xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/handlers.c (revision e6486939)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Kevin Tian <kevin.tian@intel.com>
25  *    Eddie Dong <eddie.dong@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Tina Zhang <tina.zhang@intel.com>
31  *    Pei Zhang <pei.zhang@intel.com>
32  *    Niu Bing <bing.niu@intel.com>
33  *    Ping Gao <ping.a.gao@intel.com>
34  *    Zhi Wang <zhi.a.wang@intel.com>
35  *
36 
37  */
38 
39 #include "i915_drv.h"
40 #include "i915_reg.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "intel_mchbar_regs.h"
44 #include "display/intel_display_types.h"
45 #include "display/intel_fbc.h"
46 #include "display/vlv_dsi_pll_regs.h"
47 #include "gt/intel_gt_regs.h"
48 
49 /* XXX FIXME i915 has changed PP_XXX definition */
50 #define PCH_PP_STATUS  _MMIO(0xc7200)
51 #define PCH_PP_CONTROL _MMIO(0xc7204)
52 #define PCH_PP_ON_DELAYS _MMIO(0xc7208)
53 #define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
54 #define PCH_PP_DIVISOR _MMIO(0xc7210)
55 
56 unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
57 {
58 	struct drm_i915_private *i915 = gvt->gt->i915;
59 
60 	if (IS_BROADWELL(i915))
61 		return D_BDW;
62 	else if (IS_SKYLAKE(i915))
63 		return D_SKL;
64 	else if (IS_KABYLAKE(i915))
65 		return D_KBL;
66 	else if (IS_BROXTON(i915))
67 		return D_BXT;
68 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
69 		return D_CFL;
70 
71 	return 0;
72 }
73 
74 bool intel_gvt_match_device(struct intel_gvt *gvt,
75 		unsigned long device)
76 {
77 	return intel_gvt_get_device_type(gvt) & device;
78 }
79 
80 static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
81 	void *p_data, unsigned int bytes)
82 {
83 	memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
84 }
85 
86 static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
87 	void *p_data, unsigned int bytes)
88 {
89 	memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
90 }
91 
92 struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
93 						  unsigned int offset)
94 {
95 	struct intel_gvt_mmio_info *e;
96 
97 	hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
98 		if (e->offset == offset)
99 			return e;
100 	}
101 	return NULL;
102 }
103 
104 static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
105 			   u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
106 			   gvt_mmio_func read, gvt_mmio_func write)
107 {
108 	struct intel_gvt_mmio_info *p;
109 	u32 start, end, i;
110 
111 	if (!intel_gvt_match_device(gvt, device))
112 		return 0;
113 
114 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
115 		return -EINVAL;
116 
117 	start = offset;
118 	end = offset + size;
119 
120 	for (i = start; i < end; i += 4) {
121 		p = intel_gvt_find_mmio_info(gvt, i);
122 		if (!p) {
123 			WARN(1, "assign a handler to a non-tracked mmio %x\n",
124 				i);
125 			return -ENODEV;
126 		}
127 		p->ro_mask = ro_mask;
128 		gvt->mmio.mmio_attribute[i / 4] = flags;
129 		if (read)
130 			p->read = read;
131 		if (write)
132 			p->write = write;
133 	}
134 	return 0;
135 }
136 
137 /**
138  * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
139  * @gvt: a GVT device
140  * @offset: register offset
141  *
142  * Returns:
143  * The engine containing the offset within its mmio page.
144  */
145 const struct intel_engine_cs *
146 intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
147 {
148 	struct intel_engine_cs *engine;
149 	enum intel_engine_id id;
150 
151 	offset &= ~GENMASK(11, 0);
152 	for_each_engine(engine, gvt->gt, id)
153 		if (engine->mmio_base == offset)
154 			return engine;
155 
156 	return NULL;
157 }
158 
159 #define offset_to_fence_num(offset) \
160 	((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
161 
162 #define fence_num_to_offset(num) \
163 	(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
164 
165 
166 void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
167 {
168 	switch (reason) {
169 	case GVT_FAILSAFE_UNSUPPORTED_GUEST:
170 		pr_err("Detected your guest driver doesn't support GVT-g.\n");
171 		break;
172 	case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
173 		pr_err("Graphics resource is not enough for the guest\n");
174 		break;
175 	case GVT_FAILSAFE_GUEST_ERR:
176 		pr_err("GVT Internal error  for the guest\n");
177 		break;
178 	default:
179 		break;
180 	}
181 	pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
182 	vgpu->failsafe = true;
183 }
184 
185 static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
186 		unsigned int fence_num, void *p_data, unsigned int bytes)
187 {
188 	unsigned int max_fence = vgpu_fence_sz(vgpu);
189 
190 	if (fence_num >= max_fence) {
191 		gvt_vgpu_err("access oob fence reg %d/%d\n",
192 			     fence_num, max_fence);
193 
194 		/* When guest access oob fence regs without access
195 		 * pv_info first, we treat guest not supporting GVT,
196 		 * and we will let vgpu enter failsafe mode.
197 		 */
198 		if (!vgpu->pv_notified)
199 			enter_failsafe_mode(vgpu,
200 					GVT_FAILSAFE_UNSUPPORTED_GUEST);
201 
202 		memset(p_data, 0, bytes);
203 		return -EINVAL;
204 	}
205 	return 0;
206 }
207 
208 static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
209 		unsigned int offset, void *p_data, unsigned int bytes)
210 {
211 	u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
212 
213 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
214 		if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
215 			gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
216 		else if (!ips)
217 			gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
218 		else {
219 			/* All engines must be enabled together for vGPU,
220 			 * since we don't know which engine the ppgtt will
221 			 * bind to when shadowing.
222 			 */
223 			gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
224 				     ips);
225 			return -EINVAL;
226 		}
227 	}
228 
229 	write_vreg(vgpu, offset, p_data, bytes);
230 	return 0;
231 }
232 
233 static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
234 		void *p_data, unsigned int bytes)
235 {
236 	int ret;
237 
238 	ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
239 			p_data, bytes);
240 	if (ret)
241 		return ret;
242 	read_vreg(vgpu, off, p_data, bytes);
243 	return 0;
244 }
245 
246 static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
247 		void *p_data, unsigned int bytes)
248 {
249 	struct intel_gvt *gvt = vgpu->gvt;
250 	unsigned int fence_num = offset_to_fence_num(off);
251 	int ret;
252 
253 	ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
254 	if (ret)
255 		return ret;
256 	write_vreg(vgpu, off, p_data, bytes);
257 
258 	mmio_hw_access_pre(gvt->gt);
259 	intel_vgpu_write_fence(vgpu, fence_num,
260 			vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
261 	mmio_hw_access_post(gvt->gt);
262 	return 0;
263 }
264 
265 #define CALC_MODE_MASK_REG(old, new) \
266 	(((new) & GENMASK(31, 16)) \
267 	 | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
268 	 | ((new) & ((new) >> 16))))
269 
270 static int mul_force_wake_write(struct intel_vgpu *vgpu,
271 		unsigned int offset, void *p_data, unsigned int bytes)
272 {
273 	u32 old, new;
274 	u32 ack_reg_offset;
275 
276 	old = vgpu_vreg(vgpu, offset);
277 	new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
278 
279 	if (GRAPHICS_VER(vgpu->gvt->gt->i915)  >=  9) {
280 		switch (offset) {
281 		case FORCEWAKE_RENDER_GEN9_REG:
282 			ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
283 			break;
284 		case FORCEWAKE_GT_GEN9_REG:
285 			ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
286 			break;
287 		case FORCEWAKE_MEDIA_GEN9_REG:
288 			ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
289 			break;
290 		default:
291 			/*should not hit here*/
292 			gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
293 			return -EINVAL;
294 		}
295 	} else {
296 		ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
297 	}
298 
299 	vgpu_vreg(vgpu, offset) = new;
300 	vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
301 	return 0;
302 }
303 
304 static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
305 			    void *p_data, unsigned int bytes)
306 {
307 	intel_engine_mask_t engine_mask = 0;
308 	u32 data;
309 
310 	write_vreg(vgpu, offset, p_data, bytes);
311 	data = vgpu_vreg(vgpu, offset);
312 
313 	if (data & GEN6_GRDOM_FULL) {
314 		gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
315 		engine_mask = ALL_ENGINES;
316 	} else {
317 		if (data & GEN6_GRDOM_RENDER) {
318 			gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
319 			engine_mask |= BIT(RCS0);
320 		}
321 		if (data & GEN6_GRDOM_MEDIA) {
322 			gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
323 			engine_mask |= BIT(VCS0);
324 		}
325 		if (data & GEN6_GRDOM_BLT) {
326 			gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
327 			engine_mask |= BIT(BCS0);
328 		}
329 		if (data & GEN6_GRDOM_VECS) {
330 			gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
331 			engine_mask |= BIT(VECS0);
332 		}
333 		if (data & GEN8_GRDOM_MEDIA2) {
334 			gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
335 			engine_mask |= BIT(VCS1);
336 		}
337 		if (data & GEN9_GRDOM_GUC) {
338 			gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
339 			vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
340 		}
341 		engine_mask &= vgpu->gvt->gt->info.engine_mask;
342 	}
343 
344 	/* vgpu_lock already hold by emulate mmio r/w */
345 	intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
346 
347 	/* sw will wait for the device to ack the reset request */
348 	vgpu_vreg(vgpu, offset) = 0;
349 
350 	return 0;
351 }
352 
353 static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
354 		void *p_data, unsigned int bytes)
355 {
356 	return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
357 }
358 
359 static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
360 		void *p_data, unsigned int bytes)
361 {
362 	return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
363 }
364 
365 static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
366 		unsigned int offset, void *p_data, unsigned int bytes)
367 {
368 	write_vreg(vgpu, offset, p_data, bytes);
369 
370 	if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
371 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
372 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
373 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
374 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
375 
376 	} else
377 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
378 			~(PP_ON | PP_SEQUENCE_POWER_DOWN
379 					| PP_CYCLE_DELAY_ACTIVE);
380 	return 0;
381 }
382 
383 static int transconf_mmio_write(struct intel_vgpu *vgpu,
384 		unsigned int offset, void *p_data, unsigned int bytes)
385 {
386 	write_vreg(vgpu, offset, p_data, bytes);
387 
388 	if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
389 		vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
390 	else
391 		vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
392 	return 0;
393 }
394 
395 static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
396 		void *p_data, unsigned int bytes)
397 {
398 	write_vreg(vgpu, offset, p_data, bytes);
399 
400 	if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
401 		vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
402 	else
403 		vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
404 
405 	if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
406 		vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
407 	else
408 		vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
409 
410 	return 0;
411 }
412 
413 static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
414 		void *p_data, unsigned int bytes)
415 {
416 	switch (offset) {
417 	case 0xe651c:
418 	case 0xe661c:
419 	case 0xe671c:
420 	case 0xe681c:
421 		vgpu_vreg(vgpu, offset) = 1 << 17;
422 		break;
423 	case 0xe6c04:
424 		vgpu_vreg(vgpu, offset) = 0x3;
425 		break;
426 	case 0xe6e1c:
427 		vgpu_vreg(vgpu, offset) = 0x2f << 16;
428 		break;
429 	default:
430 		return -EINVAL;
431 	}
432 
433 	read_vreg(vgpu, offset, p_data, bytes);
434 	return 0;
435 }
436 
437 /*
438  * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
439  *   TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
440  *   setup_virtual_dp_monitor().
