xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/handlers.c (revision c4c3c32d)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Kevin Tian <kevin.tian@intel.com>
25  *    Eddie Dong <eddie.dong@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Tina Zhang <tina.zhang@intel.com>
31  *    Pei Zhang <pei.zhang@intel.com>
32  *    Niu Bing <bing.niu@intel.com>
33  *    Ping Gao <ping.a.gao@intel.com>
34  *    Zhi Wang <zhi.a.wang@intel.com>
35  *
36 
37  */
38 
39 #include "i915_drv.h"
40 #include "i915_reg.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "intel_mchbar_regs.h"
44 #include "display/intel_display_types.h"
45 #include "display/intel_dmc_regs.h"
46 #include "display/intel_dp_aux_regs.h"
47 #include "display/intel_dpio_phy.h"
48 #include "display/intel_fbc.h"
49 #include "display/intel_fdi_regs.h"
50 #include "display/intel_pps_regs.h"
51 #include "display/intel_psr_regs.h"
52 #include "display/skl_watermark_regs.h"
53 #include "display/vlv_dsi_pll_regs.h"
54 #include "gt/intel_gt_regs.h"
55 
56 /* XXX FIXME i915 has changed PP_XXX definition */
57 #define PCH_PP_STATUS  _MMIO(0xc7200)
58 #define PCH_PP_CONTROL _MMIO(0xc7204)
59 #define PCH_PP_ON_DELAYS _MMIO(0xc7208)
60 #define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
61 #define PCH_PP_DIVISOR _MMIO(0xc7210)
62 
63 unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
64 {
65 	struct drm_i915_private *i915 = gvt->gt->i915;
66 
67 	if (IS_BROADWELL(i915))
68 		return D_BDW;
69 	else if (IS_SKYLAKE(i915))
70 		return D_SKL;
71 	else if (IS_KABYLAKE(i915))
72 		return D_KBL;
73 	else if (IS_BROXTON(i915))
74 		return D_BXT;
75 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
76 		return D_CFL;
77 
78 	return 0;
79 }
80 
81 static bool intel_gvt_match_device(struct intel_gvt *gvt,
82 		unsigned long device)
83 {
84 	return intel_gvt_get_device_type(gvt) & device;
85 }
86 
87 static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
88 	void *p_data, unsigned int bytes)
89 {
90 	memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
91 }
92 
93 static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
94 	void *p_data, unsigned int bytes)
95 {
96 	memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
97 }
98 
99 struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
100 						  unsigned int offset)
101 {
102 	struct intel_gvt_mmio_info *e;
103 
104 	hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
105 		if (e->offset == offset)
106 			return e;
107 	}
108 	return NULL;
109 }
110 
111 static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
112 			   u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
113 			   gvt_mmio_func read, gvt_mmio_func write)
114 {
115 	struct intel_gvt_mmio_info *p;
116 	u32 start, end, i;
117 
118 	if (!intel_gvt_match_device(gvt, device))
119 		return 0;
120 
121 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
122 		return -EINVAL;
123 
124 	start = offset;
125 	end = offset + size;
126 
127 	for (i = start; i < end; i += 4) {
128 		p = intel_gvt_find_mmio_info(gvt, i);
129 		if (!p) {
130 			WARN(1, "assign a handler to a non-tracked mmio %x\n",
131 				i);
132 			return -ENODEV;
133 		}
134 		p->ro_mask = ro_mask;
135 		gvt->mmio.mmio_attribute[i / 4] = flags;
136 		if (read)
137 			p->read = read;
138 		if (write)
139 			p->write = write;
140 	}
141 	return 0;
142 }
143 
144 /**
145  * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
146  * @gvt: a GVT device
147  * @offset: register offset
148  *
149  * Returns:
150  * The engine containing the offset within its mmio page.
151  */
152 const struct intel_engine_cs *
153 intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
154 {
155 	struct intel_engine_cs *engine;
156 	enum intel_engine_id id;
157 
158 	offset &= ~GENMASK(11, 0);
159 	for_each_engine(engine, gvt->gt, id)
160 		if (engine->mmio_base == offset)
161 			return engine;
162 
163 	return NULL;
164 }
165 
166 #define offset_to_fence_num(offset) \
167 	((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
168 
169 #define fence_num_to_offset(num) \
170 	(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
171 
172 
173 void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
174 {
175 	switch (reason) {
176 	case GVT_FAILSAFE_UNSUPPORTED_GUEST:
177 		pr_err("Detected your guest driver doesn't support GVT-g.\n");
178 		break;
179 	case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
180 		pr_err("Graphics resource is not enough for the guest\n");
181 		break;
182 	case GVT_FAILSAFE_GUEST_ERR:
183 		pr_err("GVT Internal error  for the guest\n");
184 		break;
185 	default:
186 		break;
187 	}
188 	pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
189 	vgpu->failsafe = true;
190 }
191 
192 static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
193 		unsigned int fence_num, void *p_data, unsigned int bytes)
194 {
195 	unsigned int max_fence = vgpu_fence_sz(vgpu);
196 
197 	if (fence_num >= max_fence) {
198 		gvt_vgpu_err("access oob fence reg %d/%d\n",
199 			     fence_num, max_fence);
200 
201 		/* When guest access oob fence regs without access
202 		 * pv_info first, we treat guest not supporting GVT,
203 		 * and we will let vgpu enter failsafe mode.
204 		 */
205 		if (!vgpu->pv_notified)
206 			enter_failsafe_mode(vgpu,
207 					GVT_FAILSAFE_UNSUPPORTED_GUEST);
208 
209 		memset(p_data, 0, bytes);
210 		return -EINVAL;
211 	}
212 	return 0;
213 }
214 
215 static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
216 		unsigned int offset, void *p_data, unsigned int bytes)
217 {
218 	u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
219 
220 	if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
221 		if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
222 			gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
223 		else if (!ips)
224 			gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
225 		else {
226 			/* All engines must be enabled together for vGPU,
227 			 * since we don't know which engine the ppgtt will
228 			 * bind to when shadowing.
229 			 */
230 			gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
231 				     ips);
232 			return -EINVAL;
233 		}
234 	}
235 
236 	write_vreg(vgpu, offset, p_data, bytes);
237 	return 0;
238 }
239 
240 static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
241 		void *p_data, unsigned int bytes)
242 {
243 	int ret;
244 
245 	ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
246 			p_data, bytes);
247 	if (ret)
248 		return ret;
249 	read_vreg(vgpu, off, p_data, bytes);
250 	return 0;
251 }
252 
253 static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
254 		void *p_data, unsigned int bytes)
255 {
256 	struct intel_gvt *gvt = vgpu->gvt;
257 	unsigned int fence_num = offset_to_fence_num(off);
258 	int ret;
259 
260 	ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
261 	if (ret)
262 		return ret;
263 	write_vreg(vgpu, off, p_data, bytes);
264 
265 	mmio_hw_access_pre(gvt->gt);
266 	intel_vgpu_write_fence(vgpu, fence_num,
267 			vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
268 	mmio_hw_access_post(gvt->gt);
269 	return 0;
270 }
271 
272 #define CALC_MODE_MASK_REG(old, new) \
273 	(((new) & GENMASK(31, 16)) \
274 	 | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
275 	 | ((new) & ((new) >> 16))))
276 
277 static int mul_force_wake_write(struct intel_vgpu *vgpu,
278 		unsigned int offset, void *p_data, unsigned int bytes)
279 {
280 	u32 old, new;
281 	u32 ack_reg_offset;
282 
283 	old = vgpu_vreg(vgpu, offset);
284 	new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
285 
286 	if (GRAPHICS_VER(vgpu->gvt->gt->i915)  >=  9) {
287 		switch (offset) {
288 		case FORCEWAKE_RENDER_GEN9_REG:
289 			ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
290 			break;
291 		case FORCEWAKE_GT_GEN9_REG:
292 			ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
293 			break;
294 		case FORCEWAKE_MEDIA_GEN9_REG:
295 			ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
296 			break;
297 		default:
298 			/*should not hit here*/
299 			gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
300 			return -EINVAL;
301 		}
302 	} else {
303 		ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
304 	}
305 
306 	vgpu_vreg(vgpu, offset) = new;
307 	vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
308 	return 0;
309 }
310 
311 static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
312 			    void *p_data, unsigned int bytes)
313 {
314 	intel_engine_mask_t engine_mask = 0;
315 	u32 data;
316 
317 	write_vreg(vgpu, offset, p_data, bytes);
318 	data = vgpu_vreg(vgpu, offset);
319 
320 	if (data & GEN6_GRDOM_FULL) {
321 		gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
322 		engine_mask = ALL_ENGINES;
323 	} else {
324 		if (data & GEN6_GRDOM_RENDER) {
325 			gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
326 			engine_mask |= BIT(RCS0);
327 		}
328 		if (data & GEN6_GRDOM_MEDIA) {
329 			gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
330 			engine_mask |= BIT(VCS0);
331 		}
332 		if (data & GEN6_GRDOM_BLT) {
333 			gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
334 			engine_mask |= BIT(BCS0);
335 		}
336 		if (data & GEN6_GRDOM_VECS) {
337 			gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
338 			engine_mask |= BIT(VECS0);
339 		}
340 		if (data & GEN8_GRDOM_MEDIA2) {
341 			gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
342 			engine_mask |= BIT(VCS1);
343 		}
344 		if (data & GEN9_GRDOM_GUC) {
345 			gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
346 			vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
347 		}
348 		engine_mask &= vgpu->gvt->gt->info.engine_mask;
349 	}
350 
351 	/* vgpu_lock already hold by emulate mmio r/w */
352 	intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
353 
354 	/* sw will wait for the device to ack the reset request */
355 	vgpu_vreg(vgpu, offset) = 0;
356 
357 	return 0;
358 }
359 
360 static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
361 		void *p_data, unsigned int bytes)
362 {
363 	return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
364 }
365 
366 static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
367 		void *p_data, unsigned int bytes)
368 {
369 	return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
370 }
371 
372 static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
373 		unsigned int offset, void *p_data, unsigned int bytes)
374 {
375 	write_vreg(vgpu, offset, p_data, bytes);
376 
377 	if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
378 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
379 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
380 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
381 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
382 
383 	} else
384 		vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
385 			~(PP_ON | PP_SEQUENCE_POWER_DOWN
386 					| PP_CYCLE_DELAY_ACTIVE);
387 	return 0;
388 }
389 
390 static int transconf_mmio_write(struct intel_vgpu *vgpu,
391 		unsigned int offset, void *p_data, unsigned int bytes)
392 {
393 	write_vreg(vgpu, offset, p_data, bytes);
394 
395 	if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
396 		vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
397 	else
398 		vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
399 	return 0;
400 }
401 
402 static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
403 		void *p_data, unsigned int bytes)
404 {
405 	write_vreg(vgpu, offset, p_data, bytes);
406 
407 	if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
408 		vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
409 	else
410 		vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
411 
412 	if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
413 		vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
414 	else
415 		vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
416 
417 	return 0;
418 }
419 
420 static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
421 		void *p_data, unsigned int bytes)
422 {
423 	switch (offset) {
424 	case 0xe651c:
425 	case 0xe661c:
426 	case 0xe671c:
427 	case 0xe681c:
428 		vgpu_vreg(vgpu, offset) = 1 << 17;
429 		break;
430 	case 0xe6c04:
431 		vgpu_vreg(vgpu, offset) = 0x3;
432 		break;
433 	case 0xe6e1c:
434 		vgpu_vreg(vgpu, offset) = 0x2f << 16;
435 		break;
436 	default:
437 		return -EINVAL;
438 	}
439 
440 	read_vreg(vgpu, offset, p_data, bytes);
441 	return 0;
442 }
443 
444 /*
445  * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
446  *   TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
447  *   setup_virtual_dp_monitor().
