1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Kevin Tian <kevin.tian@intel.com> 25 * Eddie Dong <eddie.dong@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Tina Zhang <tina.zhang@intel.com> 31 * Pei Zhang <pei.zhang@intel.com> 32 * Niu Bing <bing.niu@intel.com> 33 * Ping Gao <ping.a.gao@intel.com> 34 * Zhi Wang <zhi.a.wang@intel.com> 35 * 36 37 */ 38 39 #include "i915_drv.h" 40 #include "i915_reg.h" 41 #include "gvt.h" 42 #include "i915_pvinfo.h" 43 #include "intel_mchbar_regs.h" 44 #include "display/intel_display_types.h" 45 #include "display/intel_dmc_regs.h" 46 #include "display/intel_dp_aux_regs.h" 47 #include "display/intel_dpio_phy.h" 48 #include "display/intel_fbc.h" 49 #include "display/intel_fdi_regs.h" 50 #include "display/intel_pps_regs.h" 51 #include "display/intel_psr_regs.h" 52 #include "display/skl_watermark_regs.h" 53 #include "display/vlv_dsi_pll_regs.h" 54 #include "gt/intel_gt_regs.h" 55 56 /* XXX FIXME i915 has changed PP_XXX definition */ 57 #define PCH_PP_STATUS _MMIO(0xc7200) 58 #define PCH_PP_CONTROL _MMIO(0xc7204) 59 #define PCH_PP_ON_DELAYS _MMIO(0xc7208) 60 #define PCH_PP_OFF_DELAYS _MMIO(0xc720c) 61 #define PCH_PP_DIVISOR _MMIO(0xc7210) 62 63 unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt) 64 { 65 struct drm_i915_private *i915 = gvt->gt->i915; 66 67 if (IS_BROADWELL(i915)) 68 return D_BDW; 69 else if (IS_SKYLAKE(i915)) 70 return D_SKL; 71 else if (IS_KABYLAKE(i915)) 72 return D_KBL; 73 else if (IS_BROXTON(i915)) 74 return D_BXT; 75 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 76 return D_CFL; 77 78 return 0; 79 } 80 81 static bool intel_gvt_match_device(struct intel_gvt *gvt, 82 unsigned long device) 83 { 84 return intel_gvt_get_device_type(gvt) & device; 85 } 86 87 static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset, 88 void *p_data, unsigned int bytes) 89 { 90 memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes); 91 } 92 93 static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset, 94 void *p_data, unsigned int bytes) 95 { 96 memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes); 97 } 98 99 struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt, 100 unsigned int offset) 101 { 102 struct intel_gvt_mmio_info *e; 103 104 hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) { 105 if (e->offset == offset) 106 return e; 107 } 108 return NULL; 109 } 110 111 static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size, 112 u16 flags, u32 addr_mask, u32 ro_mask, u32 device, 113 gvt_mmio_func read, gvt_mmio_func write) 114 { 115 struct intel_gvt_mmio_info *p; 116 u32 start, end, i; 117 118 if (!intel_gvt_match_device(gvt, device)) 119 return 0; 120 121 if (WARN_ON(!IS_ALIGNED(offset, 4))) 122 return -EINVAL; 123 124 start = offset; 125 end = offset + size; 126 127 for (i = start; i < end; i += 4) { 128 p = intel_gvt_find_mmio_info(gvt, i); 129 if (!p) { 130 WARN(1, "assign a handler to a non-tracked mmio %x\n", 131 i); 132 return -ENODEV; 133 } 134 p->ro_mask = ro_mask; 135 gvt->mmio.mmio_attribute[i / 4] = flags; 136 if (read) 137 p->read = read; 138 if (write) 139 p->write = write; 140 } 141 return 0; 142 } 143 144 /** 145 * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine 146 * @gvt: a GVT device 147 * @offset: register offset 148 * 149 * Returns: 150 * The engine containing the offset within its mmio page. 151 */ 152 const struct intel_engine_cs * 153 intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset) 154 { 155 struct intel_engine_cs *engine; 156 enum intel_engine_id id; 157 158 offset &= ~GENMASK(11, 0); 159 for_each_engine(engine, gvt->gt, id) 160 if (engine->mmio_base == offset) 161 return engine; 162 163 return NULL; 164 } 165 166 #define offset_to_fence_num(offset) \ 167 ((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3) 168 169 #define fence_num_to_offset(num) \ 170 (num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) 171 172 173 void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason) 174 { 175 switch (reason) { 176 case GVT_FAILSAFE_UNSUPPORTED_GUEST: 177 pr_err("Detected your guest driver doesn't support GVT-g.\n"); 178 break; 179 case GVT_FAILSAFE_INSUFFICIENT_RESOURCE: 180 pr_err("Graphics resource is not enough for the guest\n"); 181 break; 182 case GVT_FAILSAFE_GUEST_ERR: 183 pr_err("GVT Internal error for the guest\n"); 184 break; 185 default: 186 break; 187 } 188 pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id); 189 vgpu->failsafe = true; 190 } 191 192 static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu, 193 unsigned int fence_num, void *p_data, unsigned int bytes) 194 { 195 unsigned int max_fence = vgpu_fence_sz(vgpu); 196 197 if (fence_num >= max_fence) { 198 gvt_vgpu_err("access oob fence reg %d/%d\n", 199 fence_num, max_fence); 200 201 /* When guest access oob fence regs without access 202 * pv_info first, we treat guest not supporting GVT, 203 * and we will let vgpu enter failsafe mode. 204 */ 205 if (!vgpu->pv_notified) 206 enter_failsafe_mode(vgpu, 207 GVT_FAILSAFE_UNSUPPORTED_GUEST); 208 209 memset(p_data, 0, bytes); 210 return -EINVAL; 211 } 212 return 0; 213 } 214 215 static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu, 216 unsigned int offset, void *p_data, unsigned int bytes) 217 { 218 u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD; 219 220 if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) { 221 if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD) 222 gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id); 223 else if (!ips) 224 gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id); 225 else { 226 /* All engines must be enabled together for vGPU, 227 * since we don't know which engine the ppgtt will 228 * bind to when shadowing. 229 */ 230 gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n", 231 ips); 232 return -EINVAL; 233 } 234 } 235 236 write_vreg(vgpu, offset, p_data, bytes); 237 return 0; 238 } 239 240 static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 241 void *p_data, unsigned int bytes) 242 { 243 int ret; 244 245 ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off), 246 p_data, bytes); 247 if (ret) 248 return ret; 249 read_vreg(vgpu, off, p_data, bytes); 250 return 0; 251 } 252 253 static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 254 void *p_data, unsigned int bytes) 255 { 256 struct intel_gvt *gvt = vgpu->gvt; 257 unsigned int fence_num = offset_to_fence_num(off); 258 int ret; 259 260 ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes); 261 if (ret) 262 return ret; 263 write_vreg(vgpu, off, p_data, bytes); 264 265 mmio_hw_access_pre(gvt->gt); 266 intel_vgpu_write_fence(vgpu, fence_num, 267 vgpu_vreg64(vgpu, fence_num_to_offset(fence_num))); 268 mmio_hw_access_post(gvt->gt); 269 return 0; 270 } 271 272 #define CALC_MODE_MASK_REG(old, new) \ 273 (((new) & GENMASK(31, 16)) \ 274 | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \ 275 | ((new) & ((new) >> 16)))) 276 277 static int mul_force_wake_write(struct intel_vgpu *vgpu, 278 unsigned int offset, void *p_data, unsigned int bytes) 279 { 280 u32 old, new; 281 u32 ack_reg_offset; 282 283 old = vgpu_vreg(vgpu, offset); 284 new = CALC_MODE_MASK_REG(old, *(u32 *)p_data); 285 286 if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9) { 287 switch (offset) { 288 case FORCEWAKE_RENDER_GEN9_REG: 289 ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG; 290 break; 291 case FORCEWAKE_GT_GEN9_REG: 292 ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG; 293 break; 294 case FORCEWAKE_MEDIA_GEN9_REG: 295 ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG; 296 break; 297 default: 298 /*should not hit here*/ 299 gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset); 300 return -EINVAL; 301 } 302 } else { 303 ack_reg_offset = FORCEWAKE_ACK_HSW_REG; 304 } 305 306 vgpu_vreg(vgpu, offset) = new; 307 vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0)); 308 return 0; 309 } 310 311 static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 312 void *p_data, unsigned int bytes) 313 { 314 intel_engine_mask_t engine_mask = 0; 315 u32 data; 316 317 write_vreg(vgpu, offset, p_data, bytes); 318 data = vgpu_vreg(vgpu, offset); 319 320 if (data & GEN6_GRDOM_FULL) { 321 gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id); 322 engine_mask = ALL_ENGINES; 323 } else { 324 if (data & GEN6_GRDOM_RENDER) { 325 gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id); 326 engine_mask |= BIT(RCS0); 327 } 328 if (data & GEN6_GRDOM_MEDIA) { 329 gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id); 330 engine_mask |= BIT(VCS0); 331 } 332 if (data & GEN6_GRDOM_BLT) { 333 gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id); 334 engine_mask |= BIT(BCS0); 335 } 336 if (data & GEN6_GRDOM_VECS) { 337 gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id); 338 engine_mask |= BIT(VECS0); 339 } 340 if (data & GEN8_GRDOM_MEDIA2) { 341 gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id); 342 engine_mask |= BIT(VCS1); 343 } 344 if (data & GEN9_GRDOM_GUC) { 345 gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id); 346 vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET; 347 } 348 engine_mask &= vgpu->gvt->gt->info.engine_mask; 349 } 350 351 /* vgpu_lock already hold by emulate mmio r/w */ 352 intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask); 353 354 /* sw will wait for the device to ack the reset request */ 355 vgpu_vreg(vgpu, offset) = 0; 356 357 return 0; 358 } 359 360 static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, 361 void *p_data, unsigned int bytes) 362 { 363 return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes); 364 } 365 366 static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 367 void *p_data, unsigned int bytes) 368 { 369 return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes); 370 } 371 372 static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu, 373 unsigned int offset, void *p_data, unsigned int bytes) 374 { 375 write_vreg(vgpu, offset, p_data, bytes); 376 377 if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) { 378 vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON; 379 vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE; 380 vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN; 381 vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE; 382 383 } else 384 vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= 385 ~(PP_ON | PP_SEQUENCE_POWER_DOWN 386 | PP_CYCLE_DELAY_ACTIVE); 387 return 0; 388 } 389 390 static int transconf_mmio_write(struct intel_vgpu *vgpu, 391 unsigned int offset, void *p_data, unsigned int bytes) 392 { 393 write_vreg(vgpu, offset, p_data, bytes); 394 395 if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE) 396 vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE; 397 else 398 vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE; 399 return 0; 400 } 401 402 static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 403 void *p_data, unsigned int bytes) 404 { 405 write_vreg(vgpu, offset, p_data, bytes); 406 407 if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE) 408 vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK; 409 else 410 vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK; 411 412 if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK) 413 vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE; 414 else 415 vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE; 416 417 return 0; 418 } 419 420 static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, 421 void *p_data, unsigned int bytes) 422 { 423 switch (offset) { 424 case 0xe651c: 425 case 0xe661c: 426 case 0xe671c: 427 case 0xe681c: 428 vgpu_vreg(vgpu, offset) = 1 << 17; 429 break; 430 case 0xe6c04: 431 vgpu_vreg(vgpu, offset) = 0x3; 432 break; 433 case 0xe6e1c: 434 vgpu_vreg(vgpu, offset) = 0x2f << 16; 435 break; 436 default: 437 return -EINVAL; 438 } 439 440 read_vreg(vgpu, offset, p_data, bytes); 441 return 0; 442 } 443 444 /* 445 * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to 446 * TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on 447 * setup_virtual_dp_monitor(). 448 * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled 449 * DPLL. Later guest driver may setup a different DPLLx when setting mode. 450 * So the correct sequence to find DP stream clock is: 451 * Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x. 452 * Check correct PLLx for PORT_x to get PLL frequency and DP bitrate. 