1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Kevin Tian <kevin.tian@intel.com> 25 * Zhi Wang <zhi.a.wang@intel.com> 26 * 27 * Contributors: 28 * Min he <min.he@intel.com> 29 * 30 */ 31 32 #include "i915_drv.h" 33 #include "gvt.h" 34 #include "trace.h" 35 36 /* common offset among interrupt control registers */ 37 #define regbase_to_isr(base) (base) 38 #define regbase_to_imr(base) (base + 0x4) 39 #define regbase_to_iir(base) (base + 0x8) 40 #define regbase_to_ier(base) (base + 0xC) 41 42 #define iir_to_regbase(iir) (iir - 0x8) 43 #define ier_to_regbase(ier) (ier - 0xC) 44 45 #define get_event_virt_handler(irq, e) (irq->events[e].v_handler) 46 #define get_irq_info(irq, e) (irq->events[e].info) 47 48 #define irq_to_gvt(irq) \ 49 container_of(irq, struct intel_gvt, irq) 50 51 static void update_upstream_irq(struct intel_vgpu *vgpu, 52 struct intel_gvt_irq_info *info); 53 54 static const char * const irq_name[INTEL_GVT_EVENT_MAX] = { 55 [RCS_MI_USER_INTERRUPT] = "Render CS MI USER INTERRUPT", 56 [RCS_DEBUG] = "Render EU debug from SVG", 57 [RCS_MMIO_SYNC_FLUSH] = "Render MMIO sync flush status", 58 [RCS_CMD_STREAMER_ERR] = "Render CS error interrupt", 59 [RCS_PIPE_CONTROL] = "Render PIPE CONTROL notify", 60 [RCS_WATCHDOG_EXCEEDED] = "Render CS Watchdog counter exceeded", 61 [RCS_PAGE_DIRECTORY_FAULT] = "Render page directory faults", 62 [RCS_AS_CONTEXT_SWITCH] = "Render AS Context Switch Interrupt", 63 64 [VCS_MI_USER_INTERRUPT] = "Video CS MI USER INTERRUPT", 65 [VCS_MMIO_SYNC_FLUSH] = "Video MMIO sync flush status", 66 [VCS_CMD_STREAMER_ERR] = "Video CS error interrupt", 67 [VCS_MI_FLUSH_DW] = "Video MI FLUSH DW notify", 68 [VCS_WATCHDOG_EXCEEDED] = "Video CS Watchdog counter exceeded", 69 [VCS_PAGE_DIRECTORY_FAULT] = "Video page directory faults", 70 [VCS_AS_CONTEXT_SWITCH] = "Video AS Context Switch Interrupt", 71 [VCS2_MI_USER_INTERRUPT] = "VCS2 Video CS MI USER INTERRUPT", 72 [VCS2_MI_FLUSH_DW] = "VCS2 Video MI FLUSH DW notify", 73 [VCS2_AS_CONTEXT_SWITCH] = "VCS2 Context Switch Interrupt", 74 75 [BCS_MI_USER_INTERRUPT] = "Blitter CS MI USER INTERRUPT", 76 [BCS_MMIO_SYNC_FLUSH] = "Billter MMIO sync flush status", 77 [BCS_CMD_STREAMER_ERR] = "Blitter CS error interrupt", 78 [BCS_MI_FLUSH_DW] = "Blitter MI FLUSH DW notify", 79 [BCS_PAGE_DIRECTORY_FAULT] = "Blitter page directory faults", 80 [BCS_AS_CONTEXT_SWITCH] = "Blitter AS Context Switch Interrupt", 81 82 [VECS_MI_FLUSH_DW] = "Video Enhanced Streamer MI FLUSH DW notify", 83 [VECS_AS_CONTEXT_SWITCH] = "VECS Context Switch Interrupt", 84 85 [PIPE_A_FIFO_UNDERRUN] = "Pipe A FIFO underrun", 86 [PIPE_A_CRC_ERR] = "Pipe A CRC error", 87 [PIPE_A_CRC_DONE] = "Pipe A CRC done", 88 [PIPE_A_VSYNC] = "Pipe A vsync", 89 [PIPE_A_LINE_COMPARE] = "Pipe A line compare", 90 [PIPE_A_ODD_FIELD] = "Pipe A odd field", 91 [PIPE_A_EVEN_FIELD] = "Pipe A even field", 92 [PIPE_A_VBLANK] = "Pipe A vblank", 93 [PIPE_B_FIFO_UNDERRUN] = "Pipe B FIFO underrun", 94 [PIPE_B_CRC_ERR] = "Pipe B CRC error", 95 [PIPE_B_CRC_DONE] = "Pipe B CRC done", 96 [PIPE_B_VSYNC] = "Pipe B vsync", 97 [PIPE_B_LINE_COMPARE] = "Pipe B line compare", 98 [PIPE_B_ODD_FIELD] = "Pipe B odd field", 99 [PIPE_B_EVEN_FIELD] = "Pipe B