xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/kvmgt.c (revision 89345d51)
1 /*
2  * KVMGT - the implementation of Intel mediated pass-through framework for KVM
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Kevin Tian <kevin.tian@intel.com>
27  *    Jike Song <jike.song@intel.com>
28  *    Xiaoguang Chen <xiaoguang.chen@intel.com>
29  *    Eddie Dong <eddie.dong@intel.com>
30  *
31  * Contributors:
32  *    Niu Bing <bing.niu@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  */
35 
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/kthread.h>
39 #include <linux/sched/mm.h>
40 #include <linux/types.h>
41 #include <linux/list.h>
42 #include <linux/rbtree.h>
43 #include <linux/spinlock.h>
44 #include <linux/eventfd.h>
45 #include <linux/mdev.h>
46 #include <linux/debugfs.h>
47 
48 #include <linux/nospec.h>
49 
50 #include <drm/drm_edid.h>
51 
52 #include "i915_drv.h"
53 #include "intel_gvt.h"
54 #include "gvt.h"
55 
56 MODULE_IMPORT_NS(DMA_BUF);
57 MODULE_IMPORT_NS(I915_GVT);
58 
59 /* helper macros copied from vfio-pci */
60 #define VFIO_PCI_OFFSET_SHIFT   40
61 #define VFIO_PCI_OFFSET_TO_INDEX(off)   (off >> VFIO_PCI_OFFSET_SHIFT)
62 #define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT)
63 #define VFIO_PCI_OFFSET_MASK    (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1)
64 
65 #define EDID_BLOB_OFFSET (PAGE_SIZE/2)
66 
67 #define OPREGION_SIGNATURE "IntelGraphicsMem"
68 
69 struct vfio_region;
70 struct intel_vgpu_regops {
71 	size_t (*rw)(struct intel_vgpu *vgpu, char *buf,
72 			size_t count, loff_t *ppos, bool iswrite);
73 	void (*release)(struct intel_vgpu *vgpu,
74 			struct vfio_region *region);
75 };
76 
77 struct vfio_region {
78 	u32				type;
79 	u32				subtype;
80 	size_t				size;
81 	u32				flags;
82 	const struct intel_vgpu_regops	*ops;
83 	void				*data;
84 };
85 
86 struct vfio_edid_region {
87 	struct vfio_region_gfx_edid vfio_edid_regs;
88 	void *edid_blob;
89 };
90 
91 struct kvmgt_pgfn {
92 	gfn_t gfn;
93 	struct hlist_node hnode;
94 };
95 
96 struct gvt_dma {
97 	struct intel_vgpu *vgpu;
98 	struct rb_node gfn_node;
99 	struct rb_node dma_addr_node;
100 	gfn_t gfn;
101 	dma_addr_t dma_addr;
102 	unsigned long size;
103 	struct kref ref;
104 };
105 
106 #define vfio_dev_to_vgpu(vfio_dev) \
107 	container_of((vfio_dev), struct intel_vgpu, vfio_device)
108 
109 static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
110 		const u8 *val, int len,
111 		struct kvm_page_track_notifier_node *node);
112 static void kvmgt_page_track_flush_slot(struct kvm *kvm,
113 		struct kvm_memory_slot *slot,
114 		struct kvm_page_track_notifier_node *node);
115 
116 static ssize_t available_instances_show(struct mdev_type *mtype,
117 					struct mdev_type_attribute *attr,
118 					char *buf)
119 {
120 	struct intel_vgpu_type *type;
121 	unsigned int num = 0;
122 	struct intel_gvt *gvt = kdev_to_i915(mtype_get_parent_dev(mtype))->gvt;
123 
124 	type = &gvt->types[mtype_get_type_group_id(mtype)];
125 	if (!type)
126 		num = 0;
127 	else
128 		num = type->avail_instance;
129 
130 	return sprintf(buf, "%u\n", num);
131 }
132 
133 static ssize_t device_api_show(struct mdev_type *mtype,
134 			       struct mdev_type_attribute *attr, char *buf)
135 {
136 	return sprintf(buf, "%s\n", VFIO_DEVICE_API_PCI_STRING);
137 }
138 
139 static ssize_t description_show(struct mdev_type *mtype,
140 				struct mdev_type_attribute *attr, char *buf)
141 {
142 	struct intel_vgpu_type *type;
143 	struct intel_gvt *gvt = kdev_to_i915(mtype_get_parent_dev(mtype))->gvt;
144 
145 	type = &gvt->types[mtype_get_type_group_id(mtype)];
146 	if (!type)
147 		return 0;
148 
149 	return sprintf(buf, "low_gm_size: %dMB\nhigh_gm_size: %dMB\n"
150 		       "fence: %d\nresolution: %s\n"
151 		       "weight: %d\n",
152 		       BYTES_TO_MB(type->conf->low_mm),
153 		       BYTES_TO_MB(type->conf->high_mm),
154 		       type->conf->fence, vgpu_edid_str(type->conf->edid),
155 		       type->conf->weight);
156 }
157 
158 static ssize_t name_show(struct mdev_type *mtype,
159 			 struct mdev_type_attribute *attr, char *buf)
160 {
161 	struct intel_vgpu_type *type;
162 	struct intel_gvt *gvt = kdev_to_i915(mtype_get_parent_dev(mtype))->gvt;
163 
164 	type = &gvt->types[mtype_get_type_group_id(mtype)];
165 	if (!type)
166 		return 0;
167 
168 	return sprintf(buf, "%s\n", type->name);
169 }
170 
171 static MDEV_TYPE_ATTR_RO(available_instances);
172 static MDEV_TYPE_ATTR_RO(device_api);
173 static MDEV_TYPE_ATTR_RO(description);
174 static MDEV_TYPE_ATTR_RO(name);
175 
176 static struct attribute *gvt_type_attrs[] = {
177 	&mdev_type_attr_available_instances.attr,
178 	&mdev_type_attr_device_api.attr,
179 	&mdev_type_attr_description.attr,
180 	&mdev_type_attr_name.attr,
181 	NULL,
182 };
183 
184 static struct attribute_group *gvt_vgpu_type_groups[] = {
185 	[0 ... NR_MAX_INTEL_VGPU_TYPES - 1] = NULL,
186 };
187 
188 static int intel_gvt_init_vgpu_type_groups(struct intel_gvt *gvt)
189 {
190 	int i, j;
191 	struct intel_vgpu_type *type;
192 	struct attribute_group *group;
193 
194 	for (i = 0; i < gvt->num_types; i++) {
195 		type = &gvt->types[i];
196 
197 		group = kzalloc(sizeof(struct attribute_group), GFP_KERNEL);
198 		if (!group)
199 			goto unwind;
200 
201 		group->name = type->name;
202 		group->attrs = gvt_type_attrs;
203 		gvt_vgpu_type_groups[i] = group;
204 	}
205 
206 	return 0;
207 
208 unwind:
209 	for (j = 0; j < i; j++) {
210 		group = gvt_vgpu_type_groups[j];
211 		kfree(group);
212 	}
213 
214 	return -ENOMEM;
215 }
216 
217 static void intel_gvt_cleanup_vgpu_type_groups(struct intel_gvt *gvt)
218 {
219 	int i;
220 	struct attribute_group *group;
221 
222 	for (i = 0; i < gvt->num_types; i++) {
223 		group = gvt_vgpu_type_groups[i];
224 		gvt_vgpu_type_groups[i] = NULL;
225 		kfree(group);
226 	}
227 }
228 
229 static void gvt_unpin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
230 		unsigned long size)
231 {
232 	vfio_unpin_pages(&vgpu->vfio_device, gfn << PAGE_SHIFT,
233 			 DIV_ROUND_UP(size, PAGE_SIZE));
234 }
235 
236 /* Pin a normal or compound guest page for dma. */
237 static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
238 		unsigned long size, struct page **page)
239 {
240 	int total_pages = DIV_ROUND_UP(size, PAGE_SIZE);
241 	struct page *base_page = NULL;
242 	int npage;
243 	int ret;
244 
245 	/*
246 	 * We pin the pages one-by-one to avoid allocating a big arrary
247 	 * on stack to hold pfns.