448  * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
449  *   DPLL. Later guest driver may setup a different DPLLx when setting mode.
450  * So the correct sequence to find DP stream clock is:
451  *   Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
452  *   Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
453  * Then Refresh rate then can be calculated based on follow equations:
454  *   Pixel clock = h_total * v_total * refresh_rate
455  *   stream clock = Pixel clock
456  *   ls_clk = DP bitrate
457  *   Link M/N = strm_clk / ls_clk
458  */
459 
460 static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
461 {
462 	u32 dp_br = 0;
463 	u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
464 
465 	switch (ddi_pll_sel) {
466 	case PORT_CLK_SEL_LCPLL_2700:
467 		dp_br = 270000 * 2;
468 		break;
469 	case PORT_CLK_SEL_LCPLL_1350:
470 		dp_br = 135000 * 2;
471 		break;
472 	case PORT_CLK_SEL_LCPLL_810:
473 		dp_br = 81000 * 2;
474 		break;
475 	case PORT_CLK_SEL_SPLL:
476 	{
477 		switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
478 		case SPLL_FREQ_810MHz:
479 			dp_br = 81000 * 2;
480 			break;
481 		case SPLL_FREQ_1350MHz:
482 			dp_br = 135000 * 2;
483 			break;
484 		case SPLL_FREQ_2700MHz:
485 			dp_br = 270000 * 2;
486 			break;
487 		default:
488 			gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
489 				    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
490 			break;
491 		}
492 		break;
493 	}
494 	case PORT_CLK_SEL_WRPLL1:
495 	case PORT_CLK_SEL_WRPLL2:
496 	{
497 		u32 wrpll_ctl;
498 		int refclk, n, p, r;
499 
500 		if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
501 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
502 		else
503 			wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
504 
505 		switch (wrpll_ctl & WRPLL_REF_MASK) {
506 		case WRPLL_REF_PCH_SSC:
507 			refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.ssc;
508 			break;
509 		case WRPLL_REF_LCPLL:
510 			refclk = 2700000;
511 			break;
512 		default:
513 			gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
514 				    vgpu->id, port_name(port), wrpll_ctl);
515 			goto out;
516 		}
517 
518 		r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
519 		p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
520 		n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
521 
522 		dp_br = (refclk * n / 10) / (p * r) * 2;
523 		break;
524 	}
525 	default:
526 		gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
527 			    vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
528 		break;
529 	}
530 
531 out:
532 	return dp_br;
533 }
534 
535 static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
536 {
537 	u32 dp_br = 0;
538 	int refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.nssc;
539 	enum dpio_phy phy = DPIO_PHY0;
540 	enum dpio_channel ch = DPIO_CH0;
541 	struct dpll clock = {0};
542 	u32 temp;
543 
544 	/* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
545 	switch (port) {
546 	case PORT_A:
547 		phy = DPIO_PHY1;
548 		ch = DPIO_CH0;
549 		break;
550 	case PORT_B:
551 		phy = DPIO_PHY0;
552 		ch = DPIO_CH0;
553 		break;
554 	case PORT_C:
555 		phy = DPIO_PHY0;
556 		ch = DPIO_CH1;
557 		break;
558 	default:
559 		gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
560 		goto out;
561 	}
562 
563 	temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
564 	if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
565 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
566 			    vgpu->id, port_name(port), temp);
567 		goto out;
568 	}
569 
570 	clock.m1 = 2;
571 	clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
572 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
573 	if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
574 		clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
575 					  vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
576 	clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
577 				vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
578 	clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
579 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
580 	clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
581 				 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
582 	clock.m = clock.m1 * clock.m2;
583 	clock.p = clock.p1 * clock.p2 * 5;
584 
585 	if (clock.n == 0 || clock.p == 0) {
586 		gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
587 		goto out;
588 	}
589 
590 	clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
591 	clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
592 
593 	dp_br = clock.dot;
594 
595 out:
596 	return dp_br;
597 }
598 
599 static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
600 {
601 	u32 dp_br = 0;
602 	enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
603 
604 	/* Find the enabled DPLL for the DDI/PORT */
605 	if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
606 	    (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
607 		dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
608 			DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
609 			DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
610 	} else {
611 		gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
612 			    vgpu->id, port_name(port));
613 		return dp_br;
614 	}
615 
616 	/* Find PLL output frequency from correct DPLL, and get bir rate */
617 	switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
618 		DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
619 		DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
620 		case DPLL_CTRL1_LINK_RATE_810:
621 			dp_br = 81000 * 2;
622 			break;
623 		case DPLL_CTRL1_LINK_RATE_1080:
624 			dp_br = 108000 * 2;
625 			break;
626 		case DPLL_CTRL1_LINK_RATE_1350:
627 			dp_br = 135000 * 2;
628 			break;
629 		case DPLL_CTRL1_LINK_RATE_1620:
630 			dp_br = 162000 * 2;
631 			break;
632 		case DPLL_CTRL1_LINK_RATE_2160:
633 			dp_br = 216000 * 2;
634 			break;
635 		case DPLL_CTRL1_LINK_RATE_2700:
636 			dp_br = 270000 * 2;
637 			break;
638 		default:
639 			dp_br = 0;
640 			gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
641 				    vgpu->id, port_name(port), dpll_id);
642 	}
643 
644 	return dp_br;
645 }
646 
647 static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
648 {
649 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
650 	enum port port;
651 	u32 dp_br, link_m, link_n, htotal, vtotal;
652 
653 	/* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
654 	port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(TRANSCODER_A)) &
655 		TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
656 	if (port != PORT_B && port != PORT_D) {
657 		gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
658 		return;
659 	}
660 
661 	/* Calculate DP bitrate from PLL */
662 	if (IS_BROADWELL(dev_priv))
663 		dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
664 	else if (IS_BROXTON(dev_priv))
665 		dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
666 	else
667 		dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
668 
669 	/* Get DP link symbol clock M/N */
670 	link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(TRANSCODER_A));
671 	link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(TRANSCODER_A));
672 
673 	/* Get H/V total from transcoder timing */
674 	htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
675 	vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
676 
677 	if (dp_br && link_n && htotal && vtotal) {
678 		u64 pixel_clk = 0;
679 		u32 new_rate = 0;
680 		u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
681 
682 		/* Calcuate pixel clock by (ls_clk * M / N) */
683 		pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
684 		pixel_clk *= MSEC_PER_SEC;
685 
686 		/* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */
687 		new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
688 
689 		if (*old_rate != new_rate)
690 			*old_rate = new_rate;
691 
692 		gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
693 			    vgpu->id, pipe_name(PIPE_A), new_rate);
694 	}
695 }
696 
697 static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
698 		void *p_data, unsigned int bytes)
699 {
700 	u32 data;
701 
702 	write_vreg(vgpu, offset, p_data, bytes);
703 	data = vgpu_vreg(vgpu, offset);
704 
705 	if (data & TRANSCONF_ENABLE) {
706 		vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE;
707 		vgpu_update_refresh_rate(vgpu);
708 		vgpu_update_vblank_emulation(vgpu, true);
709 	} else {
710 		vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE;
711 		vgpu_update_vblank_emulation(vgpu, false);
712 	}
713 	return 0;
714 }
715 
716 /* sorted in ascending order */
717 static i915_reg_t force_nonpriv_white_list[] = {
718 	_MMIO(0xd80),
719 	GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
720 	GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
721 	CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
722 	PS_INVOCATION_COUNT, //_MMIO(0x2348)
723 	PS_DEPTH_COUNT, //_MMIO(0x2350)
724 	GEN8_CS_CHICKEN1,//_MMIO(0x2580)
725 	_MMIO(0x2690),
726 	_MMIO(0x2694),
727 	_MMIO(0x2698),
728 	_MMIO(0x2754),
729 	_MMIO(0x28a0),
730 	_MMIO(0x4de0),
731 	_MMIO(0x4de4),
732 	_MMIO(0x4dfc),
733 	GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
734 	_MMIO(0x7014),
735 	HDC_CHICKEN0,//_MMIO(0x7300)
736 	GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
737 	_MMIO(0x7700),
738 	_MMIO(0x7704),
739 	_MMIO(0x7708),
740 	_MMIO(0x770c),
741 	_MMIO(0x83a8),
742 	_MMIO(0xb110),
743 	_MMIO(0xb118),
744 	_MMIO(0xe100),
745 	_MMIO(0xe18c),
746 	_MMIO(0xe48c),
747 	_MMIO(0xe5f4),
748 	_MMIO(0x64844),
749 };
750 
751 /* a simple bsearch */
752 static inline bool in_whitelist(u32 reg)
753 {
754 	int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
755 	i915_reg_t *array = force_nonpriv_white_list;
756 
757 	while (left < right) {
758 		int mid = (left + right)/2;
759 
760 		if (reg > array[mid].reg)
761 			left = mid + 1;
762 		else if (reg < array[mid].reg)
763 			right = mid;
764 		else
765 			return true;
766 	}
767 	return false;
768 }
769 
770 static int force_nonpriv_write(struct intel_vgpu *vgpu,
771 	unsigned int offset, void *p_data, unsigned int bytes)
772 {
773 	u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
774 	const struct intel_engine_cs *engine =
775 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
776 
777 	if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
778 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
779 			vgpu->id, offset, bytes);
780 		return -EINVAL;
781 	}
782 
783 	if (!in_whitelist(reg_nonpriv) &&
784 	    reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
785 		gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
786 			vgpu->id, reg_nonpriv, offset);
787 	} else
788 		intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
789 
790 	return 0;
791 }
792 
793 static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
794 		void *p_data, unsigned int bytes)
795 {
796 	write_vreg(vgpu, offset, p_data, bytes);
797 
798 	if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
799 		vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
800 	} else {
801 		vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
802 		if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
803 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
804 				&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
805 	}
806 	return 0;
807 }
808 
809 static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
810 		unsigned int offset, void *p_data, unsigned int bytes)
811 {
812 	vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
813 	return 0;
814 }
815 
816 #define FDI_LINK_TRAIN_PATTERN1         0
817 #define FDI_LINK_TRAIN_PATTERN2         1
818 
819 static int fdi_auto_training_started(struct intel_vgpu *vgpu)
820 {
821 	u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
822 	u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
823 	u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
824 
825 	if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
826 			(rx_ctl & FDI_RX_ENABLE) &&
827 			(rx_ctl & FDI_AUTO_TRAINING) &&
828 			(tx_ctl & DP_TP_CTL_ENABLE) &&
829 			(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
830 		return 1;
831 	else
832 		return 0;
833 }
834 
835 static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
836 		enum pipe pipe, unsigned int train_pattern)
837 {
838 	i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
839 	unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
840 	unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
