1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Anhua Xu 25 * Kevin Tian <kevin.tian@intel.com> 26 * 27 * Contributors: 28 * Min He <min.he@intel.com> 29 * Bing Niu <bing.niu@intel.com> 30 * Zhi Wang <zhi.a.wang@intel.com> 31 * 32 */ 33 34 #include "i915_drv.h" 35 #include "gvt.h" 36 37 static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu) 38 { 39 enum intel_engine_id i; 40 struct intel_engine_cs *engine; 41 42 for_each_engine(engine, vgpu->gvt->dev_priv, i) { 43 if (!list_empty(workload_q_head(vgpu, i))) 44 return true; 45 } 46 47 return false; 48 } 49 50 struct vgpu_sched_data { 51 struct list_head lru_list; 52 struct intel_vgpu *vgpu; 53 54 ktime_t sched_in_time; 55 ktime_t sched_out_time; 56 ktime_t sched_time; 57 ktime_t left_ts; 58 ktime_t allocated_ts; 59 60 struct vgpu_sched_ctl sched_ctl; 61 }; 62 63 struct gvt_sched_data { 64 struct intel_gvt *gvt; 65 struct hrtimer timer; 66 unsigned long period; 67 struct list_head lru_runq_head; 68 }; 69 70 static void vgpu_update_timeslice(struct intel_vgpu *pre_vgpu) 71 { 72 ktime_t delta_ts; 73 struct vgpu_sched_data *vgpu_data = pre_vgpu->sched_data; 74 75 delta_ts = vgpu_data->sched_out_time - vgpu_data->sched_in_time; 76 77 vgpu_data->sched_time += delta_ts; 78 vgpu_data->left_ts -= delta_ts; 79 } 80 81 #define GVT_TS_BALANCE_PERIOD_MS 100 82 #define GVT_TS_BALANCE_STAGE_NUM 10 83 84 static void gvt_balance_timeslice(struct gvt_sched_data *sched_data) 85 { 86 struct vgpu_sched_data *vgpu_data; 87 struct list_head *pos; 88 static uint64_t stage_check; 89 int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM; 90 91 /* The timeslice accumulation reset at stage 0, which is 92 * allocated again without adding previous debt. 93 */ 94 if (stage == 0) { 95 int total_weight = 0; 96 ktime_t fair_timeslice; 97 98 list_for_each(pos, &sched_data->lru_runq_head) { 99 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list); 100 total_weight += vgpu_data->sched_ctl.weight; 101 } 102 103 list_for_each(pos, &sched_data->lru_runq_head) { 104 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list); 105 fair_timeslice = ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS) * 106 vgpu_data->sched_ctl.weight / 107 total_weight; 108 109 vgpu_data->allocated_ts = fair_timeslice; 110 vgpu_data->left_ts = vgpu_data->allocated_ts; 111 } 112 } else { 113 list_for_each(pos, &sched_data->lru_runq_head) { 114 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list); 115 116 /* timeslice for next 100ms should add the left/debt 117 * slice of previous stages. 118 */ 119 vgpu_data->left_ts += vgpu_data->allocated_ts; 120 } 121 } 122 } 123 124 static void try_to_schedule_next_vgpu(struct intel_gvt *gvt) 125 { 126 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 127 enum intel_engine_id i; 128 struct intel_engine_cs *engine; 129 struct vgpu_sched_data *vgpu_data; 130 ktime_t cur_time; 131 132 /* no need to schedule if next_vgpu is the same with current_vgpu, 133 * let scheduler chose next_vgpu again by setting it to NULL. 134 */ 135 if (scheduler->next_vgpu == scheduler->current_vgpu) { 136 scheduler->next_vgpu = NULL; 137 return; 138 } 139 140 /* 141 * after the flag is set, workload dispatch thread will 142 * stop dispatching workload for current vgpu 143 */ 144 scheduler->need_reschedule = true; 145 146 /* still have uncompleted workload? */ 147 for_each_engine(engine, gvt->dev_priv, i) { 148 if (scheduler->current_workload[i]) 149 return; 150 } 151 152 cur_time = ktime_get(); 153 if (scheduler->current_vgpu) { 154 vgpu_data = scheduler->current_vgpu->sched_data; 155 vgpu_data->sched_out_time = cur_time; 156 vgpu_update_timeslice(scheduler->current_vgpu); 157 } 158 vgpu_data = scheduler->next_vgpu->sched_data; 159 vgpu_data->sched_in_time = cur_time; 160 161 /* switch current vgpu */ 162 scheduler->current_vgpu = scheduler->next_vgpu; 163 scheduler->next_vgpu = NULL; 164 165 scheduler->need_reschedule = false; 166 167 /* wake up workload dispatch thread */ 168 for_each_engine(engine, gvt->dev_priv, i) 169 wake_up(&scheduler->waitq[i]); 170 } 171 172 static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data) 173 { 174 struct vgpu_sched_data *vgpu_data; 175 struct intel_vgpu *vgpu = NULL; 176 struct list_head *head = &sched_data->lru_runq_head; 177 struct list_head *pos; 178 179 /* search a vgpu with pending workload */ 180 list_for_each(pos, head) { 181 182 vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list); 183 if (!vgpu_has_pending_workload(vgpu_data->vgpu)) 184 continue; 185 186 /* Return the vGPU only if it has time slice left */ 187 if (vgpu_data->left_ts > 0) { 188 vgpu = vgpu_data->vgpu; 189 break; 190 } 191 } 192 193 return vgpu; 194 } 195 196 /* in nanosecond */ 197 #define GVT_DEFAULT_TIME_SLICE 1000000 198 199 static void tbs_sched_func(struct gvt_sched_data *sched_data) 200 { 201 struct intel_gvt *gvt = sched_data->gvt; 202 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; 203 struct vgpu_sched_data *vgpu_data; 204 struct intel_vgpu *vgpu = NULL; 205 /* no active vgpu or has already had a target */ 206 if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu) 207 goto out; 208 209 vgpu = find_busy_vgpu(sched_data); 210 if (vgpu) { 211 scheduler->next_vgpu = vgpu; 212 213 /* Move the last used vGPU to the tail of lru_list */ 214 vgpu_data = vgpu->sched_data; 215 list_del_init(&vgpu_data->lru_list); 216 list_add_tail(&vgpu_data->lru_list, 217 &sched_data->lru_runq_head); 218 } else { 219 scheduler->next_vgpu = gvt->idle_vgpu; 220 } 221 out: 222 if (scheduler->next_vgpu) 223 try_to_schedule_next_vgpu(gvt); 224 } 225 226 void intel_gvt_schedule(struct intel_gvt *gvt) 227 { 228 struct gvt_sched_data *sched_data = gvt->scheduler.sched_data; 229 static uint64_t timer_check; 230 231 mutex_lock(&gvt->lock); 232 233 if (test_and_clear_bit(INTEL_GVT_REQUEST_SCHED, 234 (void *)&gvt->service_request)) { 235 if (!(timer_check++ % GVT_TS_BALANCE_PERIOD_MS)) 236 gvt_balance_timeslice(sched_data); 237 } 238 clear_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request); 239 240 tbs_sched_func(sched_data); 241 242 mutex_unlock(&gvt->lock); 243 } 244 245 static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data) 246 { 247 struct gvt_sched_data *data; 248 249 data = container_of(timer_data, struct gvt_sched_data, timer); 250 251 intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED); 252 253 hrtimer_add_expires_ns(&data->timer, data->period); 254 255 return HRTIMER_RESTART; 256 } 257 258 static int tbs_sched_init(struct intel_gvt *gvt) 259 { 260 struct intel_gvt_workload_scheduler *scheduler = 261 &gvt->scheduler; 262 263 struct gvt_sched_data *data; 264 265 data = kzalloc(sizeof(*data), GFP_KERNEL); 266 if (!data) 267 return -ENOMEM; 268 269 INIT_LIST_HEAD(&data->lru_runq_head); 270 hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 271 data->timer.function = tbs_timer_fn; 272 data->period = GVT_DEFAULT_TIME_SLICE; 273 data->gvt = gvt; 274 275 scheduler->sched_data = data; 276 277 return 0; 278 } 279 280 