xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/kvmgt.c (revision b003fb5c9df8a8923bf46e0c00cc54edcfb0fbe3)
1 /*
2  * KVMGT - the implementation of Intel mediated pass-through framework for KVM
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Kevin Tian <kevin.tian@intel.com>
27  *    Jike Song <jike.song@intel.com>
28  *    Xiaoguang Chen <xiaoguang.chen@intel.com>
29  *    Eddie Dong <eddie.dong@intel.com>
30  *
31  * Contributors:
32  *    Niu Bing <bing.niu@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  */
35 
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/kthread.h>
39 #include <linux/sched/mm.h>
40 #include <linux/types.h>
41 #include <linux/list.h>
42 #include <linux/rbtree.h>
43 #include <linux/spinlock.h>
44 #include <linux/eventfd.h>
45 #include <linux/mdev.h>
46 #include <linux/debugfs.h>
47 
48 #include <linux/nospec.h>
49 
50 #include <drm/drm_edid.h>
51 
52 #include "i915_drv.h"
53 #include "intel_gvt.h"
54 #include "gvt.h"
55 
56 MODULE_IMPORT_NS(DMA_BUF);
57 MODULE_IMPORT_NS(I915_GVT);
58 
59 /* helper macros copied from vfio-pci */
60 #define VFIO_PCI_OFFSET_SHIFT   40
61 #define VFIO_PCI_OFFSET_TO_INDEX(off)   (off >> VFIO_PCI_OFFSET_SHIFT)
62 #define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT)
63 #define VFIO_PCI_OFFSET_MASK    (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1)
64 
65 #define EDID_BLOB_OFFSET (PAGE_SIZE/2)
66 
67 #define OPREGION_SIGNATURE "IntelGraphicsMem"
68 
69 struct vfio_region;
70 struct intel_vgpu_regops {
71 	size_t (*rw)(struct intel_vgpu *vgpu, char *buf,
72 			size_t count, loff_t *ppos, bool iswrite);
73 	void (*release)(struct intel_vgpu *vgpu,
74 			struct vfio_region *region);
75 };
76 
77 struct vfio_region {
78 	u32				type;
79 	u32				subtype;
80 	size_t				size;
81 	u32				flags;
82 	const struct intel_vgpu_regops	*ops;
83 	void				*data;
84 };
85 
86 struct vfio_edid_region {
87 	struct vfio_region_gfx_edid vfio_edid_regs;
88 	void *edid_blob;
89 };
90 
91 struct kvmgt_pgfn {
92 	gfn_t gfn;
93 	struct hlist_node hnode;
94 };
95 
96 struct gvt_dma {
97 	struct intel_vgpu *vgpu;
98 	struct rb_node gfn_node;
99 	struct rb_node dma_addr_node;
100 	gfn_t gfn;
101 	dma_addr_t dma_addr;
102 	unsigned long size;
103 	struct kref ref;
104 };
105 
106 #define vfio_dev_to_vgpu(vfio_dev) \
107 	container_of((vfio_dev), struct intel_vgpu, vfio_device)
108 
109 static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
110 		const u8 *val, int len,
111 		struct kvm_page_track_notifier_node *node);
112 static void kvmgt_page_track_flush_slot(struct kvm *kvm,
113 		struct kvm_memory_slot *slot,
114 		struct kvm_page_track_notifier_node *node);
115 
116 static ssize_t intel_vgpu_show_description(struct mdev_type *mtype, char *buf)
117 {
118 	struct intel_vgpu_type *type =
119 		container_of(mtype, struct intel_vgpu_type, type);
120 
121 	return sprintf(buf, "low_gm_size: %dMB\nhigh_gm_size: %dMB\n"
122 		       "fence: %d\nresolution: %s\n"
123 		       "weight: %d\n",
124 		       BYTES_TO_MB(type->conf->low_mm),
125 		       BYTES_TO_MB(type->conf->high_mm),
126 		       type->conf->fence, vgpu_edid_str(type->conf->edid),
127 		       type->conf->weight);
128 }
129 
130 static void gvt_unpin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
131 		unsigned long size)
132 {
133 	vfio_unpin_pages(&vgpu->vfio_device, gfn << PAGE_SHIFT,
134 			 DIV_ROUND_UP(size, PAGE_SIZE));
135 }
136 
137 /* Pin a normal or compound guest page for dma. */
138 static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
139 		unsigned long size, struct page **page)
140 {
141 	int total_pages = DIV_ROUND_UP(size, PAGE_SIZE);
142 	struct page *base_page = NULL;
143 	int npage;
144 	int ret;
145 
146 	/*
147 	 * We pin the pages one-by-one to avoid allocating a big arrary
148 	 * on stack to hold pfns.
149 	 */
150 	for (npage = 0; npage < total_pages; npage++) {
151 		dma_addr_t cur_iova = (gfn + npage) << PAGE_SHIFT;
152 		struct page *cur_page;
153 
154 		ret = vfio_pin_pages(&vgpu->vfio_device, cur_iova, 1,
155 				     IOMMU_READ | IOMMU_WRITE, &cur_page);
156 		if (ret != 1) {
157 			gvt_vgpu_err("vfio_pin_pages failed for iova %pad, ret %d\n",
158 				     &cur_iova, ret);
159 			goto err;
160 		}
161 
162 		if (npage == 0)
163 			base_page = cur_page;
164 		else if (base_page + npage != cur_page) {
165 			gvt_vgpu_err("The pages are not continuous\n");
166 			ret = -EINVAL;
167 			npage++;
168 			goto err;
169 		}
170 	}
171 
172 	*page = base_page;
173 	return 0;
174 err:
175 	gvt_unpin_guest_page(vgpu, gfn, npage * PAGE_SIZE);
176 	return ret;
177 }
178 
179 static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn,
180 		dma_addr_t *dma_addr, unsigned long size)
181 {
182 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
183 	struct page *page = NULL;
184 	int ret;
185 
186 	ret = gvt_pin_guest_page(vgpu, gfn, size, &page);
187 	if (ret)
188 		return ret;
189 
190 	/* Setup DMA mapping. */
191 	*dma_addr = dma_map_page(dev, page, 0, size, DMA_BIDIRECTIONAL);
192 	if (dma_mapping_error(dev, *dma_addr)) {
193 		gvt_vgpu_err("DMA mapping failed for pfn 0x%lx, ret %d\n",
194 			     page_to_pfn(page), ret);
195 		gvt_unpin_guest_page(vgpu, gfn, size);
196 		return -ENOMEM;
197 	}
198 
199 	return 0;
200 }
201 
202 static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn,
203 		dma_addr_t dma_addr, unsigned long size)
204 {
205 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
206 
207 	dma_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL);
208 	gvt_unpin_guest_page(vgpu, gfn, size);
209 }
210 
211 static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu,
212 		dma_addr_t dma_addr)
213 {
214 	struct rb_node *node = vgpu->dma_addr_cache.rb_node;
215 	struct gvt_dma *itr;
216 
217 	while (node) {
218 		itr = rb_entry(node, struct gvt_dma, dma_addr_node);
219 
220 		if (dma_addr < itr->dma_addr)
221 			node = node->rb_left;
222 		else if (dma_addr > itr->dma_addr)
223 			node = node->rb_right;
224 		else
225 			return itr;
226 	}
227 	return NULL;
228 }
229 
230 static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn)
231 {
232 	struct rb_node *node = vgpu->gfn_cache.rb_node;
233 	struct gvt_dma *itr;
234 
235 	while (node) {
236 		itr = rb_entry(node, struct gvt_dma, gfn_node);
237 
238 		if (gfn < itr->gfn)
239 			node = node->rb_left;
240 		else if (gfn > itr->gfn)
241 			node = node->rb_right;
242 		else
243 			return itr;
244 	}
245 	return NULL;
246 }
247 
248 static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn,
249 		dma_addr_t dma_addr, unsigned long size)
250 {
251 	struct gvt_dma *new, *itr;
252 	struct rb_node **link, *parent = NULL;
253 
254 	new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL);
255 	if (!new)
256 		return -ENOMEM;
257 
258 	new->vgpu = vgpu;
259 	new->gfn = gfn;
260 	new->dma_addr = dma_addr;
261 	new->size = size;
262 	kref_init(&new->ref);
263 
264 	/* gfn_cache maps gfn to struct gvt_dma. */
265 	link = &vgpu->gfn_cache.rb_node;
266 	while (*link) {
267 		parent = *link;
268 		itr = rb_entry(parent, struct gvt_dma, gfn_node);
269 
270 		if (gfn < itr->gfn)
271 			link = &parent->rb_left;
272 		else
273 			link = &parent->rb_right;
274 	}
275 	rb_link_node(&new->gfn_node, parent, link);
276 	rb_insert_color(&new->gfn_node, &vgpu->gfn_cache);
277 
278 	/* dma_addr_cache maps dma addr to struct gvt_dma. */
279 	parent = NULL;
280 	link = &vgpu->dma_addr_cache.rb_node;
281 	while (*link) {
282 		parent = *link;
283 		itr = rb_entry(parent, struct gvt_dma, dma_addr_node);
284 
285 		if (dma_addr < itr->dma_addr)
286 			link = &parent->rb_left;
287 		else
288 			link = &parent->rb_right;
289 	}