even field", 100 [PIPE_B_VBLANK] = "Pipe B vblank", 101 [PIPE_C_VBLANK] = "Pipe C vblank", 102 [DPST_PHASE_IN] = "DPST phase in event", 103 [DPST_HISTOGRAM] = "DPST histogram event", 104 [GSE] = "GSE", 105 [DP_A_HOTPLUG] = "DP A Hotplug", 106 [AUX_CHANNEL_A] = "AUX Channel A", 107 [PERF_COUNTER] = "Performance counter", 108 [POISON] = "Poison", 109 [GTT_FAULT] = "GTT fault", 110 [PRIMARY_A_FLIP_DONE] = "Primary Plane A flip done", 111 [PRIMARY_B_FLIP_DONE] = "Primary Plane B flip done", 112 [PRIMARY_C_FLIP_DONE] = "Primary Plane C flip done", 113 [SPRITE_A_FLIP_DONE] = "Sprite Plane A flip done", 114 [SPRITE_B_FLIP_DONE] = "Sprite Plane B flip done", 115 [SPRITE_C_FLIP_DONE] = "Sprite Plane C flip done", 116 117 [PCU_THERMAL] = "PCU Thermal Event", 118 [PCU_PCODE2DRIVER_MAILBOX] = "PCU pcode2driver mailbox event", 119 120 [FDI_RX_INTERRUPTS_TRANSCODER_A] = "FDI RX Interrupts Combined A", 121 [AUDIO_CP_CHANGE_TRANSCODER_A] = "Audio CP Change Transcoder A", 122 [AUDIO_CP_REQUEST_TRANSCODER_A] = "Audio CP Request Transcoder A", 123 [FDI_RX_INTERRUPTS_TRANSCODER_B] = "FDI RX Interrupts Combined B", 124 [AUDIO_CP_CHANGE_TRANSCODER_B] = "Audio CP Change Transcoder B", 125 [AUDIO_CP_REQUEST_TRANSCODER_B] = "Audio CP Request Transcoder B", 126 [FDI_RX_INTERRUPTS_TRANSCODER_C] = "FDI RX Interrupts Combined C", 127 [AUDIO_CP_CHANGE_TRANSCODER_C] = "Audio CP Change Transcoder C", 128 [AUDIO_CP_REQUEST_TRANSCODER_C] = "Audio CP Request Transcoder C", 129 [ERR_AND_DBG] = "South Error and Debug Interrupts Combined", 130 [GMBUS] = "Gmbus", 131 [SDVO_B_HOTPLUG] = "SDVO B hotplug", 132 [CRT_HOTPLUG] = "CRT Hotplug", 133 [DP_B_HOTPLUG] = "DisplayPort/HDMI/DVI B Hotplug", 134 [DP_C_HOTPLUG] = "DisplayPort/HDMI/DVI C Hotplug", 135 [DP_D_HOTPLUG] = "DisplayPort/HDMI/DVI D Hotplug", 136 [AUX_CHANNEL_B] = "AUX Channel B", 137 [AUX_CHANNEL_C] = "AUX Channel C", 138 [AUX_CHANNEL_D] = "AUX Channel D", 139 [AUDIO_POWER_STATE_CHANGE_B] = "Audio Power State change Port B", 140 [AUDIO_POWER_STATE_CHANGE_C] = "Audio Power State change Port C", 141 [AUDIO_POWER_STATE_CHANGE_D] = "Audio Power State change Port D", 142 143 [INTEL_GVT_EVENT_RESERVED] = "RESERVED EVENTS!!!", 144 }; 145 146 static inline struct intel_gvt_irq_info *regbase_to_irq_info( 147 struct intel_gvt *gvt, 148 unsigned int reg) 149 { 150 struct intel_gvt_irq *irq = &gvt->irq; 151 int i; 152 153 for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) { 154 if (i915_mmio_reg_offset(irq->info[i]->reg_base) == reg) 155 return irq->info[i]; 156 } 157 158 return NULL; 159 } 160 161 /** 162 * intel_vgpu_reg_imr_handler - Generic IMR register emulation write handler 163 * @vgpu: a vGPU 164 * @reg: register offset written by guest 165 * @p_data: register data written by guest 166 * @bytes: register data length 167 * 168 * This function is used to emulate the generic IMR register bit change 169 * behavior. 170 * 171 * Returns: 172 * Zero on success, negative error code if failed. 