453 * Then Refresh rate then can be calculated based on follow equations: 454 * Pixel clock = h_total * v_total * refresh_rate 455 * stream clock = Pixel clock 456 * ls_clk = DP bitrate 457 * Link M/N = strm_clk / ls_clk 458 */ 459 460 static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port) 461 { 462 u32 dp_br = 0; 463 u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)); 464 465 switch (ddi_pll_sel) { 466 case PORT_CLK_SEL_LCPLL_2700: 467 dp_br = 270000 * 2; 468 break; 469 case PORT_CLK_SEL_LCPLL_1350: 470 dp_br = 135000 * 2; 471 break; 472 case PORT_CLK_SEL_LCPLL_810: 473 dp_br = 81000 * 2; 474 break; 475 case PORT_CLK_SEL_SPLL: 476 { 477 switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) { 478 case SPLL_FREQ_810MHz: 479 dp_br = 81000 * 2; 480 break; 481 case SPLL_FREQ_1350MHz: 482 dp_br = 135000 * 2; 483 break; 484 case SPLL_FREQ_2700MHz: 485 dp_br = 270000 * 2; 486 break; 487 default: 488 gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n", 489 vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL)); 490 break; 491 } 492 break; 493 } 494 case PORT_CLK_SEL_WRPLL1: 495 case PORT_CLK_SEL_WRPLL2: 496 { 497 u32 wrpll_ctl; 498 int refclk, n, p, r; 499 500 if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1) 501 wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1)); 502 else 503 wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2)); 504 505 switch (wrpll_ctl & WRPLL_REF_MASK) { 506 case WRPLL_REF_PCH_SSC: 507 refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.ssc; 508 break; 509 case WRPLL_REF_LCPLL: 510 refclk = 2700000; 511 break; 512 default: 513 gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n", 514 vgpu->id, port_name(port), wrpll_ctl); 515 goto out; 516 } 517 518 r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK; 519 p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT; 520 n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT; 521 522 dp_br = (refclk * n / 10) / (p * r) * 2; 523 break; 524 } 525 default: 526 gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n", 527 vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port))); 528 break; 529 } 530 531 out: 532 return dp_br; 533 } 534 535 static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port) 536 { 537 u32 dp_br = 0; 538 int refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.nssc; 539 enum dpio_phy phy = DPIO_PHY0; 540 enum dpio_channel ch = DPIO_CH0; 541 struct dpll clock = {0}; 542 u32 temp; 543 544 /* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */ 545 switch (port) { 546 case PORT_A: 547 phy = DPIO_PHY1; 548 ch = DPIO_CH0; 549 break; 550 case PORT_B: 551 phy = DPIO_PHY0; 552 ch = DPIO_CH0; 553 break; 554 case PORT_C: 555 phy = DPIO_PHY0; 556 ch = DPIO_CH1; 557 break; 558 default: 559 gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port)); 560 goto out; 561 } 562 563 temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port)); 564 if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) { 565 gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n", 566 vgpu->id, port_name(port), temp); 567 goto out; 568 } 569 570 clock.m1 = 2; 571 clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK, 572 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22; 573 if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE) 574 clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK, 575 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2))); 576 clock.n = REG_FIELD_GET(PORT_PLL_N_MASK, 577 vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1))); 578 clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK, 579 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch))); 580 clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK, 581 vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch))); 582 clock.m = clock.m1 * clock.m2; 583 clock.p = clock.p1 * clock.p2 * 5; 584 585 if (clock.n == 0 || clock.p == 0) { 586 gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port)); 587 goto out; 588 } 589 590 clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22); 591 clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p); 592 593 dp_br = clock.dot; 594 595 out: 596 return dp_br; 597 } 598 599 static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port) 600 { 601 u32 dp_br = 0; 602 enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0; 603 604 /* Find the enabled DPLL for the DDI/PORT */ 605 if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) && 606 (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) { 607 dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) & 608 DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >> 609 DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port); 610 } else { 611 gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n", 612 vgpu->id, port_name(port)); 613 return dp_br; 614 } 615 616 /* Find PLL output frequency from correct DPLL, and get bir rate */ 617 switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) & 618 DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >> 619 DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) { 620 case DPLL_CTRL1_LINK_RATE_810: 621 dp_br = 81000 * 2; 622 break; 623 case DPLL_CTRL1_LINK_RATE_1080: 624 dp_br = 108000 * 2; 625 break; 626 case DPLL_CTRL1_LINK_RATE_1350: 627 dp_br = 135000 * 2; 628 break; 629 case DPLL_CTRL1_LINK_RATE_1620: 630 dp_br = 162000 * 2; 631 break; 632 case DPLL_CTRL1_LINK_RATE_2160: 633 dp_br = 216000 * 2; 634 break; 635 case DPLL_CTRL1_LINK_RATE_2700: 636 dp_br = 270000 * 2; 637 break; 638 default: 639 dp_br = 0; 640 gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n", 641 vgpu->id, port_name(port), dpll_id); 642 } 643 644 return dp_br; 645 } 646 647 static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu) 648 { 649 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 650 enum port port; 651 u32 dp_br, link_m, link_n, htotal, vtotal; 652 653 /* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */ 654 port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(TRANSCODER_A)) & 655 TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT; 656 if (port != PORT_B && port != PORT_D) { 657 gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port)); 658 return; 659 } 660 661 /* Calculate DP bitrate from PLL */ 662 if (IS_BROADWELL(dev_priv)) 663 dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port); 664 else if (IS_BROXTON(dev_priv)) 665 dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port); 666 else 667 dp_br = skl_vgpu_get_dp_bitrate(vgpu, port); 668 669 /* Get DP link symbol clock M/N */ 670 link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(TRANSCODER_A)); 671 link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(TRANSCODER_A)); 672 673 /* Get H/V total from transcoder timing */ 674 htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT); 675 vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT); 676 677 if (dp_br && link_n && htotal && vtotal) { 678 u64 pixel_clk = 0; 679 u32 new_rate = 0; 680 u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k); 681 682 /* Calcuate pixel clock by (ls_clk * M / N) */ 683 pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n); 684 pixel_clk *= MSEC_PER_SEC; 685 686 /* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */ 687 new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1)); 688 689 if (*old_rate != new_rate) 690 *old_rate = new_rate; 691 692 gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n", 693 vgpu->id, pipe_name(PIPE_A), new_rate); 694 } 695 } 696 697 static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 698 void *p_data, unsigned int bytes) 699 { 700 u32 data; 701 702 write_vreg(vgpu, offset, p_data, bytes); 703 data = vgpu_vreg(vgpu, offset); 704 705 if (data & TRANSCONF_ENABLE) { 706 vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE; 707 vgpu_update_refresh_rate(vgpu); 708 vgpu_update_vblank_emulation(vgpu, true); 709 } else { 710 vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE; 711 vgpu_update_vblank_emulation(vgpu, false); 712 } 713 return 0; 714 } 715 716 /* sorted in ascending order */ 717 static i915_reg_t force_nonpriv_white_list[] = { 718 _MMIO(0xd80), 719 GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec) 720 GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248) 721 CL_PRIMITIVES_COUNT, //_MMIO(0x2340) 722 PS_INVOCATION_COUNT, //_MMIO(0x2348) 723 PS_DEPTH_COUNT, //_MMIO(0x2350) 724 GEN8_CS_CHICKEN1,//_MMIO(0x2580) 725 _MMIO(0x2690), 726 _MMIO(0x2694), 727 _MMIO(0x2698), 728 _MMIO(0x2754), 729 _MMIO(0x28a0), 730 _MMIO(0x4de0), 731 _MMIO(0x4de4), 732 _MMIO(0x4dfc), 733 GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010) 734 _MMIO(0x7014), 735 HDC_CHICKEN0,//_MMIO(0x7300) 736 GEN8_HDC_CHICKEN1,//_MMIO(0x7304) 737 _MMIO(0x7700), 738 _MMIO(0x7704), 739 _MMIO(0x7708), 740 _MMIO(0x770c), 741 _MMIO(0x83a8), 742 _MMIO(0xb110), 743 _MMIO(0xb118), 744 _MMIO(0xe100), 745 _MMIO(0xe18c), 746 _MMIO(0xe48c), 747 _MMIO(0xe5f4), 748 _MMIO(0x64844), 749 }; 750 751 /* a simple bsearch */ 752 static inline bool in_whitelist(u32 reg) 753 { 754 int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list); 755 i915_reg_t *array = force_nonpriv_white_list; 756 757 while (left < right) { 758 int mid = (left + right)/2; 759 760 if (reg > array[mid].reg) 761 left = mid + 1; 762 else if (reg < array[mid].reg) 763 right = mid; 764 else 765 return true; 766 } 767 return false; 768 } 769 770 static int force_nonpriv_write(struct intel_vgpu *vgpu, 771 unsigned int offset, void *p_data, unsigned int bytes) 772 { 773 u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2); 774 const struct intel_engine_cs *engine = 775 intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); 776 777 if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) { 778 gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n", 779 vgpu->id, offset, bytes); 780 return -EINVAL; 781 } 782 783 if (!in_whitelist(reg_nonpriv) && 784 reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) { 785 gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n", 786 vgpu->id, reg_nonpriv, offset); 787 } else 788 intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes); 789 790 return 0; 791 } 792 793 static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 794 void *p_data, unsigned int bytes) 795 { 796 write_vreg(vgpu, offset, p_data, bytes); 797 798 if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) { 799 vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE; 800 } else { 801 vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE; 802 if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E))) 803 vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) 804 &= ~DP_TP_STATUS_AUTOTRAIN_DONE; 805 } 806 return 0; 807 } 808 809 static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu, 810 unsigned int offset, void *p_data, unsigned int bytes) 811 { 812 vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data; 813 return 0; 814 } 815 816 #define FDI_LINK_TRAIN_PATTERN1 0 817 #define FDI_LINK_TRAIN_PATTERN2 1 818 819 static int fdi_auto_training_started(struct intel_vgpu *vgpu) 820 { 821 u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E)); 822 u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL); 823 u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E)); 824 825 if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) && 826 (rx_ctl & FDI_RX_ENABLE) && 827 (rx_ctl & FDI_AUTO_TRAINING) && 828 (tx_ctl & DP_TP_CTL_ENABLE) && 829 (tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN)) 830 return 1; 831 else 832 return 0; 833 } 834 835 static int check_fdi_rx_train_status(struct intel_vgpu *vgpu, 836 enum pipe pipe, unsigned int train_pattern) 837 { 838 i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl; 839 unsigned int fdi_rx_check_bits, fdi_tx_check_bits; 840 unsigned int fdi_rx_train_bits, fdi_tx_train_bits; 841 unsigned int fdi_iir_check_bits; 842 843 fdi_rx_imr = FDI_RX_IMR(pipe); 844 fdi_tx_ctl = FDI_TX_CTL(pipe); 845 fdi_rx_ctl = FDI_RX_CTL(pipe); 846 847 if (train_pattern == FDI_LINK_TRAIN_PATTERN1) { 848 fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT; 849 fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1; 850 fdi_iir_check_bits = FDI_RX_BIT_LOCK; 851 } else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) { 852 fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT; 853 fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2; 854 fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK; 855 } else { 856 gvt_vgpu_err("Invalid train pattern %d\n", train_pattern); 857 return -EINVAL; 858 } 859 860 fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits; 861 fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits; 862 863 /* If imr bit has been masked */ 864 if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits) 865 return 0; 866 867 if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits) 868 == fdi_tx_check_bits) 869 && ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits) 870 == fdi_rx_check_bits)) 871 return 1; 872 else 873 return 0; 874 } 875 876 #define INVALID_INDEX (~0U) 877 878 static unsigned int calc_index(unsigned int offset, unsigned int start, 879 unsigned int next, unsigned int end, i915_reg_t i915_end) 880 { 881 unsigned int range = next - start; 882 883 if (!end) 884 end = i915_mmio_reg_offset(i915_end); 885 if (offset < start || offset > end) 886 return INVALID_INDEX; 887 offset -= start; 888 return offset / range; 889 } 890 891 #define FDI_RX_CTL_TO_PIPE(offset) \ 892 calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C)) 893 894 #define FDI_TX_CTL_TO_PIPE(offset) \ 895 calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C)) 896 897 #define