441  * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
442  *   DPLL. Later guest driver may setup a different DPLLx when setting mode.
443  * So the correct sequence to find DP stream clock is:
444  *   Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
445  *   Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
446  * Then Refresh rate then can be calculated based on follow equations:
447  *   Pixel clock = h_total * v_total * refresh_rate
448  *   stream clock = Pixel clock
449  *   ls_clk = DP bitrate
450  *   Link M/N = strm_clk / ls_clk
451  */
452 
453 static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
454 {
455 	u32 dp_br = 0;
456 	u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
457 
458 	switch (ddi_pll_sel) {
459 	case PORT_CLK_SEL_LCPLL_2700:
460 		dp_br = 270000 * 2;
461 		break;
462 	case PORT_CLK_SEL_LCPLL_1350:
463 		dp_br = 135000 * 2;
464 		break;
465 	case PORT_CLK_SEL_LCPLL_810:
466 		dp_br = 81000 * 2;
467 		break;
468 	case PORT_CLK_SEL_SPLL:
469 	{
470 		switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
471 		case SPLL_FREQ_810MHz:
472 			dp_br = 81000 * 2;
473 			break;
474 		case SPLL_FREQ_1350MHz:
475 			dp_br = 135000 * 2;
476 			break;
477 		case SPLL_FREQ_2700MHz:
478 			dp_br = 270000 * 2;
479 			break;
480 		default:
481 			gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
482 				    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
483 			break;
484 		}
485 		break;
486 	}
487 	case PORT_CLK_SEL_WRPLL1:
488 	case PORT_CLK_SEL_WRPLL2:
489 	{
490 		u32 wrpll_ctl;
491 		int refclk, n, p, r;
492 
493 		if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
494 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
495 		else
496 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
497 
498 		switch (wrpll_ctl & WRPLL_REF_MASK) {
499 		case WRPLL_REF_PCH_SSC:
500 			refclk = vgpu->gvt->gt->i915->dpll.ref_clks.ssc;
501 			break;
502 		case WRPLL_REF_LCPLL:
503 			refclk = 2700000;
504 			break;
505 		default:
506 			gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
507 				    vgpu->id, port_name(port), wrpll_ctl);
508 			goto out;
509 		}
510 
511 		r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
512 		p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
513 		n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
514 
515 		dp_br = (refclk * n / 10) / (p * r) * 2;
516 		break;
517 	}
518 	default:
519 		gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
520 			    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
521 		break;
522 	}
523 
524 out:
525 	return dp_br;
526 }
527 
528 static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
529 {
530 	u32 dp_br = 0;
531 	int refclk = vgpu->gvt->gt->i915->dpll.ref_clks.nssc;
532 	enum dpio_phy phy = DPIO_PHY0;
533 	enum dpio_channel ch = DPIO_CH0;
534 	struct dpll clock = {0};
535 	u32 temp;
536 
537 	/* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
538 	switch (port) {
539 	case PORT_A:
540 		phy = DPIO_PHY1;
541 		ch = DPIO_CH0;
542 		break;
543 	case PORT_B:
544 		phy = DPIO_PHY0;
545 		ch = DPIO_CH0;
546 		break;
547 	case PORT_C:
548 		phy = DPIO_PHY0;
549 		ch = DPIO_CH1;
550 		break;
551 	default:
552 		gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
553 		goto out;
554 	}
555 
556 	temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
557 	if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
558 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
559 			    vgpu->id, port_name(port), temp);
560 		goto out;
561 	}
562 
563 	clock.m1 = 2;
564 	clock.m2 = (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0)) & PORT_PLL_M2_MASK) << 22;
565 	if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
566 		clock.m2 |= vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)) & PORT_PLL_M2_FRAC_MASK;
567 	clock.n = (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)) & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
568 	clock.p1 = (vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)) & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
569 	clock.p2 = (vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)) & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
570 	clock.m = clock.m1 * clock.m2;
571 	clock.p = clock.p1 * clock.p2;
572 
573 	if (clock.n == 0 || clock.p == 0) {
574 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
575 		goto out;
576 	}
577 
578 	clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
579 	clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
580 
581 	dp_br = clock.dot / 5;
582 
583 out:
584 	return dp_br;
585 }
586 
587 static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
588 {
589 	u32 dp_br = 0;
590 	enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
591 
592 	/* Find the enabled DPLL for the DDI/PORT */
593 	if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
594 	    (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
595 		dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
596 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
597 			DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
598 	} else {
599 		gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
600 			    vgpu->id, port_name(port));
601 		return dp_br;
602 	}
603 
604 	/* Find PLL output frequency from correct DPLL, and get bir rate */
605 	switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
606 		DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
607 		DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
608 		case DPLL_CTRL1_LINK_RATE_810:
609 			dp_br = 81000 * 2;
610 			break;
611 		case DPLL_CTRL1_LINK_RATE_1080:
612 			dp_br = 108000 * 2;
613 			break;
614 		case DPLL_CTRL1_LINK_RATE_1350:
615 			dp_br = 135000 * 2;
616 			break;
617 		case DPLL_CTRL1_LINK_RATE_1620:
618 			dp_br = 162000 * 2;
619 			break;
620 		case DPLL_CTRL1_LINK_RATE_2160:
621 			dp_br = 216000 * 2;
622 			break;
623 		case DPLL_CTRL1_LINK_RATE_2700:
624 			dp_br = 270000 * 2;
625 			break;
626 		default:
627 			dp_br = 0;
628 			gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
629 				    vgpu->id, port_name(port), dpll_id);
630 	}
631 
632 	return dp_br;
633 }
634 
635 static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
636 {
637 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
638 	enum port port;
639 	u32 dp_br, link_m, link_n, htotal, vtotal;
640 
641 	/* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
642 	port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(TRANSCODER_A)) &
643 		TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
644 	if (port != PORT_B && port != PORT_D) {
645 		gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
646 		return;
647 	}
648 
649 	/* Calculate DP bitrate from PLL */
650 	if (IS_BROADWELL(dev_priv))
651 		dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
652 	else if (IS_BROXTON(dev_priv))
653 		dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
654 	else
655 		dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
656 
657 	/* Get DP link symbol clock M/N */
658 	link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(TRANSCODER_A));
659 	link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(TRANSCODER_A));
660 
661 	/* Get H/V total from transcoder timing */
662 	htotal = (vgpu_vreg_t(vgpu, HTOTAL(TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
663 	vtotal = (vgpu_vreg_t(vgpu, VTOTAL(TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
664 
665 	if (dp_br && link_n && htotal && vtotal) {
666 		u64 pixel_clk = 0;
667 		u32 new_rate = 0;
668 		u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
669 
670 		/* Calcuate pixel clock by (ls_clk * M / N) */
671 		pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
672 		pixel_clk *= MSEC_PER_SEC;
673 
674 		/* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */
675 		new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
676 
677 		if (*old_rate != new_rate)
678 			*old_rate = new_rate;
679 
680 		gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
681 			    vgpu->id, pipe_name(PIPE_A), new_rate);
682 	}
683 }
684 
685 static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
686 		void *p_data, unsigned int bytes)
687 {
688 	u32 data;
689 
690 	write_vreg(vgpu, offset, p_data, bytes);
691 	data = vgpu_vreg(vgpu, offset);
692 
693 	if (data & PIPECONF_ENABLE) {
694 		vgpu_vreg(vgpu, offset) |= PIPECONF_STATE_ENABLE;
695 		vgpu_update_refresh_rate(vgpu);
696 		vgpu_update_vblank_emulation(vgpu, true);
697 	} else {
698 		vgpu_vreg(vgpu, offset) &= ~PIPECONF_STATE_ENABLE;
699 		vgpu_update_vblank_emulation(vgpu, false);
700 	}
701 	return 0;
702 }
703 
704 /* sorted in ascending order */
705 static i915_reg_t force_nonpriv_white_list[] = {
706 	_MMIO(0xd80),
707 	GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
708 	GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
709 	CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
710 	PS_INVOCATION_COUNT, //_MMIO(0x2348)
711 	PS_DEPTH_COUNT, //_MMIO(0x2350)
712 	GEN8_CS_CHICKEN1,//_MMIO(0x2580)
713 	_MMIO(0x2690),
714 	_MMIO(0x2694),
715 	_MMIO(0x2698),
716 	_MMIO(0x2754),
717 	_MMIO(0x28a0),
718 	_MMIO(0x4de0),
719 	_MMIO(0x4de4),
720 	_MMIO(0x4dfc),
721 	GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
722 	_MMIO(0x7014),
723 	HDC_CHICKEN0,//_MMIO(0x7300)
724 	GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
725 	_MMIO(0x7700),
726 	_MMIO(0x7704),
727 	_MMIO(0x7708),
728 	_MMIO(0x770c),
729 	_MMIO(0x83a8),
730 	_MMIO(0xb110),
731 	GEN8_L3SQCREG4,//_MMIO(0xb118)
732 	_MMIO(0xe100),
733 	_MMIO(0xe18c),
734 	_MMIO(0xe48c),
735 	_MMIO(0xe5f4),
736 	_MMIO(0x64844),
737 };
738 
739 /* a simple bsearch */
740 static inline bool in_whitelist(u32 reg)
741 {
742 	int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
743 	i915_reg_t *array = force_nonpriv_white_list;
744 
745 	while (left < right) {
746 		int mid = (left + right)/2;
747 
748 		if (reg > array[mid].reg)
749 			left = mid + 1;
750 		else if (reg < array[mid].reg)
751 			right = mid;
752 		else
753 			return true;
754 	}
755 	return false;
756 }
757 
758 static int force_nonpriv_write(struct intel_vgpu *vgpu,
759 	unsigned int offset, void *p_data, unsigned int bytes)
760 {
761 	u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
762 	const struct intel_engine_cs *engine =
763 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
764 
765 	if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
766 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
767 			vgpu->id, offset, bytes);
768 		return -EINVAL;
769 	}
770 
771 	if (!in_whitelist(reg_nonpriv) &&
772 	    reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
773 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
774 			vgpu->id, reg_nonpriv, offset);
775 	} else
776 		intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
777 
778 	return 0;
779 }
780 
781 static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
782 		void *p_data, unsigned int bytes)
783 {
784 	write_vreg(vgpu, offset, p_data, bytes);
785 
786 	if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
787 		vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
788 	} else {
789 		vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
790 		if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
791 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
792 				&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
793 	}
794 	return 0;
795 }
796 
797 static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
798 		unsigned int offset, void *p_data, unsigned int bytes)
799 {
800 	vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
801 	return 0;
802 }
803 
804 #define FDI_LINK_TRAIN_PATTERN1         0
805 #define FDI_LINK_TRAIN_PATTERN2         1
806 
807 static int fdi_auto_training_started(struct intel_vgpu *vgpu)
808 {
809 	u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
810 	u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
811 	u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
812 
813 	if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
814 			(rx_ctl & FDI_RX_ENABLE) &&
815 			(rx_ctl & FDI_AUTO_TRAINING) &&
816 			(tx_ctl & DP_TP_CTL_ENABLE) &&
817 			(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
818 		return 1;
819 	else
820 		return 0;
821 }
822 
823 static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
824 		enum pipe pipe, unsigned int train_pattern)
825 {
826 	i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
827 	unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
828 	unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
