 * and GVT won't inject context switch interrupt to guest.
934 		 * So this error is a vGPU hang actually to the guest.
935 		 * According to this we should emunlate a vGPU hang. If
936 		 * there are pending workloads which are already submitted
937 		 * from guest, we should clean them up like HW GPU does.
938 		 *
939 		 * if it is in middle of engine resetting, the pending
940 		 * workloads won't be submitted to HW GPU and will be
941 		 * cleaned up during the resetting process later, so doing
942 		 * the workload clean up here doesn't have any impact.
943 		 **/
944 		intel_vgpu_clean_workloads(vgpu, ENGINE_MASK(ring_id));
945 	}
946 
947 	workload->complete(workload);
948 
949 	atomic_dec(&s->running_workload_num);
950 	wake_up(&scheduler->workload_complete_wq);
951 
952 	if (gvt->scheduler.need_reschedule)
953 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
954 
955 	mutex_unlock(&gvt->sched_lock);
956 	mutex_unlock(&vgpu->vgpu_lock);
957 }
958 
959 struct workload_thread_param {
960 	struct intel_gvt *gvt;
961 	int ring_id;
962 };
963 
964 static int workload_thread(void *priv)
965 {
966 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
967 	struct intel_gvt *gvt = p->gvt;
968 	int ring_id = p->ring_id;
969 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
970 	struct intel_vgpu_workload *workload = NULL;
971 	struct intel_vgpu *vgpu = NULL;
972 	int ret;
973 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
974 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
975 
976 	kfree(p);
977 
978 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
979 
980 	while (!kthread_should_stop()) {
981 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
982 		do {
983 			workload = pick_next_workload(gvt, ring_id);
984 			if (workload)
985 				break;
986 			wait_woken(&wait, TASK_INTERRUPTIBLE,
987 				   MAX_SCHEDULE_TIMEOUT);
988 		} while (!kthread_should_stop());
989 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
990 
991 		if (!workload)
992 			break;
993 
994 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
995 				workload->ring_id, workload,
996 				workload->vgpu->id);
997 
998 		intel_runtime_pm_get(gvt->dev_priv);
999 
1000 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1001 				workload->ring_id, workload);
1002 
1003 		if (need_force_wake)
1004 			intel_uncore_forcewake_get(gvt->dev_priv,
1005 					FORCEWAKE_ALL);
1006 
1007 		ret = dispatch_workload(workload);
1008 
1009 		if (ret) {
1010 			vgpu = workload->vgpu;
1011 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1012 			goto complete;
1013 		}
1014 
1015 		gvt_dbg_sched("ring id %d wait workload %p\n",
1016 				workload->ring_id, workload);
1017 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1018 
1019 complete:
1020 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1021 				workload, workload->status);
1022 
1023 		complete_current_workload(gvt, ring_id);
1024 
1025 		if (need_force_wake)
1026 			intel_uncore_forcewake_put(gvt->dev_priv,
1027 					FORCEWAKE_ALL);
1028 
1029 		intel_runtime_pm_put_unchecked(gvt->dev_priv);
1030 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1031 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1032 	}
1033 	return 0;
1034 }
1035 
1036 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1037 {
1038 	struct intel_vgpu_submission *s = &vgpu->submission;
1039 	struct intel_gvt *gvt = vgpu->gvt;
1040 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1041 
1042 	if (atomic_read(&s->running_workload_num)) {
1043 		gvt_dbg_sched("wait vgpu idle\n");
1044 
1045 		wait_event(scheduler->workload_complete_wq,
1046 				!atomic_read(&s->running_workload_num));
1047 	}
1048 }
1049 
1050 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1051 {
1052 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1053 	struct intel_engine_cs *engine;
1054 	enum intel_engine_id i;
1055 
1056 	gvt_dbg_core("clean workload scheduler\n");
1057 
1058 	for_each_engine(engine, gvt->dev_priv, i) {
1059 		atomic_notifier_chain_unregister(
1060 					&engine->context_status_notifier,
1061 					&gvt->shadow_ctx_notifier_block[i]);
1062 		kthread_stop(scheduler->thread[i]);
1063 	}
1064 }
1065 
1066 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1067 {
1068 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1069 	struct workload_thread_param *param = NULL;
1070 	struct intel_engine_cs *engine;
1071 	enum intel_engine_id i;
1072 	int ret;
1073 
1074 	gvt_dbg_core("init workload scheduler\n");
1075 
1076 	init_waitqueue_head(&scheduler->workload_complete_wq);
1077 
1078 	for_each_engine(engine, gvt->dev_priv, i) {