290 	rb_link_node(&new->dma_addr_node, parent, link);
291 	rb_insert_color(&new->dma_addr_node, &vgpu->dma_addr_cache);
292 
293 	vgpu->nr_cache_entries++;
294 	return 0;
295 }
296 
297 static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu,
298 				struct gvt_dma *entry)
299 {
300 	rb_erase(&entry->gfn_node, &vgpu->gfn_cache);
301 	rb_erase(&entry->dma_addr_node, &vgpu->dma_addr_cache);
302 	kfree(entry);
303 	vgpu->nr_cache_entries--;
304 }
305 
306 static void gvt_cache_destroy(struct intel_vgpu *vgpu)
307 {
308 	struct gvt_dma *dma;
309 	struct rb_node *node = NULL;
310 
311 	for (;;) {
312 		mutex_lock(&vgpu->cache_lock);
313 		node = rb_first(&vgpu->gfn_cache);
314 		if (!node) {
315 			mutex_unlock(&vgpu->cache_lock);
316 			break;
317 		}
318 		dma = rb_entry(node, struct gvt_dma, gfn_node);
319 		gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr, dma->size);
320 		__gvt_cache_remove_entry(vgpu, dma);
321 		mutex_unlock(&vgpu->cache_lock);
322 	}
323 }
324 
325 static void gvt_cache_init(struct intel_vgpu *vgpu)
326 {
327 	vgpu->gfn_cache = RB_ROOT;
328 	vgpu->dma_addr_cache = RB_ROOT;
329 	vgpu->nr_cache_entries = 0;
330 	mutex_init(&vgpu->cache_lock);
331 }
332 
333 static void kvmgt_protect_table_init(struct intel_vgpu *info)
334 {
335 	hash_init(info->ptable);
336 }
337 
338 static void kvmgt_protect_table_destroy(struct intel_vgpu *info)
339 {
340 	struct kvmgt_pgfn *p;
341 	struct hlist_node *tmp;
342 	int i;
343 
344 	hash_for_each_safe(info->ptable, i, tmp, p, hnode) {
345 		hash_del(&p->hnode);
346 		kfree(p);
347 	}
348 }
349 
350 static struct kvmgt_pgfn *
351 __kvmgt_protect_table_find(struct intel_vgpu *info, gfn_t gfn)
352 {
353 	struct kvmgt_pgfn *p, *res = NULL;
354 
355 	hash_for_each_possible(info->ptable, p, hnode, gfn) {
356 		if (gfn == p->gfn) {
357 			res = p;
358 			break;
359 		}
360 	}
361 
362 	return res;
363 }
364 
365 static bool kvmgt_gfn_is_write_protected(struct intel_vgpu *info, gfn_t gfn)
366 {
367 	struct kvmgt_pgfn *p;
368 
369 	p = __kvmgt_protect_table_find(info, gfn);
370 	return !!p;
371 }
372 
373 static void kvmgt_protect_table_add(struct intel_vgpu *info, gfn_t gfn)
374 {
375 	struct kvmgt_pgfn *p;
376 
377 	if (kvmgt_gfn_is_write_protected(info, gfn))
378 		return;
379 
380 	p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC);
381 	if (WARN(!p, "gfn: 0x%llx\n", gfn))
382 		return;
383 
384 	p->gfn = gfn;
385 	hash_add(info->ptable, &p->hnode, gfn);
386 }
387 
388 static void kvmgt_protect_table_del(struct intel_vgpu *info, gfn_t gfn)
389 {
390 	struct kvmgt_pgfn *p;
391 
392 	p = __kvmgt_protect_table_find(info, gfn);
393 	if (p) {
394 		hash_del(&p->hnode);
395 		kfree(p);
396 	}
397 }
398 
399 static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf,
400 		size_t count, loff_t *ppos, bool iswrite)
401 {
402 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
403 			VFIO_PCI_NUM_REGIONS;
404 	void *base = vgpu->region[i].data;
405 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
406 
407 
408 	if (pos >= vgpu->region[i].size || iswrite) {
409 		gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n");
410 		return -EINVAL;
411 	}
412 	count = min(count, (size_t)(vgpu->region[i].size - pos));
413 	memcpy(buf, base + pos, count);
414 
415 	return count;
416 }
417 
418 static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu,
419 		struct vfio_region *region)
420 {
421 }
422 
423 static const struct intel_vgpu_regops intel_vgpu_regops_opregion = {
424 	.rw = intel_vgpu_reg_rw_opregion,
425 	.release = intel_vgpu_reg_release_opregion,
426 };
427 
428 static int handle_edid_regs(struct intel_vgpu *vgpu,
429 			struct vfio_edid_region *region, char *buf,
430 			size_t count, u16 offset, bool is_write)
431 {
432 	struct vfio_region_gfx_edid *regs = &region->vfio_edid_regs;
433 	unsigned int data;
434 
435 	if (offset + count > sizeof(*regs))
436 		return -EINVAL;
437 
438 	if (count != 4)
439 		return -EINVAL;
440 
441 	if (is_write) {
442 		data = *((unsigned int *)buf);
443 		switch (offset) {
444 		case offsetof(struct vfio_region_gfx_edid, link_state):
445 			if (data == VFIO_DEVICE_GFX_LINK_STATE_UP) {
446 				if (!drm_edid_block_valid(
447 					(u8 *)region->edid_blob,
448 					0,
449 					true,
450 					NULL)) {
451 					gvt_vgpu_err("invalid EDID blob\n");
452 					return -EINVAL;
453 				}
454 				intel_vgpu_emulate_hotplug(vgpu, true);
455 			} else if (data == VFIO_DEVICE_GFX_LINK_STATE_DOWN)
456 				intel_vgpu_emulate_hotplug(vgpu, false);
457 			else {
458 				gvt_vgpu_err("invalid EDID link state %d\n",
459 					regs->link_state);
460 				return -EINVAL;
461 			}
462 			regs->link_state = data;
463 			break;
464 		case offsetof(struct vfio_region_gfx_edid, edid_size):
465 			if (data > regs->edid_max_size) {
466 				gvt_vgpu_err("EDID size is bigger than %d!\n",
467 					regs->edid_max_size);
468 				return -EINVAL;
469 			}
470 			regs->edid_size = data;
471 			break;
472 		default:
473 			/* read-only regs */
474 			gvt_vgpu_err("write read-only EDID region at offset %d\n",
475 				offset);
476 			return -EPERM;
477 		}
478 	} else {
479 		memcpy(buf, (char *)regs + offset, count);
480 	}
481 
482 	return count;
483 }
484 
485 static int handle_edid_blob(struct vfio_edid_region *region, char *buf,
486 			size_t count, u16 offset, bool is_write)
487 {
488 	if (offset + count > region->vfio_edid_regs.edid_size)
489 		return -EINVAL;
490 
491 	if (is_write)
492 		memcpy(region->edid_blob + offset, buf, count);
493 	else
494 		memcpy(buf, region->edid_blob + offset, count);
495 
496 	return count;
497 }
498 
499 static size_t intel_vgpu_reg_rw_edid(struct intel_vgpu *vgpu, char *buf,
500 		size_t count, loff_t *ppos, bool iswrite)
501 {
502 	int ret;
503 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
504 			VFIO_PCI_NUM_REGIONS;
505 	struct vfio_edid_region *region = vgpu->region[i].data;
506 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
507 
508 	if (pos < region->vfio_edid_regs.edid_offset) {
509 		ret = handle_edid_regs(vgpu, region, buf, count, pos, iswrite);
510 	} else {
511 		pos -= EDID_BLOB_OFFSET;
512 		ret = handle_edid_blob(region, buf, count, pos, iswrite);
513 	}
514 
515 	if (ret < 0)
516 		gvt_vgpu_err("failed to access EDID region\n");
517 
518 	return ret;
519 }
520 
521 static void intel_vgpu_reg_release_edid(struct intel_vgpu *vgpu,
522 					struct vfio_region *region)
523 {
524 	kfree(region->data);
525 }
526 
527 static const struct intel_vgpu_regops intel_vgpu_regops_edid = {
528 	.rw = intel_vgpu_reg_rw_edid,
529 	.release = intel_vgpu_reg_release_edid,
530 };
531 
532 static int intel_vgpu_register_reg(struct intel_vgpu *vgpu,
533 		unsigned int type, unsigned int subtype,
534 		const struct intel_vgpu_regops *ops,
535 		size_t size, u32 flags, void *data)
536 {
537 	struct vfio_region *region;
538 
539 	region = krealloc(vgpu->region,
540 			(vgpu->num_regions + 1) * sizeof(*region),
541 			GFP_KERNEL);
542 	if (!region)
543 		return -ENOMEM;
544 
545 	vgpu->region = region;
546 	vgpu->region[vgpu->num_regions].type = type;
547 	vgpu->region[vgpu->num_regions].subtype = subtype;
548 	vgpu->region[vgpu->num_regions].ops = ops;
549 	vgpu->region[vgpu->num_regions].size = size;
550 	vgpu->region[vgpu->num_regions].flags = flags;
551 	vgpu->region[vgpu->num_regions].data = data;
552 	vgpu->num_regions++;
553 	return 0;
554 }
555 
556 int intel_gvt_set_opregion(struct intel_vgpu *vgpu)
557 {
558 	void *base;
559 	int ret;
560 
561 	/* Each vgpu has its own opregion, although VFIO would create another
562 	 * one later. This one is used to expose opregion to VFIO. And the
563 	 * other one created by VFIO later, is used by guest actually.