173 * 174 */ 175 int intel_vgpu_reg_imr_handler(struct intel_vgpu *vgpu, 176 unsigned int reg, void *p_data, unsigned int bytes) 177 { 178 struct intel_gvt *gvt = vgpu->gvt; 179 struct intel_gvt_irq_ops *ops = gvt->irq.ops; 180 u32 imr = *(u32 *)p_data; 181 182 trace_write_ir(vgpu->id, "IMR", reg, imr, vgpu_vreg(vgpu, reg), 183 (vgpu_vreg(vgpu, reg) ^ imr)); 184 185 vgpu_vreg(vgpu, reg) = imr; 186 187 ops->check_pending_irq(vgpu); 188 189 return 0; 190 } 191 192 /** 193 * intel_vgpu_reg_master_irq_handler - master IRQ write emulation handler 194 * @vgpu: a vGPU 195 * @reg: register offset written by guest 196 * @p_data: register data written by guest 197 * @bytes: register data length 198 * 199 * This function is used to emulate the master IRQ register on gen8+. 200 * 201 * Returns: 202 * Zero on success, negative error code if failed. 203 * 204 */ 205 int intel_vgpu_reg_master_irq_handler(struct intel_vgpu *vgpu, 206 unsigned int reg, void *p_data, unsigned int bytes) 207 { 208 struct intel_gvt *gvt = vgpu->gvt; 209 struct intel_gvt_irq_ops *ops = gvt->irq.ops; 210 u32 ier = *(u32 *)p_data; 211 u32 virtual_ier = vgpu_vreg(vgpu, reg); 212 213 trace_write_ir(vgpu->id, "MASTER_IRQ", reg, ier, virtual_ier, 214 (virtual_ier ^ ier)); 215 216 /* 217 * GEN8_MASTER_IRQ is a special irq register, 218 * only bit 31 is allowed to be modified 219 * and treated as an IER bit. 220 */ 221 ier &= GEN8_MASTER_IRQ_CONTROL; 222 virtual_ier &= GEN8_MASTER_IRQ_CONTROL; 223 vgpu_vreg(vgpu, reg) &= ~GEN8_MASTER_IRQ_CONTROL; 224 vgpu_vreg(vgpu, reg) |= ier; 225 226 ops->check_pending_irq(vgpu); 227 228 return 0; 229 } 230 231 /** 232 * intel_vgpu_reg_ier_handler - Generic IER write emulation handler 233 * @vgpu: a vGPU 234 * @reg: register offset written by guest 235 * @p_data: register data written by guest 236 * @bytes: register data length 237 * 238 * This function is used to emulate the generic IER register behavior. 239 * 240 * Returns: 241 * Zero on success, negative error code if failed. 242 * 243 */ 244 int intel_vgpu_reg_ier_handler(struct intel_vgpu *vgpu, 245 unsigned int reg, void *p_data, unsigned int bytes) 246 { 247 struct intel_gvt *gvt = vgpu->gvt; 248 struct drm_i915_private *i915 = gvt->gt->i915; 249 struct intel_gvt_irq_ops *ops = gvt->irq.ops; 250 struct intel_gvt_irq_info *info; 251 u32 ier = *(u32 *)p_data; 252 253 trace_write_ir(vgpu->id, "IER", reg, ier, vgpu_vreg(vgpu, reg), 254 (vgpu_vreg(vgpu, reg) ^ ier)); 255 256 vgpu_vreg(vgpu, reg) = ier; 257 258 info = regbase_to_irq_info(gvt, ier_to_regbase(reg)); 259 if (drm_WARN_ON(&i915->drm, !info)) 260 return -EINVAL; 261 262 if (info->has_upstream_irq) 263 update_upstream_irq(vgpu, info); 264 265 ops->check_pending_irq(vgpu); 266 267 return 0; 268 } 269 270 /** 271 * intel_vgpu_reg_iir_handler - Generic IIR write emulation handler 272 * @vgpu: a vGPU 273 * @reg: register offset written by guest 274 * @p_data: register data written by guest 275 * @bytes: register data length 276 * 277 * This function is used to emulate the generic IIR register behavior. 278 * 279 * Returns: 280 * Zero on success, negative error code if failed. 