FDI_RX_IMR_TO_PIPE(offset) \ 898 calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C)) 899 900 static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu, 901 unsigned int offset, void *p_data, unsigned int bytes) 902 { 903 i915_reg_t fdi_rx_iir; 904 unsigned int index; 905 int ret; 906 907 if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX) 908 index = FDI_RX_CTL_TO_PIPE(offset); 909 else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX) 910 index = FDI_TX_CTL_TO_PIPE(offset); 911 else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX) 912 index = FDI_RX_IMR_TO_PIPE(offset); 913 else { 914 gvt_vgpu_err("Unsupported registers %x\n", offset); 915 return -EINVAL; 916 } 917 918 write_vreg(vgpu, offset, p_data, bytes); 919 920 fdi_rx_iir = FDI_RX_IIR(index); 921 922 ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1); 923 if (ret < 0) 924 return ret; 925 if (ret) 926 vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK; 927 928 ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2); 929 if (ret < 0) 930 return ret; 931 if (ret) 932 vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK; 933 934 if (offset == _FDI_RXA_CTL) 935 if (fdi_auto_training_started(vgpu)) 936 vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |= 937 DP_TP_STATUS_AUTOTRAIN_DONE; 938 return 0; 939 } 940 941 #define DP_TP_CTL_TO_PORT(offset) \ 942 calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E)) 943 944 static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 945 void *p_data, unsigned int bytes) 946 { 947 i915_reg_t status_reg; 948 unsigned int index; 949 u32 data; 950 951 write_vreg(vgpu, offset, p_data, bytes); 952 953 index = DP_TP_CTL_TO_PORT(offset); 954 data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8; 955 if (data == 0x2) { 956 status_reg = DP_TP_STATUS(index); 957 vgpu_vreg_t(vgpu, status_reg) |= (1 << 25); 958 } 959 return 0; 960 } 961 962 static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu, 963 unsigned int offset, void *p_data, unsigned int bytes) 964 { 965 u32 reg_val; 966 u32 sticky_mask; 967 968 reg_val = *((u32 *)p_data); 969 sticky_mask = GENMASK(27, 26) | (1 << 24); 970 971 vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) | 972 (vgpu_vreg(vgpu, offset) & sticky_mask); 973 vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask); 974 return 0; 975 } 976 977 static int pch_adpa_mmio_write(struct intel_vgpu *vgpu, 978 unsigned int offset, void *p_data, unsigned int bytes) 979 { 980 u32 data; 981 982 write_vreg(vgpu, offset, p_data, bytes); 983 data = vgpu_vreg(vgpu, offset); 984 985 if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER) 986 vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER; 987 return 0; 988 } 989 990 static int south_chicken2_mmio_write(struct intel_vgpu *vgpu, 991 unsigned int offset, void *p_data, unsigned int bytes) 992 { 993 u32 data; 994 995 write_vreg(vgpu, offset, p_data, bytes); 996 data = vgpu_vreg(vgpu, offset); 997 998 if (data & FDI_MPHY_IOSFSB_RESET_CTL) 999 vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS; 1000 else 1001 vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS; 1002 return 0; 1003 } 1004 1005 #define DSPSURF_TO_PIPE(offset) \ 1006 calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C)) 1007 1008 static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 1009 void *p_data, unsigned int bytes) 1010 { 1011 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1012 u32 pipe = DSPSURF_TO_PIPE(offset); 1013 int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY); 1014 1015 write_vreg(vgpu, offset, p_data, bytes); 1016 vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); 1017 1018 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++; 1019 1020 if (vgpu_vreg_t(vgpu, DSPCNTR(pipe)) & PLANE_CTL_ASYNC_FLIP) 1021 intel_vgpu_trigger_virtual_event(vgpu, event); 1022 else 1023 set_bit(event, vgpu->irq.flip_done_event[pipe]); 1024 1025 return 0; 1026 } 1027 1028 #define SPRSURF_TO_PIPE(offset) \ 1029 calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C)) 1030 1031 static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 1032 void *p_data, unsigned int bytes) 1033 { 1034 u32 pipe = SPRSURF_TO_PIPE(offset); 1035 int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0); 1036 1037 write_vreg(vgpu, offset, p_data, bytes); 1038 vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); 1039 1040 if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP) 1041 intel_vgpu_trigger_virtual_event(vgpu, event); 1042 else 1043 set_bit(event, vgpu->irq.flip_done_event[pipe]); 1044 1045 return 0; 1046 } 1047 1048 static int reg50080_mmio_write(struct intel_vgpu *vgpu, 1049 unsigned int offset, void *p_data, 1050 unsigned int bytes) 1051 { 1052 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1053 enum pipe pipe = REG_50080_TO_PIPE(offset); 1054 enum plane_id plane = REG_50080_TO_PLANE(offset); 1055 int event = SKL_FLIP_EVENT(pipe, plane); 1056 1057 write_vreg(vgpu, offset, p_data, bytes); 1058 if (plane == PLANE_PRIMARY) { 1059 vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); 1060 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++; 1061 } else { 1062 vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); 1063 } 1064 1065 if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC) 1066 intel_vgpu_trigger_virtual_event(vgpu, event); 1067 else 1068 set_bit(event, vgpu->irq.flip_done_event[pipe]); 1069 1070 return 0; 1071 } 1072 1073 static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu, 1074 unsigned int reg) 1075 { 1076 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1077 enum intel_gvt_event_type event; 1078 1079 if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A))) 1080 event = AUX_CHANNEL_A; 1081 else if (reg == _PCH_DPB_AUX_CH_CTL || 1082 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B))) 1083 event = AUX_CHANNEL_B; 1084 else if (reg == _PCH_DPC_AUX_CH_CTL || 1085 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C))) 1086 event = AUX_CHANNEL_C; 1087 else if (reg == _PCH_DPD_AUX_CH_CTL || 1088 reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D))) 1089 event = AUX_CHANNEL_D; 1090 else { 1091 drm_WARN_ON(&dev_priv->drm, true); 1092 return -EINVAL; 1093 } 1094 1095 intel_vgpu_trigger_virtual_event(vgpu, event); 1096 return 0; 1097 } 1098 1099 static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value, 1100 unsigned int reg, int len, bool data_valid) 1101 { 1102 /* mark transaction done */ 1103 value |= DP_AUX_CH_CTL_DONE; 1104 value &= ~DP_AUX_CH_CTL_SEND_BUSY; 1105 value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR; 1106 1107 if (data_valid) 1108 value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR; 1109 else 1110 value |= DP_AUX_CH_CTL_TIME_OUT_ERROR; 1111 1112 /* message size */ 1113 value &= ~(0xf << 20); 1114 value |= (len << 20); 1115 vgpu_vreg(vgpu, reg) = value; 1116 1117 if (value & DP_AUX_CH_CTL_INTERRUPT) 1118 return trigger_aux_channel_interrupt(vgpu, reg); 1119 return 0; 1120 } 1121 1122 static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd, 1123 u8 t) 1124 { 1125 if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) { 1126 /* training pattern 1 for CR */ 1127 /* set LANE0_CR_DONE, LANE1_CR_DONE */ 1128 dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE; 1129 /* set LANE2_CR_DONE, LANE3_CR_DONE */ 1130 dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE; 1131 } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == 1132 DPCD_TRAINING_PATTERN_2) { 1133 /* training pattern 2 for EQ */ 1134 /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane0_1 */ 1135 dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE; 1136 dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED; 1137 /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane2_3 */ 1138 dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE; 1139 dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED; 1140 /* set INTERLANE_ALIGN_DONE */ 1141 dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |= 1142 DPCD_INTERLANE_ALIGN_DONE; 1143 } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == 1144 DPCD_LINK_TRAINING_DISABLED) { 1145 /* finish link training */ 1146 /* set sink status as synchronized */ 1147 dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC; 1148 } 1149 } 1150 1151 #define _REG_HSW_DP_AUX_CH_CTL(dp) \ 1152 ((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010) 1153 1154 #define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100) 1155 1156 #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8) 1157 1158 #define dpy_is_valid_port(port) \ 1159 (((port) >= PORT_A) && ((port) < I915_MAX_PORTS)) 1160 1161 static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu, 1162 unsigned int offset, void *p_data, unsigned int bytes) 1163 { 1164 struct intel_vgpu_display *display = &vgpu->display; 1165 int msg, addr, ctrl, op, len; 1166 int port_index = OFFSET_TO_DP_AUX_PORT(offset); 1167 struct intel_vgpu_dpcd_data *dpcd = NULL; 1168 struct intel_vgpu_port *port = NULL; 1169 u32 data; 1170 1171 if (!dpy_is_valid_port(port_index)) { 1172 gvt_vgpu_err("Unsupported DP port access!\n"); 1173 return 0; 1174 } 1175 1176 write_vreg(vgpu, offset, p_data, bytes); 1177 data = vgpu_vreg(vgpu, offset); 1178 1179 if ((GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9) 1180 && offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) { 1181 /* SKL DPB/C/D aux ctl register changed */ 1182 return 0; 1183 } else if (IS_BROADWELL(vgpu->gvt->gt->i915) && 1184 offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) { 1185 /* write to the data registers */ 1186 return 0; 1187 } 1188 1189 if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) { 1190 /* just want to clear the sticky bits */ 1191 vgpu_vreg(vgpu, offset) = 0; 1192 return 0; 1193 } 1194 1195 port = &display->ports[port_index]; 1196 dpcd = port->dpcd; 1197 1198 /* read out message from DATA1 register */ 1199 msg = vgpu_vreg(vgpu, offset + 4); 1200 addr = (msg >> 8) & 0xffff; 1201 ctrl = (msg >> 24) & 0xff; 1202 len = msg & 0xff; 1203 op = ctrl >> 4; 1204 1205 if (op == GVT_AUX_NATIVE_WRITE) { 1206 int t; 1207 u8 buf[16]; 1208 1209 if ((addr + len + 1) >= DPCD_SIZE) { 1210 /* 1211 * Write request exceeds what we supported, 1212 * DCPD spec: When a Source Device is writing a DPCD 1213 * address not supported by the Sink Device, the Sink 1214 * Device shall reply with AUX NACK and “M” equal to 1215 * zero. 1216 */ 1217 1218 /* NAK the write */ 1219 vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK; 1220 dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true); 1221 return 0; 1222 } 1223 1224 /* 1225 * Write request format: Headr (command + address + size) occupies 1226 * 4 bytes, followed by (len + 1) bytes of data. See details at 1227 * intel_dp_aux_transfer(). 1228 */ 1229 if ((len + 1 + 4) > AUX_BURST_SIZE) { 1230 gvt_vgpu_err("dp_aux_header: len %d is too large\n", len); 1231 return -EINVAL; 1232 } 1233 1234 /* unpack data from vreg to buf */ 1235 for (t = 0; t < 4; t++) { 1236 u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4); 1237 1238 buf[t * 4] = (r >> 24) & 0xff; 1239 buf[t * 4 + 1] = (r >> 16) & 0xff; 1240 buf[t * 4 + 2] = (r >> 8) & 0xff; 1241 buf[t * 4 + 3] = r & 0xff; 1242 } 1243 1244 /* write to virtual DPCD */ 1245 if (dpcd && dpcd->data_valid) { 1246 for (t = 0; t <= len; t++) { 1247 int p = addr + t; 1248 1249 dpcd->data[p] = buf[t]; 1250 /* check for link training */ 1251 if (p == DPCD_TRAINING_PATTERN_SET) 1252 dp_aux_ch_ctl_link_training(dpcd, 1253 buf[t]); 1254 } 1255 } 1256 1257 /* ACK the write */ 1258 vgpu_vreg(vgpu, offset + 4) = 0; 1259 dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1, 1260 dpcd && dpcd->data_valid); 1261 return 0; 1262 } 1263 1264 if (op == GVT_AUX_NATIVE_READ) { 1265 int idx, i, ret = 0; 1266 1267 if ((addr + len + 1) >= DPCD_SIZE) { 1268 /* 1269 * read request exceeds what we supported 1270 * DPCD spec: A Sink Device receiving a Native AUX CH 1271 * read request for an unsupported DPCD address must 1272 * reply with an AUX ACK and read data set equal to 1273 * zero instead of replying with AUX NACK. 1274 */ 1275 1276 /* ACK the READ*/ 1277 vgpu_vreg(vgpu, offset + 4) = 0; 1278 vgpu_vreg(vgpu, offset + 8) = 0; 1279 vgpu_vreg(vgpu, offset + 12) = 0; 1280 vgpu_vreg(vgpu, offset + 16) = 0; 1281 vgpu_vreg(vgpu, offset + 20) = 0; 1282 1283 dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2, 1284 true); 1285 return 0; 1286 } 1287 1288 for (idx = 1; idx <= 5; idx++) { 1289 /* clear the data registers */ 1290 vgpu_vreg(vgpu, offset + 4 * idx) = 0; 1291 } 1292 1293 /* 1294 * Read reply format: ACK (1 byte) plus (len + 1) bytes of data. 1295 */ 1296 if ((len + 2) > AUX_BURST_SIZE) { 1297 gvt_vgpu_err("dp_aux_header: len %d is too large\n", len); 1298 return -EINVAL; 1299 } 1300 1301 /* read from virtual DPCD to vreg */ 1302 /* first 4 bytes: [ACK][addr][addr+1][addr+2] */ 1303 if (dpcd && dpcd->data_valid) { 1304 for (i = 1; i <= (len + 1); i++) { 1305 int t; 1306 1307 t = dpcd->data[addr + i - 1]; 1308 t <<= (24 - 8 * (i % 4)); 1309 ret |= t; 1310 1311 