564 	 */
565 	base = vgpu_opregion(vgpu)->va;
566 	if (!base)
567 		return -ENOMEM;
568 
569 	if (memcmp(base, OPREGION_SIGNATURE, 16)) {
570 		memunmap(base);
571 		return -EINVAL;
572 	}
573 
574 	ret = intel_vgpu_register_reg(vgpu,
575 			PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
576 			VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
577 			&intel_vgpu_regops_opregion, OPREGION_SIZE,
578 			VFIO_REGION_INFO_FLAG_READ, base);
579 
580 	return ret;
581 }
582 
583 int intel_gvt_set_edid(struct intel_vgpu *vgpu, int port_num)
584 {
585 	struct intel_vgpu_port *port = intel_vgpu_port(vgpu, port_num);
586 	struct vfio_edid_region *base;
587 	int ret;
588 
589 	base = kzalloc(sizeof(*base), GFP_KERNEL);
590 	if (!base)
591 		return -ENOMEM;
592 
593 	/* TODO: Add multi-port and EDID extension block support */
594 	base->vfio_edid_regs.edid_offset = EDID_BLOB_OFFSET;
595 	base->vfio_edid_regs.edid_max_size = EDID_SIZE;
596 	base->vfio_edid_regs.edid_size = EDID_SIZE;
597 	base->vfio_edid_regs.max_xres = vgpu_edid_xres(port->id);
598 	base->vfio_edid_regs.max_yres = vgpu_edid_yres(port->id);
599 	base->edid_blob = port->edid->edid_block;
600 
601 	ret = intel_vgpu_register_reg(vgpu,
602 			VFIO_REGION_TYPE_GFX,
603 			VFIO_REGION_SUBTYPE_GFX_EDID,
604 			&intel_vgpu_regops_edid, EDID_SIZE,
605 			VFIO_REGION_INFO_FLAG_READ |
606 			VFIO_REGION_INFO_FLAG_WRITE |
607 			VFIO_REGION_INFO_FLAG_CAPS, base);
608 
609 	return ret;
610 }
611 
612 static void intel_vgpu_dma_unmap(struct vfio_device *vfio_dev, u64 iova,
613 				 u64 length)
614 {
615 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
616 	struct gvt_dma *entry;
617 	u64 iov_pfn = iova >> PAGE_SHIFT;
618 	u64 end_iov_pfn = iov_pfn + length / PAGE_SIZE;
619 
620 	mutex_lock(&vgpu->cache_lock);
621 	for (; iov_pfn < end_iov_pfn; iov_pfn++) {
622 		entry = __gvt_cache_find_gfn(vgpu, iov_pfn);
623 		if (!entry)
624 			continue;
625 
626 		gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr,
627 				   entry->size);
628 		__gvt_cache_remove_entry(vgpu, entry);
629 	}
630 	mutex_unlock(&vgpu->cache_lock);
631 }
632 
633 static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu)
634 {
635 	struct intel_vgpu *itr;
636 	int id;
637 	bool ret = false;
638 
639 	mutex_lock(&vgpu->gvt->lock);
640 	for_each_active_vgpu(vgpu->gvt, itr, id) {
641 		if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, itr->status))
642 			continue;
643 
644 		if (vgpu->vfio_device.kvm == itr->vfio_device.kvm) {
645 			ret = true;
646 			goto out;
647 		}
648 	}
649 out:
650 	mutex_unlock(&vgpu->gvt->lock);
651 	return ret;
652 }
653 
654 static int intel_vgpu_open_device(struct vfio_device *vfio_dev)
655 {
656 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
657 
658 	if (!vgpu->vfio_device.kvm ||
659 	    vgpu->vfio_device.kvm->mm != current->mm) {
660 		gvt_vgpu_err("KVM is required to use Intel vGPU\n");
661 		return -ESRCH;
662 	}
663 
664 	if (__kvmgt_vgpu_exist(vgpu))
665 		return -EEXIST;
666 
667 	vgpu->track_node.track_write = kvmgt_page_track_write;
668 	vgpu->track_node.track_flush_slot = kvmgt_page_track_flush_slot;
669 	kvm_get_kvm(vgpu->vfio_device.kvm);
670 	kvm_page_track_register_notifier(vgpu->vfio_device.kvm,
671 					 &vgpu->track_node);
672 
673 	set_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status);
674 
675 	debugfs_create_ulong(KVMGT_DEBUGFS_FILENAME, 0444, vgpu->debugfs,
676 			     &vgpu->nr_cache_entries);
677 
678 	intel_gvt_activate_vgpu(vgpu);
679 
680 	return 0;
681 }
682 
683 static void intel_vgpu_release_msi_eventfd_ctx(struct intel_vgpu *vgpu)
684 {
685 	struct eventfd_ctx *trigger;
686 
687 	trigger = vgpu->msi_trigger;
688 	if (trigger) {
689 		eventfd_ctx_put(trigger);
690 		vgpu->msi_trigger = NULL;
691 	}
692 }
693 
694 static void intel_vgpu_close_device(struct vfio_device *vfio_dev)
695 {
696 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
697 
698 	intel_gvt_release_vgpu(vgpu);
699 
700 	clear_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status);
701 
702 	debugfs_lookup_and_remove(KVMGT_DEBUGFS_FILENAME, vgpu->debugfs);
703 
704 	kvm_page_track_unregister_notifier(vgpu->vfio_device.kvm,
705 					   &vgpu->track_node);
706 	kvm_put_kvm(vgpu->vfio_device.kvm);
707 
708 	kvmgt_protect_table_destroy(vgpu);
709 	gvt_cache_destroy(vgpu);
710 
711 	WARN_ON(vgpu->nr_cache_entries);
712 
713 	vgpu->gfn_cache = RB_ROOT;
714 	vgpu->dma_addr_cache = RB_ROOT;
715 
716 	intel_vgpu_release_msi_eventfd_ctx(vgpu);
717 }
718 
719 static u64 intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar)
720 {
721 	u32 start_lo, start_hi;
722 	u32 mem_type;
723 
724 	start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
725 			PCI_BASE_ADDRESS_MEM_MASK;
726 	mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
727 			PCI_BASE_ADDRESS_MEM_TYPE_MASK;
728 
729 	switch (mem_type) {
730 	case PCI_BASE_ADDRESS_MEM_TYPE_64:
731 		start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space
732 						+ bar + 4));
733 		break;
734 	case PCI_BASE_ADDRESS_MEM_TYPE_32:
735 	case PCI_BASE_ADDRESS_MEM_TYPE_1M:
736 		/* 1M mem BAR treated as 32-bit BAR */
737 	default:
738 		/* mem unknown type treated as 32-bit BAR */
739 		start_hi = 0;
740 		break;
741 	}
742 
743 	return ((u64)start_hi << 32) | start_lo;
744 }
745 
746 static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, u64 off,
747 			     void *buf, unsigned int count, bool is_write)
748 {
749 	u64 bar_start = intel_vgpu_get_bar_addr(vgpu, bar);
750 	int ret;
751 
752 	if (is_write)
753 		ret = intel_vgpu_emulate_mmio_write(vgpu,
754 					bar_start + off, buf, count);
755 	else
756 		ret = intel_vgpu_emulate_mmio_read(vgpu,
757 					bar_start + off, buf, count);
758 	return ret;
759 }
760 
761 static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, u64 off)
762 {
763 	return off >= vgpu_aperture_offset(vgpu) &&
764 	       off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu);
765 }
766 
767 static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, u64 off,
768 		void *buf, unsigned long count, bool is_write)
769 {
770 	void __iomem *aperture_va;
771 
772 	if (!intel_vgpu_in_aperture(vgpu, off) ||
773 	    !intel_vgpu_in_aperture(vgpu, off + count)) {
774 		gvt_vgpu_err("Invalid aperture offset %llu\n", off);
775 		return -EINVAL;
776 	}
777 
778 	aperture_va = io_mapping_map_wc(&vgpu->gvt->gt->ggtt->iomap,
779 					ALIGN_DOWN(off, PAGE_SIZE),
780 					count + offset_in_page(off));
781 	if (!aperture_va)
782 		return -EIO;
783 
784 	if (is_write)
785 		memcpy_toio(aperture_va + offset_in_page(off), buf, count);
786 	else
787 		memcpy_fromio(buf, aperture_va + offset_in_page(off), count);
788 
789 	io_mapping_unmap(aperture_va);
790 
791 	return 0;
792 }
793 
794 static ssize_t intel_vgpu_rw(struct intel_vgpu *vgpu, char *buf,
795 			size_t count, loff_t *ppos, bool is_write)
796 {
797 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
798 	u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
799 	int ret = -EINVAL;
800 
801 
802 	if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) {
803 		gvt_vgpu_err("invalid index: %u\n", index);
804 		return -EINVAL;
805 	}
806 
807 	switch (index) {
808 	case VFIO_PCI_CONFIG_REGION_INDEX:
809 		if (is_write)