248 	 */
249 	for (npage = 0; npage < total_pages; npage++) {
250 		dma_addr_t cur_iova = (gfn + npage) << PAGE_SHIFT;
251 		struct page *cur_page;
252 
253 		ret = vfio_pin_pages(&vgpu->vfio_device, cur_iova, 1,
254 				     IOMMU_READ | IOMMU_WRITE, &cur_page);
255 		if (ret != 1) {
256 			gvt_vgpu_err("vfio_pin_pages failed for iova %pad, ret %d\n",
257 				     &cur_iova, ret);
258 			goto err;
259 		}
260 
261 		if (npage == 0)
262 			base_page = cur_page;
263 		else if (base_page + npage != cur_page) {
264 			gvt_vgpu_err("The pages are not continuous\n");
265 			ret = -EINVAL;
266 			npage++;
267 			goto err;
268 		}
269 	}
270 
271 	*page = base_page;
272 	return 0;
273 err:
274 	gvt_unpin_guest_page(vgpu, gfn, npage * PAGE_SIZE);
275 	return ret;
276 }
277 
278 static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn,
279 		dma_addr_t *dma_addr, unsigned long size)
280 {
281 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
282 	struct page *page = NULL;
283 	int ret;
284 
285 	ret = gvt_pin_guest_page(vgpu, gfn, size, &page);
286 	if (ret)
287 		return ret;
288 
289 	/* Setup DMA mapping. */
290 	*dma_addr = dma_map_page(dev, page, 0, size, DMA_BIDIRECTIONAL);
291 	if (dma_mapping_error(dev, *dma_addr)) {
292 		gvt_vgpu_err("DMA mapping failed for pfn 0x%lx, ret %d\n",
293 			     page_to_pfn(page), ret);
294 		gvt_unpin_guest_page(vgpu, gfn, size);
295 		return -ENOMEM;
296 	}
297 
298 	return 0;
299 }
300 
301 static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn,
302 		dma_addr_t dma_addr, unsigned long size)
303 {
304 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
305 
306 	dma_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL);
307 	gvt_unpin_guest_page(vgpu, gfn, size);
308 }
309 
310 static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu,
311 		dma_addr_t dma_addr)
312 {
313 	struct rb_node *node = vgpu->dma_addr_cache.rb_node;
314 	struct gvt_dma *itr;
315 
316 	while (node) {
317 		itr = rb_entry(node, struct gvt_dma, dma_addr_node);
318 
319 		if (dma_addr < itr->dma_addr)
320 			node = node->rb_left;
321 		else if (dma_addr > itr->dma_addr)
322 			node = node->rb_right;
323 		else
324 			return itr;
325 	}
326 	return NULL;
327 }
328 
329 static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn)
330 {
331 	struct rb_node *node = vgpu->gfn_cache.rb_node;
332 	struct gvt_dma *itr;
333 
334 	while (node) {
335 		itr = rb_entry(node, struct gvt_dma, gfn_node);
336 
337 		if (gfn < itr->gfn)
338 			node = node->rb_left;
339 		else if (gfn > itr->gfn)
340 			node = node->rb_right;
341 		else
342 			return itr;
343 	}
344 	return NULL;
345 }
346 
347 static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn,
348 		dma_addr_t dma_addr, unsigned long size)
349 {
350 	struct gvt_dma *new, *itr;
351 	struct rb_node **link, *parent = NULL;
352 
353 	new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL);
354 	if (!new)
355 		return -ENOMEM;
356 
357 	new->vgpu = vgpu;
358 	new->gfn = gfn;
359 	new->dma_addr = dma_addr;
360 	new->size = size;
361 	kref_init(&new->ref);
362 
363 	/* gfn_cache maps gfn to struct gvt_dma. */
364 	link = &vgpu->gfn_cache.rb_node;
365 	while (*link) {
366 		parent = *link;
367 		itr = rb_entry(parent, struct gvt_dma, gfn_node);
368 
369 		if (gfn < itr->gfn)
370 			link = &parent->rb_left;
371 		else
372 			link = &parent->rb_right;
373 	}
374 	rb_link_node(&new->gfn_node, parent, link);
375 	rb_insert_color(&new->gfn_node, &vgpu->gfn_cache);
376 
377 	/* dma_addr_cache maps dma addr to struct gvt_dma. */
378 	parent = NULL;
379 	link = &vgpu->dma_addr_cache.rb_node;
380 	while (*link) {
381 		parent = *link;
382 		itr = rb_entry(parent, struct gvt_dma, dma_addr_node);
383 
384 		if (dma_addr < itr->dma_addr)
385 			link = &parent->rb_left;
386 		else
387 			link = &parent->rb_right;
388 	}
389 	rb_link_node(&new->dma_addr_node, parent, link);
390 	rb_insert_color(&new->dma_addr_node, &vgpu->dma_addr_cache);
391 
392 	vgpu->nr_cache_entries++;
393 	return 0;
394 }
395 
396 static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu,
397 				struct gvt_dma *entry)
398 {
399 	rb_erase(&entry->gfn_node, &vgpu->gfn_cache);
400 	rb_erase(&entry->dma_addr_node, &vgpu->dma_addr_cache);
401 	kfree(entry);
402 	vgpu->nr_cache_entries--;
403 }
404 
405 static void gvt_cache_destroy(struct intel_vgpu *vgpu)
406 {
407 	struct gvt_dma *dma;
408 	struct rb_node *node = NULL;
409 
410 	for (;;) {
411 		mutex_lock(&vgpu->cache_lock);
412 		node = rb_first(&vgpu->gfn_cache);
413 		if (!node) {
414 			mutex_unlock(&vgpu->cache_lock);
415 			break;
416 		}
417 		dma = rb_entry(node, struct gvt_dma, gfn_node);
418 		gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr, dma->size);
419 		__gvt_cache_remove_entry(vgpu, dma);
420 		mutex_unlock(&vgpu->cache_lock);
421 	}
422 }
423 
424 static void gvt_cache_init(struct intel_vgpu *vgpu)
425 {
426 	vgpu->gfn_cache = RB_ROOT;
427 	vgpu->dma_addr_cache = RB_ROOT;
428 	vgpu->nr_cache_entries = 0;
429 	mutex_init(&vgpu->cache_lock);
430 }
431 
432 static void kvmgt_protect_table_init(struct intel_vgpu *info)
433 {
434 	hash_init(info->ptable);
435 }
436 
437 static void kvmgt_protect_table_destroy(struct intel_vgpu *info)
438 {
439 	struct kvmgt_pgfn *p;
440 	struct hlist_node *tmp;
441 	int i;
442 
443 	hash_for_each_safe(info->ptable, i, tmp, p, hnode) {
444 		hash_del(&p->hnode);
445 		kfree(p);
446 	}
447 }
448 
449 static struct kvmgt_pgfn *
450 __kvmgt_protect_table_find(struct intel_vgpu *info, gfn_t gfn)
451 {
452 	struct kvmgt_pgfn *p, *res = NULL;
453 
454 	hash_for_each_possible(info->ptable, p, hnode, gfn) {
455 		if (gfn == p->gfn) {
456 			res = p;
457 			break;
458 		}
459 	}
460 
461 	return res;
462 }
463 
464 static bool kvmgt_gfn_is_write_protected(struct intel_vgpu *info, gfn_t gfn)
465 {
466 	struct kvmgt_pgfn *p;
467 
468 	p = __kvmgt_protect_table_find(info, gfn);
469 	return !!p;
470 }
471 
472 static void kvmgt_protect_table_add(struct intel_vgpu *info, gfn_t gfn)
473 {
474 	struct kvmgt_pgfn *p;
475 
476 	if (kvmgt_gfn_is_write_protected(info, gfn))
477 		return;
478 
479 	p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC);
480 	if (WARN(!p, "gfn: 0x%llx\n", gfn))
481 		return;
482 
483 	p->gfn = gfn;
484 	hash_add(info->ptable, &p->hnode, gfn);
485 }
486 
487 static void kvmgt_protect_table_del(struct intel_vgpu *info, gfn_t gfn)
488 {
489 	struct kvmgt_pgfn *p;
490 
491 	p = __kvmgt_protect_table_find(info, gfn);
492 	if (p) {
493 		hash_del(&p->hnode);
494 		kfree(p);
495 	}
496 }
497 
498 static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf,
499 		size_t count, loff_t *ppos, bool iswrite)
500 {
501 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
502 			VFIO_PCI_NUM_REGIONS;
503 	void *base = vgpu->region[i].data;
504 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
505 
506 
507 	if (pos >= vgpu->region[i].size || iswrite) {
508 		gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n");
509 		return -EINVAL;
510 	}
511 	count = min(count, (size_t)(vgpu->region[i].size - pos));
512 	memcpy(buf, base + pos, count);
513 
514 	return count;
515 }
516 
517 static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu,
518 		struct vfio_region *region)
519 {
520 }
521 
522 static const struct intel_vgpu_regops intel_vgpu_regops_opregion = {
523 	.rw = intel_vgpu_reg_rw_opregion,
524 	.release = intel_vgpu_reg_release_opregion,
525 };
526 
527 static int handle_edid_regs(struct intel_vgpu *vgpu,
528 			struct vfio_edid_region *region, char *buf,
529 			size_t count, u16 offset, bool is_write)
530 {
531 	struct vfio_region_gfx_edid *regs = &region->vfio_edid_regs;
532 	unsigned int data;
533 
534 	if (offset + count > sizeof(*regs))
535 		return -EINVAL;
536 
537 	if (count != 4)
538 		return -EINVAL;
539 
540 	if (is_write) {
541 		data = *((unsigned int *)buf);
542 		switch (offset) {
543 		case offsetof(struct vfio_region_gfx_edid, link_state):
544 			if (data == VFIO_DEVICE_GFX_LINK_STATE_UP) {
545 				if (!drm_edid_block_valid(
546 					(u8 *)region->edid_blob,
547 					0,
548 					true,
549 					NULL)) {
550 					gvt_vgpu_err("invalid EDID blob\n");
551 					return -EINVAL;
552 				}
553 				intel_vgpu_emulate_hotplug(vgpu, true);
554 			} else if (data == VFIO_DEVICE_GFX_LINK_STATE_DOWN)
555 				intel_vgpu_emulate_hotplug(vgpu, false);
556 			else {
557 				gvt_vgpu_err("invalid EDID link state %d\n",