841 	unsigned int fdi_iir_check_bits;
842 
843 	fdi_rx_imr = FDI_RX_IMR(pipe);
844 	fdi_tx_ctl = FDI_TX_CTL(pipe);
845 	fdi_rx_ctl = FDI_RX_CTL(pipe);
846 
847 	if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
848 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
849 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
850 		fdi_iir_check_bits = FDI_RX_BIT_LOCK;
851 	} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
852 		fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
853 		fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
854 		fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
855 	} else {
856 		gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
857 		return -EINVAL;
858 	}
859 
860 	fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
861 	fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
862 
863 	/* If imr bit has been masked */
864 	if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
865 		return 0;
866 
867 	if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
868 			== fdi_tx_check_bits)
869 		&& ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
870 			== fdi_rx_check_bits))
871 		return 1;
872 	else
873 		return 0;
874 }
875 
876 #define INVALID_INDEX (~0U)
877 
878 static unsigned int calc_index(unsigned int offset, unsigned int start,
879 	unsigned int next, unsigned int end, i915_reg_t i915_end)
880 {
881 	unsigned int range = next - start;
882 
883 	if (!end)
884 		end = i915_mmio_reg_offset(i915_end);
885 	if (offset < start || offset > end)
886 		return INVALID_INDEX;
887 	offset -= start;
888 	return offset / range;
889 }
890 
891 #define FDI_RX_CTL_TO_PIPE(offset) \
892 	calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C))
893 
894 #define FDI_TX_CTL_TO_PIPE(offset) \
895 	calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C))
896 
897 #define FDI_RX_IMR_TO_PIPE(offset) \
898 	calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C))
899 
900 static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
901 		unsigned int offset, void *p_data, unsigned int bytes)
902 {
903 	i915_reg_t fdi_rx_iir;
904 	unsigned int index;
905 	int ret;
906 
907 	if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
908 		index = FDI_RX_CTL_TO_PIPE(offset);
909 	else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
910 		index = FDI_TX_CTL_TO_PIPE(offset);
911 	else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
912 		index = FDI_RX_IMR_TO_PIPE(offset);
913 	else {
914 		gvt_vgpu_err("Unsupported registers %x\n", offset);
915 		return -EINVAL;
916 	}
917 
918 	write_vreg(vgpu, offset, p_data, bytes);
919 
920 	fdi_rx_iir = FDI_RX_IIR(index);
921 
922 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
923 	if (ret < 0)
924 		return ret;
925 	if (ret)
926 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
927 
928 	ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
929 	if (ret < 0)
930 		return ret;
931 	if (ret)
932 		vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
933 
934 	if (offset == _FDI_RXA_CTL)
935 		if (fdi_auto_training_started(vgpu))
936 			vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
937 				DP_TP_STATUS_AUTOTRAIN_DONE;
938 	return 0;
939 }
940 
941 #define DP_TP_CTL_TO_PORT(offset) \
942 	calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E))
943 
944 static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
945 		void *p_data, unsigned int bytes)
946 {
947 	i915_reg_t status_reg;
948 	unsigned int index;
949 	u32 data;
950 
951 	write_vreg(vgpu, offset, p_data, bytes);
952 
953 	index = DP_TP_CTL_TO_PORT(offset);
954 	data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
955 	if (data == 0x2) {
956 		status_reg = DP_TP_STATUS(index);
957 		vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
958 	}
959 	return 0;
960 }
961 
962 static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
963 		unsigned int offset, void *p_data, unsigned int bytes)
964 {
965 	u32 reg_val;
966 	u32 sticky_mask;
967 
968 	reg_val = *((u32 *)p_data);
969 	sticky_mask = GENMASK(27, 26) | (1 << 24);
970 
971 	vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
972 		(vgpu_vreg(vgpu, offset) & sticky_mask);
973 	vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
974 	return 0;
975 }
976 
977 static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
978 		unsigned int offset, void *p_data, unsigned int bytes)
979 {
980 	u32 data;
981 
982 	write_vreg(vgpu, offset, p_data, bytes);
983 	data = vgpu_vreg(vgpu, offset);
984 
985 	if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
986 		vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
987 	return 0;
988 }
989 
990 static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
991 		unsigned int offset, void *p_data, unsigned int bytes)
992 {
993 	u32 data;
994 
995 	write_vreg(vgpu, offset, p_data, bytes);
996 	data = vgpu_vreg(vgpu, offset);
997 
998 	if (data & FDI_MPHY_IOSFSB_RESET_CTL)
999 		vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
1000 	else
1001 		vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
1002 	return 0;
1003 }
1004 
1005 #define DSPSURF_TO_PIPE(offset) \
1006 	calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C))
1007 
1008 static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1009 		void *p_data, unsigned int bytes)
1010 {
1011 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1012 	u32 pipe = DSPSURF_TO_PIPE(offset);
1013 	int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
1014 
1015 	write_vreg(vgpu, offset, p_data, bytes);
1016 	vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1017 
1018 	vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
1019 
1020 	if (vgpu_vreg_t(vgpu, DSPCNTR(pipe)) & PLANE_CTL_ASYNC_FLIP)
1021 		intel_vgpu_trigger_virtual_event(vgpu, event);
1022 	else
1023 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1024 
1025 	return 0;
1026 }
1027 
1028 #define SPRSURF_TO_PIPE(offset) \
1029 	calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C))
1030 
1031 static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1032 		void *p_data, unsigned int bytes)
1033 {
1034 	u32 pipe = SPRSURF_TO_PIPE(offset);
1035 	int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
1036 
1037 	write_vreg(vgpu, offset, p_data, bytes);
1038 	vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1039 
1040 	if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
1041 		intel_vgpu_trigger_virtual_event(vgpu, event);
1042 	else
1043 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1044 
1045 	return 0;
1046 }
1047 
1048 static int reg50080_mmio_write(struct intel_vgpu *vgpu,
1049 			       unsigned int offset, void *p_data,
1050 			       unsigned int bytes)
1051 {
1052 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1053 	enum pipe pipe = REG_50080_TO_PIPE(offset);
1054 	enum plane_id plane = REG_50080_TO_PLANE(offset);
1055 	int event = SKL_FLIP_EVENT(pipe, plane);
1056 
1057 	write_vreg(vgpu, offset, p_data, bytes);
1058 	if (plane == PLANE_PRIMARY) {
1059 		vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1060 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
1061 	} else {
1062 		vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
1063 	}
1064 
1065 	if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
1066 		intel_vgpu_trigger_virtual_event(vgpu, event);
1067 	else
1068 		set_bit(event, vgpu->irq.flip_done_event[pipe]);
1069 
1070 	return 0;
1071 }
1072 
1073 static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
1074 		unsigned int reg)
1075 {
1076 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1077 	enum intel_gvt_event_type event;
1078 
1079 	if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
1080 		event = AUX_CHANNEL_A;
1081 	else if (reg == _PCH_DPB_AUX_CH_CTL ||
1082 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
1083 		event = AUX_CHANNEL_B;
1084 	else if (reg == _PCH_DPC_AUX_CH_CTL ||
1085 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
1086 		event = AUX_CHANNEL_C;
1087 	else if (reg == _PCH_DPD_AUX_CH_CTL ||
1088 		 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
1089 		event = AUX_CHANNEL_D;
1090 	else {
1091 		drm_WARN_ON(&dev_priv->drm, true);
1092 		return -EINVAL;
1093 	}
1094 
1095 	intel_vgpu_trigger_virtual_event(vgpu, event);
1096 	return 0;
1097 }
1098 
1099 static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
1100 		unsigned int reg, int len, bool data_valid)
1101 {
1102 	/* mark transaction done */
1103 	value |= DP_AUX_CH_CTL_DONE;
1104 	value &= ~DP_AUX_CH_CTL_SEND_BUSY;
1105 	value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
1106 
1107 	if (data_valid)
1108 		value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
1109 	else
1110 		value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
1111 
1112 	/* message size */
1113 	value &= ~(0xf << 20);
1114 	value |= (len << 20);
1115 	vgpu_vreg(vgpu, reg) = value;
1116 
1117 	if (value & DP_AUX_CH_CTL_INTERRUPT)
1118 		return trigger_aux_channel_interrupt(vgpu, reg);
1119 	return 0;
1120 }
1121 
1122 static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
1123 		u8 t)
1124 {
1125 	if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) {
1126 		/* training pattern 1 for CR */
1127 		/* set LANE0_CR_DONE, LANE1_CR_DONE */
1128 		dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE;
1129 		/* set LANE2_CR_DONE, LANE3_CR_DONE */
1130 		dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE;
1131 	} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
1132 			DPCD_TRAINING_PATTERN_2) {
1133 		/* training pattern 2 for EQ */
1134 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane0_1 */
1135 		dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE;
1136 		dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED;
1137 		/* Set CHANNEL_EQ_DONE and  SYMBOL_LOCKED for Lane2_3 */
1138 		dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE;
1139 		dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED;
1140 		/* set INTERLANE_ALIGN_DONE */
1141 		dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |=
1142 			DPCD_INTERLANE_ALIGN_DONE;
1143 	} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
1144 			DPCD_LINK_TRAINING_DISABLED) {
1145 		/* finish link training */
1146 		/* set sink status as synchronized */
1147 		dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC;
1148 	}
1149 }
1150 
1151 #define _REG_HSW_DP_AUX_CH_CTL(dp) \
1152 	((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010)
1153 
1154 #define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100)
1155 
1156 #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
1157 
1158 #define dpy_is_valid_port(port)	\
1159 		(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
1160 
1161 static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
1162 		unsigned int offset, void *p_data, unsigned int bytes)
1163 {
1164 	struct intel_vgpu_display *display = &vgpu->display;
1165 	int msg, addr, ctrl, op, len;
1166 	int port_index = OFFSET_TO_DP_AUX_PORT(offset);
1167 	struct intel_vgpu_dpcd_data *dpcd = NULL;
1168 	struct intel_vgpu_port *port = NULL;
1169 	u32 data;
1170 
1171 	if (!dpy_is_valid_port(port_index)) {
1172 		gvt_vgpu_err("Unsupported DP port access!\n");
1173 		return 0;
1174 	}
1175 
1176 	write_vreg(vgpu, offset, p_data, bytes);
1177 	data = vgpu_vreg(vgpu, offset);
1178 
1179 	if ((GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9)
1180 		&& offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) {
1181 		/* SKL DPB/C/D aux ctl register changed */
1182 		return 0;
1183 	} else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
1184 		   offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) {
1185 		/* write to the data registers */
1186 		return 0;
1187 	}
1188 
1189 	if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
1190 		/* just want to clear the sticky bits */
1191 		vgpu_vreg(vgpu, offset) = 0;
1192 		return 0;
1193 	}
1194 
1195 	port = &display->ports[port_index];
1196 	dpcd = port->dpcd;
1197 
1198 	/* read out message from DATA1 register */
1199 	msg = vgpu_vreg(vgpu, offset + 4);
1200 	addr = (msg >> 8) & 0xffff;
1201 	ctrl = (msg >> 24) & 0xff;
1202 	len = msg & 0xff;
1203 	op = ctrl >> 4;
1204 
1205 	if (op == GVT_AUX_NATIVE_WRITE) {
1206 		int t;
1207 		u8 buf[16];
1208 
1209 		if ((addr + len + 1) >= DPCD_SIZE) {
1210 			/*
1211 			 * Write request exceeds what we supported,
1212 			 * DCPD spec: When a Source Device is writing a DPCD
1213 			 * address not supported by the Sink Device, the Sink
1214 			 * Device shall reply with AUX NACK and “M” equal to
1215 			 * zero.