if ((i % 4 == 3) || (i == (len + 1))) { 1312 vgpu_vreg(vgpu, offset + 1313 (i / 4 + 1) * 4) = ret; 1314 ret = 0; 1315 } 1316 } 1317 } 1318 dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2, 1319 dpcd && dpcd->data_valid); 1320 return 0; 1321 } 1322 1323 /* i2c transaction starts */ 1324 intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data); 1325 1326 if (data & DP_AUX_CH_CTL_INTERRUPT) 1327 trigger_aux_channel_interrupt(vgpu, offset); 1328 return 0; 1329 } 1330 1331 static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset, 1332 void *p_data, unsigned int bytes) 1333 { 1334 *(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH); 1335 write_vreg(vgpu, offset, p_data, bytes); 1336 return 0; 1337 } 1338 1339 static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 1340 void *p_data, unsigned int bytes) 1341 { 1342 bool vga_disable; 1343 1344 write_vreg(vgpu, offset, p_data, bytes); 1345 vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE; 1346 1347 gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id, 1348 vga_disable ? "Disable" : "Enable"); 1349 return 0; 1350 } 1351 1352 static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu, 1353 unsigned int sbi_offset) 1354 { 1355 struct intel_vgpu_display *display = &vgpu->display; 1356 int num = display->sbi.number; 1357 int i; 1358 1359 for (i = 0; i < num; ++i) 1360 if (display->sbi.registers[i].offset == sbi_offset) 1361 break; 1362 1363 if (i == num) 1364 return 0; 1365 1366 return display->sbi.registers[i].value; 1367 } 1368 1369 static void write_virtual_sbi_register(struct intel_vgpu *vgpu, 1370 unsigned int offset, u32 value) 1371 { 1372 struct intel_vgpu_display *display = &vgpu->display; 1373 int num = display->sbi.number; 1374 int i; 1375 1376 for (i = 0; i < num; ++i) { 1377 if (display->sbi.registers[i].offset == offset) 1378 break; 1379 } 1380 1381 if (i == num) { 1382 if (num == SBI_REG_MAX) { 1383 gvt_vgpu_err("SBI caching meets maximum limits\n"); 1384 return; 1385 } 1386 display->sbi.number++; 1387 } 1388 1389 display->sbi.registers[i].offset = offset; 1390 display->sbi.registers[i].value = value; 1391 } 1392 1393 static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, 1394 void *p_data, unsigned int bytes) 1395 { 1396 if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >> 1397 SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) { 1398 unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) & 1399 SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT; 1400 vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu, 1401 sbi_offset); 1402 } 1403 read_vreg(vgpu, offset, p_data, bytes); 1404 return 0; 1405 } 1406 1407 static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 1408 void *p_data, unsigned int bytes) 1409 { 1410 u32 data; 1411 1412 write_vreg(vgpu, offset, p_data, bytes); 1413 data = vgpu_vreg(vgpu, offset); 1414 1415 data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT); 1416 data |= SBI_READY; 1417 1418 data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT); 1419 data |= SBI_RESPONSE_SUCCESS; 1420 1421 vgpu_vreg(vgpu, offset) = data; 1422 1423 if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >> 1424 SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) { 1425 unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) & 1426 SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT; 1427 1428 write_virtual_sbi_register(vgpu, sbi_offset, 1429 vgpu_vreg_t(vgpu, SBI_DATA)); 1430 } 1431 return 0; 1432 } 1433 1434 #define _vgtif_reg(x) \ 1435 (VGT_PVINFO_PAGE + offsetof(struct vgt_if, x)) 1436 1437 static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, 1438 void *p_data, unsigned int bytes) 1439 { 1440 bool invalid_read = false; 1441 1442 read_vreg(vgpu, offset, p_data, bytes); 1443 1444 switch (offset) { 1445 case _vgtif_reg(magic) ... _vgtif_reg(vgt_id): 1446 if (offset + bytes > _vgtif_reg(vgt_id) + 4) 1447 invalid_read = true; 1448 break; 1449 case _vgtif_reg(avail_rs.mappable_gmadr.base) ... 1450 _vgtif_reg(avail_rs.fence_num): 1451 if (offset + bytes > 1452 _vgtif_reg(avail_rs.fence_num) + 4) 1453 invalid_read = true; 1454 break; 1455 case 0x78010: /* vgt_caps */ 1456 case 0x7881c: 1457 break; 1458 default: 1459 invalid_read = true; 1460 break; 1461 } 1462 if (invalid_read) 1463 gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n", 1464 offset, bytes, *(u32 *)p_data); 1465 vgpu->pv_notified = true; 1466 return 0; 1467 } 1468 1469 static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification) 1470 { 1471 enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1472 struct intel_vgpu_mm *mm; 1473 u64 *pdps; 1474 1475 pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0])); 1476 1477 switch (notification) { 1478 case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE: 1479 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1480 fallthrough; 1481 case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE: 1482 mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps); 1483 return PTR_ERR_OR_ZERO(mm); 1484 case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY: 1485 case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY: 1486 return intel_vgpu_put_ppgtt_mm(vgpu, pdps); 1487 case VGT_G2V_EXECLIST_CONTEXT_CREATE: 1488 case VGT_G2V_EXECLIST_CONTEXT_DESTROY: 1489 case 1: /* Remove this in guest driver. */ 1490 break; 1491 default: 1492 gvt_vgpu_err("Invalid PV notification %d\n", notification); 1493 } 1494 return 0; 1495 } 1496 1497 static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready) 1498 { 1499 struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj; 1500 char *env[3] = {NULL, NULL, NULL}; 1501 char vmid_str[20]; 1502 char display_ready_str[20]; 1503 1504 snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready); 1505 env[0] = display_ready_str; 1506 1507 snprintf(vmid_str, 20, "VMID=%d", vgpu->id); 1508 env[1] = vmid_str; 1509 1510 return kobject_uevent_env(kobj, KOBJ_ADD, env); 1511 } 1512 1513 static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 1514 void *p_data, unsigned int bytes) 1515 { 1516 u32 data = *(u32 *)p_data; 1517 bool invalid_write = false; 1518 1519 switch (offset) { 1520 case _vgtif_reg(display_ready): 1521 send_display_ready_uevent(vgpu, data ? 1 : 0); 1522 break; 1523 case _vgtif_reg(g2v_notify): 1524 handle_g2v_notification(vgpu, data); 1525 break; 1526 /* add xhot and yhot to handled list to avoid error log */ 1527 case _vgtif_reg(cursor_x_hot): 1528 case _vgtif_reg(cursor_y_hot): 1529 case _vgtif_reg(pdp[0].lo): 1530 case _vgtif_reg(pdp[0].hi): 1531 case _vgtif_reg(pdp[1].lo): 1532 case _vgtif_reg(pdp[1].hi): 1533 case _vgtif_reg(pdp[2].lo): 1534 case _vgtif_reg(pdp[2].hi): 1535 case _vgtif_reg(pdp[3].lo): 1536 case _vgtif_reg(pdp[3].hi): 1537 case _vgtif_reg(execlist_context_descriptor_lo): 1538 case _vgtif_reg(execlist_context_descriptor_hi): 1539 break; 1540 case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]): 1541 invalid_write = true; 1542 enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE); 1543 break; 1544 default: 1545 invalid_write = true; 1546 gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n", 1547 offset, bytes, data); 1548 break; 1549 } 1550 1551 if (!invalid_write) 1552 write_vreg(vgpu, offset, p_data, bytes); 1553 1554 return 0; 1555 } 1556 1557 static int pf_write(struct intel_vgpu *vgpu, 1558 unsigned int offset, void *p_data, unsigned int bytes) 1559 { 1560 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1561 u32 val = *(u32 *)p_data; 1562 1563 if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL || 1564 offset == _PS_1B_CTRL || offset == _PS_2B_CTRL || 1565 offset == _PS_1C_CTRL) && (val & PS_PLANE_SEL_MASK) != 0) { 1566 drm_WARN_ONCE(&i915->drm, true, 1567 "VM(%d): guest is trying to scaling a plane\n", 1568 vgpu->id); 1569 return 0; 1570 } 1571 1572 return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes); 1573 } 1574 1575 static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu, 1576 unsigned int offset, void *p_data, unsigned int bytes) 1577 { 1578 write_vreg(vgpu, offset, p_data, bytes); 1579 1580 if (vgpu_vreg(vgpu, offset) & 1581 HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL)) 1582 vgpu_vreg(vgpu, offset) |= 1583 HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL); 1584 else 1585 vgpu_vreg(vgpu, offset) &= 1586 ~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL); 1587 return 0; 1588 } 1589 1590 static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu, 1591 unsigned int offset, void *p_data, unsigned int bytes) 1592 { 1593 write_vreg(vgpu, offset, p_data, bytes); 1594 1595 if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST) 1596 vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE; 1597 else 1598 vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE; 1599 1600 return 0; 1601 } 1602 1603 static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu, 1604 unsigned int offset, void *p_data, unsigned int bytes) 1605 { 1606 write_vreg(vgpu, offset, p_data, bytes); 1607 1608 if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM) 1609 vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM; 1610 return 0; 1611 } 1612 1613 static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset, 1614 void *p_data, unsigned int bytes) 1615 { 1616 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1617 u32 mode; 1618 1619 write_vreg(vgpu, offset, p_data, bytes); 1620 mode = vgpu_vreg(vgpu, offset); 1621 1622 if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) { 1623 drm_WARN_ONCE(&i915->drm, 1, 1624 "VM(%d): iGVT-g doesn't support GuC\n", 1625 vgpu->id); 1626 return 0; 1627 } 1628 1629 return 0; 1630 } 1631 1632 static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset, 1633 void *p_data, unsigned int bytes) 1634 { 1635 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1636 u32 trtte = *(u32 *)p_data; 1637 1638 if ((trtte & 1) && (trtte & (1 << 1)) == 0) { 1639 drm_WARN(&i915->drm, 1, 1640 "VM(%d): Use physical address for TRTT!\n", 1641 vgpu->id); 1642 return -EINVAL; 1643 } 1644 write_vreg(vgpu, offset, p_data, bytes); 1645 1646 return 0; 1647 } 1648 1649 static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset, 1650 void *p_data, unsigned int bytes) 1651 { 1652 write_vreg(vgpu, offset, p_data, bytes); 1653 return 0; 1654 } 1655 1656 static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset, 1657 void *p_data, unsigned int bytes) 1658 { 1659 u32 v = 0; 1660 1661 if (vgpu_vreg(vgpu, 0x46010) & (1 << 31)) 1662 v |= (1 << 0); 1663 1664 if (vgpu_vreg(vgpu, 0x46014) & (1 << 31)) 1665 v |= (1 << 8); 1666 1667 if (vgpu_vreg(vgpu, 0x46040) & (1 << 31)) 1668 v |= (1 << 16); 1669 1670 if (vgpu_vreg(vgpu, 0x46060) & (1 << 31)) 1671 v |= (1 << 24); 1672 1673 vgpu_vreg(vgpu, offset) = v; 1674 1675 return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); 1676 } 1677 1678 static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset, 1679 void *p_data, unsigned int bytes) 1680 { 1681 u32 value = *(u32 *)p_data; 1682 u32 cmd = value & 0xff; 1683 u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA); 1684 1685 switch (cmd) { 1686 case GEN9_PCODE_READ_MEM_LATENCY: 1687 if (IS_SKYLAKE(vgpu->gvt->gt->i915) || 1688 IS_KABYLAKE(vgpu->gvt->gt->i915) || 1689 IS_COFFEELAKE(vgpu->gvt->gt->i915) || 1690 IS_COMETLAKE(vgpu->gvt->gt->i915)) { 1691 /** 1692 * "Read memory latency" command on gen9. 1693 * Below memory latency values are read 1694 * from skylake platform. 1695 */ 1696 if (!*data0) 1697 *data0 = 0x1e1a1100; 1698 else 1699 *data0 = 0x61514b3d; 1700 } else if (IS_BROXTON(vgpu->gvt->gt->i915)) { 1701 /** 1702 * "Read memory latency" command on gen9. 1703 * Below memory latency values are read 1704 * from Broxton MRB. 1705 */ 1706 if (!*data0) 1707 *data0 = 0x16080707; 1708 else 1709 *data0 = 0x16161616; 1710 } 1711 break; 1712 case SKL_PCODE_CDCLK_CONTROL: 1713 if (IS_SKYLAKE(vgpu->gvt->gt->i915) || 1714 IS_KABYLAKE(vgpu->gvt->gt->i915) || 1715 IS_COFFEELAKE(vgpu->gvt->gt->i915) || 1716 IS_COMETLAKE(vgpu->gvt->gt->i915)) 1717 *data0 = SKL_CDCLK_READY_FOR_CHANGE; 1718 break; 1719 case GEN6_PCODE_READ_RC6VIDS: 1720 *data0 |= 0x1; 1721 break; 1722 } 1723 1724 gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n", 1725 vgpu->id, value, *data0); 1726 /** 1727 * PCODE_READY clear means ready for pcode read/write, 1728 * PCODE_ERROR_MASK clear means no error happened. In GVT-g we 1729 * always emulate as pcode read/write success and ready for access 1730 * anytime, since we don't touch real physical registers here. 1731 */ 1732 value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK); 1733 return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes); 1734 } 1735 1736 static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset, 1737 void *p_data, unsigned int bytes) 1738 { 1739 u32 value = *(u32 *)p_data; 1740 const struct intel_engine_cs *engine = 1741 intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); 1742 1743 if (value != 0 && 1744 !