static void tbs_sched_clean(struct intel_gvt *gvt) 281 { 282 struct intel_gvt_workload_scheduler *scheduler = 283 &gvt->scheduler; 284 struct gvt_sched_data *data = scheduler->sched_data; 285 286 hrtimer_cancel(&data->timer); 287 288 kfree(data); 289 scheduler->sched_data = NULL; 290 } 291 292 static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu) 293 { 294 struct vgpu_sched_data *data; 295 296 data = kzalloc(sizeof(*data), GFP_KERNEL); 297 if (!data) 298 return -ENOMEM; 299 300 data->sched_ctl.weight = vgpu->sched_ctl.weight; 301 data->vgpu = vgpu; 302 INIT_LIST_HEAD(&data->lru_list); 303 304 vgpu->sched_data = data; 305 306 return 0; 307 } 308 309 static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu) 310 { 311 struct intel_gvt_workload_scheduler *scheduler = &vgpu->gvt->scheduler; 312 int ring_id; 313 314 kfree(vgpu->sched_data); 315 vgpu->sched_data = NULL; 316 317 spin_lock_bh(&scheduler->mmio_context_lock); 318 for (ring_id = 0; ring_id < I915_NUM_ENGINES; ring_id++) { 319 if (scheduler->engine_owner[ring_id] == vgpu) { 320 intel_gvt_switch_mmio(vgpu, NULL, ring_id); 321 scheduler->engine_owner[ring_id] = NULL; 322 } 323 } 324 spin_unlock_bh(&scheduler->mmio_context_lock); 325 } 326 327 static void tbs_sched_start_schedule(struct intel_vgpu *vgpu) 328 { 329 struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data; 330 struct vgpu_sched_data *vgpu_data = vgpu->sched_data; 331 332 if (!list_empty(&vgpu_data->lru_list)) 333 return; 334 335 list_add_tail(&vgpu_data->lru_list, &sched_data->lru_runq_head); 336 337 if (!hrtimer_active(&sched_data->timer)) 338 hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(), 339 sched_data->period), HRTIMER_MODE_ABS); 340 } 341 342 static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu) 343 { 344 struct vgpu_sched_data *vgpu_data = vgpu->sched_data; 345 346 list_del_init(&vgpu_data->lru_list); 347 } 348 349 static struct intel_gvt_sched_policy_ops tbs_schedule_ops = { 350 .init = tbs_sched_init, 351 .clean = tbs_sched_clean, 352 .init_vgpu = tbs_sched_init_vgpu, 353 .clean_vgpu = tbs_sched_clean_vgpu, 354 .start_schedule = tbs_sched_start_schedule, 355 .stop_schedule = tbs_sched_stop_schedule, 356 }; 357 358 int intel_gvt_init_sched_policy(struct intel_gvt *gvt) 359 { 360 gvt->scheduler.sched_ops = &tbs_schedule_ops; 361 362 return gvt->scheduler.sched_ops->init(gvt); 363 } 364 365 void intel_gvt_clean_sched_policy(struct intel_gvt *gvt) 366 { 367 gvt->scheduler.sched_ops->clean(gvt); 368 } 369 370 int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu) 371 { 372 return vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu); 373 } 374 375 void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu) 376 { 377 vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu); 378 } 379 380 void intel_vgpu_start_schedule(struct intel_vgpu *vgpu) 381 { 382 gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id); 383 384 vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu); 385 } 386 387 void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu) 388 { 389 struct intel_gvt_workload_scheduler *scheduler = 390 &vgpu->gvt->scheduler; 391 392 gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id); 393 394 scheduler->sched_ops->stop_schedule(vgpu); 395 396 if (scheduler->next_vgpu == vgpu) 397 scheduler->next_vgpu = NULL; 398 399 if (scheduler->current_vgpu == vgpu) { 400 /* stop workload dispatching */ 401 scheduler->need_reschedule = true; 402 scheduler->current_vgpu = NULL; 403 } 404 } 405