1216 			 */
1217 
1218 			/* NAK the write */
1219 			vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
1220 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
1221 			return 0;
1222 		}
1223 
1224 		/*
1225 		 * Write request format: Headr (command + address + size) occupies
1226 		 * 4 bytes, followed by (len + 1) bytes of data. See details at
1227 		 * intel_dp_aux_transfer().
1228 		 */
1229 		if ((len + 1 + 4) > AUX_BURST_SIZE) {
1230 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1231 			return -EINVAL;
1232 		}
1233 
1234 		/* unpack data from vreg to buf */
1235 		for (t = 0; t < 4; t++) {
1236 			u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
1237 
1238 			buf[t * 4] = (r >> 24) & 0xff;
1239 			buf[t * 4 + 1] = (r >> 16) & 0xff;
1240 			buf[t * 4 + 2] = (r >> 8) & 0xff;
1241 			buf[t * 4 + 3] = r & 0xff;
1242 		}
1243 
1244 		/* write to virtual DPCD */
1245 		if (dpcd && dpcd->data_valid) {
1246 			for (t = 0; t <= len; t++) {
1247 				int p = addr + t;
1248 
1249 				dpcd->data[p] = buf[t];
1250 				/* check for link training */
1251 				if (p == DPCD_TRAINING_PATTERN_SET)
1252 					dp_aux_ch_ctl_link_training(dpcd,
1253 							buf[t]);
1254 			}
1255 		}
1256 
1257 		/* ACK the write */
1258 		vgpu_vreg(vgpu, offset + 4) = 0;
1259 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
1260 				dpcd && dpcd->data_valid);
1261 		return 0;
1262 	}
1263 
1264 	if (op == GVT_AUX_NATIVE_READ) {
1265 		int idx, i, ret = 0;
1266 
1267 		if ((addr + len + 1) >= DPCD_SIZE) {
1268 			/*
1269 			 * read request exceeds what we supported
1270 			 * DPCD spec: A Sink Device receiving a Native AUX CH
1271 			 * read request for an unsupported DPCD address must
1272 			 * reply with an AUX ACK and read data set equal to
1273 			 * zero instead of replying with AUX NACK.
1274 			 */
1275 
1276 			/* ACK the READ*/
1277 			vgpu_vreg(vgpu, offset + 4) = 0;
1278 			vgpu_vreg(vgpu, offset + 8) = 0;
1279 			vgpu_vreg(vgpu, offset + 12) = 0;
1280 			vgpu_vreg(vgpu, offset + 16) = 0;
1281 			vgpu_vreg(vgpu, offset + 20) = 0;
1282 
1283 			dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1284 					true);
1285 			return 0;
1286 		}
1287 
1288 		for (idx = 1; idx <= 5; idx++) {
1289 			/* clear the data registers */
1290 			vgpu_vreg(vgpu, offset + 4 * idx) = 0;
1291 		}
1292 
1293 		/*
1294 		 * Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
1295 		 */
1296 		if ((len + 2) > AUX_BURST_SIZE) {
1297 			gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
1298 			return -EINVAL;
1299 		}
1300 
1301 		/* read from virtual DPCD to vreg */
1302 		/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
1303 		if (dpcd && dpcd->data_valid) {
1304 			for (i = 1; i <= (len + 1); i++) {
1305 				int t;
1306 
1307 				t = dpcd->data[addr + i - 1];
1308 				t <<= (24 - 8 * (i % 4));
1309 				ret |= t;
1310 
1311 				if ((i % 4 == 3) || (i == (len + 1))) {
1312 					vgpu_vreg(vgpu, offset +
1313 							(i / 4 + 1) * 4) = ret;
1314 					ret = 0;
1315 				}
1316 			}
1317 		}
1318 		dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
1319 				dpcd && dpcd->data_valid);
1320 		return 0;
1321 	}
1322 
1323 	/* i2c transaction starts */
1324 	intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
1325 
1326 	if (data & DP_AUX_CH_CTL_INTERRUPT)
1327 		trigger_aux_channel_interrupt(vgpu, offset);
1328 	return 0;
1329 }
1330 
1331 static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
1332 		void *p_data, unsigned int bytes)
1333 {
1334 	*(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
1335 	write_vreg(vgpu, offset, p_data, bytes);
1336 	return 0;
1337 }
1338 
1339 static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1340 		void *p_data, unsigned int bytes)
1341 {
1342 	bool vga_disable;
1343 
1344 	write_vreg(vgpu, offset, p_data, bytes);
1345 	vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
1346 
1347 	gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
1348 			vga_disable ? "Disable" : "Enable");
1349 	return 0;
1350 }
1351 
1352 static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
1353 		unsigned int sbi_offset)
1354 {
1355 	struct intel_vgpu_display *display = &vgpu->display;
1356 	int num = display->sbi.number;
1357 	int i;
1358 
1359 	for (i = 0; i < num; ++i)
1360 		if (display->sbi.registers[i].offset == sbi_offset)
1361 			break;
1362 
1363 	if (i == num)
1364 		return 0;
1365 
1366 	return display->sbi.registers[i].value;
1367 }
1368 
1369 static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
1370 		unsigned int offset, u32 value)
1371 {
1372 	struct intel_vgpu_display *display = &vgpu->display;
1373 	int num = display->sbi.number;
1374 	int i;
1375 
1376 	for (i = 0; i < num; ++i) {
1377 		if (display->sbi.registers[i].offset == offset)
1378 			break;
1379 	}
1380 
1381 	if (i == num) {
1382 		if (num == SBI_REG_MAX) {
1383 			gvt_vgpu_err("SBI caching meets maximum limits\n");
1384 			return;
1385 		}
1386 		display->sbi.number++;
1387 	}
1388 
1389 	display->sbi.registers[i].offset = offset;
1390 	display->sbi.registers[i].value = value;
1391 }
1392 
1393 static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1394 		void *p_data, unsigned int bytes)
1395 {
1396 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1397 				SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
1398 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1399 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1400 		vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
1401 				sbi_offset);
1402 	}
1403 	read_vreg(vgpu, offset, p_data, bytes);
1404 	return 0;
1405 }
1406 
1407 static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1408 		void *p_data, unsigned int bytes)
1409 {
1410 	u32 data;
1411 
1412 	write_vreg(vgpu, offset, p_data, bytes);
1413 	data = vgpu_vreg(vgpu, offset);
1414 
1415 	data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
1416 	data |= SBI_READY;
1417 
1418 	data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
1419 	data |= SBI_RESPONSE_SUCCESS;
1420 
1421 	vgpu_vreg(vgpu, offset) = data;
1422 
1423 	if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
1424 				SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
1425 		unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
1426 				SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
1427 
1428 		write_virtual_sbi_register(vgpu, sbi_offset,
1429 					   vgpu_vreg_t(vgpu, SBI_DATA));
1430 	}
1431 	return 0;
1432 }
1433 
1434 #define _vgtif_reg(x) \
1435 	(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
1436 
1437 static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
1438 		void *p_data, unsigned int bytes)
1439 {
1440 	bool invalid_read = false;
1441 
1442 	read_vreg(vgpu, offset, p_data, bytes);
1443 
1444 	switch (offset) {
1445 	case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
1446 		if (offset + bytes > _vgtif_reg(vgt_id) + 4)
1447 			invalid_read = true;
1448 		break;
1449 	case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
1450 		_vgtif_reg(avail_rs.fence_num):
1451 		if (offset + bytes >
1452 			_vgtif_reg(avail_rs.fence_num) + 4)
1453 			invalid_read = true;
1454 		break;
1455 	case 0x78010:	/* vgt_caps */
1456 	case 0x7881c:
1457 		break;
1458 	default:
1459 		invalid_read = true;
1460 		break;
1461 	}
1462 	if (invalid_read)
1463 		gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
1464 				offset, bytes, *(u32 *)p_data);
1465 	vgpu->pv_notified = true;
1466 	return 0;
1467 }
1468 
1469 static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
1470 {
1471 	enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1472 	struct intel_vgpu_mm *mm;
1473 	u64 *pdps;
1474 
1475 	pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
1476 
1477 	switch (notification) {
1478 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
1479 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1480 		fallthrough;
1481 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
1482 		mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
1483 		return PTR_ERR_OR_ZERO(mm);
1484 	case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
1485 	case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
1486 		return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
1487 	case VGT_G2V_EXECLIST_CONTEXT_CREATE:
1488 	case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
1489 	case 1:	/* Remove this in guest driver. */
1490 		break;
1491 	default:
1492 		gvt_vgpu_err("Invalid PV notification %d\n", notification);
1493 	}
1494 	return 0;
1495 }
1496 
1497 static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
1498 {
1499 	struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
1500 	char *env[3] = {NULL, NULL, NULL};
1501 	char vmid_str[20];
1502 	char display_ready_str[20];
1503 
1504 	snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
1505 	env[0] = display_ready_str;
1506 
1507 	snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
1508 	env[1] = vmid_str;
1509 
1510 	return kobject_uevent_env(kobj, KOBJ_ADD, env);
1511 }
1512 
1513 static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1514 		void *p_data, unsigned int bytes)
1515 {
1516 	u32 data = *(u32 *)p_data;
1517 	bool invalid_write = false;
1518 
1519 	switch (offset) {
1520 	case _vgtif_reg(display_ready):
1521 		send_display_ready_uevent(vgpu, data ? 1 : 0);
1522 		break;
1523 	case _vgtif_reg(g2v_notify):
1524 		handle_g2v_notification(vgpu, data);
1525 		break;
1526 	/* add xhot and yhot to handled list to avoid error log */
1527 	case _vgtif_reg(cursor_x_hot):
1528 	case _vgtif_reg(cursor_y_hot):
1529 	case _vgtif_reg(pdp[0].lo):
1530 	case _vgtif_reg(pdp[0].hi):
1531 	case _vgtif_reg(pdp[1].lo):
1532 	case _vgtif_reg(pdp[1].hi):
1533 	case _vgtif_reg(pdp[2].lo):
1534 	case _vgtif_reg(pdp[2].hi):
1535 	case _vgtif_reg(pdp[3].lo):
1536 	case _vgtif_reg(pdp[3].hi):
1537 	case _vgtif_reg(execlist_context_descriptor_lo):
1538 	case _vgtif_reg(execlist_context_descriptor_hi):
1539 		break;
1540 	case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
1541 		invalid_write = true;
1542 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
1543 		break;
1544 	default:
1545 		invalid_write = true;
1546 		gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
1547 				offset, bytes, data);
1548 		break;
1549 	}
1550 
1551 	if (!invalid_write)
1552 		write_vreg(vgpu, offset, p_data, bytes);
1553 
1554 	return 0;
1555 }
1556 
1557 static int pf_write(struct intel_vgpu *vgpu,
1558 		unsigned int offset, void *p_data, unsigned int bytes)
1559 {
1560 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1561 	u32 val = *(u32 *)p_data;
1562 
1563 	if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
1564 	   offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
1565 	   offset == _PS_1C_CTRL) && (val & PS_BINDING_MASK) != PS_BINDING_PIPE) {
1566 		drm_WARN_ONCE(&i915->drm, true,
1567 			      "VM(%d): guest is trying to scaling a plane\n",
1568 			      vgpu->id);
1569 		return 0;
1570 	}
1571 
1572 	return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
1573 }
1574 
1575 static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
1576 		unsigned int offset, void *p_data, unsigned int bytes)
1577 {
1578 	write_vreg(vgpu, offset, p_data, bytes);
1579 
1580 	if (vgpu_vreg(vgpu, offset) &
1581 	    HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
1582 		vgpu_vreg(vgpu, offset) |=
1583 			HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1584 	else
1585 		vgpu_vreg(vgpu, offset) &=
1586 			~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
1587 	return 0;
1588 }
1589 
1590 static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
1591 		unsigned int offset, void *p_data, unsigned int bytes)
1592 {
1593 	write_vreg(vgpu, offset, p_data, bytes);
1594 
1595 	if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
1596 		vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
1597 	else
1598 		vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
1599 
1600 	return 0;
1601 }
1602 
1603 static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
1604 	unsigned int offset, void *p_data, unsigned int bytes)
1605 {
1606 	write_vreg(vgpu, offset, p_data, bytes);
1607 
1608 	if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
1609 		vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
1610 	return 0;
1611 }
1612 
1613 static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
1614 		void *p_data, unsigned int bytes)
1615 {
1616 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1617 	u32 mode;
1618 
1619 	write_vreg(vgpu, offset, p_data, bytes);
1620 	mode = vgpu_vreg(vgpu, offset);
1621 
1622 	if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
1623 		drm_WARN_ONCE(&i915->drm, 1,
1624 				"VM(%d): iGVT-g doesn't support GuC\n",
1625 				vgpu->id);
1626 		return 0;
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
1633 		void *p_data, unsigned int bytes)
1634 {
1635 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1636 	u32 trtte = *(u32 *)p_data;
1637 
1638 	if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
1639 		drm_WARN(&i915->drm, 1,
1640 				"VM(%d): Use physical address for TRTT!\n",
1641 				vgpu->id);
1642 		return -EINVAL;
1643 	}
1644 	write_vreg(vgpu, offset, p_data, bytes);
1645 
1646 	return 0;
1647 }
1648 
1649 static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
1650 		void *p_data, unsigned int bytes)
1651 {
1652 	write_vreg(vgpu, offset, p_data, bytes);
1653 	return 0;
1654 }
1655 
1656 static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
1657 		void *p_data, unsigned int bytes)
1658 {
1659 	u32 v = 0;
1660 
1661 	if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
1662 		v |= (1 << 0);
1663 
1664 	if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
1665 		v |= (1 << 8);
1666 
1667 	if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
1668 		v |= (1 << 16);
1669 
1670 	if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
1671 		v |= (1 << 24);
1672 
1673 	vgpu_vreg(vgpu, offset) = v;
1674 
1675 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1676 }
1677 
1678 static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
1679 		void *p_data, unsigned int bytes)
1680 {
1681 	u32 value = *(u32 *)p_data;
1682 	u32 cmd = value & 0xff;
1683 	u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
1684 
1685 	switch (cmd) {
1686 	case GEN9_PCODE_READ_MEM_LATENCY:
1687 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1688 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1689 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1690 		    IS_COMETLAKE(vgpu->gvt->gt->i915)) {
1691 			/**
1692 			 * "Read memory latency" command on gen9.