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) { 1745 gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n", 1746 offset, value); 1747 return -EINVAL; 1748 } 1749 1750 /* 1751 * Need to emulate all the HWSP register write to ensure host can 1752 * update the VM CSB status correctly. Here listed registers can 1753 * support BDW, SKL or other platforms with same HWSP registers. 1754 */ 1755 if (unlikely(!engine)) { 1756 gvt_vgpu_err("access unknown hardware status page register:0x%x\n", 1757 offset); 1758 return -EINVAL; 1759 } 1760 vgpu->hws_pga[engine->id] = value; 1761 gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n", 1762 vgpu->id, value, offset); 1763 1764 return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes); 1765 } 1766 1767 static int skl_power_well_ctl_write(struct intel_vgpu *vgpu, 1768 unsigned int offset, void *p_data, unsigned int bytes) 1769 { 1770 u32 v = *(u32 *)p_data; 1771 1772 if (IS_BROXTON(vgpu->gvt->gt->i915)) 1773 v &= (1 << 31) | (1 << 29); 1774 else 1775 v &= (1 << 31) | (1 << 29) | (1 << 9) | 1776 (1 << 7) | (1 << 5) | (1 << 3) | (1 << 1); 1777 v |= (v >> 1); 1778 1779 return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes); 1780 } 1781 1782 static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset, 1783 void *p_data, unsigned int bytes) 1784 { 1785 u32 v = *(u32 *)p_data; 1786 1787 /* other bits are MBZ. */ 1788 v &= (1 << 31) | (1 << 30); 1789 v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30)); 1790 1791 vgpu_vreg(vgpu, offset) = v; 1792 1793 return 0; 1794 } 1795 1796 static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu, 1797 unsigned int offset, void *p_data, unsigned int bytes) 1798 { 1799 u32 v = *(u32 *)p_data; 1800 1801 if (v & BXT_DE_PLL_PLL_ENABLE) 1802 v |= BXT_DE_PLL_LOCK; 1803 1804 vgpu_vreg(vgpu, offset) = v; 1805 1806 return 0; 1807 } 1808 1809 static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu, 1810 unsigned int offset, void *p_data, unsigned int bytes) 1811 { 1812 u32 v = *(u32 *)p_data; 1813 1814 if (v & PORT_PLL_ENABLE) 1815 v |= PORT_PLL_LOCK; 1816 1817 vgpu_vreg(vgpu, offset) = v; 1818 1819 return 0; 1820 } 1821 1822 static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu, 1823 unsigned int offset, void *p_data, unsigned int bytes) 1824 { 1825 u32 v = *(u32 *)p_data; 1826 u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0; 1827 1828 switch (offset) { 1829 case _PHY_CTL_FAMILY_EDP: 1830 vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data; 1831 break; 1832 case _PHY_CTL_FAMILY_DDI: 1833 vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data; 1834 vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data; 1835 break; 1836 } 1837 1838 vgpu_vreg(vgpu, offset) = v; 1839 1840 return 0; 1841 } 1842 1843 static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu, 1844 unsigned int offset, void *p_data, unsigned int bytes) 1845 { 1846 u32 v = vgpu_vreg(vgpu, offset); 1847 1848 v &= ~UNIQUE_TRANGE_EN_METHOD; 1849 1850 vgpu_vreg(vgpu, offset) = v; 1851 1852 return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); 1853 } 1854 1855 static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu, 1856 unsigned int offset, void *p_data, unsigned int bytes) 1857 { 1858 u32 v = *(u32 *)p_data; 1859 1860 if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) { 1861 vgpu_vreg(vgpu, offset - 0x600) = v; 1862 vgpu_vreg(vgpu, offset - 0x800) = v; 1863 } else { 1864 vgpu_vreg(vgpu, offset - 0x400) = v; 1865 vgpu_vreg(vgpu, offset - 0x600) = v; 1866 } 1867 1868 vgpu_vreg(vgpu, offset) = v; 1869 1870 return 0; 1871 } 1872 1873 static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu, 1874 unsigned int offset, void *p_data, unsigned int bytes) 1875 { 1876 u32 v = *(u32 *)p_data; 1877 1878 if (v & BIT(0)) { 1879 vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &= 1880 ~PHY_RESERVED; 1881 vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |= 1882 PHY_POWER_GOOD; 1883 } 1884 1885 if (v & BIT(1)) { 1886 vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &= 1887 ~PHY_RESERVED; 1888 vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |= 1889 PHY_POWER_GOOD; 1890 } 1891 1892 1893 vgpu_vreg(vgpu, offset) = v; 1894 1895 return 0; 1896 } 1897 1898 static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu, 1899 unsigned int offset, void *p_data, unsigned int bytes) 1900 { 1901 vgpu_vreg(vgpu, offset) = 0; 1902 return 0; 1903 } 1904 1905 /* 1906 * FixMe: 1907 * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did: 1908 * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.) 1909 * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing 1910 * these MI_BATCH_BUFFER. 1911 * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT 1912 * PML4 PTE: PAT(0) PCD(1) PWT(1). 1913 * The performance is still expected to be low, will need further improvement. 1914 */ 1915 static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset, 1916 void *p_data, unsigned int bytes) 1917 { 1918 u64 pat = 1919 GEN8_PPAT(0, CHV_PPAT_SNOOP) | 1920 GEN8_PPAT(1, 0) | 1921 GEN8_PPAT(2, 0) | 1922 GEN8_PPAT(3, CHV_PPAT_SNOOP) | 1923 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 1924 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 1925 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 1926 GEN8_PPAT(7, CHV_PPAT_SNOOP); 1927 1928 vgpu_vreg(vgpu, offset) = lower_32_bits(pat); 1929 1930 return 0; 1931 } 1932 1933 static int guc_status_read(struct intel_vgpu *vgpu, 1934 unsigned int offset, void *p_data, 1935 unsigned int bytes) 1936 { 1937 /* keep MIA_IN_RESET before clearing */ 1938 read_vreg(vgpu, offset, p_data, bytes); 1939 vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET; 1940 return 0; 1941 } 1942 1943 static int mmio_read_from_hw(struct intel_vgpu *vgpu, 1944 unsigned int offset, void *p_data, unsigned int bytes) 1945 { 1946 struct intel_gvt *gvt = vgpu->gvt; 1947 const struct intel_engine_cs *engine = 1948 intel_gvt_render_mmio_to_engine(gvt, offset); 1949 1950 /** 1951 * Read HW reg in following case 1952 * a. the offset isn't a ring mmio 1953 * b. the offset's ring is running on hw. 1954 * c. the offset is ring time stamp mmio 1955 */ 1956 1957 if (!engine || 1958 vgpu == gvt->scheduler.engine_owner[engine->id] || 1959 offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) || 1960 offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) { 1961 mmio_hw_access_pre(gvt->gt); 1962 vgpu_vreg(vgpu, offset) = 1963 intel_uncore_read(gvt->gt->uncore, _MMIO(offset)); 1964 mmio_hw_access_post(gvt->gt); 1965 } 1966 1967 return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); 1968 } 1969 1970 static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 1971 void *p_data, unsigned int bytes) 1972 { 1973 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 1974 const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); 1975 struct intel_vgpu_execlist *execlist; 1976 u32 data = *(u32 *)p_data; 1977 int ret = 0; 1978 1979 if (drm_WARN_ON(&i915->drm, !engine)) 1980 return -EINVAL; 1981 1982 /* 1983 * Due to d3_entered is used to indicate skipping PPGTT invalidation on 1984 * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after 1985 * vGPU reset if in resuming. 1986 * In S0ix exit, the device power state also transite from D3 to D0 as 1987 * S3 resume, but no vGPU reset (triggered by QEMU devic model). After 1988 * S0ix exit, all engines continue to work. However the d3_entered 1989 * remains set which will break next vGPU reset logic (miss the expected 1990 * PPGTT invalidation). 1991 * Engines can only work in D0. Thus the 1st elsp write gives GVT a 1992 * chance to clear d3_entered. 1993 */ 1994 if (vgpu->d3_entered) 1995 vgpu->d3_entered = false; 1996 1997 execlist = &vgpu->submission.execlist[engine->id]; 1998 1999 execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data; 2000 if (execlist->elsp_dwords.index == 3) { 2001 ret = intel_vgpu_submit_execlist(vgpu, engine); 2002 if(ret) 2003 gvt_vgpu_err("fail submit workload on ring %s\n", 2004 engine->name); 2005 } 2006 2007 ++execlist->elsp_dwords.index; 2008 execlist->elsp_dwords.index &= 0x3; 2009 return ret; 2010 } 2011 2012 static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 2013 void *p_data, unsigned int bytes) 2014 { 2015 u32 data = *(u32 *)p_data; 2016 const struct intel_engine_cs *engine = 2017 intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); 2018 bool enable_execlist; 2019 int ret; 2020 2021 (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1); 2022 if (IS_COFFEELAKE(vgpu->gvt->gt->i915) || 2023 IS_COMETLAKE(vgpu->gvt->gt->i915)) 2024 (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2); 2025 write_vreg(vgpu, offset, p_data, bytes); 2026 2027 if (IS_MASKED_BITS_ENABLED(data, 1)) { 2028 enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); 2029 return 0; 2030 } 2031 2032 if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) || 2033 IS_COMETLAKE(vgpu->gvt->gt->i915)) && 2034 IS_MASKED_BITS_ENABLED(data, 2)) { 2035 enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); 2036 return 0; 2037 } 2038 2039 /* when PPGTT mode enabled, we will check if guest has called 2040 * pvinfo, if not, we will treat this guest as non-gvtg-aware 2041 * guest, and stop emulating its cfg space, mmio, gtt, etc. 2042 */ 2043 if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) || 2044 IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) && 2045 !vgpu->pv_notified) { 2046 enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); 2047 return 0; 2048 } 2049 if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) || 2050 IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) { 2051 enable_execlist = !!(data & GFX_RUN_LIST_ENABLE); 2052 2053 gvt_dbg_core("EXECLIST %s on ring %s\n", 2054 (enable_execlist ? "enabling" : "disabling"), 2055 engine->name); 2056 2057 if (!enable_execlist) 2058 return 0; 2059 2060 ret = intel_vgpu_select_submission_ops(vgpu, 2061 engine->mask, 2062 INTEL_VGPU_EXECLIST_SUBMISSION); 2063 if (ret) 2064 return ret; 2065 2066 intel_vgpu_start_schedule(vgpu); 2067 } 2068 return 0; 2069 } 2070 2071 static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu, 2072 unsigned int offset, void *p_data, unsigned int bytes) 2073 { 2074 unsigned int id = 0; 2075 2076 write_vreg(vgpu, offset, p_data, bytes); 2077 vgpu_vreg(vgpu, offset) = 0; 2078 2079 switch (offset) { 2080 case 0x4260: 2081 id = RCS0; 2082 break; 2083 case 0x4264: 2084 id = VCS0; 2085 break; 2086 case 0x4268: 2087 id = VCS1; 2088 break; 2089 case 0x426c: 2090 id = BCS0; 2091 break; 2092 case 0x4270: 2093 id = VECS0; 2094 break; 2095 default: 2096 return -EINVAL; 2097 } 2098 set_bit(id, (void *)vgpu->submission.tlb_handle_pending); 2099 2100 return 0; 2101 } 2102 2103 static int ring_reset_ctl_write(struct intel_vgpu *vgpu, 2104 unsigned int offset, void *p_data, unsigned int bytes) 2105 { 2106 u32 data; 2107 2108 write_vreg(vgpu, offset, p_data, bytes); 2109 data = vgpu_vreg(vgpu, offset); 2110 2111 if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET)) 2112 data |= RESET_CTL_READY_TO_RESET; 2113 else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)) 2114 data &= ~RESET_CTL_READY_TO_RESET; 2115 2116 vgpu_vreg(vgpu, offset) = data; 2117 return 0; 2118 } 2119 2120 static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu, 2121 unsigned int offset, void *p_data, 2122 unsigned int bytes) 2123 { 2124 u32 data = *(u32 *)p_data; 2125 2126 (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18); 2127 write_vreg(vgpu, offset, p_data, bytes); 2128 2129 if (IS_MASKED_BITS_ENABLED(data, 0x10) || 2130 IS_MASKED_BITS_ENABLED(data, 0x8)) 2131 enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); 2132 2133 return 0; 2134 } 2135 2136 #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \ 2137 ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \ 2138 s, f, am, rm, d, r, w); \ 2139 if (ret) \ 2140 return ret; \ 2141 } while (0) 2142 2143 #define MMIO_DH(reg, d, r, w) \ 2144 MMIO_F(reg, 4, 0, 0, 0, d, r, w) 2145 2146 #define MMIO_DFH(reg, d, f, r, w) \ 2147 MMIO_F(reg, 4, f, 0, 0, d, r, w) 2148 2149 #define MMIO_GM(reg, d, r, w) \ 2150 MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w) 2151 2152 #define MMIO_GM_RDR(reg, d, r, w) \ 2153 MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w) 2154 2155 #define MMIO_RO(reg, d, f, rm, r, w) \ 2156 MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w) 2157 2158 #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \ 2159 MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \ 2160 MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \ 2161 MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \ 2162 MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \ 2163 if (HAS_ENGINE(gvt->gt, VCS1)) \ 2164 MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \ 2165 } while (0) 2166 2167 #define MMIO_RING_DFH(prefix, d, f, r, w) \ 2168 MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w) 2169 2170 #define MMIO_RING_GM(prefix, d, r, w) \ 2171 MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w) 2172 2173 #define MMIO_RING_GM_RDR(prefix, d, r, w) \ 2174 MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w) 2175 2176 #define MMIO_RING_RO(prefix, d, f, rm, r, w) \ 2177 MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w) 2178 2179 static int init_generic_mmio_info(struct intel_gvt *gvt) 2180 { 2181 struct drm_i915_private *dev_priv = gvt->gt->i915; 2182 int ret; 2183 2184 MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL, 2185 intel_vgpu_reg_imr_handler); 2186 2187 MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler); 2188 MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler); 2189 MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler); 2190 2191 MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL); 2192 2193 2194 MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL, 2195 gamw_echo_dev_rw_ia_write); 2196 2197 MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL); 2198 MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL); 2199 MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL); 2200 2201 #define RING_REG(base) _MMIO((base) + 0x28) 2202 MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL); 2203 #undef RING_REG 2204 2205 #define RING_REG(base) _MMIO((base) + 0x134) 2206 MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL); 2207 #undef RING_REG 2208 2209 #define RING_REG(base) _MMIO((base) + 0x6c) 2210 MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL); 2211 #undef RING_REG 2212 MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL); 2213 2214 MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL); 2215 MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL); 2216 MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL); 2217 2218 MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL); 2219 MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL); 2220 MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL); 2221 MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL); 2222 MMIO_RING_GM(RING_START, D_ALL, NULL, NULL); 2223 2224 /* RING MODE */ 2225 #define RING_REG(base) _MMIO((base) + 0x29c) 2226 MMIO_RING_DFH(RING_REG, D_ALL, 2227 F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL, 2228 ring_mode_mmio_write); 2229 #undef RING_REG 2230 2231 MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, 2232 NULL, NULL); 2233 MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS, 2234 NULL, NULL); 2235 MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS, 2236 mmio_read_from_hw, NULL); 2237 MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS, 2238 mmio_read_from_hw, NULL); 2239 2240 MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2241 MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS, 2242 NULL, NULL); 2243 MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2244 MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2245 MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2246 2247 MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2248 MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2249 MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2250 MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL, 2251 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2252 MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2253 MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL); 2254 MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, 2255 NULL, NULL); 2256 MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS, 2257 NULL, NULL); 2258 MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL); 2259 MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL); 2260 MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL); 2261 MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL); 2262 MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL); 2263 MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL); 2264 MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL); 2265 MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2266 MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2267 MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2268 2269 /* display */ 2270 MMIO_DH(TRANSCONF(TRANSCODER_A), D_ALL, NULL, pipeconf_mmio_write); 2271 MMIO_DH(TRANSCONF(TRANSCODER_B), D_ALL, NULL, pipeconf_mmio_write); 2272 MMIO_DH(TRANSCONF(TRANSCODER_C), D_ALL, NULL, pipeconf_mmio_write); 2273 MMIO_DH(TRANSCONF(TRANSCODER_EDP), D_ALL, NULL, pipeconf_mmio_write); 2274 MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write); 2275 MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL, 2276 reg50080_mmio_write); 2277 MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write); 2278 MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL, 2279 reg50080_mmio_write); 2280 MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write); 2281 MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL, 2282 reg50080_mmio_write); 2283 MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write); 2284 MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL, 2285 reg50080_mmio_write); 2286 MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write); 2287 MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL, 2288 reg50080_mmio_write); 2289 MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write); 2290 MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL, 2291 reg50080_mmio_write); 2292 2293 MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read, 2294 gmbus_mmio_write); 2295 MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL); 2296 2297 MMIO_F(_MMIO(_PCH_DPB_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, 2298 dp_aux_ch_ctl_mmio_write); 2299 MMIO_F(_MMIO(_PCH_DPC_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, 2300 dp_aux_ch_ctl_mmio_write); 2301 MMIO_F(_MMIO(_PCH_DPD_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, 2302 dp_aux_ch_ctl_mmio_write); 2303 2304 MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write); 2305 2306 MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write); 2307 MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write); 2308 2309 MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write); 2310 MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write); 2311 MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write); 2312 MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status); 2313 MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status); 2314 MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status); 2315 MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status); 2316 MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status); 2317 MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status); 2318 MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write); 2319 MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL); 2320 MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL); 2321 MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL); 2322 MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL); 2323 MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL); 2324 MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL); 2325 2326 MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0, 2327 PORTA_HOTPLUG_STATUS_MASK 2328 | PORTB_HOTPLUG_STATUS_MASK 2329 | PORTC_HOTPLUG_STATUS_MASK 2330 | PORTD_HOTPLUG_STATUS_MASK, 2331 NULL, NULL); 2332 2333 MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write); 2334 MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write); 2335 MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL); 2336 MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL); 2337 MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write); 2338 2339 MMIO_F(_MMIO(_DPA_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_ALL, NULL, 2340 dp_aux_ch_ctl_mmio_write); 2341 2342 MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write); 2343 MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write); 2344 MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write); 2345 MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write); 2346 MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write); 2347 2348 MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write); 2349 MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write); 2350 MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write); 2351 MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write); 2352 MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write); 2353 2354 MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write); 2355 MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write); 2356 MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write); 2357 MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write); 2358 MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL); 2359 2360 MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL); 2361 MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL); 2362 MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL); 2363 MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL); 2364 2365 MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL); 2366 MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL); 2367 MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL); 2368 MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write); 2369 MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL); 2370 MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL); 2371 MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL); 2372 MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write); 2373 MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write); 2374 MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write); 2375 MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write); 2376 MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write); 2377 MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write); 2378 2379 MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write); 2380 MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write); 2381 MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write); 2382 2383 MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL); 2384 MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL); 2385 2386 MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write); 2387 MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL); 2388 2389 MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write); 2390 MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2391 MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL); 2392 MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL); 2393 MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL); 2394 MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL); 2395 2396 MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL); 2397 MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2398 MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2399 MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2400 2401 MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2402 MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2403 MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL); 2404 2405 MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2406 MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2407 MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2408 MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2409 MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2410 MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2411 MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2412 MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2413 MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2414 MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2415 MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); 2416 MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); 2417 MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); 2418 MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); 2419 MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); 2420 MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); 2421 MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2422 2423 MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2424 MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL); 2425 MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL); 2426 MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL); 2427 MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL); 2428 MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL); 2429 MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL); 2430 MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2431 MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2432 MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2433 MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2434 2435 MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write); 2436 MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write); 2437 MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL); 2438 2439 return 0; 2440 } 2441 2442 static int init_bdw_mmio_info(struct intel_gvt *gvt) 