281 * 282 */ 283 int intel_vgpu_reg_iir_handler(struct intel_vgpu *vgpu, unsigned int reg, 284 void *p_data, unsigned int bytes) 285 { 286 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 287 struct intel_gvt_irq_info *info = regbase_to_irq_info(vgpu->gvt, 288 iir_to_regbase(reg)); 289 u32 iir = *(u32 *)p_data; 290 291 trace_write_ir(vgpu->id, "IIR", reg, iir, vgpu_vreg(vgpu, reg), 292 (vgpu_vreg(vgpu, reg) ^ iir)); 293 294 if (drm_WARN_ON(&i915->drm, !info)) 295 return -EINVAL; 296 297 vgpu_vreg(vgpu, reg) &= ~iir; 298 299 if (info->has_upstream_irq) 300 update_upstream_irq(vgpu, info); 301 return 0; 302 } 303 304 static struct intel_gvt_irq_map gen8_irq_map[] = { 305 { INTEL_GVT_IRQ_INFO_MASTER, 0, INTEL_GVT_IRQ_INFO_GT0, 0xffff }, 306 { INTEL_GVT_IRQ_INFO_MASTER, 1, INTEL_GVT_IRQ_INFO_GT0, 0xffff0000 }, 307 { INTEL_GVT_IRQ_INFO_MASTER, 2, INTEL_GVT_IRQ_INFO_GT1, 0xffff }, 308 { INTEL_GVT_IRQ_INFO_MASTER, 3, INTEL_GVT_IRQ_INFO_GT1, 0xffff0000 }, 309 { INTEL_GVT_IRQ_INFO_MASTER, 4, INTEL_GVT_IRQ_INFO_GT2, 0xffff }, 310 { INTEL_GVT_IRQ_INFO_MASTER, 6, INTEL_GVT_IRQ_INFO_GT3, 0xffff }, 311 { INTEL_GVT_IRQ_INFO_MASTER, 16, INTEL_GVT_IRQ_INFO_DE_PIPE_A, ~0 }, 312 { INTEL_GVT_IRQ_INFO_MASTER, 17, INTEL_GVT_IRQ_INFO_DE_PIPE_B, ~0 }, 313 { INTEL_GVT_IRQ_INFO_MASTER, 18, INTEL_GVT_IRQ_INFO_DE_PIPE_C, ~0 }, 314 { INTEL_GVT_IRQ_INFO_MASTER, 20, INTEL_GVT_IRQ_INFO_DE_PORT, ~0 }, 315 { INTEL_GVT_IRQ_INFO_MASTER, 22, INTEL_GVT_IRQ_INFO_DE_MISC, ~0 }, 316 { INTEL_GVT_IRQ_INFO_MASTER, 23, INTEL_GVT_IRQ_INFO_PCH, ~0 }, 317 { INTEL_GVT_IRQ_INFO_MASTER, 30, INTEL_GVT_IRQ_INFO_PCU, ~0 }, 318 { -1, -1, ~0 }, 319 }; 320 321 static void update_upstream_irq(struct intel_vgpu *vgpu, 322 struct intel_gvt_irq_info *info) 323 { 324 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 325 struct intel_gvt_irq *irq = &vgpu->gvt->irq; 326 struct intel_gvt_irq_map *map = irq->irq_map; 327 struct intel_gvt_irq_info *up_irq_info = NULL; 328 u32 set_bits = 0; 329 u32 clear_bits = 0; 330 int bit; 331 u32 val = vgpu_vreg(vgpu, 332 regbase_to_iir(i915_mmio_reg_offset(info->reg_base))) 333 & vgpu_vreg(vgpu, 334 regbase_to_ier(i915_mmio_reg_offset(info->reg_base))); 335 336 if (!info->has_upstream_irq) 337 return; 338 339 for (map = irq->irq_map; map->up_irq_bit != -1; map++) { 340 if (info->group != map->down_irq_group) 341 continue; 342 343 if (!up_irq_info) 344 up_irq_info = irq->info[map->up_irq_group]; 345 else 346 drm_WARN_ON(&i915->drm, up_irq_info != 347 irq->info[map->up_irq_group]); 348 349 bit = map->up_irq_bit; 350 351 if (val & map->down_irq_bitmask) 352 set_bits |= (1 << bit); 353 else 354 clear_bits |= (1 << bit); 355 } 356 357 if (drm_WARN_ON(&i915->drm, !up_irq_info)) 358 return; 359 360 if (up_irq_info->group == INTEL_GVT_IRQ_INFO_MASTER) { 361 u32 isr = i915_mmio_reg_offset(up_irq_info->reg_base); 362 363 vgpu_vreg(vgpu, isr) &= ~clear_bits; 364 vgpu_vreg(vgpu, isr) |= set_bits; 365 } else { 366 u32 iir = regbase_to_iir( 367 i915_mmio_reg_offset(up_irq_info->reg_base)); 368 u32 imr = regbase_to_imr( 369 i915_mmio_reg_offset(up_irq_info->reg_base)); 370 371 vgpu_vreg(vgpu, iir) |= (set_bits & ~vgpu_vreg(vgpu, imr)); 372 } 373 374 if (up_irq_info->has_upstream_irq) 375 update_upstream_irq(vgpu, up_irq_info); 376 } 377 378 static void init_irq_map(struct intel_gvt_irq *irq) 379 { 380 struct intel_gvt_irq_map *map; 381 struct intel_gvt_irq_info *up_info, *down_info; 382 int up_bit; 383 384 for (map = irq->irq_map; map->up_irq_bit != -1; map++) { 