810 			ret = intel_vgpu_emulate_cfg_write(vgpu, pos,
811 						buf, count);
812 		else
813 			ret = intel_vgpu_emulate_cfg_read(vgpu, pos,
814 						buf, count);
815 		break;
816 	case VFIO_PCI_BAR0_REGION_INDEX:
817 		ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos,
818 					buf, count, is_write);
819 		break;
820 	case VFIO_PCI_BAR2_REGION_INDEX:
821 		ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write);
822 		break;
823 	case VFIO_PCI_BAR1_REGION_INDEX:
824 	case VFIO_PCI_BAR3_REGION_INDEX:
825 	case VFIO_PCI_BAR4_REGION_INDEX:
826 	case VFIO_PCI_BAR5_REGION_INDEX:
827 	case VFIO_PCI_VGA_REGION_INDEX:
828 	case VFIO_PCI_ROM_REGION_INDEX:
829 		break;
830 	default:
831 		if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions)
832 			return -EINVAL;
833 
834 		index -= VFIO_PCI_NUM_REGIONS;
835 		return vgpu->region[index].ops->rw(vgpu, buf, count,
836 				ppos, is_write);
837 	}
838 
839 	return ret == 0 ? count : ret;
840 }
841 
842 static bool gtt_entry(struct intel_vgpu *vgpu, loff_t *ppos)
843 {
844 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
845 	struct intel_gvt *gvt = vgpu->gvt;
846 	int offset;
847 
848 	/* Only allow MMIO GGTT entry access */
849 	if (index != PCI_BASE_ADDRESS_0)
850 		return false;
851 
852 	offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) -
853 		intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0);
854 
855 	return (offset >= gvt->device_info.gtt_start_offset &&
856 		offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ?
857 			true : false;
858 }
859 
860 static ssize_t intel_vgpu_read(struct vfio_device *vfio_dev, char __user *buf,
861 			size_t count, loff_t *ppos)
862 {
863 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
864 	unsigned int done = 0;
865 	int ret;
866 
867 	while (count) {
868 		size_t filled;
869 
870 		/* Only support GGTT entry 8 bytes read */
871 		if (count >= 8 && !(*ppos % 8) &&
872 			gtt_entry(vgpu, ppos)) {
873 			u64 val;
874 
875 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
876 					ppos, false);
877 			if (ret <= 0)
878 				goto read_err;
879 
880 			if (copy_to_user(buf, &val, sizeof(val)))
881 				goto read_err;
882 
883 			filled = 8;
884 		} else if (count >= 4 && !(*ppos % 4)) {
885 			u32 val;
886 
887 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
888 					ppos, false);
889 			if (ret <= 0)
890 				goto read_err;
891 
892 			if (copy_to_user(buf, &val, sizeof(val)))
893 				goto read_err;
894 
895 			filled = 4;
896 		} else if (count >= 2 && !(*ppos % 2)) {
897 			u16 val;
898 
899 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
900 					ppos, false);
901 			if (ret <= 0)
902 				goto read_err;
903 
904 			if (copy_to_user(buf, &val, sizeof(val)))
905 				goto read_err;
906 
907 			filled = 2;
908 		} else {
909 			u8 val;
910 
911 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val), ppos,
912 					false);
913 			if (ret <= 0)
914 				goto read_err;
915 
916 			if (copy_to_user(buf, &val, sizeof(val)))
917 				goto read_err;
918 
919 			filled = 1;
920 		}
921 
922 		count -= filled;
923 		done += filled;
924 		*ppos += filled;
925 		buf += filled;
926 	}
927 
928 	return done;
929 
930 read_err:
931 	return -EFAULT;
932 }
933 
934 static ssize_t intel_vgpu_write(struct vfio_device *vfio_dev,
935 				const char __user *buf,
936 				size_t count, loff_t *ppos)
937 {
938 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
939 	unsigned int done = 0;
940 	int ret;
941 
942 	while (count) {
943 		size_t filled;
944 
945 		/* Only support GGTT entry 8 bytes write */
946 		if (count >= 8 && !(*ppos % 8) &&
947 			gtt_entry(vgpu, ppos)) {
948 			u64 val;
949 
950 			if (copy_from_user(&val, buf, sizeof(val)))
951 				goto write_err;
952 
953 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
954 					ppos, true);
955 			if (ret <= 0)
956 				goto write_err;
957 
958 			filled = 8;
959 		} else if (count >= 4 && !(*ppos % 4)) {
960 			u32 val;
961 
962 			if (copy_from_user(&val, buf, sizeof(val)))
963 				goto write_err;
964 
965 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
966 					ppos, true);
967 			if (ret <= 0)
968 				goto write_err;
969 
970 			filled = 4;
971 		} else if (count >= 2 && !(*ppos % 2)) {
972 			u16 val;
973 
974 			if (copy_from_user(&val, buf, sizeof(val)))
975 				goto write_err;
976 
977 			ret = intel_vgpu_rw(vgpu, (char *)&val,
978 					sizeof(val), ppos, true);
979 			if (ret <= 0)
980 				goto write_err;
981 
982 			filled = 2;
983 		} else {
984 			u8 val;
985 
986 			if (copy_from_user(&val, buf, sizeof(val)))
987 				goto write_err;
988 
989 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val),
990 					ppos, true);
991 			if (ret <= 0)
992 				goto write_err;
993 
994 			filled = 1;
995 		}
996 
997 		count -= filled;
998 		done += filled;
999 		*ppos += filled;
1000 		buf += filled;
1001 	}
1002 
1003 	return done;
1004 write_err:
1005 	return -EFAULT;
1006 }
1007 
1008 static int intel_vgpu_mmap(struct vfio_device *vfio_dev,
1009 		struct vm_area_struct *vma)
1010 {
1011 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1012 	unsigned int index;
1013 	u64 virtaddr;
1014 	unsigned long req_size, pgoff, req_start;
1015 	pgprot_t pg_prot;
1016 
1017 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1018 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1019 		return -EINVAL;
1020 
1021 	if (vma->vm_end < vma->vm_start)
1022 		return -EINVAL;
1023 	if ((vma->vm_flags & VM_SHARED) == 0)
1024 		return -EINVAL;
1025 	if (index != VFIO_PCI_BAR2_REGION_INDEX)
1026 		return -EINVAL;
1027 
1028 	pg_prot = vma->vm_page_prot;
1029 	virtaddr = vma->vm_start;
1030 	req_size = vma->vm_end - vma->vm_start;
1031 	pgoff = vma->vm_pgoff &
1032 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1033 	req_start = pgoff << PAGE_SHIFT;
1034 
1035 	if (!intel_vgpu_in_aperture(vgpu, req_start))
1036 		return -EINVAL;
1037 	if (req_start + req_size >
1038 	    vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu))
1039 		return -EINVAL;
1040 
1041 	pgoff = (gvt_aperture_pa_base(vgpu->gvt) >> PAGE_SHIFT) + pgoff;
1042 
1043 	return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot);
1044 }
1045 
1046 static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type)
1047 {
1048 	if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX)
1049 		return 1;
1050 
1051 	return 0;
1052 }
1053 
1054 static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu,
1055 			unsigned int index, unsigned int start,
1056 			unsigned int count, u32 flags,
1057 			void *data)
1058 {
1059 	return 0;
1060 }
1061 
1062 static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu,
1063 			unsigned int index, unsigned int start,
1064 			unsigned int count, u32 flags, void *data)
1065 {
1066 	return 0;
1067 }
1068 
1069 static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu,
1070 		unsigned int index, unsigned int start, unsigned int count,
1071 		u32 flags, void *data)
1072 {
1073 	return 0;
1074 }
1075 
1076 static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu,
1077 		unsigned int index, unsigned int start, unsigned int count,
1078 		u32 flags, void *data)
1079 {
1080 	struct eventfd_ctx *trigger;
1081 
1082 	if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
1083 		int fd = *(int *)data;
1084 