558 					regs->link_state);
559 				return -EINVAL;
560 			}
561 			regs->link_state = data;
562 			break;
563 		case offsetof(struct vfio_region_gfx_edid, edid_size):
564 			if (data > regs->edid_max_size) {
565 				gvt_vgpu_err("EDID size is bigger than %d!\n",
566 					regs->edid_max_size);
567 				return -EINVAL;
568 			}
569 			regs->edid_size = data;
570 			break;
571 		default:
572 			/* read-only regs */
573 			gvt_vgpu_err("write read-only EDID region at offset %d\n",
574 				offset);
575 			return -EPERM;
576 		}
577 	} else {
578 		memcpy(buf, (char *)regs + offset, count);
579 	}
580 
581 	return count;
582 }
583 
584 static int handle_edid_blob(struct vfio_edid_region *region, char *buf,
585 			size_t count, u16 offset, bool is_write)
586 {
587 	if (offset + count > region->vfio_edid_regs.edid_size)
588 		return -EINVAL;
589 
590 	if (is_write)
591 		memcpy(region->edid_blob + offset, buf, count);
592 	else
593 		memcpy(buf, region->edid_blob + offset, count);
594 
595 	return count;
596 }
597 
598 static size_t intel_vgpu_reg_rw_edid(struct intel_vgpu *vgpu, char *buf,
599 		size_t count, loff_t *ppos, bool iswrite)
600 {
601 	int ret;
602 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
603 			VFIO_PCI_NUM_REGIONS;
604 	struct vfio_edid_region *region = vgpu->region[i].data;
605 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
606 
607 	if (pos < region->vfio_edid_regs.edid_offset) {
608 		ret = handle_edid_regs(vgpu, region, buf, count, pos, iswrite);
609 	} else {
610 		pos -= EDID_BLOB_OFFSET;
611 		ret = handle_edid_blob(region, buf, count, pos, iswrite);
612 	}
613 
614 	if (ret < 0)
615 		gvt_vgpu_err("failed to access EDID region\n");
616 
617 	return ret;
618 }
619 
620 static void intel_vgpu_reg_release_edid(struct intel_vgpu *vgpu,
621 					struct vfio_region *region)
622 {
623 	kfree(region->data);
624 }
625 
626 static const struct intel_vgpu_regops intel_vgpu_regops_edid = {
627 	.rw = intel_vgpu_reg_rw_edid,
628 	.release = intel_vgpu_reg_release_edid,
629 };
630 
631 static int intel_vgpu_register_reg(struct intel_vgpu *vgpu,
632 		unsigned int type, unsigned int subtype,
633 		const struct intel_vgpu_regops *ops,
634 		size_t size, u32 flags, void *data)
635 {
636 	struct vfio_region *region;
637 
638 	region = krealloc(vgpu->region,
639 			(vgpu->num_regions + 1) * sizeof(*region),
640 			GFP_KERNEL);
641 	if (!region)
642 		return -ENOMEM;
643 
644 	vgpu->region = region;
645 	vgpu->region[vgpu->num_regions].type = type;
646 	vgpu->region[vgpu->num_regions].subtype = subtype;
647 	vgpu->region[vgpu->num_regions].ops = ops;
648 	vgpu->region[vgpu->num_regions].size = size;
649 	vgpu->region[vgpu->num_regions].flags = flags;
650 	vgpu->region[vgpu->num_regions].data = data;
651 	vgpu->num_regions++;
652 	return 0;
653 }
654 
655 int intel_gvt_set_opregion(struct intel_vgpu *vgpu)
656 {
657 	void *base;
658 	int ret;
659 
660 	/* Each vgpu has its own opregion, although VFIO would create another
661 	 * one later. This one is used to expose opregion to VFIO. And the
662 	 * other one created by VFIO later, is used by guest actually.
663 	 */
664 	base = vgpu_opregion(vgpu)->va;
665 	if (!base)
666 		return -ENOMEM;
667 
668 	if (memcmp(base, OPREGION_SIGNATURE, 16)) {
669 		memunmap(base);
670 		return -EINVAL;
671 	}
672 
673 	ret = intel_vgpu_register_reg(vgpu,
674 			PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
675 			VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
676 			&intel_vgpu_regops_opregion, OPREGION_SIZE,
677 			VFIO_REGION_INFO_FLAG_READ, base);
678 
679 	return ret;
680 }
681 
682 int intel_gvt_set_edid(struct intel_vgpu *vgpu, int port_num)
683 {
684 	struct intel_vgpu_port *port = intel_vgpu_port(vgpu, port_num);
685 	struct vfio_edid_region *base;
686 	int ret;
687 
688 	base = kzalloc(sizeof(*base), GFP_KERNEL);
689 	if (!base)
690 		return -ENOMEM;
691 
692 	/* TODO: Add multi-port and EDID extension block support */
693 	base->vfio_edid_regs.edid_offset = EDID_BLOB_OFFSET;
694 	base->vfio_edid_regs.edid_max_size = EDID_SIZE;
695 	base->vfio_edid_regs.edid_size = EDID_SIZE;
696 	base->vfio_edid_regs.max_xres = vgpu_edid_xres(port->id);
697 	base->vfio_edid_regs.max_yres = vgpu_edid_yres(port->id);
698 	base->edid_blob = port->edid->edid_block;
699 
700 	ret = intel_vgpu_register_reg(vgpu,
701 			VFIO_REGION_TYPE_GFX,
702 			VFIO_REGION_SUBTYPE_GFX_EDID,
703 			&intel_vgpu_regops_edid, EDID_SIZE,
704 			VFIO_REGION_INFO_FLAG_READ |
705 			VFIO_REGION_INFO_FLAG_WRITE |
706 			VFIO_REGION_INFO_FLAG_CAPS, base);
707 
708 	return ret;
709 }
710 
711 static void intel_vgpu_dma_unmap(struct vfio_device *vfio_dev, u64 iova,
712 				 u64 length)
713 {
714 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
715 	struct gvt_dma *entry;
716 	u64 iov_pfn = iova >> PAGE_SHIFT;
717 	u64 end_iov_pfn = iov_pfn + length / PAGE_SIZE;
718 
719 	mutex_lock(&vgpu->cache_lock);
720 	for (; iov_pfn < end_iov_pfn; iov_pfn++) {
721 		entry = __gvt_cache_find_gfn(vgpu, iov_pfn);
722 		if (!entry)
723 			continue;
724 
725 		gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr,
726 				   entry->size);
727 		__gvt_cache_remove_entry(vgpu, entry);
728 	}
729 	mutex_unlock(&vgpu->cache_lock);
730 }
731 
732 static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu)
733 {
734 	struct intel_vgpu *itr;
735 	int id;
736 	bool ret = false;
737 
738 	mutex_lock(&vgpu->gvt->lock);
739 	for_each_active_vgpu(vgpu->gvt, itr, id) {
740 		if (!itr->attached)
741 			continue;
742 
743 		if (vgpu->vfio_device.kvm == itr->vfio_device.kvm) {
744 			ret = true;
745 			goto out;
746 		}
747 	}
748 out:
749 	mutex_unlock(&vgpu->gvt->lock);
750 	return ret;
751 }
752 
753 static int intel_vgpu_open_device(struct vfio_device *vfio_dev)
754 {
755 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
756 
757 	if (vgpu->attached)
758 		return -EEXIST;
759 
760 	if (!vgpu->vfio_device.kvm ||
761 	    vgpu->vfio_device.kvm->mm != current->mm) {
762 		gvt_vgpu_err("KVM is required to use Intel vGPU\n");
763 		return -ESRCH;
764 	}
765 
766 	kvm_get_kvm(vgpu->vfio_device.kvm);
767 
768 	if (__kvmgt_vgpu_exist(vgpu))
769 		return -EEXIST;
770 
771 	vgpu->attached = true;
772 
773 	kvmgt_protect_table_init(vgpu);
774 	gvt_cache_init(vgpu);
775 
776 	vgpu->track_node.track_write = kvmgt_page_track_write;
777 	vgpu->track_node.track_flush_slot = kvmgt_page_track_flush_slot;
778 	kvm_page_track_register_notifier(vgpu->vfio_device.kvm,
779 					 &vgpu->track_node);
780 
781 	debugfs_create_ulong(KVMGT_DEBUGFS_FILENAME, 0444, vgpu->debugfs,
782 			     &vgpu->nr_cache_entries);
783 
784 	intel_gvt_activate_vgpu(vgpu);
785 
786 	atomic_set(&vgpu->released, 0);
787 	return 0;
788 }
789 
790 static void intel_vgpu_release_msi_eventfd_ctx(struct intel_vgpu *vgpu)
791 {
792 	struct eventfd_ctx *trigger;
793 
794 	trigger = vgpu->msi_trigger;
795 	if (trigger) {
796 		eventfd_ctx_put(trigger);
797 		vgpu->msi_trigger = NULL;
798 	}
799 }
800 
801 static void intel_vgpu_close_device(struct vfio_device *vfio_dev)
802 {
803 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
804 
805 	if (!vgpu->attached)
806 		return;
807 
808 	if (atomic_cmpxchg(&vgpu->released, 0, 1))
809 		return;
810 
811 	intel_gvt_release_vgpu(vgpu);
812 
813 	debugfs_remove(debugfs_lookup(KVMGT_DEBUGFS_FILENAME, vgpu->debugfs));
814 
815 	kvm_page_track_unregister_notifier(vgpu->vfio_device.kvm,
816 					   &vgpu->track_node);
817 	kvmgt_protect_table_destroy(vgpu);
818 	gvt_cache_destroy(vgpu);
819 
820 	intel_vgpu_release_msi_eventfd_ctx(vgpu);
821 
822 	vgpu->attached = false;
823 
824 	if (vgpu->vfio_device.kvm)
825 		kvm_put_kvm(vgpu->vfio_device.kvm);
826 }
827 
828 static u64 intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar)
829 {
830 	u32 start_lo, start_hi;
831 	u32 mem_type;
832 
833 	start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
834 			PCI_BASE_ADDRESS_MEM_MASK;
835 	mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
836 			PCI_BASE_ADDRESS_MEM_TYPE_MASK;
837 
838 	switch (mem_type) {
839 	case PCI_BASE_ADDRESS_MEM_TYPE_64:
840 		start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space
841 						+ bar + 4));
842 		break;
843 	case PCI_BASE_ADDRESS_MEM_TYPE_32:
844 	case PCI_BASE_ADDRESS_MEM_TYPE_1M:
845 		/* 1M mem BAR treated as 32-bit BAR */
846 	default:
847 		/* mem unknown type treated as 32-bit BAR */
848 		start_hi = 0;
849 		break;
850 	}
851 
852 	return ((u64)start_hi << 32) | start_lo;
853 }
854 
855 static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, u64 off,
856 			     void *buf, unsigned int count, bool is_write)
857 {
858 	u64 bar_start = intel_vgpu_get_bar_addr(vgpu, bar);
859 	int ret;
860 
861 	if (is_write)
862 		ret = intel_vgpu_emulate_mmio_write(vgpu,
863 					bar_start + off, buf, count);
864 	else
865 		ret = intel_vgpu_emulate_mmio_read(vgpu,
866 					bar_start + off, buf, count);
867 	return ret;
868 }
869 
870 static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, u64 off)
871 {
872 	return off >= vgpu_aperture_offset(vgpu) &&
873 	       off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu);
874 }
875 
876 static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, u64 off,
877 		void *buf, unsigned long count, bool is_write)
878 {
879 	void __iomem *aperture_va;
880 
881 	if (!intel_vgpu_in_aperture(vgpu, off) ||
882 	    !intel_vgpu_in_aperture(vgpu, off + count)) {
883 		gvt_vgpu_err("Invalid aperture offset %llu\n", off);
884 		return -EINVAL;
885 	}
886 
887 	aperture_va = io_mapping_map_wc(&vgpu->gvt->gt->ggtt->iomap,
888 					ALIGN_DOWN(off, PAGE_SIZE),
889 					count + offset_in_page(off));
890 	if (!aperture_va)
891 		return -EIO;
892 
893 	if (is_write)
894 		memcpy_toio(aperture_va + offset_in_page(off), buf, count);
895 	else
896 		memcpy_fromio(buf, aperture_va + offset_in_page(off), count);
897 
898 	io_mapping_unmap(aperture_va);
899 
900 	return 0;
901 }
902 
903 static ssize_t intel_vgpu_rw(struct intel_vgpu *vgpu, char *buf,
904 			size_t count, loff_t *ppos, bool is_write)
905 {
906 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
907 	u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
908 	int ret = -EINVAL;
909 
910 
911 	if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) {
912 		gvt_vgpu_err("invalid index: %u\n", index);
913 		return -EINVAL;
914 	}
915 
916 	switch (index) {
917 	case VFIO_PCI_CONFIG_REGION_INDEX:
918 		if (is_write)
919 			ret = intel_vgpu_emulate_cfg_write(vgpu, pos,
920 						buf, count);
921 		else
922 			ret = intel_vgpu_emulate_cfg_read(vgpu, pos,
923 						buf, count);
924 		break;
925 	case VFIO_PCI_BAR0_REGION_INDEX:
926 		ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos,
927 					buf, count, is_write);
928 		break;
929 	case VFIO_PCI_BAR2_REGION_INDEX:
930 		ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write);
931 		break;
932 	case VFIO_PCI_BAR1_REGION_INDEX:
933 	case VFIO_PCI_BAR3_REGION_INDEX:
934 	case VFIO_PCI_BAR4_REGION_INDEX:
935 	case VFIO_PCI_BAR5_REGION_INDEX:
936 	case VFIO_PCI_VGA_REGION_INDEX:
937 	case VFIO_PCI_ROM_REGION_INDEX:
938 		break;
939 	default:
940 		if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions)
941 			return -EINVAL;
942 
943 		index -= VFIO_PCI_NUM_REGIONS;
944 		return vgpu->region[index].ops->rw(vgpu, buf, count,
945 				ppos, is_write);
946 	}
947 
948 	return ret == 0 ? count : ret;
949 }
950 
951 static bool gtt_entry(struct intel_vgpu *vgpu, loff_t *ppos)
952 {
953 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
954 	struct intel_gvt *gvt = vgpu->gvt;
955 	int offset;
956 
957 	/* Only allow MMIO GGTT entry access */
958 	if (index != PCI_BASE_ADDRESS_0)
959 		return false;
960 
961 	offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) -
962 		intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0);
963 
964 	return (offset >= gvt->device_info.gtt_start_offset &&
965 		offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ?
966 			true : false;
967 }
968 
969 static ssize_t intel_vgpu_read(struct vfio_device *vfio_dev, char __user *buf,
970 			size_t count, loff_t *ppos)
971 {
972 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
973 	unsigned int done = 0;
974 	int ret;
975 
976 	while (count) {
977 		size_t filled;
978 
979 		/* Only support GGTT entry 8 bytes read */
980 		if (count >= 8 && !(*ppos % 8) &&
981 			gtt_entry(vgpu, ppos)) {
982 			u64 val;
983 
984 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
985 					ppos, false);
986 			if (ret <= 0)
987 				goto read_err;
988 
989 			if (copy_to_user(buf, &val, sizeof(val)))
990 				goto read_err;
991 
992 			filled = 8;
993 		} else if (count >= 4 && !(*ppos % 4)) {
994 			u32 val;
995 
996 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
997 					ppos, false);
998 			if (ret <= 0)
999 				goto read_err;
1000 
1001 			if (copy_to_user(buf, &val, sizeof(val)))
1002 				goto read_err;
1003 
1004 			filled = 4;
1005 		} else if (count >= 2 && !(*ppos % 2)) {
1006 			u16 val;
1007 
1008 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
1009 					ppos, false);
1010 			if (ret <= 0)
1011 				goto read_err;
1012 
1013 			if (copy_to_user(buf, &val, sizeof(val)))
1014 				goto read_err;
1015 
1016 			filled = 2;
1017 		} else {
1018 			u8 val;
1019 
1020 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val), ppos,
1021 					false);
1022 			if (ret <= 0)
1023 				goto read_err;
1024 
1025 			if (copy_to_user(buf, &val, sizeof(val)))
1026 				goto read_err;
1027 
1028 			filled = 1;
1029 		}
1030 
1031 		count -= filled;
1032 		done += filled;
1033 		*ppos += filled;
1034 		buf += filled;
1035 	}
1036 
1037 	return done;
1038 
1039 read_err:
1040 	return -EFAULT;
1041 }
1042 
1043 static ssize_t intel_vgpu_write(struct vfio_device *vfio_dev,
1044 				const char __user *buf,
1045 				size_t count, loff_t *ppos)
1046 {
1047 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1048 	unsigned int done = 0;
1049 	int ret;
1050 
1051 	while (count) {
1052 		size_t filled;
1053 
1054 		/* Only support GGTT entry 8 bytes write */
1055 		if (count >= 8 && !(*ppos % 8) &&
1056 			gtt_entry(vgpu, ppos)) {
1057 			u64 val;
1058 
1059 			if (copy_from_user(&val, buf, sizeof(val)))
1060 				goto write_err;
1061 
1062 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
1063 					ppos, true);
1064 			if (ret <= 0)
1065 				goto write_err;
1066 
1067 			filled = 8;
1068 		} else if (count >= 4 && !(*ppos % 4)) {
1069 			u32 val;
1070 
1071 			if (copy_from_user(&val, buf, sizeof(val)))
1072 				goto write_err;
1073 
1074 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
1075 					ppos, true);
1076 			if (ret <= 0)
1077 				goto write_err;
1078 
1079 			filled = 4;
1080 		} else if (count >= 2 && !(*ppos % 2)) {
1081 			u16 val;
1082 
1083 			if (copy_from_user(&val, buf, sizeof(val)))
1084 				goto write_err;
1085 
1086 			ret = intel_vgpu_rw(vgpu, (char *)&val,
1087 					sizeof(val), ppos, true);
1088 			if (ret <= 0)
1089 				goto write_err;
1090 
1091 			filled = 2;
1092 		} else {
1093 			u8 val;
1094 
1095 			if (copy_from_user(&val, buf, sizeof(val)))
1096 				goto write_err;
1097 
1098 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val),
1099 					ppos, true);
1100 			if (ret <= 0)
1101 				goto write_err;
1102 
1103 			filled = 1;
1104 		}
1105 
1106 		count -= filled;
1107 		done += filled;
1108 		*ppos += filled;
1109 		buf += filled;
1110 	}
1111 
1112 	return done;
1113 write_err:
1114 	return -EFAULT;
1115 }
1116 
1117 static int intel_vgpu_mmap(struct vfio_device *vfio_dev,
1118 		struct vm_area_struct *vma)
1119 {
1120 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1121 	unsigned int index;
1122 	u64 virtaddr;
1123 	unsigned long req_size, pgoff, req_start;
1124 	pgprot_t pg_prot;
1125 
1126 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1127 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1128 		return -EINVAL;
1129 
1130 	if (vma->vm_end < vma->vm_start)
1131 		return -EINVAL;
1132 	if ((vma->vm_flags & VM_SHARED) == 0)
1133 		return -EINVAL;
1134 	if (index != VFIO_PCI_BAR2_REGION_INDEX)
1135 		return -EINVAL;
1136 
1137 	pg_prot = vma->vm_page_prot;
1138 	virtaddr = vma->vm_start;
1139 	req_size = vma->vm_end - vma->vm_start;
1140 	pgoff = vma->vm_pgoff &
1141 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1142 	req_start = pgoff << PAGE_SHIFT;
1143 
1144 	if (!intel_vgpu_in_aperture(vgpu, req_start))
1145 		return -EINVAL;
1146 	if (req_start + req_size >
1147 	    vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu))
1148 		return -EINVAL;
1149 
1150 	pgoff = (gvt_aperture_pa_base(vgpu->gvt) >> PAGE_SHIFT) + pgoff;
1151 
1152 	return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot);
1153 }
1154 