1693 			 * Below memory latency values are read
1694 			 * from skylake platform.
1695 			 */
1696 			if (!*data0)
1697 				*data0 = 0x1e1a1100;
1698 			else
1699 				*data0 = 0x61514b3d;
1700 		} else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
1701 			/**
1702 			 * "Read memory latency" command on gen9.
1703 			 * Below memory latency values are read
1704 			 * from Broxton MRB.
1705 			 */
1706 			if (!*data0)
1707 				*data0 = 0x16080707;
1708 			else
1709 				*data0 = 0x16161616;
1710 		}
1711 		break;
1712 	case SKL_PCODE_CDCLK_CONTROL:
1713 		if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
1714 		    IS_KABYLAKE(vgpu->gvt->gt->i915) ||
1715 		    IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
1716 		    IS_COMETLAKE(vgpu->gvt->gt->i915))
1717 			*data0 = SKL_CDCLK_READY_FOR_CHANGE;
1718 		break;
1719 	case GEN6_PCODE_READ_RC6VIDS:
1720 		*data0 |= 0x1;
1721 		break;
1722 	}
1723 
1724 	gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
1725 		     vgpu->id, value, *data0);
1726 	/**
1727 	 * PCODE_READY clear means ready for pcode read/write,
1728 	 * PCODE_ERROR_MASK clear means no error happened. In GVT-g we
1729 	 * always emulate as pcode read/write success and ready for access
1730 	 * anytime, since we don't touch real physical registers here.
1731 	 */
1732 	value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
1733 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1734 }
1735 
1736 static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
1737 		void *p_data, unsigned int bytes)
1738 {
1739 	u32 value = *(u32 *)p_data;
1740 	const struct intel_engine_cs *engine =
1741 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1742 
1743 	if (value != 0 &&
1744 	    !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
1745 		gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
1746 			      offset, value);
1747 		return -EINVAL;
1748 	}
1749 
1750 	/*
1751 	 * Need to emulate all the HWSP register write to ensure host can
1752 	 * update the VM CSB status correctly. Here listed registers can
1753 	 * support BDW, SKL or other platforms with same HWSP registers.
1754 	 */
1755 	if (unlikely(!engine)) {
1756 		gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
1757 			     offset);
1758 		return -EINVAL;
1759 	}
1760 	vgpu->hws_pga[engine->id] = value;
1761 	gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
1762 		     vgpu->id, value, offset);
1763 
1764 	return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
1765 }
1766 
1767 static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
1768 		unsigned int offset, void *p_data, unsigned int bytes)
1769 {
1770 	u32 v = *(u32 *)p_data;
1771 
1772 	if (IS_BROXTON(vgpu->gvt->gt->i915))
1773 		v &= (1 << 31) | (1 << 29);
1774 	else
1775 		v &= (1 << 31) | (1 << 29) | (1 << 9) |
1776 			(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
1777 	v |= (v >> 1);
1778 
1779 	return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
1780 }
1781 
1782 static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
1783 		void *p_data, unsigned int bytes)
1784 {
1785 	u32 v = *(u32 *)p_data;
1786 
1787 	/* other bits are MBZ. */
1788 	v &= (1 << 31) | (1 << 30);
1789 	v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
1790 
1791 	vgpu_vreg(vgpu, offset) = v;
1792 
1793 	return 0;
1794 }
1795 
1796 static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
1797 		unsigned int offset, void *p_data, unsigned int bytes)
1798 {
1799 	u32 v = *(u32 *)p_data;
1800 
1801 	if (v & BXT_DE_PLL_PLL_ENABLE)
1802 		v |= BXT_DE_PLL_LOCK;
1803 
1804 	vgpu_vreg(vgpu, offset) = v;
1805 
1806 	return 0;
1807 }
1808 
1809 static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
1810 		unsigned int offset, void *p_data, unsigned int bytes)
1811 {
1812 	u32 v = *(u32 *)p_data;
1813 
1814 	if (v & PORT_PLL_ENABLE)
1815 		v |= PORT_PLL_LOCK;
1816 
1817 	vgpu_vreg(vgpu, offset) = v;
1818 
1819 	return 0;
1820 }
1821 
1822 static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
1823 		unsigned int offset, void *p_data, unsigned int bytes)
1824 {
1825 	u32 v = *(u32 *)p_data;
1826 	u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
1827 
1828 	switch (offset) {
1829 	case _PHY_CTL_FAMILY_EDP:
1830 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
1831 		break;
1832 	case _PHY_CTL_FAMILY_DDI:
1833 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
1834 		vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
1835 		break;
1836 	}
1837 
1838 	vgpu_vreg(vgpu, offset) = v;
1839 
1840 	return 0;
1841 }
1842 
1843 static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
1844 		unsigned int offset, void *p_data, unsigned int bytes)
1845 {
1846 	u32 v = vgpu_vreg(vgpu, offset);
1847 
1848 	v &= ~UNIQUE_TRANGE_EN_METHOD;
1849 
1850 	vgpu_vreg(vgpu, offset) = v;
1851 
1852 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1853 }
1854 
1855 static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
1856 		unsigned int offset, void *p_data, unsigned int bytes)
1857 {
1858 	u32 v = *(u32 *)p_data;
1859 
1860 	if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
1861 		vgpu_vreg(vgpu, offset - 0x600) = v;
1862 		vgpu_vreg(vgpu, offset - 0x800) = v;
1863 	} else {
1864 		vgpu_vreg(vgpu, offset - 0x400) = v;
1865 		vgpu_vreg(vgpu, offset - 0x600) = v;
1866 	}
1867 
1868 	vgpu_vreg(vgpu, offset) = v;
1869 
1870 	return 0;
1871 }
1872 
1873 static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
1874 		unsigned int offset, void *p_data, unsigned int bytes)
1875 {
1876 	u32 v = *(u32 *)p_data;
1877 
1878 	if (v & BIT(0)) {
1879 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
1880 			~PHY_RESERVED;
1881 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
1882 			PHY_POWER_GOOD;
1883 	}
1884 
1885 	if (v & BIT(1)) {
1886 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
1887 			~PHY_RESERVED;
1888 		vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
1889 			PHY_POWER_GOOD;
1890 	}
1891 
1892 
1893 	vgpu_vreg(vgpu, offset) = v;
1894 
1895 	return 0;
1896 }
1897 
1898 static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
1899 		unsigned int offset, void *p_data, unsigned int bytes)
1900 {
1901 	vgpu_vreg(vgpu, offset) = 0;
1902 	return 0;
1903 }
1904 
1905 /*
1906  * FixMe:
1907  * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
1908  * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
1909  * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
1910  * these MI_BATCH_BUFFER.
1911  * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
1912  * PML4 PTE: PAT(0) PCD(1) PWT(1).
1913  * The performance is still expected to be low, will need further improvement.
1914  */
1915 static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
1916 			      void *p_data, unsigned int bytes)
1917 {
1918 	u64 pat =
1919 		GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1920 		GEN8_PPAT(1, 0) |
1921 		GEN8_PPAT(2, 0) |
1922 		GEN8_PPAT(3, CHV_PPAT_SNOOP) |
1923 		GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1924 		GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1925 		GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1926 		GEN8_PPAT(7, CHV_PPAT_SNOOP);
1927 
1928 	vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
1929 
1930 	return 0;
1931 }
1932 
1933 static int guc_status_read(struct intel_vgpu *vgpu,
1934 			   unsigned int offset, void *p_data,
1935 			   unsigned int bytes)
1936 {
1937 	/* keep MIA_IN_RESET before clearing */
1938 	read_vreg(vgpu, offset, p_data, bytes);
1939 	vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
1940 	return 0;
1941 }
1942 
1943 static int mmio_read_from_hw(struct intel_vgpu *vgpu,
1944 		unsigned int offset, void *p_data, unsigned int bytes)
1945 {
1946 	struct intel_gvt *gvt = vgpu->gvt;
1947 	const struct intel_engine_cs *engine =
1948 		intel_gvt_render_mmio_to_engine(gvt, offset);
1949 
1950 	/**
1951 	 * Read HW reg in following case
1952 	 * a. the offset isn't a ring mmio
1953 	 * b. the offset's ring is running on hw.