2443 { 2444 int ret; 2445 2446 MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); 2447 MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); 2448 MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); 2449 2450 MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); 2451 MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); 2452 MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); 2453 2454 MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); 2455 MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); 2456 MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); 2457 2458 MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); 2459 MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); 2460 MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); 2461 2462 MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL, 2463 intel_vgpu_reg_imr_handler); 2464 MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL, 2465 intel_vgpu_reg_ier_handler); 2466 MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL, 2467 intel_vgpu_reg_iir_handler); 2468 2469 MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL, 2470 intel_vgpu_reg_imr_handler); 2471 MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL, 2472 intel_vgpu_reg_ier_handler); 2473 MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL, 2474 intel_vgpu_reg_iir_handler); 2475 2476 MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL, 2477 intel_vgpu_reg_imr_handler); 2478 MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL, 2479 intel_vgpu_reg_ier_handler); 2480 MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL, 2481 intel_vgpu_reg_iir_handler); 2482 2483 MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); 2484 MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); 2485 MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); 2486 2487 MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); 2488 MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); 2489 MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); 2490 2491 MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); 2492 MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); 2493 MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); 2494 2495 MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL, 2496 intel_vgpu_reg_master_irq_handler); 2497 2498 MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0, 2499 mmio_read_from_hw, NULL); 2500 2501 #define RING_REG(base) _MMIO((base) + 0xd0) 2502 MMIO_RING_F(RING_REG, 4, F_RO, 0, 2503 ~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL, 2504 ring_reset_ctl_write); 2505 #undef RING_REG 2506 2507 #define RING_REG(base) _MMIO((base) + 0x230) 2508 MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write); 2509 #undef RING_REG 2510 2511 #define RING_REG(base) _MMIO((base) + 0x234) 2512 MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS, 2513 NULL, NULL); 2514 #undef RING_REG 2515 2516 #define RING_REG(base) _MMIO((base) + 0x244) 2517 MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2518 #undef RING_REG 2519 2520 #define RING_REG(base) _MMIO((base) + 0x370) 2521 MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL); 2522 #undef RING_REG 2523 2524 #define RING_REG(base) _MMIO((base) + 0x3a0) 2525 MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL); 2526 #undef RING_REG 2527 2528 MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write); 2529 2530 #define RING_REG(base) _MMIO((base) + 0x270) 2531 MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL); 2532 #undef RING_REG 2533 2534 MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write); 2535 2536 MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2537 2538 MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, 2539 NULL, NULL); 2540 MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, 2541 NULL, NULL); 2542 MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2543 2544 MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL); 2545 MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL); 2546 MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2547 MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL); 2548 MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL); 2549 2550 MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0, 2551 D_BDW_PLUS, NULL, force_nonpriv_write); 2552 2553 MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL); 2554 2555 MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL); 2556 2557 MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2558 MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2559 MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2560 MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2561 2562 MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL); 2563 2564 MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2565 MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2566 MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2567 MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2568 MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2569 MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2570 MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2571 MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2572 MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2573 MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2574 return 0; 2575 } 2576 2577 static int init_skl_mmio_info(struct intel_gvt *gvt) 2578 { 2579 struct drm_i915_private *dev_priv = gvt->gt->i915; 2580 int ret; 2581 2582 MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); 2583 MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL); 2584 MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); 2585 MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL); 2586 MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); 2587 MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL); 2588 2589 MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL, 2590 dp_aux_ch_ctl_mmio_write); 2591 MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL, 2592 dp_aux_ch_ctl_mmio_write); 2593 MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL, 2594 dp_aux_ch_ctl_mmio_write); 2595 2596 MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write); 2597 2598 MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write); 2599 2600 MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); 2601 MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); 2602 MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL); 2603 MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write); 2604 MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write); 2605 MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL); 2606 2607 MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write); 2608 MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write); 2609 MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write); 2610 MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write); 2611 MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write); 2612 MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write); 2613 2614 MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write); 2615 MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write); 2616 MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write); 2617 MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write); 2618 MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write); 2619 MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write); 2620 2621 MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write); 2622 MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write); 2623 MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write); 2624 MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write); 2625 MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write); 2626 MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write); 2627 2628 MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL); 2629 MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL); 2630 MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL); 2631 MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL); 2632 2633 MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL); 2634 MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL); 2635 MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL); 2636 MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL); 2637 2638 MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL); 2639 MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL); 2640 MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL); 2641 MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL); 2642 2643 MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL); 2644 MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL); 2645 MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL); 2646 2647 MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL); 2648 MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL); 2649 MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL); 2650 2651 MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL); 2652 MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL); 2653 MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL); 2654 2655 MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL); 2656 MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL); 2657 MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL); 2658 2659 MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL); 2660 MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL); 2661 MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL); 2662 2663 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL); 2664 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL); 2665 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL); 2666 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL); 2667 2668 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL); 2669 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL); 2670 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL); 2671 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL); 2672 2673 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL); 2674 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL); 2675 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL); 2676 MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL); 2677 2678 MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL); 2679 MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL); 2680 MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL); 2681 MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL); 2682 2683 MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL); 2684 MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL); 2685 MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL); 2686 MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL); 2687 2688 MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL); 2689 MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL); 2690 MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL); 2691 MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL); 2692 2693 MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL); 2694 MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL); 2695 MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL); 2696 MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL); 2697 2698 MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL); 2699 MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL); 2700 MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL); 2701 MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL); 2702 2703 MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL); 2704 MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL); 2705 MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL); 2706 MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL); 2707 2708 MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); 2709 2710 MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS, 2711 NULL, NULL); 2712 MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS, 2713 NULL, NULL); 2714 2715 MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS, 2716 F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); 2717 MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, 2718 NULL, NULL); 2719 2720 /* TRTT */ 2721 MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); 2722 MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); 2723 MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); 2724 MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); 2725 MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); 2726 MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE, 2727 NULL, gen9_trtte_write); 2728 MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE, 2729 NULL, gen9_trtt_chicken_write); 2730 2731 MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); 2732 MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write); 