1079 		init_waitqueue_head(&scheduler->waitq[i]);
1080 
1081 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1082 		if (!param) {
1083 			ret = -ENOMEM;
1084 			goto err;
1085 		}
1086 
1087 		param->gvt = gvt;
1088 		param->ring_id = i;
1089 
1090 		scheduler->thread[i] = kthread_run(workload_thread, param,
1091 			"gvt workload %d", i);
1092 		if (IS_ERR(scheduler->thread[i])) {
1093 			gvt_err("fail to create workload thread\n");
1094 			ret = PTR_ERR(scheduler->thread[i]);
1095 			goto err;
1096 		}
1097 
1098 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1099 					shadow_context_status_change;
1100 		atomic_notifier_chain_register(&engine->context_status_notifier,
1101 					&gvt->shadow_ctx_notifier_block[i]);
1102 	}
1103 	return 0;
1104 err:
1105 	intel_gvt_clean_workload_scheduler(gvt);
1106 	kfree(param);
1107 	param = NULL;
1108 	return ret;
1109 }
1110 
1111 static void
1112 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1113 {
1114 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1115 	int i;
1116 
1117 	if (i915_vm_is_48bit(&i915_ppgtt->vm))
1118 		px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1119 	else {
1120 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1121 			px_dma(i915_ppgtt->pdp.page_directory[i]) =
1122 						s->i915_context_pdps[i];
1123 	}
1124 }
1125 
1126 /**
1127  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1128  * @vgpu: a vGPU
1129  *
1130  * This function is called when a vGPU is being destroyed.
1131  *
1132  */
1133 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1134 {
1135 	struct intel_vgpu_submission *s = &vgpu->submission;
1136 
1137 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1138 	i915_context_ppgtt_root_restore(s);
1139 	i915_gem_context_put(s->shadow_ctx);
1140 	kmem_cache_destroy(s->workloads);
1141 }
1142 
1143 
1144 /**
1145  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1146  * @vgpu: a vGPU
1147  * @engine_mask: engines expected to be reset
1148  *
1149  * This function is called when a vGPU is being destroyed.
1150  *
1151  */
1152 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1153 		unsigned long engine_mask)
1154 {
1155 	struct intel_vgpu_submission *s = &vgpu->submission;
1156 
1157 	if (!s->active)
1158 		return;
1159 
1160 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1161 	s->ops->reset(vgpu, engine_mask);
1162 }
1163 
1164 static void
1165 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1166 {
1167 	struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1168 	int i;
1169 
1170 	if (i915_vm_is_48bit(&i915_ppgtt->vm))
1171 		s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1172 	else {
1173 		for (i = 0; i < GEN8_3LVL_PDPES; i++)
1174 			s->i915_context_pdps[i] =
1175 				px_dma(i915_ppgtt->pdp.page_directory[i]);
1176 	}
1177 }
1178 
1179 /**
1180  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1181  * @vgpu: a vGPU
1182  *
1183  * This function is called when a vGPU is being created.
1184  *
1185  * Returns:
1186  * Zero on success, negative error code if failed.
1187  *
1188  */
1189 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1190 {
1191 	struct intel_vgpu_submission *s = &vgpu->submission;
1192 	enum intel_engine_id i;
1193 	struct intel_engine_cs *engine;
1194 	int ret;
1195 
1196 	s->shadow_ctx = i915_gem_context_create_gvt(
1197 			&vgpu->gvt->dev_priv->drm);
1198 	if (IS_ERR(s->shadow_ctx))
1199 		return PTR_ERR(s->shadow_ctx);
1200 
1201 	i915_context_ppgtt_root_save(s);
1202 
1203 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1204 
1205 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1206 						  sizeof(struct intel_vgpu_workload), 0,
1207 						  SLAB_HWCACHE_ALIGN,
1208 						  offsetof(struct intel_vgpu_workload, rb_tail),
1209 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1210 						  NULL);
1211 
1212 	if (!s->workloads) {
1213 		ret = -ENOMEM;
1214 		goto out_shadow_ctx;
1215 	}
1216 
1217 	for_each_engine(engine, vgpu->gvt->dev_priv, i)
1218 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1219 
1220 	atomic_set(&s->running_workload_num, 0);
1221 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1222 
1223 	return 0;
1224 
1225 out_shadow_ctx:
1226 	i915_gem_context_put(s->shadow_ctx);
1227 	return ret;
1228 }
1229 
1230 /**
1231  * intel_vgpu_select_submission_ops - select virtual submission interface
1232  * @vgpu: a vGPU
1233  * @engine_mask: either ALL_ENGINES or target engine mask
1234  * @interface: expected vGPU virtual submission interface
1235  *
1236  * This function is called when guest configures submission interface.