829 	unsigned int fdi_iir_check_bits;
830 
831 	fdi_rx_imr = FDI_RX_IMR(pipe);
832 	fdi_tx_ctl = FDI_TX_CTL(pipe);
833 	fdi_rx_ctl = FDI_RX_CTL(pipe);
834 
835 	if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
836 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
837 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
838 		fdi_iir_check_bits = FDI_RX_BIT_LOCK;
839 	} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
840 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
841 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
842 		fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
843 	} else {
844 		gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
845 		return -EINVAL;
846 	}
847 
848 	fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
849 	fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
850 
851 	/* If imr bit has been masked */
852 	if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
853 		return 0;
854 
855 	if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
856 			== fdi_tx_check_bits)
857 		&& ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
858 			== fdi_rx_check_bits))
859 		return 1;
860 	else
861 		return 0;
862 }
863 
864 #define INVALID_INDEX (~0U)
865 
866 static unsigned int calc_index(unsigned int offset, unsigned int start,
867 	unsigned int next, unsigned int end, i915_reg_t i915_end)
868 {
869 	unsigned int range = next - start;
870 
871 	if (!end)
872 		end = i915_mmio_reg_offset(i915_end);
873 	if (offset < start || offset > end)
874 		return INVALID_INDEX;
875 	offset -= start;
876 	return offset / range;
877 }
878 
879 #define FDI_RX_CTL_TO_PIPE(offset) \
880 	calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C))
881 
882 #define FDI_TX_CTL_TO_PIPE(offset) \
883 	calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C))
884 
885 #define FDI_RX_IMR_TO_PIPE(offset) \
886 	calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C))
887 
888 static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
889 		unsigned int offset, void *p_data, unsigned int bytes)
890 {
891 	i915_reg_t fdi_rx_iir;
892 	unsigned int index;
893 	int ret;
894 
895 	if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
896 		index = FDI_RX_CTL_TO_PIPE(offset);
897 	else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
898 		index = FDI_TX_CTL_TO_PIPE(offset);
899 	else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
900 		index = FDI_RX_IMR_TO_PIPE(offset);
901 	else {
902 		gvt_vgpu_err("Unsupport registers %x\n", offset);
903 		return -EINVAL;
904 	}
905 
906 	write_vreg(vgpu, offset, p_data, bytes);
907 
908 	fdi_rx_iir = FDI_RX_IIR(index);
909 
910 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
911 	if (ret < 0)
912 		return ret;
913 	if (ret)
914 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
915 
916 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
917 	if (ret < 0)
918 		return ret;
919 	if (ret)
920 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
921 
922 	if (offset == _FDI_RXA_CTL)
923 		if (fdi_auto_training_started(vgpu))
924 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
925 				DP_TP_STATUS_AUTOTRAIN_DONE;
926 	return 0;
927 }
928 
929 #define DP_TP_CTL_TO_PORT(offset) \
930 	calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E))
931 
932 static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
933 		void *p_data, unsigned int bytes)
934 {
935 	i915_reg_t status_reg;
936 	unsigned int index;
937 	u32 data;
938 
939 	write_vreg(vgpu, offset, p_data, bytes);
940 
941 	index = DP_TP_CTL_TO_PORT(offset);
942 	data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
943 	if (data == 0x2) {
944 		status_reg = DP_TP_STATUS(index);
945 		vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
946 	}
947 	return 0;
948 }
949 
950 static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
951 		unsigned int offset, void *p_data, unsigned int bytes)
952 {
953 	u32 reg_val;
954 	u32 sticky_mask;
955 
956 	reg_val = *((u32 *)p_data);
957 	sticky_mask = GENMASK(27, 26) | (1 << 24);
958 
959 	vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
960 		(vgpu_vreg(vgpu, offset) & sticky_mask);
961 	vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
962 	return 0;
963 }
964 
965 static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
966 		unsigned int offset, void *p_data, unsigned int bytes)
967 {
968 	u32 data;
969 
970 	write_vreg(vgpu, offset, p_data, bytes);
971 	data = vgpu_vreg(vgpu, offset);
972 
973 	if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
974 		vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
975 	return 0;
976 }
977 
978 static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
979 		unsigned int offset, void *p_data, unsigned int bytes)
980 {
981 	u32 data;
982 
983 	write_vreg(vgpu, offset, p_data, bytes);
984 	data = vgpu_vreg(vgpu, offset);
985 
986 	if (data & FDI_MPHY_IOSFSB_RESET_CTL)
987 		vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
988 	else
989 		vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
990 	return 0;
991 }
992 
993 #define DSPSURF_TO_PIPE(offset) \
994 	calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C))
995 
996 static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
997 		void *p_data, unsigned int bytes)
998 {
999 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1000 	u32 pipe = DSPSURF_TO_PIPE(offset);
1001 	int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
1002 
1003 	write_vreg(vgpu, offset, p_data, bytes);
1004 	vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1005 
1006 	vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
1007 
1008 	if (vgpu_vreg_t(vgpu, DSPCNTR(pipe)) & PLANE_CTL_ASYNC_FLIP)
1009 		intel_vgpu_trigger_virtual_event(vgpu, event);
1010 	else
1011 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1012 
1013 	return 0;
1014 }
1015 
1016 #define SPRSURF_TO_PIPE(offset) \
1017 	calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C))
1018 
1019 static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1020 		void *p_data, unsigned int bytes)
1021 {
1022 	u32 pipe = SPRSURF_TO_PIPE(offset);
1023 	int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
1024 
1025 	write_vreg(vgpu, offset, p_data, bytes);
1026 	vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1027 
1028 	if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
1029 		intel_vgpu_trigger_virtual_event(vgpu, event);
1030 	else
1031 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1032 
1033 	return 0;
1034 }
1035 
1036 static int reg50080_mmio_write(struct intel_vgpu *vgpu,
1037 			       unsigned int offset, void *p_data,
1038 			       unsigned int bytes)
1039 {
1040 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1041 	enum pipe pipe = REG_50080_TO_PIPE(offset);
1042 	enum plane_id plane = REG_50080_TO_PLANE(offset);
1043 	int event = SKL_FLIP_EVENT(pipe, plane);
1044 
1045 	write_vreg(vgpu, offset, p_data, bytes);
1046 	if (plane == PLANE_PRIMARY) {
1047 		vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1048 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
1049 	} else {
1050 		vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1051 	}
1052 
1053 	if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
1054 		intel_vgpu_trigger_virtual_event(vgpu, event);
1055 	else
1056 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1057 
1058 	return 0;
1059 }
1060 
1061 static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
1062 		unsigned int reg)
1063 {
1064 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1065 	enum intel_gvt_event_type event;
1066 
1067 	if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
1068 		event = AUX_CHANNEL_A;
1069 	else if (reg == _PCH_DPB_AUX_CH_CTL ||
1070 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
1071 		event = AUX_CHANNEL_B;
1072 	else if (reg == _PCH_DPC_AUX_CH_CTL ||
1073 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
1074 		event = AUX_CHANNEL_C;
1075 	else if (reg == _PCH_DPD_AUX_CH_CTL ||
1076 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
1077 		event = AUX_CHANNEL_D;
1078 	else {
1079 		drm_WARN_ON(&dev_priv->drm, true);
1080 		return -EINVAL;
1081 	}
1082 
1083 	intel_vgpu_trigger_virtual_event(vgpu, event);
1084 	return 0;
1085 }
1086 
1087 static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
1088 		unsigned int reg, int len, bool data_valid)
1089 {
1090 	/* mark transaction done */
1091 	value |= DP_AUX_CH_CTL_DONE;
1092 	value &= ~DP_AUX_CH_CTL_SEND_BUSY;
1093 	value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
1094 
1095 	if (data_valid)
1096 		value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
1097 	else
1098 		value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
1099 
1100 	/* message size */
1101 	value &= ~(0xf << 20);
1102 	value |= (len << 20);
1103 	vgpu_vreg(vgpu, reg) = value;
1104 
1105 	if (value & DP_AUX_CH_CTL_INTERRUPT)
1106 		return trigger_aux_channel_interrupt(vgpu, reg);
1107 	return 0;
1108 }
1109 
1110 static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
1111 		u8 t)
1112 {
1113 	if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) {
1114 		/* training pattern 1 for CR */
1115 		/* set LANE0_CR_DONE, LANE1_CR_DONE */
1116 		dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE;
1117 		/* set LANE2_CR_DONE, LANE3_CR_DONE */
1118 		dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE;
1119 	} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
1120 			DPCD_TRAINING_PATTERN_2) {
1121 		/* training pattern 2 for EQ */
1122 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane0_1 */
1123 		dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE;
1124 		dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED;
1125 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane2_3 */
1126 		dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE;
1127 		dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED;
1128 		/* set INTERLANE_ALIGN_DONE */
1129 		dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |=
1130 			DPCD_INTERLANE_ALIGN_DONE;
1131 	} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
1132 			DPCD_LINK_TRAINING_DISABLED) {
1133 		/* finish link training */
1134 		/* set sink status as synchronized */
1135 		dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC;
1136 	}
1137 }
1138 
1139 #define _REG_HSW_DP_AUX_CH_CTL(dp) \
1140 	((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010)
1141 
1142 #define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100)
1143 
1144 #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
1145 
1146 #define dpy_is_valid_port(port)	\
1147 		(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
1148 
1149 static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
1150 		unsigned int offset, void *p_data, unsigned int bytes)
1151 {
1152 	struct intel_vgpu_display *display = &vgpu->display;
1153 	int msg, addr, ctrl, op, len;
1154 	int port_index = OFFSET_TO_DP_AUX_PORT(offset);
1155 	struct intel_vgpu_dpcd_data *dpcd = NULL;
1156 	struct intel_vgpu_port *port = NULL;
1157 	u32 data;
1158 
1159 	if (!dpy_is_valid_port(port_index)) {
1160 		gvt_vgpu_err("Unsupported DP port access!\n");
1161 		return 0;
1162 	}
1163 
1164 	write_vreg(vgpu, offset, p_data, bytes);
1165 	data = vgpu_vreg(vgpu, offset);
1166 
1167 	if ((GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9)
1168 		&& offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) {
1169 		/* SKL DPB/C/D aux ctl register changed */
1170 		return 0;
1171 	} else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
1172 		   offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) {
1173 		/* write to the data registers */
1174 		return 0;
1175 	}
1176 
1177 	if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
1178 		/* just want to clear the sticky bits */
1179 		vgpu_vreg(vgpu, offset) = 0;
1180 		return 0;
1181 	}
1182 
1183 	port = &display->ports[port_index];
1184 	dpcd = port->dpcd;
1185 
1186 	/* read out message from DATA1 register */
1187 	msg = vgpu_vreg(vgpu, offset + 4);
1188 	addr = (msg >> 8) & 0xffff;
1189 	ctrl = (msg >> 24) & 0xff;
1190 	len = msg & 0xff;
1191 	op = ctrl >> 4;
1192 
1193 	if (op == GVT_AUX_NATIVE_WRITE) {
1194 		int t;
1195 		u8 buf[16];
1196 
1197 		if ((addr + len + 1) >= DPCD_SIZE) {
1198 			/*
1199 			 * Write request exceeds what we supported,
1200 			 * DCPD spec: When a Source Device is writing a DPCD
1201 			 * address not supported by the Sink Device, the Sink
1202 			 * Device shall reply with AUX NACK and “M” equal to
1203 			 * zero.