1085 		trigger = eventfd_ctx_fdget(fd);
1086 		if (IS_ERR(trigger)) {
1087 			gvt_vgpu_err("eventfd_ctx_fdget failed\n");
1088 			return PTR_ERR(trigger);
1089 		}
1090 		vgpu->msi_trigger = trigger;
1091 	} else if ((flags & VFIO_IRQ_SET_DATA_NONE) && !count)
1092 		intel_vgpu_release_msi_eventfd_ctx(vgpu);
1093 
1094 	return 0;
1095 }
1096 
1097 static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, u32 flags,
1098 		unsigned int index, unsigned int start, unsigned int count,
1099 		void *data)
1100 {
1101 	int (*func)(struct intel_vgpu *vgpu, unsigned int index,
1102 			unsigned int start, unsigned int count, u32 flags,
1103 			void *data) = NULL;
1104 
1105 	switch (index) {
1106 	case VFIO_PCI_INTX_IRQ_INDEX:
1107 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1108 		case VFIO_IRQ_SET_ACTION_MASK:
1109 			func = intel_vgpu_set_intx_mask;
1110 			break;
1111 		case VFIO_IRQ_SET_ACTION_UNMASK:
1112 			func = intel_vgpu_set_intx_unmask;
1113 			break;
1114 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1115 			func = intel_vgpu_set_intx_trigger;
1116 			break;
1117 		}
1118 		break;
1119 	case VFIO_PCI_MSI_IRQ_INDEX:
1120 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1121 		case VFIO_IRQ_SET_ACTION_MASK:
1122 		case VFIO_IRQ_SET_ACTION_UNMASK:
1123 			/* XXX Need masking support exported */
1124 			break;
1125 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1126 			func = intel_vgpu_set_msi_trigger;
1127 			break;
1128 		}
1129 		break;
1130 	}
1131 
1132 	if (!func)
1133 		return -ENOTTY;
1134 
1135 	return func(vgpu, index, start, count, flags, data);
1136 }
1137 
1138 static long intel_vgpu_ioctl(struct vfio_device *vfio_dev, unsigned int cmd,
1139 			     unsigned long arg)
1140 {
1141 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1142 	unsigned long minsz;
1143 
1144 	gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd);
1145 
1146 	if (cmd == VFIO_DEVICE_GET_INFO) {
1147 		struct vfio_device_info info;
1148 
1149 		minsz = offsetofend(struct vfio_device_info, num_irqs);
1150 
1151 		if (copy_from_user(&info, (void __user *)arg, minsz))
1152 			return -EFAULT;
1153 
1154 		if (info.argsz < minsz)
1155 			return -EINVAL;
1156 
1157 		info.flags = VFIO_DEVICE_FLAGS_PCI;
1158 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
1159 		info.num_regions = VFIO_PCI_NUM_REGIONS +
1160 				vgpu->num_regions;
1161 		info.num_irqs = VFIO_PCI_NUM_IRQS;
1162 
1163 		return copy_to_user((void __user *)arg, &info, minsz) ?
1164 			-EFAULT : 0;
1165 
1166 	} else if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
1167 		struct vfio_region_info info;
1168 		struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1169 		unsigned int i;
1170 		int ret;
1171 		struct vfio_region_info_cap_sparse_mmap *sparse = NULL;
1172 		int nr_areas = 1;
1173 		int cap_type_id;
1174 
1175 		minsz = offsetofend(struct vfio_region_info, offset);
1176 
1177 		if (copy_from_user(&info, (void __user *)arg, minsz))
1178 			return -EFAULT;
1179 
1180 		if (info.argsz < minsz)
1181 			return -EINVAL;
1182 
1183 		switch (info.index) {
1184 		case VFIO_PCI_CONFIG_REGION_INDEX:
1185 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1186 			info.size = vgpu->gvt->device_info.cfg_space_size;
1187 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1188 				     VFIO_REGION_INFO_FLAG_WRITE;
1189 			break;
1190 		case VFIO_PCI_BAR0_REGION_INDEX:
1191 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1192 			info.size = vgpu->cfg_space.bar[info.index].size;
1193 			if (!info.size) {
1194 				info.flags = 0;
1195 				break;
1196 			}
1197 
1198 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1199 				     VFIO_REGION_INFO_FLAG_WRITE;
1200 			break;
1201 		case VFIO_PCI_BAR1_REGION_INDEX:
1202 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1203 			info.size = 0;
1204 			info.flags = 0;
1205 			break;
1206 		case VFIO_PCI_BAR2_REGION_INDEX:
1207 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1208 			info.flags = VFIO_REGION_INFO_FLAG_CAPS |
1209 					VFIO_REGION_INFO_FLAG_MMAP |
1210 					VFIO_REGION_INFO_FLAG_READ |
1211 					VFIO_REGION_INFO_FLAG_WRITE;
1212 			info.size = gvt_aperture_sz(vgpu->gvt);
1213 
1214 			sparse = kzalloc(struct_size(sparse, areas, nr_areas),
1215 					 GFP_KERNEL);
1216 			if (!sparse)
1217 				return -ENOMEM;
1218 
1219 			sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1220 			sparse->header.version = 1;
1221 			sparse->nr_areas = nr_areas;
1222 			cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1223 			sparse->areas[0].offset =
1224 					PAGE_ALIGN(vgpu_aperture_offset(vgpu));
1225 			sparse->areas[0].size = vgpu_aperture_sz(vgpu);
1226 			break;
1227 
1228 		case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1229 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1230 			info.size = 0;
1231 			info.flags = 0;
1232 
1233 			gvt_dbg_core("get region info bar:%d\n", info.index);
1234 			break;
1235 
1236 		case VFIO_PCI_ROM_REGION_INDEX:
1237 		case VFIO_PCI_VGA_REGION_INDEX:
1238 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1239 			info.size = 0;
1240 			info.flags = 0;
1241 
1242 			gvt_dbg_core("get region info index:%d\n", info.index);
1243 			break;
1244 		default:
1245 			{
1246 				struct vfio_region_info_cap_type cap_type = {
1247 					.header.id = VFIO_REGION_INFO_CAP_TYPE,
1248 					.header.version = 1 };
1249 
1250 				if (info.index >= VFIO_PCI_NUM_REGIONS +
1251 						vgpu->num_regions)
1252 					return -EINVAL;
1253 				info.index =
1254 					array_index_nospec(info.index,
1255 							VFIO_PCI_NUM_REGIONS +
1256 							vgpu->num_regions);
1257 
1258 				i = info.index - VFIO_PCI_NUM_REGIONS;
1259 
1260 				info.offset =
1261 					VFIO_PCI_INDEX_TO_OFFSET(info.index);
1262 				info.size = vgpu->region[i].size;
1263 				info.flags = vgpu->region[i].flags;
1264 
1265 				cap_type.type = vgpu->region[i].type;
1266 				cap_type.subtype = vgpu->region[i].subtype;
1267 
1268 				ret = vfio_info_add_capability(&caps,
1269 							&cap_type.header,
1270 							sizeof(cap_type));
1271 				if (ret)
1272 					return ret;
1273 			}
1274 		}
1275 
1276 		if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) {
1277 			switch (cap_type_id) {
1278 			case VFIO_REGION_INFO_CAP_SPARSE_MMAP:
1279 				ret = vfio_info_add_capability(&caps,
1280 					&sparse->header,
1281 					struct_size(sparse, areas,
1282 						    sparse->nr_areas));
1283 				if (ret) {
1284 					kfree(sparse);
1285 					return ret;
1286 				}
1287 				break;
1288 			default:
1289 				kfree(sparse);
1290 				return -EINVAL;
1291 			}
1292 		}
1293 
1294 		if (caps.size) {
1295 			info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1296 			if (info.argsz < sizeof(info) + caps.size) {
1297 				info.argsz = sizeof(info) + caps.size;
1298 				info.cap_offset = 0;
1299 			} else {
1300 				vfio_info_cap_shift(&caps, sizeof(info));
1301 				if (copy_to_user((void __user *)arg +
1302 						  sizeof(info), caps.buf,
1303 						  caps.size)) {
1304 					kfree(caps.buf);
1305 					kfree(sparse);
1306 					return -EFAULT;
1307 				}
1308 				info.cap_offset = sizeof(info);
1309 			}
1310 
1311 			kfree(caps.buf);
1312 		}
1313 
1314 		kfree(sparse);
1315 		return copy_to_user((void __user *)arg, &info, minsz) ?