1237  *
1238  * Returns:
1239  * Zero on success, negative error code if failed.
1240  *
1241  */
1242 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1243 				     unsigned long engine_mask,
1244 				     unsigned int interface)
1245 {
1246 	struct intel_vgpu_submission *s = &vgpu->submission;
1247 	const struct intel_vgpu_submission_ops *ops[] = {
1248 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1249 			&intel_vgpu_execlist_submission_ops,
1250 	};
1251 	int ret;
1252 
1253 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1254 		return -EINVAL;
1255 
1256 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1257 		return -EINVAL;
1258 
1259 	if (s->active)
1260 		s->ops->clean(vgpu, engine_mask);
1261 
1262 	if (interface == 0) {
1263 		s->ops = NULL;
1264 		s->virtual_submission_interface = 0;
1265 		s->active = false;
1266 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1267 		return 0;
1268 	}
1269 
1270 	ret = ops[interface]->init(vgpu, engine_mask);
1271 	if (ret)
1272 		return ret;
1273 
1274 	s->ops = ops[interface];
1275 	s->virtual_submission_interface = interface;
1276 	s->active = true;
1277 
1278 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1279 			vgpu->id, s->ops->name);
1280 
1281 	return 0;
1282 }
1283 
1284 /**
1285  * intel_vgpu_destroy_workload - destroy a vGPU workload
1286  * @workload: workload to destroy
1287  *
1288  * This function is called when destroy a vGPU workload.
1289  *
1290  */
1291 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1292 {
1293 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1294 
1295 	release_shadow_batch_buffer(workload);
1296 	release_shadow_wa_ctx(&workload->wa_ctx);
1297 
1298 	if (workload->shadow_mm)
1299 		intel_vgpu_mm_put(workload->shadow_mm);
1300 
1301 	kmem_cache_free(s->workloads, workload);
1302 }
1303 
1304 static struct intel_vgpu_workload *
1305 alloc_workload(struct intel_vgpu *vgpu)
1306 {
1307 	struct intel_vgpu_submission *s = &vgpu->submission;
1308 	struct intel_vgpu_workload *workload;
1309 
1310 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1311 	if (!workload)
1312 		return ERR_PTR(-ENOMEM);
1313 
1314 	INIT_LIST_HEAD(&workload->list);
1315 	INIT_LIST_HEAD(&workload->shadow_bb);
1316 
1317 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1318 	atomic_set(&workload->shadow_ctx_active, 0);
1319 
1320 	workload->status = -EINPROGRESS;
1321 	workload->vgpu = vgpu;
1322 
1323 	return workload;
1324 }
1325 
1326 #define RING_CTX_OFF(x) \
1327 	offsetof(struct execlist_ring_context, x)
1328 
1329 static void read_guest_pdps(struct intel_vgpu *vgpu,
1330 		u64 ring_context_gpa, u32 pdp[8])
1331 {
1332 	u64 gpa;
1333 	int i;
1334 
1335 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1336 
1337 	for (i = 0; i < 8; i++)
1338 		intel_gvt_hypervisor_read_gpa(vgpu,
1339 				gpa + i * 8, &pdp[7 - i], 4);
1340 }
1341 
1342 static int prepare_mm(struct intel_vgpu_workload *workload)
1343 {
1344 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1345 	struct intel_vgpu_mm *mm;
1346 	struct intel_vgpu *vgpu = workload->vgpu;
1347 	intel_gvt_gtt_type_t root_entry_type;
1348 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1349 
1350 	switch (desc->addressing_mode) {
1351 	case 1: /* legacy 32-bit */
1352 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1353 		break;
1354 	case 3: /* legacy 64-bit */
1355 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1356 		break;
1357 	default:
1358 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1359 		return -EINVAL;
1360 	}
1361 
1362 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1363 
1364 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1365 	if (IS_ERR(mm))
1366 		return PTR_ERR(mm);
1367 
1368 	workload->shadow_mm = mm;
1369 	return 0;
1370 }
1371 
1372 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1373 		((a)->lrca == (b)->lrca))
1374 
1375 #define get_last_workload(q) \
1376 	(list_empty(q) ? NULL : container_of(q->prev, \
1377 	struct intel_vgpu_workload, list))
1378 /**
1379  * intel_vgpu_create_workload - create a vGPU workload
1380  * @vgpu: a vGPU
1381  * @ring_id: ring index
1382  * @desc: a guest context descriptor
1383  *
1384  * This function is called when creating a vGPU workload.