1204 			 */
1205 
1206 			/* NAK the write */
1207 			vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
1208 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
1209 			return 0;
1210 		}
1211 
1212 		/*
1213 		 * Write request format: Headr (command + address + size) occupies
1214 		 * 4 bytes, followed by (len + 1) bytes of data. See details at
1215 		 * intel_dp_aux_transfer().
1216 		 */
1217 		if ((len + 1 + 4) > AUX_BURST_SIZE) {
1218 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1219 			return -EINVAL;
1220 		}
1221 
1222 		/* unpack data from vreg to buf */
1223 		for (t = 0; t < 4; t++) {
1224 			u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
1225 
1226 			buf[t * 4] = (r >> 24) & 0xff;
1227 			buf[t * 4 + 1] = (r >> 16) & 0xff;
1228 			buf[t * 4 + 2] = (r >> 8) & 0xff;
1229 			buf[t * 4 + 3] = r & 0xff;
1230 		}
1231 
1232 		/* write to virtual DPCD */
1233 		if (dpcd && dpcd->data_valid) {
1234 			for (t = 0; t <= len; t++) {
1235 				int p = addr + t;
1236 
1237 				dpcd->data[p] = buf[t];
1238 				/* check for link training */
1239 				if (p == DPCD_TRAINING_PATTERN_SET)
1240 					dp_aux_ch_ctl_link_training(dpcd,
1241 							buf[t]);
1242 			}
1243 		}
1244 
1245 		/* ACK the write */
1246 		vgpu_vreg(vgpu, offset + 4) = 0;
1247 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
1248 				dpcd && dpcd->data_valid);
1249 		return 0;
1250 	}
1251 
1252 	if (op == GVT_AUX_NATIVE_READ) {
1253 		int idx, i, ret = 0;
1254 
1255 		if ((addr + len + 1) >= DPCD_SIZE) {
1256 			/*
1257 			 * read request exceeds what we supported
1258 			 * DPCD spec: A Sink Device receiving a Native AUX CH
1259 			 * read request for an unsupported DPCD address must
1260 			 * reply with an AUX ACK and read data set equal to
1261 			 * zero instead of replying with AUX NACK.
1262 			 */
1263 
1264 			/* ACK the READ*/
1265 			vgpu_vreg(vgpu, offset + 4) = 0;
1266 			vgpu_vreg(vgpu, offset + 8) = 0;
1267 			vgpu_vreg(vgpu, offset + 12) = 0;
1268 			vgpu_vreg(vgpu, offset + 16) = 0;
1269 			vgpu_vreg(vgpu, offset + 20) = 0;
1270 
1271 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1272 					true);
1273 			return 0;
1274 		}
1275 
1276 		for (idx = 1; idx <= 5; idx++) {
1277 			/* clear the data registers */
1278 			vgpu_vreg(vgpu, offset + 4 * idx) = 0;
1279 		}
1280 
1281 		/*
1282 		 * Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
1283 		 */
1284 		if ((len + 2) > AUX_BURST_SIZE) {
1285 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1286 			return -EINVAL;
1287 		}
1288 
1289 		/* read from virtual DPCD to vreg */
1290 		/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
1291 		if (dpcd && dpcd->data_valid) {
1292 			for (i = 1; i <= (len + 1); i++) {
1293 				int t;
1294 
1295 				t = dpcd->data[addr + i - 1];
1296 				t <<= (24 - 8 * (i % 4));
1297 				ret |= t;
1298 
1299 				if ((i % 4 == 3) || (i == (len + 1))) {
1300 					vgpu_vreg(vgpu, offset +
1301 							(i / 4 + 1) * 4) = ret;
1302 					ret = 0;
1303 				}
1304 			}
1305 		}
1306 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1307 				dpcd && dpcd->data_valid);
1308 		return 0;
1309 	}
1310 
1311 	/* i2c transaction starts */
1312 	intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
1313 
1314 	if (data & DP_AUX_CH_CTL_INTERRUPT)
1315 		trigger_aux_channel_interrupt(vgpu, offset);
1316 	return 0;
1317 }
1318 
1319 static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
1320 		void *p_data, unsigned int bytes)
1321 {
1322 	*(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
1323 	write_vreg(vgpu, offset, p_data, bytes);
1324 	return 0;
1325 }
1326 
1327 static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1328 		void *p_data, unsigned int bytes)
1329 {
1330 	bool vga_disable;
1331 
1332 	write_vreg(vgpu, offset, p_data, bytes);
1333 	vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
1334 
1335 	gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
1336 			vga_disable ? "Disable" : "Enable");
1337 	return 0;
1338 }
1339 
1340 static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
1341 		unsigned int sbi_offset)
1342 {
1343 	struct intel_vgpu_display *display = &vgpu->display;
1344 	int num = display->sbi.number;
1345 	int i;
1346 
1347 	for (i = 0; i < num; ++i)
1348 		if (display->sbi.registers[i].offset == sbi_offset)
1349 			break;
1350 
1351 	if (i == num)
1352 		return 0;
1353 
1354 	return display->sbi.registers[i].value;
1355 }
1356 
1357 static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
1358 		unsigned int offset, u32 value)
1359 {
1360 	struct intel_vgpu_display *display = &vgpu->display;
1361 	int num = display->sbi.number;
1362 	int i;
1363 
1364 	for (i = 0; i < num; ++i) {
1365 		if (display->sbi.registers[i].offset == offset)
1366 			break;
1367 	}
1368 
1369 	if (i == num) {
1370 		if (num == SBI_REG_MAX) {
1371 			gvt_vgpu_err("SBI caching meets maximum limits\n");
1372 			return;
1373 		}
1374 		display->sbi.number++;
1375 	}
1376 
1377 	display->sbi.registers[i].offset = offset;
1378 	display->sbi.registers[i].value = value;
1379 }
1380 
1381 static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1382 		void *p_data, unsigned int bytes)
1383 {
1384 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1385 				SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
1386 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1387 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1388 		vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
1389 				sbi_offset);
1390 	}
1391 	read_vreg(vgpu, offset, p_data, bytes);
1392 	return 0;
1393 }
1394 
1395 static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1396 		void *p_data, unsigned int bytes)
1397 {
1398 	u32 data;
1399 
1400 	write_vreg(vgpu, offset, p_data, bytes);
1401 	data = vgpu_vreg(vgpu, offset);
1402 
1403 	data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
1404 	data |= SBI_READY;
1405 
1406 	data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
1407 	data |= SBI_RESPONSE_SUCCESS;
1408 
1409 	vgpu_vreg(vgpu, offset) = data;
1410 
1411 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1412 				SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
1413 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1414 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1415 
1416 		write_virtual_sbi_register(vgpu, sbi_offset,
1417 					   vgpu_vreg_t(vgpu, SBI_DATA));
1418 	}
1419 	return 0;
1420 }
1421 
1422 #define _vgtif_reg(x) \
1423 	(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
1424 
1425 static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1426 		void *p_data, unsigned int bytes)
1427 {
1428 	bool invalid_read = false;
1429 
1430 	read_vreg(vgpu, offset, p_data, bytes);
1431 
1432 	switch (offset) {
1433 	case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
1434 		if (offset + bytes > _vgtif_reg(vgt_id) + 4)
1435 			invalid_read = true;
1436 		break;
1437 	case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
1438 		_vgtif_reg(avail_rs.fence_num):
1439 		if (offset + bytes >
1440 			_vgtif_reg(avail_rs.fence_num) + 4)
1441 			invalid_read = true;
1442 		break;
1443 	case 0x78010:	/* vgt_caps */
1444 	case 0x7881c:
1445 		break;
1446 	default:
1447 		invalid_read = true;
1448 		break;
1449 	}
1450 	if (invalid_read)
1451 		gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
1452 				offset, bytes, *(u32 *)p_data);
1453 	vgpu->pv_notified = true;
1454 	return 0;
1455 }
1456 
1457 static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
1458 {
1459 	enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1460 	struct intel_vgpu_mm *mm;
1461 	u64 *pdps;
1462 
1463 	pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
1464 
1465 	switch (notification) {
1466 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
1467 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1468 		fallthrough;
1469 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
1470 		mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
1471 		return PTR_ERR_OR_ZERO(mm);
1472 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
1473 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
1474 		return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
1475 	case VGT_G2V_EXECLIST_CONTEXT_CREATE:
1476 	case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
1477 	case 1:	/* Remove this in guest driver. */
1478 		break;
1479 	default:
1480 		gvt_vgpu_err("Invalid PV notification %d\n", notification);
1481 	}
1482 	return 0;
1483 }
1484 
1485 static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
1486 {
1487 	struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
1488 	char *env[3] = {NULL, NULL, NULL};
1489 	char vmid_str[20];
1490 	char display_ready_str[20];
1491 
1492 	snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
1493 	env[0] = display_ready_str;
1494 
1495 	snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
1496 	env[1] = vmid_str;
1497 
1498 	return kobject_uevent_env(kobj, KOBJ_ADD, env);
1499 }
1500 
1501 static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1502 		void *p_data, unsigned int bytes)
1503 {
1504 	u32 data = *(u32 *)p_data;
1505 	bool invalid_write = false;
1506 
1507 	switch (offset) {
1508 	case _vgtif_reg(display_ready):
1509 		send_display_ready_uevent(vgpu, data ? 1 : 0);
1510 		break;
1511 	case _vgtif_reg(g2v_notify):
1512 		handle_g2v_notification(vgpu, data);
1513 		break;
1514 	/* add xhot and yhot to handled list to avoid error log */
1515 	case _vgtif_reg(cursor_x_hot):
1516 	case _vgtif_reg(cursor_y_hot):
1517 	case _vgtif_reg(pdp[0].lo):
1518 	case _vgtif_reg(pdp[0].hi):
1519 	case _vgtif_reg(pdp[1].lo):
1520 	case _vgtif_reg(pdp[1].hi):
1521 	case _vgtif_reg(pdp[2].lo):
1522 	case _vgtif_reg(pdp[2].hi):
1523 	case _vgtif_reg(pdp[3].lo):
1524 	case _vgtif_reg(pdp[3].hi):
1525 	case _vgtif_reg(execlist_context_descriptor_lo):
1526 	case _vgtif_reg(execlist_context_descriptor_hi):
1527 		break;
1528 	case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
1529 		invalid_write = true;
1530 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
1531 		break;
1532 	default:
1533 		invalid_write = true;
1534 		gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
1535 				offset, bytes, data);
1536 		break;
1537 	}
1538 
1539 	if (!invalid_write)
1540 		write_vreg(vgpu, offset, p_data, bytes);
1541 
1542 	return 0;
1543 }
1544 
1545 static int pf_write(struct intel_vgpu *vgpu,
1546 		unsigned int offset, void *p_data, unsigned int bytes)
1547 {
1548 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1549 	u32 val = *(u32 *)p_data;
1550 
1551 	if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
1552 	   offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
1553 	   offset == _PS_1C_CTRL) && (val & PS_PLANE_SEL_MASK) != 0) {
1554 		drm_WARN_ONCE(&i915->drm, true,
1555 			      "VM(%d): guest is trying to scaling a plane\n",
1556 			      vgpu->id);
1557 		return 0;
1558 	}
1559 
1560 	return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
1561 }
1562 
1563 static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
1564 		unsigned int offset, void *p_data, unsigned int bytes)
1565 {
1566 	write_vreg(vgpu, offset, p_data, bytes);
1567 
1568 	if (vgpu_vreg(vgpu, offset) &
1569 	    HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