1316 			-EFAULT : 0;
1317 	} else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) {
1318 		struct vfio_irq_info info;
1319 
1320 		minsz = offsetofend(struct vfio_irq_info, count);
1321 
1322 		if (copy_from_user(&info, (void __user *)arg, minsz))
1323 			return -EFAULT;
1324 
1325 		if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1326 			return -EINVAL;
1327 
1328 		switch (info.index) {
1329 		case VFIO_PCI_INTX_IRQ_INDEX:
1330 		case VFIO_PCI_MSI_IRQ_INDEX:
1331 			break;
1332 		default:
1333 			return -EINVAL;
1334 		}
1335 
1336 		info.flags = VFIO_IRQ_INFO_EVENTFD;
1337 
1338 		info.count = intel_vgpu_get_irq_count(vgpu, info.index);
1339 
1340 		if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1341 			info.flags |= (VFIO_IRQ_INFO_MASKABLE |
1342 				       VFIO_IRQ_INFO_AUTOMASKED);
1343 		else
1344 			info.flags |= VFIO_IRQ_INFO_NORESIZE;
1345 
1346 		return copy_to_user((void __user *)arg, &info, minsz) ?
1347 			-EFAULT : 0;
1348 	} else if (cmd == VFIO_DEVICE_SET_IRQS) {
1349 		struct vfio_irq_set hdr;
1350 		u8 *data = NULL;
1351 		int ret = 0;
1352 		size_t data_size = 0;
1353 
1354 		minsz = offsetofend(struct vfio_irq_set, count);
1355 
1356 		if (copy_from_user(&hdr, (void __user *)arg, minsz))
1357 			return -EFAULT;
1358 
1359 		if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) {
1360 			int max = intel_vgpu_get_irq_count(vgpu, hdr.index);
1361 
1362 			ret = vfio_set_irqs_validate_and_prepare(&hdr, max,
1363 						VFIO_PCI_NUM_IRQS, &data_size);
1364 			if (ret) {
1365 				gvt_vgpu_err("intel:vfio_set_irqs_validate_and_prepare failed\n");
1366 				return -EINVAL;
1367 			}
1368 			if (data_size) {
1369 				data = memdup_user((void __user *)(arg + minsz),
1370 						   data_size);
1371 				if (IS_ERR(data))
1372 					return PTR_ERR(data);
1373 			}
1374 		}
1375 
1376 		ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index,
1377 					hdr.start, hdr.count, data);
1378 		kfree(data);
1379 
1380 		return ret;
1381 	} else if (cmd == VFIO_DEVICE_RESET) {
1382 		intel_gvt_reset_vgpu(vgpu);
1383 		return 0;
1384 	} else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) {
1385 		struct vfio_device_gfx_plane_info dmabuf;
1386 		int ret = 0;
1387 
1388 		minsz = offsetofend(struct vfio_device_gfx_plane_info,
1389 				    dmabuf_id);
1390 		if (copy_from_user(&dmabuf, (void __user *)arg, minsz))
1391 			return -EFAULT;
1392 		if (dmabuf.argsz < minsz)
1393 			return -EINVAL;
1394 
1395 		ret = intel_vgpu_query_plane(vgpu, &dmabuf);
1396 		if (ret != 0)
1397 			return ret;
1398 
1399 		return copy_to_user((void __user *)arg, &dmabuf, minsz) ?
1400 								-EFAULT : 0;
1401 	} else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) {
1402 		__u32 dmabuf_id;
1403 
1404 		if (get_user(dmabuf_id, (__u32 __user *)arg))
1405 			return -EFAULT;
1406 		return intel_vgpu_get_dmabuf(vgpu, dmabuf_id);
1407 	}
1408 
1409 	return -ENOTTY;
1410 }
1411 
1412 static ssize_t
1413 vgpu_id_show(struct device *dev, struct device_attribute *attr,
1414 	     char *buf)
1415 {
1416 	struct intel_vgpu *vgpu = dev_get_drvdata(dev);
1417 
1418 	return sprintf(buf, "%d\n", vgpu->id);
1419 }
1420 
1421 static DEVICE_ATTR_RO(vgpu_id);
1422 
1423 static struct attribute *intel_vgpu_attrs[] = {
1424 	&dev_attr_vgpu_id.attr,
1425 	NULL
1426 };
1427 
1428 static const struct attribute_group intel_vgpu_group = {
1429 	.name = "intel_vgpu",
1430 	.attrs = intel_vgpu_attrs,
1431 };
1432 
1433 static const struct attribute_group *intel_vgpu_groups[] = {
1434 	&intel_vgpu_group,
1435 	NULL,
1436 };
1437 
1438 static int intel_vgpu_init_dev(struct vfio_device *vfio_dev)
1439 {
1440 	struct mdev_device *mdev = to_mdev_device(vfio_dev->dev);
1441 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1442 	struct intel_vgpu_type *type =
1443 		container_of(mdev->type, struct intel_vgpu_type, type);
1444 	int ret;
1445 
1446 	vgpu->gvt = kdev_to_i915(mdev->type->parent->dev)->gvt;
1447 	ret = intel_gvt_create_vgpu(vgpu, type->conf);
1448 	if (ret)
1449 		return ret;
1450 
1451 	kvmgt_protect_table_init(vgpu);
1452 	gvt_cache_init(vgpu);
1453 
1454 	return 0;
1455 }
1456 
1457 static void intel_vgpu_release_dev(struct vfio_device *vfio_dev)
1458 {
1459 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1460 
1461 	intel_gvt_destroy_vgpu(vgpu);
1462 }
1463 
1464 static const struct vfio_device_ops intel_vgpu_dev_ops = {
1465 	.init		= intel_vgpu_init_dev,
1466 	.release	= intel_vgpu_release_dev,
1467 	.open_device	= intel_vgpu_open_device,
1468 	.close_device	= intel_vgpu_close_device,
1469 	.read		= intel_vgpu_read,
1470 	.write		= intel_vgpu_write,
1471 	.mmap		= intel_vgpu_mmap,
1472 	.ioctl		= intel_vgpu_ioctl,
1473 	.dma_unmap	= intel_vgpu_dma_unmap,
1474 	.bind_iommufd	= vfio_iommufd_emulated_bind,
1475 	.unbind_iommufd = vfio_iommufd_emulated_unbind,
1476 	.attach_ioas	= vfio_iommufd_emulated_attach_ioas,
1477 };
1478 
1479 static int intel_vgpu_probe(struct mdev_device *mdev)
1480 {
1481 	struct intel_vgpu *vgpu;
1482 	int ret;
1483 
1484 	vgpu = vfio_alloc_device(intel_vgpu, vfio_device, &mdev->dev,
1485 				 &intel_vgpu_dev_ops);
1486 	if (IS_ERR(vgpu)) {
1487 		gvt_err("failed to create intel vgpu: %ld\n", PTR_ERR(vgpu));
1488 		return PTR_ERR(vgpu);
1489 	}
1490 
1491 	dev_set_drvdata(&mdev->dev, vgpu);
1492 	ret = vfio_register_emulated_iommu_dev(&vgpu->vfio_device);
1493 	if (ret)
1494 		goto out_put_vdev;
1495 
1496 	gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n",
1497 		     dev_name(mdev_dev(mdev)));
1498 	return 0;
1499 
1500 out_put_vdev:
1501 	vfio_put_device(&vgpu->vfio_device);
1502 	return ret;
1503 }
1504 
1505 static void intel_vgpu_remove(struct mdev_device *mdev)
1506 {
1507 	struct intel_vgpu *vgpu = dev_get_drvdata(&mdev->dev);
1508 
1509 	vfio_unregister_group_dev(&vgpu->vfio_device);
1510 	vfio_put_device(&vgpu->vfio_device);
1511 }
1512 
1513 static unsigned int intel_vgpu_get_available(struct mdev_type *mtype)
1514 {
1515 	struct intel_vgpu_type *type =
1516 		container_of(mtype, struct intel_vgpu_type, type);
1517 	struct intel_gvt *gvt = kdev_to_i915(mtype->parent->dev)->gvt;
1518 	unsigned int low_gm_avail, high_gm_avail, fence_avail;
1519 
1520 	mutex_lock(&gvt->lock);
1521 	low_gm_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE -
1522 		gvt->gm.vgpu_allocated_low_gm_size;
1523 	high_gm_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE -
1524 		gvt->gm.vgpu_allocated_high_gm_size;
1525 	fence_avail = gvt_fence_sz(gvt) - HOST_FENCE -
1526 		gvt->fence.vgpu_allocated_fence_num;
1527 	mutex_unlock(&gvt->lock);
1528 
1529 	return min3(low_gm_avail / type->conf->low_mm,
1530 		    high_gm_avail / type->conf->high_mm,
1531 		    fence_avail / type->conf->fence);
1532 }
1533 
1534 static struct mdev_driver intel_vgpu_mdev_driver = {
1535 	.device_api	= VFIO_DEVICE_API_PCI_STRING,
1536 	.driver = {
1537 		.name		= "intel_vgpu_mdev",
1538 		.owner		= THIS_MODULE,
1539 		.dev_groups	= intel_vgpu_groups,
1540 	},
1541 	.probe			= intel_vgpu_probe,
1542 	.remove			= intel_vgpu_remove,
1543 	.get_available		= intel_vgpu_get_available,
1544 	.show_description	= intel_vgpu_show_description,
1545 };
1546 
1547 int intel_gvt_page_track_add(struct intel_vgpu *info, u64 gfn)
1548 {
1549 	struct kvm *kvm = info->vfio_device.kvm;
1550 	struct kvm_memory_slot *slot;
1551 	int idx;
1552 
1553 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status))
1554 		return -ESRCH;
1555 
1556 	idx = srcu_read_lock(&kvm->srcu);
1557 	slot = gfn_to_memslot(kvm, gfn);
1558 	if (!slot) {
1559 		srcu_read_unlock(&kvm->srcu, idx);
1560 		return -EINVAL;
1561 	}
1562 
1563 	write_lock(&kvm->mmu_lock);
1564 
1565 	if (kvmgt_gfn_is_write_protected(info, gfn))