1155 static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type)
1156 {
1157 	if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX)
1158 		return 1;
1159 
1160 	return 0;
1161 }
1162 
1163 static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu,
1164 			unsigned int index, unsigned int start,
1165 			unsigned int count, u32 flags,
1166 			void *data)
1167 {
1168 	return 0;
1169 }
1170 
1171 static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu,
1172 			unsigned int index, unsigned int start,
1173 			unsigned int count, u32 flags, void *data)
1174 {
1175 	return 0;
1176 }
1177 
1178 static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu,
1179 		unsigned int index, unsigned int start, unsigned int count,
1180 		u32 flags, void *data)
1181 {
1182 	return 0;
1183 }
1184 
1185 static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu,
1186 		unsigned int index, unsigned int start, unsigned int count,
1187 		u32 flags, void *data)
1188 {
1189 	struct eventfd_ctx *trigger;
1190 
1191 	if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
1192 		int fd = *(int *)data;
1193 
1194 		trigger = eventfd_ctx_fdget(fd);
1195 		if (IS_ERR(trigger)) {
1196 			gvt_vgpu_err("eventfd_ctx_fdget failed\n");
1197 			return PTR_ERR(trigger);
1198 		}
1199 		vgpu->msi_trigger = trigger;
1200 	} else if ((flags & VFIO_IRQ_SET_DATA_NONE) && !count)
1201 		intel_vgpu_release_msi_eventfd_ctx(vgpu);
1202 
1203 	return 0;
1204 }
1205 
1206 static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, u32 flags,
1207 		unsigned int index, unsigned int start, unsigned int count,
1208 		void *data)
1209 {
1210 	int (*func)(struct intel_vgpu *vgpu, unsigned int index,
1211 			unsigned int start, unsigned int count, u32 flags,
1212 			void *data) = NULL;
1213 
1214 	switch (index) {
1215 	case VFIO_PCI_INTX_IRQ_INDEX:
1216 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1217 		case VFIO_IRQ_SET_ACTION_MASK:
1218 			func = intel_vgpu_set_intx_mask;
1219 			break;
1220 		case VFIO_IRQ_SET_ACTION_UNMASK:
1221 			func = intel_vgpu_set_intx_unmask;
1222 			break;
1223 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1224 			func = intel_vgpu_set_intx_trigger;
1225 			break;
1226 		}
1227 		break;
1228 	case VFIO_PCI_MSI_IRQ_INDEX:
1229 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1230 		case VFIO_IRQ_SET_ACTION_MASK:
1231 		case VFIO_IRQ_SET_ACTION_UNMASK:
1232 			/* XXX Need masking support exported */
1233 			break;
1234 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1235 			func = intel_vgpu_set_msi_trigger;
1236 			break;
1237 		}
1238 		break;
1239 	}
1240 
1241 	if (!func)
1242 		return -ENOTTY;
1243 
1244 	return func(vgpu, index, start, count, flags, data);
1245 }
1246 
1247 static long intel_vgpu_ioctl(struct vfio_device *vfio_dev, unsigned int cmd,
1248 			     unsigned long arg)
1249 {
1250 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1251 	unsigned long minsz;
1252 
1253 	gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd);
1254 
1255 	if (cmd == VFIO_DEVICE_GET_INFO) {
1256 		struct vfio_device_info info;
1257 
1258 		minsz = offsetofend(struct vfio_device_info, num_irqs);
1259 
1260 		if (copy_from_user(&info, (void __user *)arg, minsz))
1261 			return -EFAULT;
1262 
1263 		if (info.argsz < minsz)
1264 			return -EINVAL;
1265 
1266 		info.flags = VFIO_DEVICE_FLAGS_PCI;
1267 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
1268 		info.num_regions = VFIO_PCI_NUM_REGIONS +
1269 				vgpu->num_regions;
1270 		info.num_irqs = VFIO_PCI_NUM_IRQS;
1271 
1272 		return copy_to_user((void __user *)arg, &info, minsz) ?
1273 			-EFAULT : 0;
1274 
1275 	} else if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
1276 		struct vfio_region_info info;
1277 		struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1278 		unsigned int i;
1279 		int ret;
1280 		struct vfio_region_info_cap_sparse_mmap *sparse = NULL;
1281 		int nr_areas = 1;
1282 		int cap_type_id;
1283 
1284 		minsz = offsetofend(struct vfio_region_info, offset);
1285 
1286 		if (copy_from_user(&info, (void __user *)arg, minsz))
1287 			return -EFAULT;
1288 
1289 		if (info.argsz < minsz)
1290 			return -EINVAL;
1291 
1292 		switch (info.index) {
1293 		case VFIO_PCI_CONFIG_REGION_INDEX:
1294 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1295 			info.size = vgpu->gvt->device_info.cfg_space_size;
1296 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1297 				     VFIO_REGION_INFO_FLAG_WRITE;
1298 			break;
1299 		case VFIO_PCI_BAR0_REGION_INDEX:
1300 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1301 			info.size = vgpu->cfg_space.bar[info.index].size;
1302 			if (!info.size) {
1303 				info.flags = 0;
1304 				break;
1305 			}
1306 
1307 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1308 				     VFIO_REGION_INFO_FLAG_WRITE;
1309 			break;
1310 		case VFIO_PCI_BAR1_REGION_INDEX:
1311 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1312 			info.size = 0;
1313 			info.flags = 0;
1314 			break;
1315 		case VFIO_PCI_BAR2_REGION_INDEX:
1316 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1317 			info.flags = VFIO_REGION_INFO_FLAG_CAPS |
1318 					VFIO_REGION_INFO_FLAG_MMAP |
1319 					VFIO_REGION_INFO_FLAG_READ |
1320 					VFIO_REGION_INFO_FLAG_WRITE;
1321 			info.size = gvt_aperture_sz(vgpu->gvt);
1322 
1323 			sparse = kzalloc(struct_size(sparse, areas, nr_areas),
1324 					 GFP_KERNEL);
1325 			if (!sparse)
1326 				return -ENOMEM;
1327 
1328 			sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1329 			sparse->header.version = 1;
1330 			sparse->nr_areas = nr_areas;
1331 			cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1332 			sparse->areas[0].offset =
1333 					PAGE_ALIGN(vgpu_aperture_offset(vgpu));
1334 			sparse->areas[0].size = vgpu_aperture_sz(vgpu);
1335 			break;
1336 
1337 		case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1338 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1339 			info.size = 0;
1340 			info.flags = 0;
1341 
1342 			gvt_dbg_core("get region info bar:%d\n", info.index);
1343 			break;
1344 
1345 		case VFIO_PCI_ROM_REGION_INDEX:
1346 		case VFIO_PCI_VGA_REGION_INDEX:
1347 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1348 			info.size = 0;
1349 			info.flags = 0;
1350 
1351 			gvt_dbg_core("get region info index:%d\n", info.index);
1352 			break;
1353 		default:
1354 			{
1355 				struct vfio_region_info_cap_type cap_type = {
1356 					.header.id = VFIO_REGION_INFO_CAP_TYPE,
1357 					.header.version = 1 };
1358 
1359 				if (info.index >= VFIO_PCI_NUM_REGIONS +
1360 						vgpu->num_regions)
1361 					return -EINVAL;
1362 				info.index =
1363 					array_index_nospec(info.index,
1364 							VFIO_PCI_NUM_REGIONS +
1365 							vgpu->num_regions);
1366 
1367 				i = info.index - VFIO_PCI_NUM_REGIONS;
1368 
1369 				info.offset =
1370 					VFIO_PCI_INDEX_TO_OFFSET(info.index);
1371 				info.size = vgpu->region[i].size;
1372 				info.flags = vgpu->region[i].flags;
1373 
1374 				cap_type.type = vgpu->region[i].type;
1375 				cap_type.subtype = vgpu->region[i].subtype;
1376 
1377 				ret = vfio_info_add_capability(&caps,
1378 							&cap_type.header,
1379 							sizeof(cap_type));
1380 				if (ret)
1381 					return ret;
1382 			}
1383 		}
1384 
1385 		if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) {
1386 			switch (cap_type_id) {
1387 			case VFIO_REGION_INFO_CAP_SPARSE_MMAP:
1388 				ret = vfio_info_add_capability(&caps,
1389 					&sparse->header,
1390 					struct_size(sparse, areas,
1391 						    sparse->nr_areas));
1392 				if (ret) {
1393 					kfree(sparse);
1394 					return ret;
1395 				}
1396 				break;
1397 			default:
1398 				kfree(sparse);
1399 				return -EINVAL;
1400 			}
1401 		}
1402 
1403 		if (caps.size) {
1404 			info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1405 			if (info.argsz < sizeof(info) + caps.size) {
1406 				info.argsz = sizeof(info) + caps.size;
1407 				info.cap_offset = 0;
1408 			} else {
1409 				vfio_info_cap_shift(&caps, sizeof(info));
1410 				if (copy_to_user((void __user *)arg +
1411 						  sizeof(info), caps.buf,
1412 						  caps.size)) {
1413 					kfree(caps.buf);
1414 					kfree(sparse);
1415 					return -EFAULT;
1416 				}
1417 				info.cap_offset = sizeof(info);
1418 			}
1419 
1420 			kfree(caps.buf);
1421 		}
1422 
1423 		kfree(sparse);
1424 		return copy_to_user((void __user *)arg, &info, minsz) ?