1570 		vgpu_vreg(vgpu, offset) |=
1571 			HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1572 	else
1573 		vgpu_vreg(vgpu, offset) &=
1574 			~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1575 	return 0;
1576 }
1577 
1578 static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
1579 		unsigned int offset, void *p_data, unsigned int bytes)
1580 {
1581 	write_vreg(vgpu, offset, p_data, bytes);
1582 
1583 	if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
1584 		vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
1585 	else
1586 		vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
1587 
1588 	return 0;
1589 }
1590 
1591 static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
1592 	unsigned int offset, void *p_data, unsigned int bytes)
1593 {
1594 	write_vreg(vgpu, offset, p_data, bytes);
1595 
1596 	if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
1597 		vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
1598 	return 0;
1599 }
1600 
1601 static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
1602 		void *p_data, unsigned int bytes)
1603 {
1604 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1605 	u32 mode;
1606 
1607 	write_vreg(vgpu, offset, p_data, bytes);
1608 	mode = vgpu_vreg(vgpu, offset);
1609 
1610 	if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
1611 		drm_WARN_ONCE(&i915->drm, 1,
1612 				"VM(%d): iGVT-g doesn't support GuC\n",
1613 				vgpu->id);
1614 		return 0;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
1621 		void *p_data, unsigned int bytes)
1622 {
1623 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1624 	u32 trtte = *(u32 *)p_data;
1625 
1626 	if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
1627 		drm_WARN(&i915->drm, 1,
1628 				"VM(%d): Use physical address for TRTT!\n",
1629 				vgpu->id);
1630 		return -EINVAL;
1631 	}
1632 	write_vreg(vgpu, offset, p_data, bytes);
1633 
1634 	return 0;
1635 }
1636 
1637 static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
1638 		void *p_data, unsigned int bytes)
1639 {
1640 	write_vreg(vgpu, offset, p_data, bytes);
1641 	return 0;
1642 }
1643 
1644 static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
1645 		void *p_data, unsigned int bytes)
1646 {
1647 	u32 v = 0;
1648 
1649 	if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
1650 		v |= (1 << 0);
1651 
1652 	if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
1653 		v |= (1 << 8);
1654 
1655 	if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
1656 		v |= (1 << 16);
1657 
1658 	if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
1659 		v |= (1 << 24);
1660 
1661 	vgpu_vreg(vgpu, offset) = v;
1662 
1663 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1664 }
1665 
1666 static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
1667 		void *p_data, unsigned int bytes)
1668 {
1669 	u32 value = *(u32 *)p_data;
1670 	u32 cmd = value & 0xff;
1671 	u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
1672 
1673 	switch (cmd) {
1674 	case GEN9_PCODE_READ_MEM_LATENCY:
1675 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1676 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1677 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1678 		    IS_COMETLAKE(vgpu->gvt->gt->i915)) {
1679 			/**
1680 			 * "Read memory latency" command on gen9.
1681 			 * Below memory latency values are read
1682 			 * from skylake platform.
1683 			 */
1684 			if (!*data0)
1685 				*data0 = 0x1e1a1100;
1686 			else
1687 				*data0 = 0x61514b3d;
1688 		} else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
1689 			/**
1690 			 * "Read memory latency" command on gen9.
1691 			 * Below memory latency values are read
1692 			 * from Broxton MRB.
1693 			 */
1694 			if (!*data0)
1695 				*data0 = 0x16080707;
1696 			else
1697 				*data0 = 0x16161616;
1698 		}
1699 		break;
1700 	case SKL_PCODE_CDCLK_CONTROL:
1701 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1702 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1703 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1704 		    IS_COMETLAKE(vgpu->gvt->gt->i915))
1705 			*data0 = SKL_CDCLK_READY_FOR_CHANGE;
1706 		break;
1707 	case GEN6_PCODE_READ_RC6VIDS:
1708 		*data0 |= 0x1;
1709 		break;
1710 	}
1711 
1712 	gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
1713 		     vgpu->id, value, *data0);
1714 	/**
1715 	 * PCODE_READY clear means ready for pcode read/write,
1716 	 * PCODE_ERROR_MASK clear means no error happened. In GVT-g we
1717 	 * always emulate as pcode read/write success and ready for access
1718 	 * anytime, since we don't touch real physical registers here.
1719 	 */
1720 	value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
1721 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1722 }
1723 
1724 static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
1725 		void *p_data, unsigned int bytes)
1726 {
1727 	u32 value = *(u32 *)p_data;
1728 	const struct intel_engine_cs *engine =
1729 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1730 
1731 	if (value != 0 &&
1732 	    !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
1733 		gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
1734 			      offset, value);
1735 		return -EINVAL;
1736 	}
1737 
1738 	/*
1739 	 * Need to emulate all the HWSP register write to ensure host can
1740 	 * update the VM CSB status correctly. Here listed registers can
1741 	 * support BDW, SKL or other platforms with same HWSP registers.
1742 	 */
1743 	if (unlikely(!engine)) {
1744 		gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
1745 			     offset);
1746 		return -EINVAL;
1747 	}
1748 	vgpu->hws_pga[engine->id] = value;
1749 	gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
1750 		     vgpu->id, value, offset);
1751 
1752 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1753 }
1754 
1755 static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
1756 		unsigned int offset, void *p_data, unsigned int bytes)
1757 {
1758 	u32 v = *(u32 *)p_data;
1759 
1760 	if (IS_BROXTON(vgpu->gvt->gt->i915))
1761 		v &= (1 << 31) | (1 << 29);
1762 	else
1763 		v &= (1 << 31) | (1 << 29) | (1 << 9) |
1764 			(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
1765 	v |= (v >> 1);
1766 
1767 	return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
1768 }
1769 
1770 static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
1771 		void *p_data, unsigned int bytes)
1772 {
1773 	u32 v = *(u32 *)p_data;
1774 
1775 	/* other bits are MBZ. */
1776 	v &= (1 << 31) | (1 << 30);
1777 	v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
1778 
1779 	vgpu_vreg(vgpu, offset) = v;
1780 
1781 	return 0;
1782 }
1783 
1784 static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
1785 		unsigned int offset, void *p_data, unsigned int bytes)
1786 {
1787 	u32 v = *(u32 *)p_data;
1788 
1789 	if (v & BXT_DE_PLL_PLL_ENABLE)
1790 		v |= BXT_DE_PLL_LOCK;
1791 
1792 	vgpu_vreg(vgpu, offset) = v;
1793 
1794 	return 0;
1795 }
1796 
1797 static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
1798 		unsigned int offset, void *p_data, unsigned int bytes)
1799 {
1800 	u32 v = *(u32 *)p_data;
1801 
1802 	if (v & PORT_PLL_ENABLE)
1803 		v |= PORT_PLL_LOCK;
1804 
1805 	vgpu_vreg(vgpu, offset) = v;
1806 
1807 	return 0;
1808 }
1809 
1810 static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
1811 		unsigned int offset, void *p_data, unsigned int bytes)
1812 {
1813 	u32 v = *(u32 *)p_data;
1814 	u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
1815 
1816 	switch (offset) {
1817 	case _PHY_CTL_FAMILY_EDP:
1818 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
1819 		break;
1820 	case _PHY_CTL_FAMILY_DDI:
1821 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
1822 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
1823 		break;
1824 	}
1825 
1826 	vgpu_vreg(vgpu, offset) = v;
1827 
1828 	return 0;
1829 }
1830 
1831 static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
1832 		unsigned int offset, void *p_data, unsigned int bytes)
1833 {
1834 	u32 v = vgpu_vreg(vgpu, offset);
1835 
1836 	v &= ~UNIQUE_TRANGE_EN_METHOD;
1837 
1838 	vgpu_vreg(vgpu, offset) = v;
1839 
1840 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1841 }
1842 
1843 static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
1844 		unsigned int offset, void *p_data, unsigned int bytes)
1845 {
1846 	u32 v = *(u32 *)p_data;
1847 
1848 	if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
1849 		vgpu_vreg(vgpu, offset - 0x600) = v;
1850 		vgpu_vreg(vgpu, offset - 0x800) = v;
1851 	} else {
1852 		vgpu_vreg(vgpu, offset - 0x400) = v;
1853 		vgpu_vreg(vgpu, offset - 0x600) = v;
1854 	}
1855 
1856 	vgpu_vreg(vgpu, offset) = v;
1857 
1858 	return 0;
1859 }
1860 
1861 static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
1862 		unsigned int offset, void *p_data, unsigned int bytes)
1863 {
1864 	u32 v = *(u32 *)p_data;
1865 
1866 	if (v & BIT(0)) {
1867 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
1868 			~PHY_RESERVED;
1869 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
1870 			PHY_POWER_GOOD;
1871 	}
1872 
1873 	if (v & BIT(1)) {
1874 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
1875 			~PHY_RESERVED;
1876 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
1877 			PHY_POWER_GOOD;
1878 	}
1879 
1880 
1881 	vgpu_vreg(vgpu, offset) = v;
1882 
1883 	return 0;
1884 }
1885 
1886 static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
1887 		unsigned int offset, void *p_data, unsigned int bytes)
1888 {
1889 	vgpu_vreg(vgpu, offset) = 0;
1890 	return 0;
1891 }
1892 
1893 /*
1894  * FixMe:
1895  * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
1896  * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
1897  * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
1898  * these MI_BATCH_BUFFER.
1899  * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
1900  * PML4 PTE: PAT(0) PCD(1) PWT(1).
1901  * The performance is still expected to be low, will need further improvement.
1902  */
1903 static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
1904 			      void *p_data, unsigned int bytes)
1905 {
1906 	u64 pat =
1907 		GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1908 		GEN8_PPAT(1, 0) |
1909 		GEN8_PPAT(2, 0) |
1910 		GEN8_PPAT(3, CHV_PPAT_SNOOP) |
1911 		GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1912 		GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1913 		GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1914 		GEN8_PPAT(7, CHV_PPAT_SNOOP);
1915 
1916 	vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
1917 
1918 	return 0;
1919 }
1920 
1921 static int guc_status_read(struct intel_vgpu *vgpu,
1922 			   unsigned int offset, void *p_data,
1923 			   unsigned int bytes)
1924 {
1925 	/* keep MIA_IN_RESET before clearing */
1926 	read_vreg(vgpu, offset, p_data, bytes);
1927 	vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
1928 	return 0;
1929 }
1930 
1931 static int mmio_read_from_hw(struct intel_vgpu *vgpu,
1932 		unsigned int offset, void *p_data, unsigned int bytes)
1933 {
1934 	struct intel_gvt *gvt = vgpu->gvt;
1935 	const struct intel_engine_cs *engine =
1936 		intel_gvt_render_mmio_to_engine(gvt, offset);
1937 
1938 	/**
1939 	 * Read HW reg in following case
1940 	 * a. the offset isn't a ring mmio
1941 	 * b. the offset's ring is running on hw.