1954 	 * c. the offset is ring time stamp mmio
1955 	 */
1956 
1957 	if (!engine ||
1958 	    vgpu == gvt->scheduler.engine_owner[engine->id] ||
1959 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
1960 	    offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
1961 		mmio_hw_access_pre(gvt->gt);
1962 		vgpu_vreg(vgpu, offset) =
1963 			intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
1964 		mmio_hw_access_post(gvt->gt);
1965 	}
1966 
1967 	return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
1968 }
1969 
1970 static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
1971 		void *p_data, unsigned int bytes)
1972 {
1973 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1974 	const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
1975 	struct intel_vgpu_execlist *execlist;
1976 	u32 data = *(u32 *)p_data;
1977 	int ret = 0;
1978 
1979 	if (drm_WARN_ON(&i915->drm, !engine))
1980 		return -EINVAL;
1981 
1982 	/*
1983 	 * Due to d3_entered is used to indicate skipping PPGTT invalidation on
1984 	 * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
1985 	 * vGPU reset if in resuming.
1986 	 * In S0ix exit, the device power state also transite from D3 to D0 as
1987 	 * S3 resume, but no vGPU reset (triggered by QEMU devic model). After
1988 	 * S0ix exit, all engines continue to work. However the d3_entered
1989 	 * remains set which will break next vGPU reset logic (miss the expected
1990 	 * PPGTT invalidation).
1991 	 * Engines can only work in D0. Thus the 1st elsp write gives GVT a
1992 	 * chance to clear d3_entered.
1993 	 */
1994 	if (vgpu->d3_entered)
1995 		vgpu->d3_entered = false;
1996 
1997 	execlist = &vgpu->submission.execlist[engine->id];
1998 
1999 	execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
2000 	if (execlist->elsp_dwords.index == 3) {
2001 		ret = intel_vgpu_submit_execlist(vgpu, engine);
2002 		if(ret)
2003 			gvt_vgpu_err("fail submit workload on ring %s\n",
2004 				     engine->name);
2005 	}
2006 
2007 	++execlist->elsp_dwords.index;
2008 	execlist->elsp_dwords.index &= 0x3;
2009 	return ret;
2010 }
2011 
2012 static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
2013 		void *p_data, unsigned int bytes)
2014 {
2015 	u32 data = *(u32 *)p_data;
2016 	const struct intel_engine_cs *engine =
2017 		intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
2018 	bool enable_execlist;
2019 	int ret;
2020 
2021 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
2022 	if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2023 	    IS_COMETLAKE(vgpu->gvt->gt->i915))
2024 		(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
2025 	write_vreg(vgpu, offset, p_data, bytes);
2026 
2027 	if (IS_MASKED_BITS_ENABLED(data, 1)) {
2028 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2029 		return 0;
2030 	}
2031 
2032 	if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
2033 	     IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
2034 	    IS_MASKED_BITS_ENABLED(data, 2)) {
2035 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2036 		return 0;
2037 	}
2038 
2039 	/* when PPGTT mode enabled, we will check if guest has called
2040 	 * pvinfo, if not, we will treat this guest as non-gvtg-aware
2041 	 * guest, and stop emulating its cfg space, mmio, gtt, etc.
2042 	 */
2043 	if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
2044 	    IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
2045 	    !vgpu->pv_notified) {
2046 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2047 		return 0;
2048 	}
2049 	if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
2050 	    IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
2051 		enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
2052 
2053 		gvt_dbg_core("EXECLIST %s on ring %s\n",
2054 			     (enable_execlist ? "enabling" : "disabling"),
2055 			     engine->name);
2056 
2057 		if (!enable_execlist)
2058 			return 0;
2059 
2060 		ret = intel_vgpu_select_submission_ops(vgpu,
2061 						       engine->mask,
2062 						       INTEL_VGPU_EXECLIST_SUBMISSION);
2063 		if (ret)
2064 			return ret;
2065 
2066 		intel_vgpu_start_schedule(vgpu);
2067 	}
2068 	return 0;
2069 }
2070 
2071 static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
2072 		unsigned int offset, void *p_data, unsigned int bytes)
2073 {
2074 	unsigned int id = 0;
2075 
2076 	write_vreg(vgpu, offset, p_data, bytes);
2077 	vgpu_vreg(vgpu, offset) = 0;
2078 
2079 	switch (offset) {
2080 	case 0x4260:
2081 		id = RCS0;
2082 		break;
2083 	case 0x4264:
2084 		id = VCS0;
2085 		break;
2086 	case 0x4268:
2087 		id = VCS1;
2088 		break;
2089 	case 0x426c:
2090 		id = BCS0;
2091 		break;
2092 	case 0x4270:
2093 		id = VECS0;
2094 		break;
2095 	default:
2096 		return -EINVAL;
2097 	}
2098 	set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
2099 
2100 	return 0;
2101 }
2102 
2103 static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
2104 	unsigned int offset, void *p_data, unsigned int bytes)
2105 {
2106 	u32 data;
2107 
2108 	write_vreg(vgpu, offset, p_data, bytes);
2109 	data = vgpu_vreg(vgpu, offset);
2110 
2111 	if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
2112 		data |= RESET_CTL_READY_TO_RESET;
2113 	else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
2114 		data &= ~RESET_CTL_READY_TO_RESET;
2115 
2116 	vgpu_vreg(vgpu, offset) = data;
2117 	return 0;
2118 }
2119 
2120 static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
2121 				    unsigned int offset, void *p_data,
2122 				    unsigned int bytes)
2123 {
2124 	u32 data = *(u32 *)p_data;
2125 
2126 	(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
2127 	write_vreg(vgpu, offset, p_data, bytes);
2128 
2129 	if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
2130 	    IS_MASKED_BITS_ENABLED(data, 0x8))
2131 		enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
2132 
2133 	return 0;
2134 }
2135 
2136 #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
2137 	ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
2138 		s, f, am, rm, d, r, w); \
2139 	if (ret) \
2140 		return ret; \
2141 } while (0)
2142 
2143 #define MMIO_DH(reg, d, r, w) \
2144 	MMIO_F(reg, 4, 0, 0, 0, d, r, w)
2145 
2146 #define MMIO_DFH(reg, d, f, r, w) \
2147 	MMIO_F(reg, 4, f, 0, 0, d, r, w)
2148 
2149 #define MMIO_GM(reg, d, r, w) \
2150 	MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
2151 
2152 #define MMIO_GM_RDR(reg, d, r, w) \
2153 	MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
2154 
2155 #define MMIO_RO(reg, d, f, rm, r, w) \
2156 	MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
2157 
2158 #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
2159 	MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
2160 	MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
2161 	MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
2162 	MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
2163 	if (HAS_ENGINE(gvt->gt, VCS1)) \
2164 		MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
2165 } while (0)
2166 
2167 #define MMIO_RING_DFH(prefix, d, f, r, w) \
2168 	MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
2169 
2170 #define MMIO_RING_GM(prefix, d, r, w) \
2171 	MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
2172 
2173 #define MMIO_RING_GM_RDR(prefix, d, r, w) \
2174 	MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
2175 
2176 #define MMIO_RING_RO(prefix, d, f, rm, r, w) \
2177 	MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
2178 
2179 static int init_generic_mmio_info(struct intel_gvt *gvt)
2180 {
2181 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2182 	int ret;
2183 
2184 	MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
2185 		intel_vgpu_reg_imr_handler);
2186 
2187 	MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
2188 	MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
2189 	MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
2190 
2191 	MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
2192 
2193 
2194 	MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
2195 		gamw_echo_dev_rw_ia_write);
2196 
2197 	MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2198 	MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2199 	MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
2200 
2201 #define RING_REG(base) _MMIO((base) + 0x28)
2202 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2203 #undef RING_REG
2204 
2205 #define RING_REG(base) _MMIO((base) + 0x134)
2206 	MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2207 #undef RING_REG
2208 
2209 #define RING_REG(base) _MMIO((base) + 0x6c)
2210 	MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
2211 #undef RING_REG
2212 	MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
2213 
2214 	MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
2215 	MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
2216 	MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
2217 
2218 	MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
2219 	MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
2220 	MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
2221 	MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
2222 	MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
2223 
2224 	/* RING MODE */
2225 #define RING_REG(base) _MMIO((base) + 0x29c)
2226 	MMIO_RING_DFH(RING_REG, D_ALL,
2227 		F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
2228 		ring_mode_mmio_write);
2229 #undef RING_REG
2230 
2231 	MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2232 		NULL, NULL);
2233 	MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2234 			NULL, NULL);
2235 	MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
2236 			mmio_read_from_hw, NULL);
2237 	MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
2238 			mmio_read_from_hw, NULL);
2239 
2240 	MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2241 	MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2242 		NULL, NULL);
2243 	MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2244 	MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2245 	MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2246 
2247 	MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2248 	MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2249 	MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2250 	MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
2251 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2252 	MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2253 	MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
2254 	MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2255 		NULL, NULL);
2256 	MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
2257 		 NULL, NULL);
2258 	MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
2259 	MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
2260 	MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
2261 	MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
2262 	MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
2263 	MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
2264 	MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2265 	MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2266 	MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2267 	MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2268 
2269 	/* display */
2270 	MMIO_DH(TRANSCONF(TRANSCODER_A), D_ALL, NULL, pipeconf_mmio_write);
2271 	MMIO_DH(TRANSCONF(TRANSCODER_B), D_ALL, NULL, pipeconf_mmio_write);
2272 	MMIO_DH(TRANSCONF(TRANSCODER_C), D_ALL, NULL, pipeconf_mmio_write);
2273 	MMIO_DH(TRANSCONF(TRANSCODER_EDP), D_ALL, NULL, pipeconf_mmio_write);
2274 	MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
2275 	MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
2276 		reg50080_mmio_write);
2277 	MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
2278 	MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
2279 		reg50080_mmio_write);
2280 	MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
2281 	MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
2282 		reg50080_mmio_write);
2283 	MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
2284 	MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
2285 		reg50080_mmio_write);
2286 	MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
2287 	MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
2288 		reg50080_mmio_write);
2289 	MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
2290 	MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
2291 		reg50080_mmio_write);
2292 
2293 	MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
2294 		gmbus_mmio_write);
2295 	MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
2296 
2297 	MMIO_F(_MMIO(_PCH_DPB_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2298 		dp_aux_ch_ctl_mmio_write);
2299 	MMIO_F(_MMIO(_PCH_DPC_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2300 		dp_aux_ch_ctl_mmio_write);
2301 	MMIO_F(_MMIO(_PCH_DPD_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
2302 		dp_aux_ch_ctl_mmio_write);
2303 
2304 	MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
2305 
2306 	MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
2307 	MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
2308 
2309 	MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
2310 	MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
2311 	MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
2312 	MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2313 	MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2314 	MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2315 	MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
2316 	MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
2317 	MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
2318 	MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
2319 	MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
2320 	MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
2321 	MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
2322 	MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
2323 	MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
2324 	MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
2325 
2326 	MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
2327 		PORTA_HOTPLUG_STATUS_MASK
2328 		| PORTB_HOTPLUG_STATUS_MASK
2329 		| PORTC_HOTPLUG_STATUS_MASK
2330 		| PORTD_HOTPLUG_STATUS_MASK,
2331 		NULL, NULL);
2332 
2333 	MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
2334 	MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
2335 	MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
2336 	MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
2337 	MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
2338 
2339 	MMIO_F(_MMIO(_DPA_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_ALL, NULL,
2340 		dp_aux_ch_ctl_mmio_write);
2341 
2342 	MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2343 	MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2344 	MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2345 	MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2346 	MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
2347 
2348 	MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
2349 	MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
2350 	MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
2351 	MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
2352 	MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
2353 
2354 	MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
2355 	MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
2356 	MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
2357 	MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
2358 	MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
2359 
2360 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
2361 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
2362 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
2363 	MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
2364 
2365 	MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
2366 	MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
2367 	MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2368 	MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
2369 	MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
2370 	MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
2371 	MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
2372 	MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
2373 	MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
2374 	MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
2375 	MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
2376 	MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
2377 	MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
2378 
2379 	MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
2380 	MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
2381 	MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
2382 
2383 	MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
2384 	MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
2385 
2386 	MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
2387 	MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
2388 
2389 	MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
2390 	MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2391 	MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2392 	MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2393 	MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
2394 	MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
2395 
2396 	MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2397 	MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2398 	MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2399 	MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2400 
2401 	MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2402 	MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2403 	MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
2404 
2405 	MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2406 	MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2407 	MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2408 	MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2409 	MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2410 	MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2411 	MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2412 	MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2413 	MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2414 	MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2415 	MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