1425 			-EFAULT : 0;
1426 	} else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) {
1427 		struct vfio_irq_info info;
1428 
1429 		minsz = offsetofend(struct vfio_irq_info, count);
1430 
1431 		if (copy_from_user(&info, (void __user *)arg, minsz))
1432 			return -EFAULT;
1433 
1434 		if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1435 			return -EINVAL;
1436 
1437 		switch (info.index) {
1438 		case VFIO_PCI_INTX_IRQ_INDEX:
1439 		case VFIO_PCI_MSI_IRQ_INDEX:
1440 			break;
1441 		default:
1442 			return -EINVAL;
1443 		}
1444 
1445 		info.flags = VFIO_IRQ_INFO_EVENTFD;
1446 
1447 		info.count = intel_vgpu_get_irq_count(vgpu, info.index);
1448 
1449 		if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1450 			info.flags |= (VFIO_IRQ_INFO_MASKABLE |
1451 				       VFIO_IRQ_INFO_AUTOMASKED);
1452 		else
1453 			info.flags |= VFIO_IRQ_INFO_NORESIZE;
1454 
1455 		return copy_to_user((void __user *)arg, &info, minsz) ?
1456 			-EFAULT : 0;
1457 	} else if (cmd == VFIO_DEVICE_SET_IRQS) {
1458 		struct vfio_irq_set hdr;
1459 		u8 *data = NULL;
1460 		int ret = 0;
1461 		size_t data_size = 0;
1462 
1463 		minsz = offsetofend(struct vfio_irq_set, count);
1464 
1465 		if (copy_from_user(&hdr, (void __user *)arg, minsz))
1466 			return -EFAULT;
1467 
1468 		if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) {
1469 			int max = intel_vgpu_get_irq_count(vgpu, hdr.index);
1470 
1471 			ret = vfio_set_irqs_validate_and_prepare(&hdr, max,
1472 						VFIO_PCI_NUM_IRQS, &data_size);
1473 			if (ret) {
1474 				gvt_vgpu_err("intel:vfio_set_irqs_validate_and_prepare failed\n");
1475 				return -EINVAL;
1476 			}
1477 			if (data_size) {
1478 				data = memdup_user((void __user *)(arg + minsz),
1479 						   data_size);
1480 				if (IS_ERR(data))
1481 					return PTR_ERR(data);
1482 			}
1483 		}
1484 
1485 		ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index,
1486 					hdr.start, hdr.count, data);
1487 		kfree(data);
1488 
1489 		return ret;
1490 	} else if (cmd == VFIO_DEVICE_RESET) {
1491 		intel_gvt_reset_vgpu(vgpu);
1492 		return 0;
1493 	} else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) {
1494 		struct vfio_device_gfx_plane_info dmabuf;
1495 		int ret = 0;
1496 
1497 		minsz = offsetofend(struct vfio_device_gfx_plane_info,
1498 				    dmabuf_id);
1499 		if (copy_from_user(&dmabuf, (void __user *)arg, minsz))
1500 			return -EFAULT;
1501 		if (dmabuf.argsz < minsz)
1502 			return -EINVAL;
1503 
1504 		ret = intel_vgpu_query_plane(vgpu, &dmabuf);
1505 		if (ret != 0)
1506 			return ret;
1507 
1508 		return copy_to_user((void __user *)arg, &dmabuf, minsz) ?
1509 								-EFAULT : 0;
1510 	} else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) {
1511 		__u32 dmabuf_id;
1512 
1513 		if (get_user(dmabuf_id, (__u32 __user *)arg))
1514 			return -EFAULT;
1515 		return intel_vgpu_get_dmabuf(vgpu, dmabuf_id);
1516 	}
1517 
1518 	return -ENOTTY;
1519 }
1520 
1521 static ssize_t
1522 vgpu_id_show(struct device *dev, struct device_attribute *attr,
1523 	     char *buf)
1524 {
1525 	struct intel_vgpu *vgpu = dev_get_drvdata(dev);
1526 
1527 	return sprintf(buf, "%d\n", vgpu->id);
1528 }
1529 
1530 static DEVICE_ATTR_RO(vgpu_id);
1531 
1532 static struct attribute *intel_vgpu_attrs[] = {
1533 	&dev_attr_vgpu_id.attr,
1534 	NULL
1535 };
1536 
1537 static const struct attribute_group intel_vgpu_group = {
1538 	.name = "intel_vgpu",
1539 	.attrs = intel_vgpu_attrs,
1540 };
1541 
1542 static const struct attribute_group *intel_vgpu_groups[] = {
1543 	&intel_vgpu_group,
1544 	NULL,
1545 };
1546 
1547 static int intel_vgpu_init_dev(struct vfio_device *vfio_dev)
1548 {
1549 	struct mdev_device *mdev = to_mdev_device(vfio_dev->dev);
1550 	struct device *pdev = mdev_parent_dev(mdev);
1551 	struct intel_gvt *gvt = kdev_to_i915(pdev)->gvt;
1552 	struct intel_vgpu_type *type;
1553 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1554 
1555 	type = &gvt->types[mdev_get_type_group_id(mdev)];
1556 	if (!type)
1557 		return -EINVAL;
1558 
1559 	vgpu->gvt = gvt;
1560 	return intel_gvt_create_vgpu(vgpu, type->conf);
1561 }
1562 
1563 static void intel_vgpu_release_dev(struct vfio_device *vfio_dev)
1564 {
1565 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1566 
1567 	intel_gvt_destroy_vgpu(vgpu);
1568 	vfio_free_device(vfio_dev);
1569 }
1570 
1571 static const struct vfio_device_ops intel_vgpu_dev_ops = {
1572 	.init		= intel_vgpu_init_dev,
1573 	.release	= intel_vgpu_release_dev,
1574 	.open_device	= intel_vgpu_open_device,
1575 	.close_device	= intel_vgpu_close_device,
1576 	.read		= intel_vgpu_read,
1577 	.write		= intel_vgpu_write,
1578 	.mmap		= intel_vgpu_mmap,
1579 	.ioctl		= intel_vgpu_ioctl,
1580 	.dma_unmap	= intel_vgpu_dma_unmap,
1581 };
1582 
1583 static int intel_vgpu_probe(struct mdev_device *mdev)
1584 {
1585 	struct intel_vgpu *vgpu;
1586 	int ret;
1587 
1588 	vgpu = vfio_alloc_device(intel_vgpu, vfio_device, &mdev->dev,
1589 				 &intel_vgpu_dev_ops);
1590 	if (IS_ERR(vgpu)) {
1591 		gvt_err("failed to create intel vgpu: %ld\n", PTR_ERR(vgpu));
1592 		return PTR_ERR(vgpu);
1593 	}
1594 
1595 	dev_set_drvdata(&mdev->dev, vgpu);
1596 	ret = vfio_register_emulated_iommu_dev(&vgpu->vfio_device);
1597 	if (ret)
1598 		goto out_put_vdev;
1599 
1600 	gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n",
1601 		     dev_name(mdev_dev(mdev)));
1602 	return 0;
1603 
1604 out_put_vdev:
1605 	vfio_put_device(&vgpu->vfio_device);
1606 	return ret;
1607 }
1608 
1609 static void intel_vgpu_remove(struct mdev_device *mdev)
1610 {
1611 	struct intel_vgpu *vgpu = dev_get_drvdata(&mdev->dev);
1612 
1613 	if (WARN_ON_ONCE(vgpu->attached))
1614 		return;
1615 
1616 	vfio_unregister_group_dev(&vgpu->vfio_device);
1617 	vfio_put_device(&vgpu->vfio_device);
1618 }
1619 
1620 static struct mdev_driver intel_vgpu_mdev_driver = {
1621 	.driver = {
1622 		.name		= "intel_vgpu_mdev",
1623 		.owner		= THIS_MODULE,
1624 		.dev_groups	= intel_vgpu_groups,
1625 	},
1626 	.probe		= intel_vgpu_probe,
1627 	.remove		= intel_vgpu_remove,
1628 	.supported_type_groups	= gvt_vgpu_type_groups,
1629 };
1630 
1631 int intel_gvt_page_track_add(struct intel_vgpu *info, u64 gfn)
1632 {
1633 	struct kvm *kvm = info->vfio_device.kvm;
1634 	struct kvm_memory_slot *slot;
1635 	int idx;
1636 
1637 	if (!info->attached)
1638 		return -ESRCH;
1639 
1640 	idx = srcu_read_lock(&kvm->srcu);
1641 	slot = gfn_to_memslot(kvm, gfn);
1642 	if (!slot) {
1643 		srcu_read_unlock(&kvm->srcu, idx);
1644 		return -EINVAL;
1645 	}
1646 
1647 	write_lock(&kvm->mmu_lock);
1648 
1649 	if (kvmgt_gfn_is_write_protected(info, gfn))
1650 		goto out;
1651 
1652 	kvm_slot_page_track_add_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
1653 	kvmgt_protect_table_add(info, gfn);
1654 
1655 out:
1656 	write_unlock(&kvm->mmu_lock);
1657 	srcu_read_unlock(&kvm->srcu, idx);
1658 	return 0;
1659 }
1660 
1661 int intel_gvt_page_track_remove(struct intel_vgpu *info, u64 gfn)
1662 {
1663 	struct kvm *kvm = info->vfio_device.kvm;
1664 	struct kvm_memory_slot *slot;
1665 	int idx;
1666 