1385  *
1386  * Returns:
1387  * struct intel_vgpu_workload * on success, negative error code in
1388  * pointer if failed.
1389  *
1390  */
1391 struct intel_vgpu_workload *
1392 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1393 			   struct execlist_ctx_descriptor_format *desc)
1394 {
1395 	struct intel_vgpu_submission *s = &vgpu->submission;
1396 	struct list_head *q = workload_q_head(vgpu, ring_id);
1397 	struct intel_vgpu_workload *last_workload = get_last_workload(q);
1398 	struct intel_vgpu_workload *workload = NULL;
1399 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1400 	u64 ring_context_gpa;
1401 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1402 	int ret;
1403 
1404 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1405 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1406 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1407 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1408 		return ERR_PTR(-EINVAL);
1409 	}
1410 
1411 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1412 			RING_CTX_OFF(ring_header.val), &head, 4);
1413 
1414 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1415 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1416 
1417 	head &= RB_HEAD_OFF_MASK;
1418 	tail &= RB_TAIL_OFF_MASK;
1419 
1420 	if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1421 		gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1422 		gvt_dbg_el("ctx head %x real head %lx\n", head,
1423 				last_workload->rb_tail);
1424 		/*
1425 		 * cannot use guest context head pointer here,
1426 		 * as it might not be updated at this time
1427 		 */
1428 		head = last_workload->rb_tail;
1429 	}
1430 
1431 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1432 
1433 	/* record some ring buffer register values for scan and shadow */
1434 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1435 			RING_CTX_OFF(rb_start.val), &start, 4);
1436 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1437 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1438 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1439 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1440 
1441 	workload = alloc_workload(vgpu);
1442 	if (IS_ERR(workload))
1443 		return workload;
1444 
1445 	workload->ring_id = ring_id;
1446 	workload->ctx_desc = *desc;
1447 	workload->ring_context_gpa = ring_context_gpa;
1448 	workload->rb_head = head;
1449 	workload->rb_tail = tail;
1450 	workload->rb_start = start;
1451 	workload->rb_ctl = ctl;
1452 
1453 	if (ring_id == RCS) {
1454 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1455 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1456 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1457 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1458 
1459 		workload->wa_ctx.indirect_ctx.guest_gma =
1460 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1461 		workload->wa_ctx.indirect_ctx.size =
1462 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1463 			CACHELINE_BYTES;
1464 		workload->wa_ctx.per_ctx.guest_gma =
1465 			per_ctx & PER_CTX_ADDR_MASK;
1466 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1467 	}
1468 
1469 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1470 			workload, ring_id, head, tail, start, ctl);
1471 
1472 	ret = prepare_mm(workload);
1473 	if (ret) {
1474 		kmem_cache_free(s->workloads, workload);
1475 		return ERR_PTR(ret);
1476 	}
1477 
1478 	/* Only scan and shadow the first workload in the queue
1479 	 * as there is only one pre-allocated buf-obj for shadow.
1480 	 */
1481 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1482 		intel_runtime_pm_get(dev_priv);
1483 		mutex_lock(&dev_priv->drm.struct_mutex);
1484 		ret = intel_gvt_scan_and_shadow_workload(workload);
1485 		mutex_unlock(&dev_priv->drm.struct_mutex);
1486 		intel_runtime_pm_put_unchecked(dev_priv);
1487 	}
1488 
1489 	if (ret && (vgpu_is_vm_unhealthy(ret))) {
1490 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1491 		intel_vgpu_destroy_workload(workload);
1492 		return ERR_PTR(ret);
1493 	}
1494 
1495 	return workload;
1496 }
1497 
1498 /**
1499  * intel_vgpu_queue_workload - Qeue a vGPU workload
1500  * @workload: the workload to queue in
1501  */
1502 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1503 {
1504 	list_add_tail(&workload->list,
1505 		workload_q_head(workload->vgpu, workload->ring_id));
1506 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1507 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1508 }
1509