2416 	MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2417 	MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2418 	MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2419 	MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2420 	MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
2421 	MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2422 
2423 	MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2424 	MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
2425 	MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2426 	MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2427 	MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
2428 	MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
2429 	MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
2430 	MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2431 	MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2432 	MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2433 	MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2434 
2435 	MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2436 	MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
2437 	MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
2438 
2439 	return 0;
2440 }
2441 
2442 static int init_bdw_mmio_info(struct intel_gvt *gvt)
2443 {
2444 	int ret;
2445 
2446 	MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2447 	MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2448 	MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2449 
2450 	MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2451 	MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2452 	MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2453 
2454 	MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2455 	MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2456 	MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2457 
2458 	MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2459 	MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2460 	MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2461 
2462 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
2463 		intel_vgpu_reg_imr_handler);
2464 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
2465 		intel_vgpu_reg_ier_handler);
2466 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
2467 		intel_vgpu_reg_iir_handler);
2468 
2469 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
2470 		intel_vgpu_reg_imr_handler);
2471 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
2472 		intel_vgpu_reg_ier_handler);
2473 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
2474 		intel_vgpu_reg_iir_handler);
2475 
2476 	MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
2477 		intel_vgpu_reg_imr_handler);
2478 	MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
2479 		intel_vgpu_reg_ier_handler);
2480 	MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
2481 		intel_vgpu_reg_iir_handler);
2482 
2483 	MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2484 	MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2485 	MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2486 
2487 	MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2488 	MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2489 	MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2490 
2491 	MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
2492 	MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
2493 	MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
2494 
2495 	MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
2496 		intel_vgpu_reg_master_irq_handler);
2497 
2498 	MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
2499 		mmio_read_from_hw, NULL);
2500 
2501 #define RING_REG(base) _MMIO((base) + 0xd0)
2502 	MMIO_RING_F(RING_REG, 4, F_RO, 0,
2503 		~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
2504 		ring_reset_ctl_write);
2505 #undef RING_REG
2506 
2507 #define RING_REG(base) _MMIO((base) + 0x230)
2508 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
2509 #undef RING_REG
2510 
2511 #define RING_REG(base) _MMIO((base) + 0x234)
2512 	MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
2513 		NULL, NULL);
2514 #undef RING_REG
2515 
2516 #define RING_REG(base) _MMIO((base) + 0x244)
2517 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2518 #undef RING_REG
2519 
2520 #define RING_REG(base) _MMIO((base) + 0x370)
2521 	MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
2522 #undef RING_REG
2523 
2524 #define RING_REG(base) _MMIO((base) + 0x3a0)
2525 	MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
2526 #undef RING_REG
2527 
2528 	MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
2529 
2530 #define RING_REG(base) _MMIO((base) + 0x270)
2531 	MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
2532 #undef RING_REG
2533 
2534 	MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
2535 
2536 	MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2537 
2538 	MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2539 		NULL, NULL);
2540 	MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2541 		NULL, NULL);
2542 	MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2543 
2544 	MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2545 	MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
2546 	MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2547 	MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
2548 	MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
2549 
2550 	MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
2551 		D_BDW_PLUS, NULL, force_nonpriv_write);
2552 
2553 	MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
2554 
2555 	MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
2556 
2557 	MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2558 	MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2559 	MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2560 	MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2561 
2562 	MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
2563 
2564 	MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2565 	MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2566 	MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2567 	MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2568 	MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2569 	MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2570 	MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2571 	MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2572 	MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2573 	MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2574 	return 0;
2575 }
2576 
2577 static int init_skl_mmio_info(struct intel_gvt *gvt)
2578 {
2579 	struct drm_i915_private *dev_priv = gvt->gt->i915;
2580 	int ret;
2581 
2582 	MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2583 	MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
2584 	MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2585 	MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
2586 	MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
2587 	MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
2588 
2589 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2590 						dp_aux_ch_ctl_mmio_write);
2591 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2592 						dp_aux_ch_ctl_mmio_write);
2593 	MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
2594 						dp_aux_ch_ctl_mmio_write);
2595 
2596 	MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
2597 
2598 	MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
2599 
2600 	MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2601 	MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2602 	MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
2603 	MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2604 	MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
2605 	MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
2606 
2607 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2608 	MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2609 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2610 	MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2611 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2612 	MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2613 
2614 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2615 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2616 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2617 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2618 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2619 	MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2620 
2621 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
2622 	MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
2623 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
2624 	MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
2625 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
2626 	MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
2627 
2628 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2629 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2630 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2631 	MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2632 
2633 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2634 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2635 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2636 	MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2637 
2638 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2639 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2640 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2641 	MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2642 
2643 	MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
2644 	MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
2645 	MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
2646 
2647 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2648 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2649 	MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2650 
2651 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2652 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2653 	MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2654 
2655 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2656 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2657 	MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2658 
2659 	MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
2660 	MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
2661 	MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
2662 
2663 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
2664 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
2665 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
2666 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
2667 
2668 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
2669 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
2670 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
2671 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
2672 
2673 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
2674 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
2675 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
2676 	MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
2677 
2678 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
2679 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
2680 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
2681 	MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
2682 
2683 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
2684 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
2685 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
2686 	MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
2687 
2688 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
2689 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
2690 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
2691 	MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
2692 
2693 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
2694 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
2695 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
2696 	MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
2697 
2698 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
2699 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
2700 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
2701 	MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
2702 
2703 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
2704 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
2705 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
2706 	MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
2707 
2708 	MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2709 
2710 	MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2711 		NULL, NULL);
2712 	MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
2713 		NULL, NULL);
2714 
2715 	MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
2716 		 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
2717 	MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2718 		NULL, NULL);
2719 
2720 	/* TRTT */
2721 	MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2722 	MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2723 	MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2724 	MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2725 	MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2726 	MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
2727 		 NULL, gen9_trtte_write);
2728 	MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
2729 		 NULL, gen9_trtt_chicken_write);
2730 
2731 	MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
2732 	MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
2733 
2734 #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
2735 	MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2736 		      NULL, csfe_chicken1_mmio_write);
2737 #undef CSFE_CHICKEN1_REG
2738 	MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2739 		 NULL, NULL);
2740 	MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
2741 		 NULL, NULL);
2742 
2743 	MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
2744 	MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
2745 
2746 	return 0;
2747 }
2748 
2749 static int init_bxt_mmio_info(struct intel_gvt *gvt)
2750 {
2751 	int ret;
2752 
2753 	MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
2754 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
2755 		NULL, bxt_phy_ctl_family_write);
2756 	MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
2757 		NULL, bxt_phy_ctl_family_write);
2758 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
2759 		NULL, bxt_port_pll_enable_write);
2760 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
2761 		NULL, bxt_port_pll_enable_write);
2762 	MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
2763 		bxt_port_pll_enable_write);
2764 
2765 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
2766 		NULL, bxt_pcs_dw12_grp_write);
2767 	MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH0), D_BXT,
2768 		bxt_port_tx_dw3_read, NULL);
2769 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
2770 		NULL, bxt_pcs_dw12_grp_write);
2771 	MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH1), D_BXT,
2772 		bxt_port_tx_dw3_read, NULL);
2773 	MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
2774 		NULL, bxt_pcs_dw12_grp_write);
2775 	MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY1, DPIO_CH0), D_BXT,
2776 		bxt_port_tx_dw3_read, NULL);
2777 	MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
2778 	MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
2779 	MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2780 	MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
2781 	MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2782 	       0, 0, D_BXT, NULL, NULL);
2783 	MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2784 	       0, 0, D_BXT, NULL, NULL);
2785 	MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2786 	       0, 0, D_BXT, NULL, NULL);
2787 	MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
2788 	       0, 0, D_BXT, NULL, NULL);
2789 
2790 	MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
2791 
2792 	MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
2793 
2794 	return 0;
2795 }
2796 
2797 static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
2798 					      unsigned int offset)
2799 {
2800 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2801 	int num = gvt->mmio.num_mmio_block;
2802 	int i;
2803 
2804 	for (i = 0; i < num; i++, block++) {
2805 		if (offset >= i915_mmio_reg_offset(block->offset) &&
2806 		    offset < i915_mmio_reg_offset(block->offset) + block->size)
2807 			return block;
2808 	}
2809 	return NULL;
2810 }
2811 
2812 /**
2813  * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
2814  * @gvt: GVT device
2815  *
2816  * This function is called at the driver unloading stage, to clean up the MMIO
2817  * information table of GVT device
2818  *
2819  */
2820 void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
2821 {
2822 	struct hlist_node *tmp;
2823 	struct intel_gvt_mmio_info *e;
2824 	int i;
2825 
2826 	hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
2827 		kfree(e);
2828 
2829 	kfree(gvt->mmio.mmio_block);
2830 	gvt->mmio.mmio_block = NULL;
2831 	gvt->mmio.num_mmio_block = 0;
2832 
2833 	vfree(gvt->mmio.mmio_attribute);
2834 	gvt->mmio.mmio_attribute = NULL;
2835 }
2836 
2837 static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2838 		       u32 size)
2839 {
2840 	struct intel_gvt *gvt = iter->data;
2841 	struct intel_gvt_mmio_info *info, *p;
2842 	u32 start, end, i;
2843 
2844 	if (WARN_ON(!IS_ALIGNED(offset, 4)))
2845 		return -EINVAL;
2846 
2847 	start = offset;
2848 	end = offset + size;
2849 
2850 	for (i = start; i < end; i += 4) {
2851 		p = intel_gvt_find_mmio_info(gvt, i);
2852 		if (p) {
2853 			WARN(1, "dup mmio definition offset %x\n",
2854 				info->offset);
2855 
2856 			/* We return -EEXIST here to make GVT-g load fail.
2857 			 * So duplicated MMIO can be found as soon as
2858 			 * possible.