1667 	if (!info->attached)
1668 		return 0;
1669 
1670 	idx = srcu_read_lock(&kvm->srcu);
1671 	slot = gfn_to_memslot(kvm, gfn);
1672 	if (!slot) {
1673 		srcu_read_unlock(&kvm->srcu, idx);
1674 		return -EINVAL;
1675 	}
1676 
1677 	write_lock(&kvm->mmu_lock);
1678 
1679 	if (!kvmgt_gfn_is_write_protected(info, gfn))
1680 		goto out;
1681 
1682 	kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
1683 	kvmgt_protect_table_del(info, gfn);
1684 
1685 out:
1686 	write_unlock(&kvm->mmu_lock);
1687 	srcu_read_unlock(&kvm->srcu, idx);
1688 	return 0;
1689 }
1690 
1691 static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1692 		const u8 *val, int len,
1693 		struct kvm_page_track_notifier_node *node)
1694 {
1695 	struct intel_vgpu *info =
1696 		container_of(node, struct intel_vgpu, track_node);
1697 
1698 	if (kvmgt_gfn_is_write_protected(info, gpa_to_gfn(gpa)))
1699 		intel_vgpu_page_track_handler(info, gpa,
1700 						     (void *)val, len);
1701 }
1702 
1703 static void kvmgt_page_track_flush_slot(struct kvm *kvm,
1704 		struct kvm_memory_slot *slot,
1705 		struct kvm_page_track_notifier_node *node)
1706 {
1707 	int i;
1708 	gfn_t gfn;
1709 	struct intel_vgpu *info =
1710 		container_of(node, struct intel_vgpu, track_node);
1711 
1712 	write_lock(&kvm->mmu_lock);
1713 	for (i = 0; i < slot->npages; i++) {
1714 		gfn = slot->base_gfn + i;
1715 		if (kvmgt_gfn_is_write_protected(info, gfn)) {
1716 			kvm_slot_page_track_remove_page(kvm, slot, gfn,
1717 						KVM_PAGE_TRACK_WRITE);
1718 			kvmgt_protect_table_del(info, gfn);
1719 		}
1720 	}
1721 	write_unlock(&kvm->mmu_lock);
1722 }
1723 
1724 void intel_vgpu_detach_regions(struct intel_vgpu *vgpu)
1725 {
1726 	int i;
1727 
1728 	if (!vgpu->region)
1729 		return;
1730 
1731 	for (i = 0; i < vgpu->num_regions; i++)
1732 		if (vgpu->region[i].ops->release)
1733 			vgpu->region[i].ops->release(vgpu,
1734 					&vgpu->region[i]);
1735 	vgpu->num_regions = 0;
1736 	kfree(vgpu->region);
1737 	vgpu->region = NULL;
1738 }
1739 
1740 int intel_gvt_dma_map_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
1741 		unsigned long size, dma_addr_t *dma_addr)
1742 {
1743 	struct gvt_dma *entry;
1744 	int ret;
1745 
1746 	if (!vgpu->attached)
1747 		return -EINVAL;
1748 
1749 	mutex_lock(&vgpu->cache_lock);
1750 
1751 	entry = __gvt_cache_find_gfn(vgpu, gfn);
1752 	if (!entry) {
1753 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1754 		if (ret)
1755 			goto err_unlock;
1756 
1757 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1758 		if (ret)
1759 			goto err_unmap;
1760 	} else if (entry->size != size) {
1761 		/* the same gfn with different size: unmap and re-map */
1762 		gvt_dma_unmap_page(vgpu, gfn, entry->dma_addr, entry->size);
1763 		__gvt_cache_remove_entry(vgpu, entry);
1764 
1765 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1766 		if (ret)
1767 			goto err_unlock;
1768 
1769 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1770 		if (ret)
1771 			goto err_unmap;
1772 	} else {
1773 		kref_get(&entry->ref);
1774 		*dma_addr = entry->dma_addr;
1775 	}
1776 
1777 	mutex_unlock(&vgpu->cache_lock);
1778 	return 0;
1779 
1780 err_unmap:
1781 	gvt_dma_unmap_page(vgpu, gfn, *dma_addr, size);
1782 err_unlock:
1783 	mutex_unlock(&vgpu->cache_lock);
1784 	return ret;
1785 }
1786 
1787 int intel_gvt_dma_pin_guest_page(struct intel_vgpu *vgpu, dma_addr_t dma_addr)
1788 {
1789 	struct gvt_dma *entry;
1790 	int ret = 0;
1791 
1792 	if (!vgpu->attached)
1793 		return -ENODEV;
1794 
1795 	mutex_lock(&vgpu->cache_lock);
1796 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1797 	if (entry)
1798 		kref_get(&entry->ref);
1799 	else
1800 		ret = -ENOMEM;
1801 	mutex_unlock(&vgpu->cache_lock);
1802 
1803 	return ret;
1804 }
1805 
1806 static void __gvt_dma_release(struct kref *ref)
1807 {
1808 	struct gvt_dma *entry = container_of(ref, typeof(*entry), ref);
1809 
1810 	gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr,
1811 			   entry->size);
1812 	__gvt_cache_remove_entry(entry->vgpu, entry);
1813 }
1814 
1815 void intel_gvt_dma_unmap_guest_page(struct intel_vgpu *vgpu,
1816 		dma_addr_t dma_addr)
1817 {
1818 	struct gvt_dma *entry;
1819 
1820 	if (!vgpu->attached)
1821 		return;
1822 
1823 	mutex_lock(&vgpu->cache_lock);
1824 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1825 	if (entry)
1826 		kref_put(&entry->ref, __gvt_dma_release);
1827 	mutex_unlock(&vgpu->cache_lock);
1828 }
1829 
1830 static void init_device_info(struct intel_gvt *gvt)
1831 {
1832 	struct intel_gvt_device_info *info = &gvt->device_info;
1833 	struct pci_dev *pdev = to_pci_dev(gvt->gt->i915->drm.dev);
1834 
1835 	info->max_support_vgpus = 8;
1836 	info->cfg_space_size = PCI_CFG_SPACE_EXP_SIZE;
1837 	info->mmio_size = 2 * 1024 * 1024;
1838 	info->mmio_bar = 0;
1839 	info->gtt_start_offset = 8 * 1024 * 1024;
1840 	info->gtt_entry_size = 8;
1841 	info->gtt_entry_size_shift = 3;
1842 	info->gmadr_bytes_in_cmd = 8;
1843 	info->max_surface_size = 36 * 1024 * 1024;
1844 	info->msi_cap_offset = pdev->msi_cap;
1845 }
1846 
1847 static void intel_gvt_test_and_emulate_vblank(struct intel_gvt *gvt)
1848 {
1849 	struct intel_vgpu *vgpu;
1850 	int id;
1851 
1852 	mutex_lock(&gvt->lock);
1853 	idr_for_each_entry((&(gvt)->vgpu_idr), (vgpu), (id)) {
1854 		if (test_and_clear_bit(INTEL_GVT_REQUEST_EMULATE_VBLANK + id,
1855 				       (void *)&gvt->service_request)) {
1856 			if (vgpu->active)
1857 				intel_vgpu_emulate_vblank(vgpu);
1858 		}
1859 	}
1860 	mutex_unlock(&gvt->lock);
1861 }
1862 
1863 static int gvt_service_thread(void *data)
1864 {
1865 	struct intel_gvt *gvt = (struct intel_gvt *)data;
1866 	int ret;
1867 
1868 	gvt_dbg_core("service thread start\n");
1869 
1870 	while (!kthread_should_stop()) {
1871 		ret = wait_event_interruptible(gvt->service_thread_wq,
1872 				kthread_should_stop() || gvt->service_request);
1873 
1874 		if (kthread_should_stop())
1875 			break;
1876 
1877 		if (WARN_ONCE(ret, "service thread is waken up by signal.\n"))
1878 			continue;
1879 
1880 		intel_gvt_test_and_emulate_vblank(gvt);
1881 
1882 		if (test_bit(INTEL_GVT_REQUEST_SCHED,
1883 				(void *)&gvt->service_request) ||
1884 			test_bit(INTEL_GVT_REQUEST_EVENT_SCHED,
1885 					(void *)&gvt->service_request)) {
1886 			intel_gvt_schedule(gvt);
1887 		}
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 static void clean_service_thread(struct intel_gvt *gvt)
1894 {
1895 	kthread_stop(gvt->service_thread);
1896 }
1897 
1898 static int init_service_thread(struct intel_gvt *gvt)
1899 {
1900 	init_waitqueue_head(&gvt->service_thread_wq);
1901 
1902 	gvt->service_thread = kthread_run(gvt_service_thread,
1903 			gvt, "gvt_service_thread");
1904 	if (IS_ERR(gvt->service_thread)) {
1905 		gvt_err("fail to start service thread.\n");
1906 		return PTR_ERR(gvt->service_thread);
1907 	}
1908 	return 0;
1909 }
1910 
1911 /**
1912  * intel_gvt_clean_device - clean a GVT device
1913  * @i915: i915 private
1914  *
1915  * This function is called at the driver unloading stage, to free the
1916  * resources owned by a GVT device.