1566 		goto out;
1567 
1568 	kvm_slot_page_track_add_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
1569 	kvmgt_protect_table_add(info, gfn);
1570 
1571 out:
1572 	write_unlock(&kvm->mmu_lock);
1573 	srcu_read_unlock(&kvm->srcu, idx);
1574 	return 0;
1575 }
1576 
1577 int intel_gvt_page_track_remove(struct intel_vgpu *info, u64 gfn)
1578 {
1579 	struct kvm *kvm = info->vfio_device.kvm;
1580 	struct kvm_memory_slot *slot;
1581 	int idx;
1582 
1583 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status))
1584 		return -ESRCH;
1585 
1586 	idx = srcu_read_lock(&kvm->srcu);
1587 	slot = gfn_to_memslot(kvm, gfn);
1588 	if (!slot) {
1589 		srcu_read_unlock(&kvm->srcu, idx);
1590 		return -EINVAL;
1591 	}
1592 
1593 	write_lock(&kvm->mmu_lock);
1594 
1595 	if (!kvmgt_gfn_is_write_protected(info, gfn))
1596 		goto out;
1597 
1598 	kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
1599 	kvmgt_protect_table_del(info, gfn);
1600 
1601 out:
1602 	write_unlock(&kvm->mmu_lock);
1603 	srcu_read_unlock(&kvm->srcu, idx);
1604 	return 0;
1605 }
1606 
1607 static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1608 		const u8 *val, int len,
1609 		struct kvm_page_track_notifier_node *node)
1610 {
1611 	struct intel_vgpu *info =
1612 		container_of(node, struct intel_vgpu, track_node);
1613 
1614 	if (kvmgt_gfn_is_write_protected(info, gpa_to_gfn(gpa)))
1615 		intel_vgpu_page_track_handler(info, gpa,
1616 						     (void *)val, len);
1617 }
1618 
1619 static void kvmgt_page_track_flush_slot(struct kvm *kvm,
1620 		struct kvm_memory_slot *slot,
1621 		struct kvm_page_track_notifier_node *node)
1622 {
1623 	int i;
1624 	gfn_t gfn;
1625 	struct intel_vgpu *info =
1626 		container_of(node, struct intel_vgpu, track_node);
1627 
1628 	write_lock(&kvm->mmu_lock);
1629 	for (i = 0; i < slot->npages; i++) {
1630 		gfn = slot->base_gfn + i;
1631 		if (kvmgt_gfn_is_write_protected(info, gfn)) {
1632 			kvm_slot_page_track_remove_page(kvm, slot, gfn,
1633 						KVM_PAGE_TRACK_WRITE);
1634 			kvmgt_protect_table_del(info, gfn);
1635 		}
1636 	}
1637 	write_unlock(&kvm->mmu_lock);
1638 }
1639 
1640 void intel_vgpu_detach_regions(struct intel_vgpu *vgpu)
1641 {
1642 	int i;
1643 
1644 	if (!vgpu->region)
1645 		return;
1646 
1647 	for (i = 0; i < vgpu->num_regions; i++)
1648 		if (vgpu->region[i].ops->release)
1649 			vgpu->region[i].ops->release(vgpu,
1650 					&vgpu->region[i]);
1651 	vgpu->num_regions = 0;
1652 	kfree(vgpu->region);
1653 	vgpu->region = NULL;
1654 }
1655 
1656 int intel_gvt_dma_map_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
1657 		unsigned long size, dma_addr_t *dma_addr)
1658 {
1659 	struct gvt_dma *entry;
1660 	int ret;
1661 
1662 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1663 		return -EINVAL;
1664 
1665 	mutex_lock(&vgpu->cache_lock);
1666 
1667 	entry = __gvt_cache_find_gfn(vgpu, gfn);
1668 	if (!entry) {
1669 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1670 		if (ret)
1671 			goto err_unlock;
1672 
1673 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1674 		if (ret)
1675 			goto err_unmap;
1676 	} else if (entry->size != size) {
1677 		/* the same gfn with different size: unmap and re-map */
1678 		gvt_dma_unmap_page(vgpu, gfn, entry->dma_addr, entry->size);
1679 		__gvt_cache_remove_entry(vgpu, entry);
1680 
1681 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1682 		if (ret)
1683 			goto err_unlock;
1684 
1685 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1686 		if (ret)
1687 			goto err_unmap;
1688 	} else {
1689 		kref_get(&entry->ref);
1690 		*dma_addr = entry->dma_addr;
1691 	}
1692 
1693 	mutex_unlock(&vgpu->cache_lock);
1694 	return 0;
1695 
1696 err_unmap:
1697 	gvt_dma_unmap_page(vgpu, gfn, *dma_addr, size);
1698 err_unlock:
1699 	mutex_unlock(&vgpu->cache_lock);
1700 	return ret;
1701 }
1702 
1703 int intel_gvt_dma_pin_guest_page(struct intel_vgpu *vgpu, dma_addr_t dma_addr)
1704 {
1705 	struct gvt_dma *entry;
1706 	int ret = 0;
1707 
1708 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1709 		return -EINVAL;
1710 
1711 	mutex_lock(&vgpu->cache_lock);
1712 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1713 	if (entry)
1714 		kref_get(&entry->ref);
1715 	else
1716 		ret = -ENOMEM;
1717 	mutex_unlock(&vgpu->cache_lock);
1718 
1719 	return ret;
1720 }
1721 
1722 static void __gvt_dma_release(struct kref *ref)
1723 {
1724 	struct gvt_dma *entry = container_of(ref, typeof(*entry), ref);
1725 
1726 	gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr,
1727 			   entry->size);
1728 	__gvt_cache_remove_entry(entry->vgpu, entry);
1729 }
1730 
1731 void intel_gvt_dma_unmap_guest_page(struct intel_vgpu *vgpu,
1732 		dma_addr_t dma_addr)
1733 {
1734 	struct gvt_dma *entry;
1735 
1736 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1737 		return;
1738 
1739 	mutex_lock(&vgpu->cache_lock);
1740 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1741 	if (entry)
1742 		kref_put(&entry->ref, __gvt_dma_release);
1743 	mutex_unlock(&vgpu->cache_lock);
1744 }
1745 
1746 static void init_device_info(struct intel_gvt *gvt)
1747 {
1748 	struct intel_gvt_device_info *info = &gvt->device_info;
1749 	struct pci_dev *pdev = to_pci_dev(gvt->gt->i915->drm.dev);
1750 
1751 	info->max_support_vgpus = 8;
1752 	info->cfg_space_size = PCI_CFG_SPACE_EXP_SIZE;
1753 	info->mmio_size = 2 * 1024 * 1024;
1754 	info->mmio_bar = 0;
1755 	info->gtt_start_offset = 8 * 1024 * 1024;
1756 	info->gtt_entry_size = 8;
1757 	info->gtt_entry_size_shift = 3;
1758 	info->gmadr_bytes_in_cmd = 8;
1759 	info->max_surface_size = 36 * 1024 * 1024;
1760 	info->msi_cap_offset = pdev->msi_cap;
1761 }
1762 
1763 static void intel_gvt_test_and_emulate_vblank(struct intel_gvt *gvt)
1764 {
1765 	struct intel_vgpu *vgpu;
1766 	int id;
1767 
1768 	mutex_lock(&gvt->lock);
1769 	idr_for_each_entry((&(gvt)->vgpu_idr), (vgpu), (id)) {
1770 		if (test_and_clear_bit(INTEL_GVT_REQUEST_EMULATE_VBLANK + id,
1771 				       (void *)&gvt->service_request)) {
1772 			if (test_bit(INTEL_VGPU_STATUS_ACTIVE, vgpu->status))
1773 				intel_vgpu_emulate_vblank(vgpu);
1774 		}
1775 	}
1776 	mutex_unlock(&gvt->lock);
1777 }
1778 
1779 static int gvt_service_thread(void *data)
1780 {
1781 	struct intel_gvt *gvt = (struct intel_gvt *)data;
1782 	int ret;
1783 
1784 	gvt_dbg_core("service thread start\n");
1785 
1786 	while (!kthread_should_stop()) {
1787 		ret = wait_event_interruptible(gvt->service_thread_wq,
1788 				kthread_should_stop() || gvt->service_request);
1789 
1790 		if (kthread_should_stop())
1791 			break;
1792 
1793 		if (WARN_ONCE(ret, "service thread is waken up by signal.\n"))
1794 			continue;
1795 
1796 		intel_gvt_test_and_emulate_vblank(gvt);
1797 
1798 		if (test_bit(INTEL_GVT_REQUEST_SCHED,
1799 				(void *)&gvt->service_request) ||
1800 			test_bit(INTEL_GVT_REQUEST_EVENT_SCHED,
1801 					(void *)&gvt->service_request)) {
1802 			intel_gvt_schedule(gvt);
1803 		}
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 static void clean_service_thread(struct intel_gvt *gvt)
1810 {
1811 	kthread_stop(gvt->service_thread);
1812 }
1813 
1814 static int init_service_thread(struct intel_gvt *gvt)
1815 {
1816 	init_waitqueue_head(&gvt->service_thread_wq);
1817 
1818 	gvt->service_thread = kthread_run(gvt_service_thread,
1819 			gvt, "gvt_service_thread");
1820 	if (IS_ERR(gvt->service_thread)) {
1821 		gvt_err("fail to start service thread.\n");
1822 		return PTR_ERR(gvt->service_thread);
1823 	}
1824 	return 0;
1825 }
1826 
1827 /**
1828  * intel_gvt_clean_device - clean a GVT device
1829  * @i915: i915 private
1830  *
1831  * This function is called at the driver unloading stage, to free the
1832  * resources owned by a GVT device.