385 up_info = irq->info[map->up_irq_group]; 386 up_bit = map->up_irq_bit; 387 down_info = irq->info[map->down_irq_group]; 388 389 set_bit(up_bit, up_info->downstream_irq_bitmap); 390 down_info->has_upstream_irq = true; 391 392 gvt_dbg_irq("[up] grp %d bit %d -> [down] grp %d bitmask %x\n", 393 up_info->group, up_bit, 394 down_info->group, map->down_irq_bitmask); 395 } 396 } 397 398 /* =======================vEvent injection===================== */ 399 static int inject_virtual_interrupt(struct intel_vgpu *vgpu) 400 { 401 return intel_gvt_hypervisor_inject_msi(vgpu); 402 } 403 404 static void propagate_event(struct intel_gvt_irq *irq, 405 enum intel_gvt_event_type event, struct intel_vgpu *vgpu) 406 { 407 struct intel_gvt_irq_info *info; 408 unsigned int reg_base; 409 int bit; 410 411 info = get_irq_info(irq, event); 412 if (WARN_ON(!info)) 413 return; 414 415 reg_base = i915_mmio_reg_offset(info->reg_base); 416 bit = irq->events[event].bit; 417 418 if (!test_bit(bit, (void *)&vgpu_vreg(vgpu, 419 regbase_to_imr(reg_base)))) { 420 trace_propagate_event(vgpu->id, irq_name[event], bit); 421 set_bit(bit, (void *)&vgpu_vreg(vgpu, 422 regbase_to_iir(reg_base))); 423 } 424 } 425 426 /* =======================vEvent Handlers===================== */ 427 static void handle_default_event_virt(struct intel_gvt_irq *irq, 428 enum intel_gvt_event_type event, struct intel_vgpu *vgpu) 429 { 430 if (!vgpu->irq.irq_warn_once[event]) { 431 gvt_dbg_core("vgpu%d: IRQ receive event %d (%s)\n", 432 vgpu->id, event, irq_name[event]); 433 vgpu->irq.irq_warn_once[event] = true; 434 } 435 propagate_event(irq, event, vgpu); 436 } 437 438 /* =====================GEN specific logic======================= */ 439 /* GEN8 interrupt routines. */ 440 441 #define DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(regname, regbase) \ 442 static struct intel_gvt_irq_info gen8_##regname##_info = { \ 443 .name = #regname"-IRQ", \ 444 .reg_base = (regbase), \ 445 .bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] = \ 446 INTEL_GVT_EVENT_RESERVED}, \ 447 } 448 449 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt0, GEN8_GT_ISR(0)); 450 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt1, GEN8_GT_ISR(1)); 451 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt2, GEN8_GT_ISR(2)); 452 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt3, GEN8_GT_ISR(3)); 453 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_a, GEN8_DE_PIPE_ISR(PIPE_A)); 454 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_b, GEN8_DE_PIPE_ISR(PIPE_B)); 455 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_c, GEN8_DE_PIPE_ISR(PIPE_C)); 456 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_port, GEN8_DE_PORT_ISR); 457 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_misc, GEN8_DE_MISC_ISR); 458 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(pcu, GEN8_PCU_ISR); 459 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(master, GEN8_MASTER_IRQ); 460 461 static struct intel_gvt_irq_info gvt_base_pch_info = { 462 .name = "PCH-IRQ", 463 .reg_base = SDEISR, 464 .bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] = 465 INTEL_GVT_EVENT_RESERVED}, 466 }; 467 468 static void gen8_check_pending_irq(struct intel_vgpu *vgpu) 469 { 470 struct intel_gvt_irq *irq = &vgpu->gvt->irq; 471 int i; 472 473 if (!(vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ)) & 474 GEN8_MASTER_IRQ_CONTROL)) 475 return; 476 477 for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) { 478 struct intel_gvt_irq_info *info = irq->info[i]; 479 u32 reg_base; 480 481 if (!info->has_upstream_irq) 482 continue; 483 484 reg_base = i915_mmio_reg_offset(info->reg_base); 485 if ((vgpu_vreg(vgpu, regbase_to_iir(reg_base)) 486 & vgpu_vreg(vgpu, regbase_to_ier(reg_base)))) 487 update_upstream_irq(vgpu, info); 488 } 489 490 if (vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ)) 491 & ~GEN8_MASTER_IRQ_CONTROL) 492 inject_virtual_interrupt(vgpu); 493 } 494 495 static void gen8_init_irq( 496 struct intel_gvt_irq *irq) 497 { 498 struct intel_gvt *gvt = irq_to_gvt(irq); 499 500 #define SET_BIT_INFO(s, b, e, i) \ 501 do { \ 502 s->events[e].bit = b; \ 503 s->events[e].info = s->info[i]; \ 504 s->info[i]->bit_to_event[b] = e;\ 505 } while (0) 506 507 #define SET_IRQ_GROUP(s, g, i) \ 508 do { \ 509 s->info[g] = i; \ 510 (i)->group = g; \ 511 set_bit(g, s->irq_info_bitmap); \ 512 } while (0) 513 514 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_MASTER, &gen8_master_info); 515 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT0, &gen8_gt0_info); 516 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT1, &gen8_gt1_info); 517 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT2, &gen8_gt2_info); 518 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT3, &gen8_gt3_info); 519 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_A, &gen8_de_pipe_a_info); 520 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_B, &gen8_de_pipe_b_info); 521 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_C, &gen8_de_pipe_c_info); 522 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PORT, &gen8_de_port_info); 523 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_MISC, &gen8_de_misc_info); 524 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCU, &gen8_pcu_info); 525 SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCH, &gvt_base_pch_info); 526 527 /* GEN8 level 2 interrupts. */ 528 529 /* GEN8 interrupt GT0 events */ 530 SET_BIT_INFO(irq, 0, RCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0); 531 SET_BIT_INFO(irq, 4, RCS_PIPE_CONTROL, INTEL_GVT_IRQ_INFO_GT0); 532 SET_BIT_INFO(irq, 8, RCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0); 533 534 SET_BIT_INFO(irq, 16, BCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0); 535 SET_BIT_INFO(irq, 20, BCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT0); 536 SET_BIT_INFO(irq, 24, BCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0); 537 538 /* GEN8 interrupt GT1 events */ 539 SET_BIT_INFO(irq, 0, VCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT1); 540 SET_BIT_INFO(irq, 4, VCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT1); 541 SET_BIT_INFO(irq, 8, VCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT1); 542 543 if (HAS_ENGINE(gvt->gt, VCS1)) { 544 SET_BIT_INFO(irq, 16, VCS2_MI_USER_INTERRUPT, 545 INTEL_GVT_IRQ_INFO_GT1); 546 