2859 			 */
2860 			return -EEXIST;
2861 		}
2862 
2863 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2864 		if (!info)
2865 			return -ENOMEM;
2866 
2867 		info->offset = i;
2868 		info->read = intel_vgpu_default_mmio_read;
2869 		info->write = intel_vgpu_default_mmio_write;
2870 		INIT_HLIST_NODE(&info->node);
2871 		hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
2872 		gvt->mmio.num_tracked_mmio++;
2873 	}
2874 	return 0;
2875 }
2876 
2877 static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
2878 			     u32 offset, u32 size)
2879 {
2880 	struct intel_gvt *gvt = iter->data;
2881 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
2882 	void *ret;
2883 
2884 	ret = krealloc(block,
2885 			 (gvt->mmio.num_mmio_block + 1) * sizeof(*block),
2886 			 GFP_KERNEL);
2887 	if (!ret)
2888 		return -ENOMEM;
2889 
2890 	gvt->mmio.mmio_block = block = ret;
2891 
2892 	block += gvt->mmio.num_mmio_block;
2893 
2894 	memset(block, 0, sizeof(*block));
2895 
2896 	block->offset = _MMIO(offset);
2897 	block->size = size;
2898 
2899 	gvt->mmio.num_mmio_block++;
2900 
2901 	return 0;
2902 }
2903 
2904 static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
2905 			  u32 size)
2906 {
2907 	if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
2908 		return handle_mmio(iter, offset, size);
2909 	else
2910 		return handle_mmio_block(iter, offset, size);
2911 }
2912 
2913 static int init_mmio_info(struct intel_gvt *gvt)
2914 {
2915 	struct intel_gvt_mmio_table_iter iter = {
2916 		.i915 = gvt->gt->i915,
2917 		.data = gvt,
2918 		.handle_mmio_cb = handle_mmio_cb,
2919 	};
2920 
2921 	return intel_gvt_iterate_mmio_table(&iter);
2922 }
2923 
2924 static int init_mmio_block_handlers(struct intel_gvt *gvt)
2925 {
2926 	struct gvt_mmio_block *block;
2927 
2928 	block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
2929 	if (!block) {
2930 		WARN(1, "fail to assign handlers to mmio block %x\n",
2931 		     i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
2932 		return -ENODEV;
2933 	}
2934 
2935 	block->read = pvinfo_mmio_read;
2936 	block->write = pvinfo_mmio_write;
2937 
2938 	return 0;
2939 }
2940 
2941 /**
2942  * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
2943  * @gvt: GVT device
2944  *
2945  * This function is called at the initialization stage, to setup the MMIO
2946  * information table for GVT device
2947  *
2948  * Returns:
2949  * zero on success, negative if failed.
2950  */
2951 int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
2952 {
2953 	struct intel_gvt_device_info *info = &gvt->device_info;
2954 	struct drm_i915_private *i915 = gvt->gt->i915;
2955 	int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
2956 	int ret;
2957 
2958 	gvt->mmio.mmio_attribute = vzalloc(size);
2959 	if (!gvt->mmio.mmio_attribute)
2960 		return -ENOMEM;
2961 
2962 	ret = init_mmio_info(gvt);
2963 	if (ret)
2964 		goto err;
2965 
2966 	ret = init_mmio_block_handlers(gvt);
2967 	if (ret)
2968 		goto err;
2969 
2970 	ret = init_generic_mmio_info(gvt);
2971 	if (ret)
2972 		goto err;
2973 
2974 	if (IS_BROADWELL(i915)) {
2975 		ret = init_bdw_mmio_info(gvt);
2976 		if (ret)
2977 			goto err;
2978 	} else if (IS_SKYLAKE(i915) ||
2979 		   IS_KABYLAKE(i915) ||
2980 		   IS_COFFEELAKE(i915) ||
2981 		   IS_COMETLAKE(i915)) {
2982 		ret = init_bdw_mmio_info(gvt);
2983 		if (ret)
2984 			goto err;
2985 		ret = init_skl_mmio_info(gvt);
2986 		if (ret)
2987 			goto err;
2988 	} else if (IS_BROXTON(i915)) {
2989 		ret = init_bdw_mmio_info(gvt);
2990 		if (ret)
2991 			goto err;
2992 		ret = init_skl_mmio_info(gvt);
2993 		if (ret)
2994 			goto err;
2995 		ret = init_bxt_mmio_info(gvt);
2996 		if (ret)
2997 			goto err;
2998 	}
2999 
3000 	return 0;
3001 err:
3002 	intel_gvt_clean_mmio_info(gvt);
3003 	return ret;
3004 }
3005 
3006 /**
3007  * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
3008  * @gvt: a GVT device
3009  * @handler: the handler
3010  * @data: private data given to handler
3011  *
3012  * Returns:
3013  * Zero on success, negative error code if failed.
3014  */
3015 int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
3016 	int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
3017 	void *data)
3018 {
3019 	struct gvt_mmio_block *block = gvt->mmio.mmio_block;
3020 	struct intel_gvt_mmio_info *e;
3021 	int i, j, ret;
3022 
3023 	hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
3024 		ret = handler(gvt, e->offset, data);
3025 		if (ret)
3026 			return ret;
3027 	}
3028 
3029 	for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
3030 		/* pvinfo data doesn't come from hw mmio */
3031 		if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
3032 			continue;
3033 
3034 		for (j = 0; j < block->size; j += 4) {
3035 			ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
3036 			if (ret)
3037 				return ret;
3038 		}
3039 	}
3040 	return 0;
3041 }
3042 
3043 /**
3044  * intel_vgpu_default_mmio_read - default MMIO read handler
3045  * @vgpu: a vGPU
3046  * @offset: access offset
3047  * @p_data: data return buffer
3048  * @bytes: access data length
3049  *
3050  * Returns:
3051  * Zero on success, negative error code if failed.
3052  */
3053 int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
3054 		void *p_data, unsigned int bytes)
3055 {
3056 	read_vreg(vgpu, offset, p_data, bytes);
3057 	return 0;
3058 }
3059 
3060 /**
3061  * intel_vgpu_default_mmio_write() - default MMIO write handler
3062  * @vgpu: a vGPU
3063  * @offset: access offset
3064  * @p_data: write data buffer
3065  * @bytes: access data length
3066  *
3067  * Returns:
3068  * Zero on success, negative error code if failed.
3069  */
3070 int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3071 		void *p_data, unsigned int bytes)
3072 {
3073 	write_vreg(vgpu, offset, p_data, bytes);
3074 	return 0;
3075 }
3076 
3077 /**
3078  * intel_vgpu_mask_mmio_write - write mask register
3079  * @vgpu: a vGPU
3080  * @offset: access offset
3081  * @p_data: write data buffer
3082  * @bytes: access data length
3083  *
3084  * Returns:
3085  * Zero on success, negative error code if failed.
3086  */
3087 int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
3088 		void *p_data, unsigned int bytes)
3089 {
3090 	u32 mask, old_vreg;
3091 
3092 	old_vreg = vgpu_vreg(vgpu, offset);
3093 	write_vreg(vgpu, offset, p_data, bytes);
3094 	mask = vgpu_vreg(vgpu, offset) >> 16;
3095 	vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
3096 				(vgpu_vreg(vgpu, offset) & mask);
3097 
3098 	return 0;
3099 }
3100 
3101 /**
3102  * intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be
3103  * force-nopriv register
3104  *
3105  * @gvt: a GVT device
3106  * @offset: register offset
3107  *
3108  * Returns:
3109  * True if the register is in force-nonpriv whitelist;
3110  * False if outside;
3111  */
3112 bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt,
3113 					  unsigned int offset)
3114 {
3115 	return in_whitelist(offset);
3116 }
3117 
3118 /**
3119  * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
3120  * @vgpu: a vGPU
3121  * @offset: register offset
3122  * @pdata: data buffer
3123  * @bytes: data length
3124  * @is_read: read or write
3125  *
3126  * Returns:
3127  * Zero on success, negative error code if failed.
3128  */
3129 int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
3130 			   void *pdata, unsigned int bytes, bool is_read)
3131 {
3132 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
3133 	struct intel_gvt *gvt = vgpu->gvt;
3134 	struct intel_gvt_mmio_info *mmio_info;
3135 	struct gvt_mmio_block *mmio_block;
3136 	gvt_mmio_func func;
3137 	int ret;
3138 
3139 	if (drm_WARN_ON(&i915->drm, bytes > 8))
3140 		return -EINVAL;
3141 
3142 	/*
3143 	 * Handle special MMIO blocks.
3144 	 */
3145 	mmio_block = find_mmio_block(gvt, offset);
3146 	if (mmio_block) {
3147 		func = is_read ? mmio_block->read : mmio_block->write;
3148 		if (func)
3149 			return func(vgpu, offset, pdata, bytes);
3150 		goto default_rw;
3151 	}
3152 
3153 	/*
3154 	 * Normal tracked MMIOs.
3155 	 */
3156 	mmio_info = intel_gvt_find_mmio_info(gvt, offset);
3157 	if (!mmio_info) {
3158 		gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
3159 		goto default_rw;
3160 	}
3161 
3162 	if (is_read)
3163 		return mmio_info->read(vgpu, offset, pdata, bytes);
3164 	else {
3165 		u64 ro_mask = mmio_info->ro_mask;
3166 		u32 old_vreg = 0;
3167 		u64 data = 0;
3168 
3169 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3170 			old_vreg = vgpu_vreg(vgpu, offset);
3171 		}
3172 
3173 		if (likely(!ro_mask))
3174 			ret = mmio_info->write(vgpu, offset, pdata, bytes);
3175 		else if (!~ro_mask) {
3176 			gvt_vgpu_err("try to write RO reg %x\n", offset);
3177 			return 0;
3178 		} else {
3179 			/* keep the RO bits in the virtual register */
3180 			memcpy(&data, pdata, bytes);
3181 			data &= ~ro_mask;
3182 			data |= vgpu_vreg(vgpu, offset) & ro_mask;
3183 			ret = mmio_info->write(vgpu, offset, &data, bytes);
3184 		}
3185 
3186 		/* higher 16bits of mode ctl regs are mask bits for change */
3187 		if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
3188 			u32 mask = vgpu_vreg(vgpu, offset) >> 16;
3189 
3190 			vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
3191 					| (vgpu_vreg(vgpu, offset) & mask);
3192 		}
3193 	}
3194 
3195 	return ret;
3196 
3197 default_rw:
3198 	return is_read ?
3199 		intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
3200 		intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
3201 }
3202 
3203 void intel_gvt_restore_fence(struct intel_gvt *gvt)
3204 {
3205 	struct intel_vgpu *vgpu;
3206 	int i, id;
3207 
3208 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3209 		mmio_hw_access_pre(gvt->gt);
3210 		for (i = 0; i < vgpu_fence_sz(vgpu); i++)
3211 			intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
3212 		mmio_hw_access_post(gvt->gt);
3213 	}
3214 }
3215 
3216 static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
3217 {
3218 	struct intel_vgpu *vgpu = data;
3219 	struct drm_i915_private *dev_priv = gvt->gt->i915;
3220 
3221 	if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
3222 		intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
3223 
3224 	return 0;
3225 }
3226 
3227 void intel_gvt_restore_mmio(struct intel_gvt *gvt)
3228 {
3229 	struct intel_vgpu *vgpu;
3230 	int id;
3231 
3232 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
3233 		mmio_hw_access_pre(gvt->gt);
3234 		intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
3235 		mmio_hw_access_post(gvt->gt);
3236 	}
3237 }
3238