1942 	 * c. the offset is ring time stamp mmio
1943 	 */
1944 
1945 	if (!engine ||
1946 	    vgpu == gvt->scheduler.engine_owner[engine->id] ||
1947 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
1948 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
1949 		mmio_hw_access_pre(gvt->gt);
1950 		vgpu_vreg(vgpu, offset) =
1951 			intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
1952 		mmio_hw_access_post(gvt->gt);
1953 	}
1954 
1955 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1956 }
1957 
1958 static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1959 		void *p_data, unsigned int bytes)
1960 {
1961 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1962 	const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1963 	struct intel_vgpu_execlist *execlist;
1964 	u32 data = *(u32 *)p_data;
1965 	int ret = 0;
1966 
1967 	if (drm_WARN_ON(&i915->drm, !engine))
1968 		return -EINVAL;
1969 
1970 	/*
1971 	 * Due to d3_entered is used to indicate skipping PPGTT invalidation on
1972 	 * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
1973 	 * vGPU reset if in resuming.
1974 	 * In S0ix exit, the device power state also transite from D3 to D0 as
1975 	 * S3 resume, but no vGPU reset (triggered by QEMU devic model). After
1976 	 * S0ix exit, all engines continue to work. However the d3_entered
1977 	 * remains set which will break next vGPU reset logic (miss the expected
1978 	 * PPGTT invalidation).
1979 	 * Engines can only work in D0. Thus the 1st elsp write gives GVT a
1980 	 * chance to clear d3_entered.
1981 	 */
1982 	if (vgpu->d3_entered)
1983 		vgpu->d3_entered = false;
1984 
1985 	execlist = &vgpu->submission.execlist[engine->id];
1986 
1987 	execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
1988 	if (execlist->elsp_dwords.index == 3) {
1989 		ret = intel_vgpu_submit_execlist(vgpu, engine);
1990 		if(ret)
1991 			gvt_vgpu_err("fail submit workload on ring %s\n",
1992 				     engine->name);
1993 	}
1994 
1995 	++execlist->elsp_dwords.index;
1996 	execlist->elsp_dwords.index &= 0x3;
1997 	return ret;
1998 }
1999 
2000 static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
2001 		void *p_data, unsigned int bytes)
2002 {
2003 	u32 data = *(u32 *)p_data;
2004 	const struct intel_engine_cs *engine =
2005 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
2006 	bool enable_execlist;
2007 	int ret;
2008 
2009 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
2010 	if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2011 	    IS_COMETLAKE(vgpu->gvt->gt->i915))
2012 		(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
2013 	write_vreg(vgpu, offset, p_data, bytes);
2014 
2015 	if (IS_MASKED_BITS_ENABLED(data, 1)) {
2016 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2017 		return 0;
2018 	}
2019 
2020 	if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2021 	     IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
2022 	    IS_MASKED_BITS_ENABLED(data, 2)) {
2023 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2024 		return 0;
2025 	}
2026 
2027 	/* when PPGTT mode enabled, we will check if guest has called
2028 	 * pvinfo, if not, we will treat this guest as non-gvtg-aware
2029 	 * guest, and stop emulating its cfg space, mmio, gtt, etc.
2030 	 */
2031 	if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
2032 	    IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
2033 	    !vgpu->pv_notified) {
2034 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2035 		return 0;
2036 	}
2037 	if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
2038 	    IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
2039 		enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
2040 
2041 		gvt_dbg_core("EXECLIST %s on ring %s\n",
2042 			     (enable_execlist ? "enabling" : "disabling"),
2043 			     engine->name);
2044 
2045 		if (!enable_execlist)
2046 			return 0;
2047 
2048 		ret = intel_vgpu_select_submission_ops(vgpu,
2049 						       engine->mask,
2050 						       INTEL_VGPU_EXECLIST_SUBMISSION);
2051 		if (ret)
2052 			return ret;
2053 
2054 		intel_vgpu_start_schedule(vgpu);
2055 	}
2056 	return 0;
2057 }
2058 
2059 static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
2060 		unsigned int offset, void *p_data, unsigned int bytes)
2061 {
2062 	unsigned int id = 0;
2063 
2064 	write_vreg(vgpu, offset, p_data, bytes);
2065 	vgpu_vreg(vgpu, offset) = 0;
2066 
2067 	switch (offset) {
2068 	case 0x4260:
2069 		id = RCS0;
2070 		break;
2071 	case 0x4264:
2072 		id = VCS0;
2073 		break;
2074 	case 0x4268:
2075 		id = VCS1;
2076 		break;
2077 	case 0x426c:
2078 		id = BCS0;
2079 		break;
2080 	case 0x4270:
2081 		id = VECS0;
2082 		break;
2083 	default:
2084 		return -EINVAL;
2085 	}
2086 	set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
2087 
2088 	return 0;
2089 }
2090 
2091 static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
2092 	unsigned int offset, void *p_data, unsigned int bytes)
2093 {
2094 	u32 data;
2095 
2096 	write_vreg(vgpu, offset, p_data, bytes);
2097 	data = vgpu_vreg(vgpu, offset);
2098 
2099 	if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
2100 		data |= RESET_CTL_READY_TO_RESET;
2101 	else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
2102 		data &= ~RESET_CTL_READY_TO_RESET;
2103 
2104 	vgpu_vreg(vgpu, offset) = data;
2105 	return 0;
2106 }
2107 
2108 static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
2109 				    unsigned int offset, void *p_data,
2110 				    unsigned int bytes)
2111 {
2112 	u32 data = *(u32 *)p_data;
2113 
2114 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
2115 	write_vreg(vgpu, offset, p_data, bytes);
2116 
2117 	if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
2118 	    IS_MASKED_BITS_ENABLED(data, 0x8))
2119 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2120 
2121 	return 0;
2122 }
2123 
2124 #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
2125 	ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
2126 		s, f, am, rm, d, r, w); \
2127 	if (ret) \
2128 		return ret; \
2129 } while (0)
2130 
2131 #define MMIO_DH(reg, d, r, w) \
2132 	MMIO_F(reg, 4, 0, 0, 0, d, r, w)
2133 
2134 #define MMIO_DFH(reg, d, f, r, w) \
2135 	MMIO_F(reg, 4, f, 0, 0, d, r, w)
2136 
2137 #define MMIO_GM(reg, d, r, w) \
2138 	MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
2139 
2140 #define MMIO_GM_RDR(reg, d, r, w) \
2141 	MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
2142 
2143 #define MMIO_RO(reg, d, f, rm, r, w) \
2144 	MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
2145 
2146 #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
2147 	MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
2148 	MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
2149 	MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
2150 	MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
2151 	if (HAS_ENGINE(gvt->gt, VCS1)) \
2152 		MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
2153 } while (0)
2154 
2155 #define MMIO_RING_DFH(prefix, d, f, r, w) \
2156 	MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
2157 
2158 #define MMIO_RING_GM(prefix, d, r, w) \
2159 	MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
2160 
2161 #define MMIO_RING_GM_RDR(prefix, d, r, w) \
2162 	MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
2163 
2164 #define MMIO_RING_RO(prefix, d, f, rm, r, w) \
2165 	MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
2166 
2167 static int init_generic_mmio_info(struct intel_gvt *gvt)
2168 {
2169 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2170 	int ret;
2171 
2172 	MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
2173 		intel_vgpu_reg_imr_handler);
2174 
2175 	MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
2176 	MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
2177 	MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
2178 
2179 	MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
2180 
2181 
2182 	MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
2183 		gamw_echo_dev_rw_ia_write);
2184 
2185 	MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2186 	MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2187 	MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2188 
2189 #define RING_REG(base) _MMIO((base) + 0x28)
2190 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2191 #undef RING_REG
2192 
2193 #define RING_REG(base) _MMIO((base) + 0x134)
2194 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2195 #undef RING_REG
2196 
2197 #define RING_REG(base) _MMIO((base) + 0x6c)
2198 	MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
2199 #undef RING_REG
2200 	MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
2201 
2202 	MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
2203 	MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
2204 	MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
2205 
2206 	MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
2207 	MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
2208 	MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
2209 	MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
2210 	MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
2211 
2212 	/* RING MODE */
2213 #define RING_REG(base) _MMIO((base) + 0x29c)
2214 	MMIO_RING_DFH(RING_REG, D_ALL,
2215 		F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
2216 		ring_mode_mmio_write);
2217 #undef RING_REG
2218 
2219 	MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2220 		NULL, NULL);
2221 	MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2222 			NULL, NULL);
2223 	MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
2224 			mmio_read_from_hw, NULL);
2225 	MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
2226 			mmio_read_from_hw, NULL);
2227 
2228 	MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2229 	MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2230 		NULL, NULL);
2231 	MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2232 	MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2233 	MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2234 
2235 	MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2236 	MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2237 	MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2238 	MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
2239 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2240 	MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2241 	MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
2242 	MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2243 		NULL, NULL);
2244 	MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2245 		 NULL, NULL);
2246 	MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
2247 	MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
2248 	MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
2249 	MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
2250 	MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
2251 	MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
2252 	MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2253 	MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2254 	MMIO_DFH(HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2255 	MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2256 
2257 	/* display */
2258 	MMIO_DH(PIPECONF(PIPE_A), D_ALL, NULL, pipeconf_mmio_write);
2259 	MMIO_DH(PIPECONF(PIPE_B), D_ALL, NULL, pipeconf_mmio_write);
2260 	MMIO_DH(PIPECONF(PIPE_C), D_ALL, NULL, pipeconf_mmio_write);
2261 	MMIO_DH(PIPECONF(_PIPE_EDP), D_ALL, NULL, pipeconf_mmio_write);
2262 	MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
2263 	MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
2264 		reg50080_mmio_write);
2265 	MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
2266 	MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
2267 		reg50080_mmio_write);
2268 	MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
2269 	MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
2270 		reg50080_mmio_write);
2271 	MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
2272 	MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
2273 		reg50080_mmio_write);
2274 	MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
2275 	MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
2276 		reg50080_mmio_write);
2277 	MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
2278 	MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
2279 		reg50080_mmio_write);
2280 
2281 	MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
2282 		gmbus_mmio_write);
2283 	MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
2284 
2285 	MMIO_F(_MMIO(_PCH_DPB_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2286 		dp_aux_ch_ctl_mmio_write);
2287 	MMIO_F(_MMIO(_PCH_DPC_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2288 		dp_aux_ch_ctl_mmio_write);
2289 	MMIO_F(_MMIO(_PCH_DPD_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2290 		dp_aux_ch_ctl_mmio_write);
2291 
2292 	MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
2293 
2294 	MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
2295 	MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
2296 
2297 	MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
2298 	MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
2299 	MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
2300 	MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2301 	MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2302 	MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2303 	MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2304 	MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2305 	MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2306 	MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
2307 	MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
2308 	MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
2309 	MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
2310 	MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
2311 	MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
2312 	MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
2313 
2314 	MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
2315 		PORTA_HOTPLUG_STATUS_MASK
2316 		| PORTB_HOTPLUG_STATUS_MASK
2317 		| PORTC_HOTPLUG_STATUS_MASK
2318 		| PORTD_HOTPLUG_STATUS_MASK,
2319 		NULL, NULL);
2320 
2321 	MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
2322 	MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
2323 	MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
2324 	MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
2325 	MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
2326 
2327 	MMIO_F(_MMIO(_DPA_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_ALL, NULL,
2328 		dp_aux_ch_ctl_mmio_write);
2329 
2330 	MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2331 	MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2332 	MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2333 	MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2334 	MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2335 
2336 	MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
2337 	MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
2338 	MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
2339 	MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
2340 	MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
2341 
2342 	MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
2343 	MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
2344 	MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
2345 	MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
2346 	MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
2347 
2348 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
2349 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
2350 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
2351 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
2352 
2353 	MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
2354 	MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2355 	MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2356 	MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
2357 	MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
2358 	MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
2359 	MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
2360 	MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
2361 	MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
2362 	MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
2363 	MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
2364 	MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
2365 	MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
2366 
2367 	MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
2368 	MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
2369 	MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
2370 
2371 	MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
2372 	MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
2373 
2374 	MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
2375 	MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
2376 
2377 	MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
2378 	MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2379 	MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2380 	MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2381 	MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2382 	MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2383 
2384 	MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2385 	MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2386 	MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2387 	MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2388 
2389 	MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2390 	MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2391 	MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2392 