SET_BIT_INFO(irq, 20, VCS2_MI_FLUSH_DW, 547 INTEL_GVT_IRQ_INFO_GT1); 548 SET_BIT_INFO(irq, 24, VCS2_AS_CONTEXT_SWITCH, 549 INTEL_GVT_IRQ_INFO_GT1); 550 } 551 552 /* GEN8 interrupt GT3 events */ 553 SET_BIT_INFO(irq, 0, VECS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT3); 554 SET_BIT_INFO(irq, 4, VECS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT3); 555 SET_BIT_INFO(irq, 8, VECS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT3); 556 557 SET_BIT_INFO(irq, 0, PIPE_A_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_A); 558 SET_BIT_INFO(irq, 0, PIPE_B_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_B); 559 SET_BIT_INFO(irq, 0, PIPE_C_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_C); 560 561 /* GEN8 interrupt DE PORT events */ 562 SET_BIT_INFO(irq, 0, AUX_CHANNEL_A, INTEL_GVT_IRQ_INFO_DE_PORT); 563 SET_BIT_INFO(irq, 3, DP_A_HOTPLUG, INTEL_GVT_IRQ_INFO_DE_PORT); 564 565 /* GEN8 interrupt DE MISC events */ 566 SET_BIT_INFO(irq, 0, GSE, INTEL_GVT_IRQ_INFO_DE_MISC); 567 568 /* PCH events */ 569 SET_BIT_INFO(irq, 17, GMBUS, INTEL_GVT_IRQ_INFO_PCH); 570 SET_BIT_INFO(irq, 19, CRT_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH); 571 SET_BIT_INFO(irq, 21, DP_B_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH); 572 SET_BIT_INFO(irq, 22, DP_C_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH); 573 SET_BIT_INFO(irq, 23, DP_D_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH); 574 575 if (IS_BROADWELL(gvt->gt->i915)) { 576 SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_PCH); 577 SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_PCH); 578 SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_PCH); 579 580 SET_BIT_INFO(irq, 4, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A); 581 SET_BIT_INFO(irq, 5, SPRITE_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A); 582 583 SET_BIT_INFO(irq, 4, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B); 584 SET_BIT_INFO(irq, 5, SPRITE_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B); 585 586 SET_BIT_INFO(irq, 4, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C); 587 SET_BIT_INFO(irq, 5, SPRITE_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C); 588 } else if (INTEL_GEN(gvt->gt->i915) >= 9) { 589 SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_DE_PORT); 590 SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_DE_PORT); 591 SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_DE_PORT); 592 593 SET_BIT_INFO(irq, 3, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A); 594 SET_BIT_INFO(irq, 3, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B); 595 SET_BIT_INFO(irq, 3, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C); 596 597 SET_BIT_INFO(irq, 4, SPRITE_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A); 598 SET_BIT_INFO(irq, 4, SPRITE_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B); 599 SET_BIT_INFO(irq, 4, SPRITE_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C); 600 } 601 602 /* GEN8 interrupt PCU events */ 603 SET_BIT_INFO(irq, 24, PCU_THERMAL, INTEL_GVT_IRQ_INFO_PCU); 604 SET_BIT_INFO(irq, 25, PCU_PCODE2DRIVER_MAILBOX, INTEL_GVT_IRQ_INFO_PCU); 605 } 606 607 static struct intel_gvt_irq_ops gen8_irq_ops = { 608 .init_irq = gen8_init_irq, 609 .check_pending_irq = gen8_check_pending_irq, 610 }; 611 612 /** 613 * intel_vgpu_trigger_virtual_event - Trigger a virtual event for a vGPU 614 * @vgpu: a vGPU 615 * @event: interrupt event 616 * 617 * This function is used to trigger a virtual interrupt event for vGPU. 618 * The caller provides the event to be triggered, the framework itself 619 * will emulate the IRQ register bit change. 