1917  *
1918  */
1919 static void intel_gvt_clean_device(struct drm_i915_private *i915)
1920 {
1921 	struct intel_gvt *gvt = fetch_and_zero(&i915->gvt);
1922 
1923 	if (drm_WARN_ON(&i915->drm, !gvt))
1924 		return;
1925 
1926 	mdev_unregister_parent(&gvt->parent);
1927 	intel_gvt_cleanup_vgpu_type_groups(gvt);
1928 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1929 	intel_gvt_clean_vgpu_types(gvt);
1930 
1931 	intel_gvt_debugfs_clean(gvt);
1932 	clean_service_thread(gvt);
1933 	intel_gvt_clean_cmd_parser(gvt);
1934 	intel_gvt_clean_sched_policy(gvt);
1935 	intel_gvt_clean_workload_scheduler(gvt);
1936 	intel_gvt_clean_gtt(gvt);
1937 	intel_gvt_free_firmware(gvt);
1938 	intel_gvt_clean_mmio_info(gvt);
1939 	idr_destroy(&gvt->vgpu_idr);
1940 
1941 	kfree(i915->gvt);
1942 }
1943 
1944 /**
1945  * intel_gvt_init_device - initialize a GVT device
1946  * @i915: drm i915 private data
1947  *
1948  * This function is called at the initialization stage, to initialize
1949  * necessary GVT components.
1950  *
1951  * Returns:
1952  * Zero on success, negative error code if failed.
1953  *
1954  */
1955 static int intel_gvt_init_device(struct drm_i915_private *i915)
1956 {
1957 	struct intel_gvt *gvt;
1958 	struct intel_vgpu *vgpu;
1959 	int ret;
1960 
1961 	if (drm_WARN_ON(&i915->drm, i915->gvt))
1962 		return -EEXIST;
1963 
1964 	gvt = kzalloc(sizeof(struct intel_gvt), GFP_KERNEL);
1965 	if (!gvt)
1966 		return -ENOMEM;
1967 
1968 	gvt_dbg_core("init gvt device\n");
1969 
1970 	idr_init_base(&gvt->vgpu_idr, 1);
1971 	spin_lock_init(&gvt->scheduler.mmio_context_lock);
1972 	mutex_init(&gvt->lock);
1973 	mutex_init(&gvt->sched_lock);
1974 	gvt->gt = to_gt(i915);
1975 	i915->gvt = gvt;
1976 
1977 	init_device_info(gvt);
1978 
1979 	ret = intel_gvt_setup_mmio_info(gvt);
1980 	if (ret)
1981 		goto out_clean_idr;
1982 
1983 	intel_gvt_init_engine_mmio_context(gvt);
1984 
1985 	ret = intel_gvt_load_firmware(gvt);
1986 	if (ret)
1987 		goto out_clean_mmio_info;
1988 
1989 	ret = intel_gvt_init_irq(gvt);
1990 	if (ret)
1991 		goto out_free_firmware;
1992 
1993 	ret = intel_gvt_init_gtt(gvt);
1994 	if (ret)
1995 		goto out_free_firmware;
1996 
1997 	ret = intel_gvt_init_workload_scheduler(gvt);
1998 	if (ret)
1999 		goto out_clean_gtt;
2000 
2001 	ret = intel_gvt_init_sched_policy(gvt);
2002 	if (ret)
2003 		goto out_clean_workload_scheduler;
2004 
2005 	ret = intel_gvt_init_cmd_parser(gvt);
2006 	if (ret)
2007 		goto out_clean_sched_policy;
2008 
2009 	ret = init_service_thread(gvt);
2010 	if (ret)
2011 		goto out_clean_cmd_parser;
2012 
2013 	ret = intel_gvt_init_vgpu_types(gvt);
2014 	if (ret)
2015 		goto out_clean_thread;
2016 
2017 	vgpu = intel_gvt_create_idle_vgpu(gvt);
2018 	if (IS_ERR(vgpu)) {
2019 		ret = PTR_ERR(vgpu);
2020 		gvt_err("failed to create idle vgpu\n");
2021 		goto out_clean_types;
2022 	}
2023 	gvt->idle_vgpu = vgpu;
2024 
2025 	intel_gvt_debugfs_init(gvt);
2026 
2027 	ret = intel_gvt_init_vgpu_type_groups(gvt);
2028 	if (ret)
2029 		goto out_destroy_idle_vgpu;
2030 
2031 	ret = mdev_register_parent(&gvt->parent, i915->drm.dev,
2032 				   &intel_vgpu_mdev_driver);
2033 	if (ret)
2034 		goto out_cleanup_vgpu_type_groups;
2035 
2036 	gvt_dbg_core("gvt device initialization is done\n");
2037 	return 0;
2038 
2039 out_cleanup_vgpu_type_groups:
2040 	intel_gvt_cleanup_vgpu_type_groups(gvt);
2041 out_destroy_idle_vgpu:
2042 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
2043 	intel_gvt_debugfs_clean(gvt);
2044 out_clean_types:
2045 	intel_gvt_clean_vgpu_types(gvt);
2046 out_clean_thread:
2047 	clean_service_thread(gvt);
2048 out_clean_cmd_parser:
2049 	intel_gvt_clean_cmd_parser(gvt);
2050 out_clean_sched_policy:
2051 	intel_gvt_clean_sched_policy(gvt);
2052 out_clean_workload_scheduler:
2053 	intel_gvt_clean_workload_scheduler(gvt);
2054 out_clean_gtt:
2055 	intel_gvt_clean_gtt(gvt);
2056 out_free_firmware:
2057 	intel_gvt_free_firmware(gvt);
2058 out_clean_mmio_info:
2059 	intel_gvt_clean_mmio_info(gvt);
2060 out_clean_idr:
2061 	idr_destroy(&gvt->vgpu_idr);
2062 	kfree(gvt);
2063 	i915->gvt = NULL;
2064 	return ret;
2065 }
2066 
2067 static void intel_gvt_pm_resume(struct drm_i915_private *i915)
2068 {
2069 	struct intel_gvt *gvt = i915->gvt;
2070 
2071 	intel_gvt_restore_fence(gvt);
2072 	intel_gvt_restore_mmio(gvt);
2073 	intel_gvt_restore_ggtt(gvt);
2074 }
2075 
2076 static const struct intel_vgpu_ops intel_gvt_vgpu_ops = {
2077 	.init_device	= intel_gvt_init_device,
2078 	.clean_device	= intel_gvt_clean_device,
2079 	.pm_resume	= intel_gvt_pm_resume,
2080 };
2081 
2082 static int __init kvmgt_init(void)
2083 {
2084 	int ret;
2085 
2086 	ret = intel_gvt_set_ops(&intel_gvt_vgpu_ops);
2087 	if (ret)
2088 		return ret;
2089 
2090 	ret = mdev_register_driver(&intel_vgpu_mdev_driver);
2091 	if (ret)
2092 		intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
2093 	return ret;
2094 }
2095 
2096 static void __exit kvmgt_exit(void)
2097 {
2098 	mdev_unregister_driver(&intel_vgpu_mdev_driver);
2099 	intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
2100 }
2101 
2102 module_init(kvmgt_init);
2103 module_exit(kvmgt_exit);
2104 
2105 MODULE_LICENSE("GPL and additional rights");
2106 MODULE_AUTHOR("Intel Corporation");
2107