2393 	MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2394 	MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2395 	MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2396 	MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2397 	MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2398 	MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2399 	MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2400 	MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2401 	MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2402 	MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2403 	MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2404 	MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2405 	MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2406 	MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2407 	MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2408 	MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2409 	MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2410 
2411 	MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2412 	MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
2413 	MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2414 	MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2415 	MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2416 	MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
2417 	MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
2418 	MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2419 	MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2420 	MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2421 	MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2422 
2423 	MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2424 	MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2425 	MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
2426 
2427 	return 0;
2428 }
2429 
2430 static int init_bdw_mmio_info(struct intel_gvt *gvt)
2431 {
2432 	int ret;
2433 
2434 	MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2435 	MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2436 	MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2437 
2438 	MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2439 	MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2440 	MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2441 
2442 	MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2443 	MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2444 	MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2445 
2446 	MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2447 	MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2448 	MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2449 
2450 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
2451 		intel_vgpu_reg_imr_handler);
2452 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
2453 		intel_vgpu_reg_ier_handler);
2454 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
2455 		intel_vgpu_reg_iir_handler);
2456 
2457 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
2458 		intel_vgpu_reg_imr_handler);
2459 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
2460 		intel_vgpu_reg_ier_handler);
2461 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
2462 		intel_vgpu_reg_iir_handler);
2463 
2464 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
2465 		intel_vgpu_reg_imr_handler);
2466 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
2467 		intel_vgpu_reg_ier_handler);
2468 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
2469 		intel_vgpu_reg_iir_handler);
2470 
2471 	MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2472 	MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2473 	MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2474 
2475 	MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2476 	MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2477 	MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2478 
2479 	MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2480 	MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2481 	MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2482 
2483 	MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
2484 		intel_vgpu_reg_master_irq_handler);
2485 
2486 	MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
2487 		mmio_read_from_hw, NULL);
2488 
2489 #define RING_REG(base) _MMIO((base) + 0xd0)
2490 	MMIO_RING_F(RING_REG, 4, F_RO, 0,
2491 		~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
2492 		ring_reset_ctl_write);
2493 #undef RING_REG
2494 
2495 #define RING_REG(base) _MMIO((base) + 0x230)
2496 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
2497 #undef RING_REG
2498 
2499 #define RING_REG(base) _MMIO((base) + 0x234)
2500 	MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
2501 		NULL, NULL);
2502 #undef RING_REG
2503 
2504 #define RING_REG(base) _MMIO((base) + 0x244)
2505 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2506 #undef RING_REG
2507 
2508 #define RING_REG(base) _MMIO((base) + 0x370)
2509 	MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
2510 #undef RING_REG
2511 
2512 #define RING_REG(base) _MMIO((base) + 0x3a0)
2513 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
2514 #undef RING_REG
2515 
2516 	MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
2517 
2518 #define RING_REG(base) _MMIO((base) + 0x270)
2519 	MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2520 #undef RING_REG
2521 
2522 	MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
2523 
2524 	MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2525 
2526 	MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2527 		NULL, NULL);
2528 	MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2529 		NULL, NULL);
2530 	MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2531 
2532 	MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2533 	MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2534 	MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2535 	MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
2536 	MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
2537 
2538 	MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
2539 		D_BDW_PLUS, NULL, force_nonpriv_write);
2540 
2541 	MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
2542 
2543 	MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
2544 
2545 	MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2546 	MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2547 	MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2548 	MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2549 
2550 	MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
2551 
2552 	MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2553 	MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2554 	MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2555 	MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2556 	MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2557 	MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2558 	MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2559 	MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2560 	MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2561 	MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2562 	return 0;
2563 }
2564 
2565 static int init_skl_mmio_info(struct intel_gvt *gvt)
2566 {
2567 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2568 	int ret;
2569 
2570 	MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2571 	MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
2572 	MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2573 	MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
2574 	MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2575 	MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
2576 
2577 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2578 						dp_aux_ch_ctl_mmio_write);
2579 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2580 						dp_aux_ch_ctl_mmio_write);
2581 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2582 						dp_aux_ch_ctl_mmio_write);
2583 
2584 	MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
2585 
2586 	MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
2587 
2588 	MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2589 	MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2590 	MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
2591 	MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2592 	MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2593 	MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
2594 
2595 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2596 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2597 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2598 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2599 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2600 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2601 
2602 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2603 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2604 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2605 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2606 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2607 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2608 
2609 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2610 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2611 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2612 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2613 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2614 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2615 
2616 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2617 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2618 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2619 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2620 
2621 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2622 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2623 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2624 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2625 
2626 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2627 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2628 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2629 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2630 
2631 	MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
2632 	MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
2633 	MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
2634 
2635 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2636 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2637 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2638 
2639 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2640 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2641 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2642 
2643 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2644 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2645 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2646 
2647 	MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
2648 	MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
2649 	MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
2650 
2651 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2652 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2653 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2654 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2655 
2656 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2657 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2658 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2659 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2660 
2661 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2662 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2663 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2664 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2665 
2666 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
2667 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
2668 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
2669 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
2670 
2671 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
2672 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
2673 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
2674 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
2675 
2676 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
2677 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
2678 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
2679 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
2680 
2681 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
2682 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
2683 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
2684 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
2685 
2686 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
2687 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
2688 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
2689 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
2690 
2691 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
2692 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
2693 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
2694 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
2695 
2696 	MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2697 
2698 	MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2699 		NULL, NULL);
2700 	MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2701 		NULL, NULL);
2702 
2703 	MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
2704 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2705 	MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2706 		NULL, NULL);
2707 
2708 	/* TRTT */
2709 	MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2710 	MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2711 	MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2712 	MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2713 	MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2714 	MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
2715 		 NULL, gen9_trtte_write);
2716 	MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
2717 		 NULL, gen9_trtt_chicken_write);
2718 
2719 	MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2720 	MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
2721 
2722 #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
2723 	MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2724 		      NULL, csfe_chicken1_mmio_write);
2725 #undef CSFE_CHICKEN1_REG
2726 	MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2727 		 NULL, NULL);
2728 	MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2729 		 NULL, NULL);
2730 
2731 	MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
2732 	MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2733 
2734 	return 0;
2735 }
2736 
2737 static int init_bxt_mmio_info(struct intel_gvt *gvt)
2738 {
2739 	int ret;
2740 
2741 	MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
2742 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
2743 		NULL, bxt_phy_ctl_family_write);
2744 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
2745 		NULL, bxt_phy_ctl_family_write);
2746 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
2747 		NULL, bxt_port_pll_enable_write);
2748 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
2749 		NULL, bxt_port_pll_enable_write);
2750 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
2751 		bxt_port_pll_enable_write);
2752 
2753 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
2754 		NULL, bxt_pcs_dw12_grp_write);
2755 	MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH0), D_BXT,
2756 		bxt_port_tx_dw3_read, NULL);
2757 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
2758 		NULL, bxt_pcs_dw12_grp_write);
2759 	MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH1), D_BXT,
2760 		bxt_port_tx_dw3_read, NULL);
2761 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
2762 		NULL, bxt_pcs_dw12_grp_write);
2763 	MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY1, DPIO_CH0), D_BXT,
2764 		bxt_port_tx_dw3_read, NULL);
2765 	MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
2766 	MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
2767 	MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2768 	MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
2769 	MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2770 	       0, 0, D_BXT, NULL, NULL);
2771 	MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2772 	       0, 0, D_BXT, NULL, NULL);
2773 	MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2774 	       0, 0, D_BXT, NULL, NULL);
2775 	MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2776 	       0, 0, D_BXT, NULL, NULL);
2777 
2778 	MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2779 
2780 	MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
2781 
2782 	return 0;
2783 }
2784 
2785 static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
2786 					      unsigned int offset)
2787 {
2788 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2789 	int num = gvt->mmio.num_mmio_block;
2790 	int i;
2791 
2792 	for (i = 0; i < num; i++, block++) {
2793 		if (offset >= i915_mmio_reg_offset(block->offset) &&
2794 		    offset < i915_mmio_reg_offset(block->offset) + block->size)
2795 			return block;
2796 	}
2797 	return NULL;
2798 }
2799 
2800 /**
2801  * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
2802  * @gvt: GVT device
2803  *
2804  * This function is called at the driver unloading stage, to clean up the MMIO
2805  * information table of GVT device
2806  *
2807  */
2808 void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
2809 {
2810 	struct hlist_node *tmp;
2811 	struct intel_gvt_mmio_info *e;
2812 	int i;
2813 
2814 	hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
2815 		kfree(e);
2816 
2817 	kfree(gvt->mmio.mmio_block);
2818 	gvt->mmio.mmio_block = NULL;
2819 	gvt->mmio.num_mmio_block = 0;
2820 
2821 	vfree(gvt->mmio.mmio_attribute);
2822 	gvt->mmio.mmio_attribute = NULL;
2823 }
2824 
2825 static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2826 		       u32 size)
2827 {
2828 	struct intel_gvt *gvt = iter->data;
2829 	struct intel_gvt_mmio_info *info, *p;
2830 	u32 start, end, i;
2831 
2832 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
2833 		return -EINVAL;
2834 
2835 	start = offset;
2836 	end = offset + size;
2837 
2838 	for (i = start; i < end; i += 4) {
2839 		p = intel_gvt_find_mmio_info(gvt, i);
2840 		if (p) {
2841 			WARN(1, "dup mmio definition offset %x\n",
2842 				info->offset);
2843 
2844 			/* We return -EEXIST here to make GVT-g load fail.
2845 			 * So duplicated MMIO can be found as soon as
2846 			 * possible.