620 * 621 */ 622 void intel_vgpu_trigger_virtual_event(struct intel_vgpu *vgpu, 623 enum intel_gvt_event_type event) 624 { 625 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 626 struct intel_gvt *gvt = vgpu->gvt; 627 struct intel_gvt_irq *irq = &gvt->irq; 628 gvt_event_virt_handler_t handler; 629 struct intel_gvt_irq_ops *ops = gvt->irq.ops; 630 631 handler = get_event_virt_handler(irq, event); 632 drm_WARN_ON(&i915->drm, !handler); 633 634 handler(irq, event, vgpu); 635 636 ops->check_pending_irq(vgpu); 637 } 638 639 static void init_events( 640 struct intel_gvt_irq *irq) 641 { 642 int i; 643 644 for (i = 0; i < INTEL_GVT_EVENT_MAX; i++) { 645 irq->events[i].info = NULL; 646 irq->events[i].v_handler = handle_default_event_virt; 647 } 648 } 649 650 static enum hrtimer_restart vblank_timer_fn(struct hrtimer *data) 651 { 652 struct intel_gvt_vblank_timer *vblank_timer; 653 struct intel_gvt_irq *irq; 654 struct intel_gvt *gvt; 655 656 vblank_timer = container_of(data, struct intel_gvt_vblank_timer, timer); 657 irq = container_of(vblank_timer, struct intel_gvt_irq, vblank_timer); 658 gvt = container_of(irq, struct intel_gvt, irq); 659 660 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EMULATE_VBLANK); 661 hrtimer_add_expires_ns(&vblank_timer->timer, vblank_timer->period); 662 return HRTIMER_RESTART; 663 } 664 665 /** 666 * intel_gvt_clean_irq - clean up GVT-g IRQ emulation subsystem 667 * @gvt: a GVT device 668 * 669 * This function is called at driver unloading stage, to clean up GVT-g IRQ 670 * emulation subsystem. 671 * 672 */ 673 void intel_gvt_clean_irq(struct intel_gvt *gvt) 674 { 675 struct intel_gvt_irq *irq = &gvt->irq; 676 677 hrtimer_cancel(&irq->vblank_timer.timer); 678 } 679 680 #define VBLANK_TIMER_PERIOD 16000000 681 682 /** 683 * intel_gvt_init_irq - initialize GVT-g IRQ emulation subsystem 684 * @gvt: a GVT device 685 * 686 * This function is called at driver loading stage, to initialize the GVT-g IRQ 687 * emulation subsystem. 688 * 689 * Returns: 690 * Zero on success, negative error code if failed. 691 */ 692 int intel_gvt_init_irq(struct intel_gvt *gvt) 693 { 694 struct intel_gvt_irq *irq = &gvt->irq; 695 struct intel_gvt_vblank_timer *vblank_timer = &irq->vblank_timer; 696 697 gvt_dbg_core("init irq framework\n"); 698 699 irq->ops = &gen8_irq_ops; 700 irq->irq_map = gen8_irq_map; 701 702 /* common event initialization */ 703 init_events(irq); 704 705 /* gen specific initialization */ 706 irq->ops->init_irq(irq); 707 708 init_irq_map(irq); 709 710 hrtimer_init(&vblank_timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 711 vblank_timer->timer.function = vblank_timer_fn; 712 vblank_timer->period = VBLANK_TIMER_PERIOD; 713 714 return 0; 715 } 716