1833  *
1834  */
1835 static void intel_gvt_clean_device(struct drm_i915_private *i915)
1836 {
1837 	struct intel_gvt *gvt = fetch_and_zero(&i915->gvt);
1838 
1839 	if (drm_WARN_ON(&i915->drm, !gvt))
1840 		return;
1841 
1842 	mdev_unregister_parent(&gvt->parent);
1843 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1844 	intel_gvt_clean_vgpu_types(gvt);
1845 
1846 	intel_gvt_debugfs_clean(gvt);
1847 	clean_service_thread(gvt);
1848 	intel_gvt_clean_cmd_parser(gvt);
1849 	intel_gvt_clean_sched_policy(gvt);
1850 	intel_gvt_clean_workload_scheduler(gvt);
1851 	intel_gvt_clean_gtt(gvt);
1852 	intel_gvt_free_firmware(gvt);
1853 	intel_gvt_clean_mmio_info(gvt);
1854 	idr_destroy(&gvt->vgpu_idr);
1855 
1856 	kfree(i915->gvt);
1857 }
1858 
1859 /**
1860  * intel_gvt_init_device - initialize a GVT device
1861  * @i915: drm i915 private data
1862  *
1863  * This function is called at the initialization stage, to initialize
1864  * necessary GVT components.
1865  *
1866  * Returns:
1867  * Zero on success, negative error code if failed.
1868  *
1869  */
1870 static int intel_gvt_init_device(struct drm_i915_private *i915)
1871 {
1872 	struct intel_gvt *gvt;
1873 	struct intel_vgpu *vgpu;
1874 	int ret;
1875 
1876 	if (drm_WARN_ON(&i915->drm, i915->gvt))
1877 		return -EEXIST;
1878 
1879 	gvt = kzalloc(sizeof(struct intel_gvt), GFP_KERNEL);
1880 	if (!gvt)
1881 		return -ENOMEM;
1882 
1883 	gvt_dbg_core("init gvt device\n");
1884 
1885 	idr_init_base(&gvt->vgpu_idr, 1);
1886 	spin_lock_init(&gvt->scheduler.mmio_context_lock);
1887 	mutex_init(&gvt->lock);
1888 	mutex_init(&gvt->sched_lock);
1889 	gvt->gt = to_gt(i915);
1890 	i915->gvt = gvt;
1891 
1892 	init_device_info(gvt);
1893 
1894 	ret = intel_gvt_setup_mmio_info(gvt);
1895 	if (ret)
1896 		goto out_clean_idr;
1897 
1898 	intel_gvt_init_engine_mmio_context(gvt);
1899 
1900 	ret = intel_gvt_load_firmware(gvt);
1901 	if (ret)
1902 		goto out_clean_mmio_info;
1903 
1904 	ret = intel_gvt_init_irq(gvt);
1905 	if (ret)
1906 		goto out_free_firmware;
1907 
1908 	ret = intel_gvt_init_gtt(gvt);
1909 	if (ret)
1910 		goto out_free_firmware;
1911 
1912 	ret = intel_gvt_init_workload_scheduler(gvt);
1913 	if (ret)
1914 		goto out_clean_gtt;
1915 
1916 	ret = intel_gvt_init_sched_policy(gvt);
1917 	if (ret)
1918 		goto out_clean_workload_scheduler;
1919 
1920 	ret = intel_gvt_init_cmd_parser(gvt);
1921 	if (ret)
1922 		goto out_clean_sched_policy;
1923 
1924 	ret = init_service_thread(gvt);
1925 	if (ret)
1926 		goto out_clean_cmd_parser;
1927 
1928 	ret = intel_gvt_init_vgpu_types(gvt);
1929 	if (ret)
1930 		goto out_clean_thread;
1931 
1932 	vgpu = intel_gvt_create_idle_vgpu(gvt);
1933 	if (IS_ERR(vgpu)) {
1934 		ret = PTR_ERR(vgpu);
1935 		gvt_err("failed to create idle vgpu\n");
1936 		goto out_clean_types;
1937 	}
1938 	gvt->idle_vgpu = vgpu;
1939 
1940 	intel_gvt_debugfs_init(gvt);
1941 
1942 	ret = mdev_register_parent(&gvt->parent, i915->drm.dev,
1943 				   &intel_vgpu_mdev_driver,
1944 				   gvt->mdev_types, gvt->num_types);
1945 	if (ret)
1946 		goto out_destroy_idle_vgpu;
1947 
1948 	gvt_dbg_core("gvt device initialization is done\n");
1949 	return 0;
1950 
1951 out_destroy_idle_vgpu:
1952 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1953 	intel_gvt_debugfs_clean(gvt);
1954 out_clean_types:
1955 	intel_gvt_clean_vgpu_types(gvt);
1956 out_clean_thread:
1957 	clean_service_thread(gvt);
1958 out_clean_cmd_parser:
1959 	intel_gvt_clean_cmd_parser(gvt);
1960 out_clean_sched_policy:
1961 	intel_gvt_clean_sched_policy(gvt);
1962 out_clean_workload_scheduler:
1963 	intel_gvt_clean_workload_scheduler(gvt);
1964 out_clean_gtt:
1965 	intel_gvt_clean_gtt(gvt);
1966 out_free_firmware:
1967 	intel_gvt_free_firmware(gvt);
1968 out_clean_mmio_info:
1969 	intel_gvt_clean_mmio_info(gvt);
1970 out_clean_idr:
1971 	idr_destroy(&gvt->vgpu_idr);
1972 	kfree(gvt);
1973 	i915->gvt = NULL;
1974 	return ret;
1975 }
1976 
1977 static void intel_gvt_pm_resume(struct drm_i915_private *i915)
1978 {
1979 	struct intel_gvt *gvt = i915->gvt;
1980 
1981 	intel_gvt_restore_fence(gvt);
1982 	intel_gvt_restore_mmio(gvt);
1983 	intel_gvt_restore_ggtt(gvt);
1984 }
1985 
1986 static const struct intel_vgpu_ops intel_gvt_vgpu_ops = {
1987 	.init_device	= intel_gvt_init_device,
1988 	.clean_device	= intel_gvt_clean_device,
1989 	.pm_resume	= intel_gvt_pm_resume,
1990 };
1991 
1992 static int __init kvmgt_init(void)
1993 {
1994 	int ret;
1995 
1996 	ret = intel_gvt_set_ops(&intel_gvt_vgpu_ops);
1997 	if (ret)
1998 		return ret;
1999 
2000 	ret = mdev_register_driver(&intel_vgpu_mdev_driver);
2001 	if (ret)
2002 		intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
2003 	return ret;
2004 }
2005 
2006 static void __exit kvmgt_exit(void)
2007 {
2008 	mdev_unregister_driver(&intel_vgpu_mdev_driver);
2009 	intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
2010 }
2011 
2012 module_init(kvmgt_init);
2013 module_exit(kvmgt_exit);
2014 
2015 MODULE_LICENSE("GPL and additional rights");
2016 MODULE_AUTHOR("Intel Corporation");
2017