2847 			 */
2848 			return -EEXIST;
2849 		}
2850 
2851 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2852 		if (!info)
2853 			return -ENOMEM;
2854 
2855 		info->offset = i;
2856 		info->read = intel_vgpu_default_mmio_read;
2857 		info->write = intel_vgpu_default_mmio_write;
2858 		INIT_HLIST_NODE(&info->node);
2859 		hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
2860 		gvt->mmio.num_tracked_mmio++;
2861 	}
2862 	return 0;
2863 }
2864 
2865 static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
2866 			     u32 offset, u32 size)
2867 {
2868 	struct intel_gvt *gvt = iter->data;
2869 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2870 	void *ret;
2871 
2872 	ret = krealloc(block,
2873 			 (gvt->mmio.num_mmio_block + 1) * sizeof(*block),
2874 			 GFP_KERNEL);
2875 	if (!ret)
2876 		return -ENOMEM;
2877 
2878 	gvt->mmio.mmio_block = block = ret;
2879 
2880 	block += gvt->mmio.num_mmio_block;
2881 
2882 	memset(block, 0, sizeof(*block));
2883 
2884 	block->offset = _MMIO(offset);
2885 	block->size = size;
2886 
2887 	gvt->mmio.num_mmio_block++;
2888 
2889 	return 0;
2890 }
2891 
2892 static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2893 			  u32 size)
2894 {
2895 	if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
2896 		return handle_mmio(iter, offset, size);
2897 	else
2898 		return handle_mmio_block(iter, offset, size);
2899 }
2900 
2901 static int init_mmio_info(struct intel_gvt *gvt)
2902 {
2903 	struct intel_gvt_mmio_table_iter iter = {
2904 		.i915 = gvt->gt->i915,
2905 		.data = gvt,
2906 		.handle_mmio_cb = handle_mmio_cb,
2907 	};
2908 
2909 	return intel_gvt_iterate_mmio_table(&iter);
2910 }
2911 
2912 static int init_mmio_block_handlers(struct intel_gvt *gvt)
2913 {
2914 	struct gvt_mmio_block *block;
2915 
2916 	block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
2917 	if (!block) {
2918 		WARN(1, "fail to assign handlers to mmio block %x\n",
2919 		     i915_mmio_reg_offset(block->offset));
2920 		return -ENODEV;
2921 	}
2922 
2923 	block->read = pvinfo_mmio_read;
2924 	block->write = pvinfo_mmio_write;
2925 
2926 	return 0;
2927 }
2928 
2929 /**
2930  * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
2931  * @gvt: GVT device
2932  *
2933  * This function is called at the initialization stage, to setup the MMIO
2934  * information table for GVT device
2935  *
2936  * Returns:
2937  * zero on success, negative if failed.
2938  */
2939 int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
2940 {
2941 	struct intel_gvt_device_info *info = &gvt->device_info;
2942 	struct drm_i915_private *i915 = gvt->gt->i915;
2943 	int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
2944 	int ret;
2945 
2946 	gvt->mmio.mmio_attribute = vzalloc(size);
2947 	if (!gvt->mmio.mmio_attribute)
2948 		return -ENOMEM;
2949 
2950 	ret = init_mmio_info(gvt);
2951 	if (ret)
2952 		goto err;
2953 
2954 	ret = init_mmio_block_handlers(gvt);
2955 	if (ret)
2956 		goto err;
2957 
2958 	ret = init_generic_mmio_info(gvt);
2959 	if (ret)
2960 		goto err;
2961 
2962 	if (IS_BROADWELL(i915)) {
2963 		ret = init_bdw_mmio_info(gvt);
2964 		if (ret)
2965 			goto err;
2966 	} else if (IS_SKYLAKE(i915) ||
2967 		   IS_KABYLAKE(i915) ||
2968 		   IS_COFFEELAKE(i915) ||
2969 		   IS_COMETLAKE(i915)) {
2970 		ret = init_bdw_mmio_info(gvt);
2971 		if (ret)
2972 			goto err;
2973 		ret = init_skl_mmio_info(gvt);
2974 		if (ret)
2975 			goto err;
2976 	} else if (IS_BROXTON(i915)) {
2977 		ret = init_bdw_mmio_info(gvt);
2978 		if (ret)
2979 			goto err;
2980 		ret = init_skl_mmio_info(gvt);
2981 		if (ret)
2982 			goto err;
2983 		ret = init_bxt_mmio_info(gvt);
2984 		if (ret)
2985 			goto err;
2986 	}
2987 
2988 	return 0;
2989 err:
2990 	intel_gvt_clean_mmio_info(gvt);
2991 	return ret;
2992 }
2993 
2994 /**
2995  * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
2996  * @gvt: a GVT device
2997  * @handler: the handler
2998  * @data: private data given to handler
2999  *
3000  * Returns:
3001  * Zero on success, negative error code if failed.
3002  */
3003 int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
3004 	int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
3005 	void *data)
3006 {
3007 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
3008 	struct intel_gvt_mmio_info *e;
3009 	int i, j, ret;
3010 
3011 	hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
3012 		ret = handler(gvt, e->offset, data);
3013 		if (ret)
3014 			return ret;
3015 	}
3016 
3017 	for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
3018 		/* pvinfo data doesn't come from hw mmio */
3019 		if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
3020 			continue;
3021 
3022 		for (j = 0; j < block->size; j += 4) {
3023 			ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
3024 			if (ret)
3025 				return ret;
3026 		}
3027 	}
3028 	return 0;
3029 }
3030 
3031 /**
3032  * intel_vgpu_default_mmio_read - default MMIO read handler
3033  * @vgpu: a vGPU
3034  * @offset: access offset
3035  * @p_data: data return buffer
3036  * @bytes: access data length
3037  *
3038  * Returns:
3039  * Zero on success, negative error code if failed.
3040  */
3041 int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
3042 		void *p_data, unsigned int bytes)
3043 {
3044 	read_vreg(vgpu, offset, p_data, bytes);
3045 	return 0;
3046 }
3047 
3048 /**
3049  * intel_t_default_mmio_write - default MMIO write handler
3050  * @vgpu: a vGPU
3051  * @offset: access offset
3052  * @p_data: write data buffer
3053  * @bytes: access data length
3054  *
3055  * Returns:
3056  * Zero on success, negative error code if failed.
3057  */
3058 int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3059 		void *p_data, unsigned int bytes)
3060 {
3061 	write_vreg(vgpu, offset, p_data, bytes);
3062 	return 0;
3063 }
3064 
3065 /**
3066  * intel_vgpu_mask_mmio_write - write mask register
3067  * @vgpu: a vGPU
3068  * @offset: access offset
3069  * @p_data: write data buffer
3070  * @bytes: access data length
3071  *
3072  * Returns:
3073  * Zero on success, negative error code if failed.
3074  */
3075 int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3076 		void *p_data, unsigned int bytes)
3077 {
3078 	u32 mask, old_vreg;
3079 
3080 	old_vreg = vgpu_vreg(vgpu, offset);
3081 	write_vreg(vgpu, offset, p_data, bytes);
3082 	mask = vgpu_vreg(vgpu, offset) >> 16;
3083 	vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
3084 				(vgpu_vreg(vgpu, offset) & mask);
3085 
3086 	return 0;
3087 }
3088 
3089 /**
3090  * intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be
3091  * force-nopriv register
3092  *
3093  * @gvt: a GVT device
3094  * @offset: register offset
3095  *
3096  * Returns:
3097  * True if the register is in force-nonpriv whitelist;
3098  * False if outside;
3099  */
3100 bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt,
3101 					  unsigned int offset)
3102 {
3103 	return in_whitelist(offset);
3104 }
3105 
3106 /**
3107  * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
3108  * @vgpu: a vGPU
3109  * @offset: register offset
3110  * @pdata: data buffer
3111  * @bytes: data length
3112  * @is_read: read or write
3113  *
3114  * Returns:
3115  * Zero on success, negative error code if failed.
3116  */
3117 int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
3118 			   void *pdata, unsigned int bytes, bool is_read)
3119 {
3120 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
3121 	struct intel_gvt *gvt = vgpu->gvt;
3122 	struct intel_gvt_mmio_info *mmio_info;
3123 	struct gvt_mmio_block *mmio_block;
3124 	gvt_mmio_func func;
3125 	int ret;
3126 
3127 	if (drm_WARN_ON(&i915->drm, bytes > 8))
3128 		return -EINVAL;
3129 
3130 	/*
3131 	 * Handle special MMIO blocks.
3132 	 */
3133 	mmio_block = find_mmio_block(gvt, offset);
3134 	if (mmio_block) {
3135 		func = is_read ? mmio_block->read : mmio_block->write;
3136 		if (func)
3137 			return func(vgpu, offset, pdata, bytes);
3138 		goto default_rw;
3139 	}
3140 
3141 	/*
3142 	 * Normal tracked MMIOs.
3143 	 */
3144 	mmio_info = intel_gvt_find_mmio_info(gvt, offset);
3145 	if (!mmio_info) {
3146 		gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
3147 		goto default_rw;
3148 	}
3149 
3150 	if (is_read)
3151 		return mmio_info->read(vgpu, offset, pdata, bytes);
3152 	else {
3153 		u64 ro_mask = mmio_info->ro_mask;
3154 		u32 old_vreg = 0;
3155 		u64 data = 0;
3156 
3157 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3158 			old_vreg = vgpu_vreg(vgpu, offset);
3159 		}
3160 
3161 		if (likely(!ro_mask))
3162 			ret = mmio_info->write(vgpu, offset, pdata, bytes);
3163 		else if (!~ro_mask) {
3164 			gvt_vgpu_err("try to write RO reg %x\n", offset);
3165 			return 0;
3166 		} else {
3167 			/* keep the RO bits in the virtual register */
3168 			memcpy(&data, pdata, bytes);
3169 			data &= ~ro_mask;
3170 			data |= vgpu_vreg(vgpu, offset) & ro_mask;
3171 			ret = mmio_info->write(vgpu, offset, &data, bytes);
3172 		}
3173 
3174 		/* higher 16bits of mode ctl regs are mask bits for change */
3175 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3176 			u32 mask = vgpu_vreg(vgpu, offset) >> 16;
3177 
3178 			vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
3179 					| (vgpu_vreg(vgpu, offset) & mask);
3180 		}
3181 	}
3182 
3183 	return ret;
3184 
3185 default_rw:
3186 	return is_read ?
3187 		intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
3188 		intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
3189 }
3190 
3191 void intel_gvt_restore_fence(struct intel_gvt *gvt)
3192 {
3193 	struct intel_vgpu *vgpu;
3194 	int i, id;
3195 
3196 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3197 		mmio_hw_access_pre(gvt->gt);
3198 		for (i = 0; i < vgpu_fence_sz(vgpu); i++)
3199 			intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
3200 		mmio_hw_access_post(gvt->gt);
3201 	}
3202 }
3203 
3204 static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
3205 {
3206 	struct intel_vgpu *vgpu = data;
3207 	struct drm_i915_private *dev_priv = gvt->gt->i915;
3208 
3209 	if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
3210 		intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
3211 
3212 	return 0;
3213 }
3214 
3215 void intel_gvt_restore_mmio(struct intel_gvt *gvt)
3216 {
3217 	struct intel_vgpu *vgpu;
3218 	int id;
3219 
3220 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3221 		mmio_hw_access_pre(gvt->gt);
3222 		intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
3223 		mmio_hw_access_post(gvt->gt);
3224 	}
3225 }
3226