2733 2734 #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4) 2735 MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, 2736 NULL, csfe_chicken1_mmio_write); 2737 #undef CSFE_CHICKEN1_REG 2738 MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, 2739 NULL, NULL); 2740 MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, 2741 NULL, NULL); 2742 2743 MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL); 2744 MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); 2745 2746 return 0; 2747 } 2748 2749 static int init_bxt_mmio_info(struct intel_gvt *gvt) 2750 { 2751 int ret; 2752 2753 MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write); 2754 MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT, 2755 NULL, bxt_phy_ctl_family_write); 2756 MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT, 2757 NULL, bxt_phy_ctl_family_write); 2758 MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT, 2759 NULL, bxt_port_pll_enable_write); 2760 MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT, 2761 NULL, bxt_port_pll_enable_write); 2762 MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL, 2763 bxt_port_pll_enable_write); 2764 2765 MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT, 2766 NULL, bxt_pcs_dw12_grp_write); 2767 MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH0), D_BXT, 2768 bxt_port_tx_dw3_read, NULL); 2769 MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT, 2770 NULL, bxt_pcs_dw12_grp_write); 2771 MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH1), D_BXT, 2772 bxt_port_tx_dw3_read, NULL); 2773 MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT, 2774 NULL, bxt_pcs_dw12_grp_write); 2775 MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY1, DPIO_CH0), D_BXT, 2776 bxt_port_tx_dw3_read, NULL); 2777 MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write); 2778 MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL); 2779 MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL); 2780 MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL); 2781 MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS, 2782 0, 0, D_BXT, NULL, NULL); 2783 MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS, 2784 0, 0, D_BXT, NULL, NULL); 2785 MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS, 2786 0, 0, D_BXT, NULL, NULL); 2787 MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS, 2788 0, 0, D_BXT, NULL, NULL); 2789 2790 MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL); 2791 2792 MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write); 2793 2794 return 0; 2795 } 2796 2797 static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt, 2798 unsigned int offset) 2799 { 2800 struct gvt_mmio_block *block = gvt->mmio.mmio_block; 2801 int num = gvt->mmio.num_mmio_block; 2802 int i; 2803 2804 for (i = 0; i < num; i++, block++) { 2805 if (offset >= i915_mmio_reg_offset(block->offset) && 2806 offset < i915_mmio_reg_offset(block->offset) + block->size) 2807 return block; 2808 } 2809 return NULL; 2810 } 2811 2812 /** 2813 * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device 2814 * @gvt: GVT device 2815 * 2816 * This function is called at the driver unloading stage, to clean up the MMIO 2817 * information table of GVT device 2818 * 2819 */ 2820 void intel_gvt_clean_mmio_info(struct intel_gvt *gvt) 2821 { 2822 struct hlist_node *tmp; 2823 struct intel_gvt_mmio_info *e; 2824 int i; 2825 2826 hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node) 2827 kfree(e); 2828 2829 kfree(gvt->mmio.mmio_block); 2830 gvt->mmio.mmio_block = NULL; 2831 gvt->mmio.num_mmio_block = 0; 2832 2833 vfree(gvt->mmio.mmio_attribute); 2834 gvt->mmio.mmio_attribute = NULL; 2835 } 2836 2837 static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset, 2838 u32 size) 2839 { 2840 struct intel_gvt *gvt = iter->data; 2841 struct intel_gvt_mmio_info *info, *p; 2842 u32 start, end, i; 2843 2844 if (WARN_ON(!IS_ALIGNED(offset, 4))) 2845 return -EINVAL; 2846 2847 start = offset; 2848 end = offset + size; 2849 2850 for (i = start; i < end; i += 4) { 2851 p = intel_gvt_find_mmio_info(gvt, i); 2852 if (p) { 2853 WARN(1, "dup mmio definition offset %x\n", 2854 info->offset); 2855 2856 /* We return -EEXIST here to make GVT-g load fail. 2857 * So duplicated MMIO can be found as soon as 2858 * possible. 2859 */ 2860 return -EEXIST; 2861 } 2862 2863 info = kzalloc(sizeof(*info), GFP_KERNEL); 2864 if (!info) 2865 return -ENOMEM; 2866 2867 info->offset = i; 2868 info->read = intel_vgpu_default_mmio_read; 2869 info->write = intel_vgpu_default_mmio_write; 2870 INIT_HLIST_NODE(&info->node); 2871 hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset); 2872 gvt->mmio.num_tracked_mmio++; 2873 } 2874 return 0; 2875 } 2876 2877 static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter, 2878 u32 offset, u32 size) 2879 { 2880 struct intel_gvt *gvt = iter->data; 2881 struct gvt_mmio_block *block = gvt->mmio.mmio_block; 2882 void *ret; 2883 2884 ret = krealloc(block, 2885 (gvt->mmio.num_mmio_block + 1) * sizeof(*block), 2886 GFP_KERNEL); 2887 if (!ret) 2888 return -ENOMEM; 2889 2890 gvt->mmio.mmio_block = block = ret; 2891 2892 block += gvt->mmio.num_mmio_block; 2893 2894 memset(block, 0, sizeof(*block)); 2895 2896 block->offset = _MMIO(offset); 2897 block->size = size; 2898 2899 gvt->mmio.num_mmio_block++; 2900 2901 return 0; 2902 } 2903 2904 static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset, 2905 u32 size) 2906 { 2907 if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0))) 2908 return handle_mmio(iter, offset, size); 2909 else 2910 return handle_mmio_block(iter, offset, size); 2911 } 2912 2913 static int init_mmio_info(struct intel_gvt *gvt) 2914 { 2915 struct intel_gvt_mmio_table_iter iter = { 2916 .i915 = gvt->gt->i915, 2917 .data = gvt, 2918 .handle_mmio_cb = handle_mmio_cb, 2919 }; 2920 2921 return intel_gvt_iterate_mmio_table(&iter); 2922 } 2923 2924 static int init_mmio_block_handlers(struct intel_gvt *gvt) 2925 { 2926 struct gvt_mmio_block *block; 2927 2928 block = find_mmio_block(gvt, VGT_PVINFO_PAGE); 2929 if (!block) { 2930 WARN(1, "fail to assign handlers to mmio block %x\n", 2931 i915_mmio_reg_offset(gvt->mmio.mmio_block->offset)); 2932 return -ENODEV; 2933 } 2934 2935 block->read = pvinfo_mmio_read; 2936 block->write = pvinfo_mmio_write; 2937 2938 return 0; 2939 } 2940 2941 /** 2942 * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device 2943 * @gvt: GVT device 2944 * 2945 * This function is called at the initialization stage, to setup the MMIO 2946 * information table for GVT device 2947 * 2948 * Returns: 2949 * zero on success, negative if failed. 2950 */ 2951 int intel_gvt_setup_mmio_info(struct intel_gvt *gvt) 2952 { 2953 struct intel_gvt_device_info *info = &gvt->device_info; 2954 struct drm_i915_private *i915 = gvt->gt->i915; 2955 int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute); 2956 int ret; 2957 2958 gvt->mmio.mmio_attribute = vzalloc(size); 2959 if (!gvt->mmio.mmio_attribute) 2960 return -ENOMEM; 2961 2962 ret = init_mmio_info(gvt); 2963 if (ret) 2964 goto err; 2965 2966 ret = init_mmio_block_handlers(gvt); 2967 if (ret) 2968 goto err; 2969 2970 ret = init_generic_mmio_info(gvt); 2971 if (ret) 2972 goto err; 2973 2974 if (IS_BROADWELL(i915)) { 2975 ret = init_bdw_mmio_info(gvt); 2976 if (ret) 2977 goto err; 2978 } else if (IS_SKYLAKE(i915) || 2979 IS_KABYLAKE(i915) || 2980 IS_COFFEELAKE(i915) || 2981 IS_COMETLAKE(i915)) { 2982 ret = init_bdw_mmio_info(gvt); 2983 if (ret) 2984 goto err; 2985 ret = init_skl_mmio_info(gvt); 2986 if (ret) 2987 goto err; 2988 } else if (IS_BROXTON(i915)) { 2989 ret = init_bdw_mmio_info(gvt); 2990 if (ret) 2991 goto err; 2992 ret = init_skl_mmio_info(gvt); 2993 if (ret) 2994 goto err; 2995 ret = init_bxt_mmio_info(gvt); 2996 if (ret) 2997 goto err; 2998 } 2999 3000 return 0; 3001 err: 3002 intel_gvt_clean_mmio_info(gvt); 3003 return ret; 3004 } 3005 3006 /** 3007 * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio 3008 * @gvt: a GVT device 3009 * @handler: the handler 3010 * @data: private data given to handler 3011 * 3012 * Returns: 3013 * Zero on success, negative error code if failed. 3014 */ 3015 int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt, 3016 int (*handler)(struct intel_gvt *gvt, u32 offset, void *data), 3017 void *data) 3018 { 3019 struct gvt_mmio_block *block = gvt->mmio.mmio_block; 3020 struct intel_gvt_mmio_info *e; 3021 int i, j, ret; 3022 3023 hash_for_each(gvt->mmio.mmio_info_table, i, e, node) { 3024 ret = handler(gvt, e->offset, data); 3025 if (ret) 3026 return ret; 3027 } 3028 3029 for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) { 3030 /* pvinfo data doesn't come from hw mmio */ 3031 if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE) 3032 continue; 3033 3034 for (j = 0; j < block->size; j += 4) { 3035 ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data); 3036 if (ret) 3037 return ret; 3038 } 3039 } 3040 return 0; 3041 } 3042 3043 /** 3044 * intel_vgpu_default_mmio_read - default MMIO read handler 3045 * @vgpu: a vGPU 3046 * @offset: access offset 3047 * @p_data: data return buffer 3048 * @bytes: access data length 3049 * 3050 * Returns: 3051 * Zero on success, negative error code if failed. 3052 */ 3053 int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, 3054 void *p_data, unsigned int bytes) 3055 { 3056 read_vreg(vgpu, offset, p_data, bytes); 3057 return 0; 3058 } 3059 3060 /** 3061 * intel_vgpu_default_mmio_write() - default MMIO write handler 3062 * @vgpu: a vGPU 3063 * @offset: access offset 3064 * @p_data: write data buffer 3065 * @bytes: access data length 3066 * 3067 * Returns: 3068 * Zero on success, negative error code if failed. 3069 */ 3070 int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 3071 void *p_data, unsigned int bytes) 3072 { 3073 write_vreg(vgpu, offset, p_data, bytes); 3074 return 0; 3075 } 3076 3077 /** 3078 * intel_vgpu_mask_mmio_write - write mask register 3079 * @vgpu: a vGPU 3080 * @offset: access offset 3081 * @p_data: write data buffer 3082 * @bytes: access data length 3083 * 3084 * Returns: 3085 * Zero on success, negative error code if failed. 3086 */ 3087 int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, 3088 void *p_data, unsigned int bytes) 3089 { 3090 u32 mask, old_vreg; 3091 3092 old_vreg = vgpu_vreg(vgpu, offset); 3093 write_vreg(vgpu, offset, p_data, bytes); 3094 mask = vgpu_vreg(vgpu, offset) >> 16; 3095 vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) | 3096 (vgpu_vreg(vgpu, offset) & mask); 3097 3098 return 0; 3099 } 3100 3101 /** 3102 * intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be 3103 * force-nopriv register 3104 * 3105 * @gvt: a GVT device 3106 * @offset: register offset 3107 * 3108 * Returns: 3109 * True if the register is in force-nonpriv whitelist; 3110 * False if outside; 3111 */ 3112 bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt, 3113 unsigned int offset) 3114 { 3115 return in_whitelist(offset); 3116 } 3117 3118 /** 3119 * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers 3120 * @vgpu: a vGPU 3121 * @offset: register offset 3122 * @pdata: data buffer 3123 * @bytes: data length 3124 * @is_read: read or write 3125 * 3126 * Returns: 3127 * Zero on success, negative error code if failed. 3128 */ 3129 int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset, 3130 void *pdata, unsigned int bytes, bool is_read) 3131 { 3132 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 3133 struct intel_gvt *gvt = vgpu->gvt; 3134 struct intel_gvt_mmio_info *mmio_info; 3135 struct gvt_mmio_block *mmio_block; 3136 gvt_mmio_func func; 3137 int ret; 3138 3139 if (drm_WARN_ON(&i915->drm, bytes > 8)) 3140 return -EINVAL; 3141 3142 /* 3143 * Handle special MMIO blocks. 3144 */ 3145 mmio_block = find_mmio_block(gvt, offset); 3146 if (mmio_block) { 3147 func = is_read ? mmio_block->read : mmio_block->write; 3148 if (func) 3149 return func(vgpu, offset, pdata, bytes); 3150 goto default_rw; 3151 } 3152 3153 /* 3154 * Normal tracked MMIOs. 3155 */ 3156 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 3157 if (!mmio_info) { 3158 gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes); 3159 goto default_rw; 3160 } 3161 3162 if (is_read) 3163 return mmio_info->read(vgpu, offset, pdata, bytes); 3164 else { 3165 u64 ro_mask = mmio_info->ro_mask; 3166 u32 old_vreg = 0; 3167 u64 data = 0; 3168 3169 if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) { 3170 old_vreg = vgpu_vreg(vgpu, offset); 3171 } 3172 3173 if (likely(!ro_mask)) 3174 ret = mmio_info->write(vgpu, offset, pdata, bytes); 3175 else if (!~ro_mask) { 3176 gvt_vgpu_err("try to write RO reg %x\n", offset); 3177 return 0; 3178 } else { 3179 /* keep the RO bits in the virtual register */ 3180 memcpy(&data, pdata, bytes); 3181 data &= ~ro_mask; 3182 data |= vgpu_vreg(vgpu, offset) & ro_mask; 3183 ret = mmio_info->write(vgpu, offset, &data, bytes); 3184 } 3185 3186 /* higher 16bits of mode ctl regs are mask bits for change */ 3187 if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) { 3188 u32 mask = vgpu_vreg(vgpu, offset) >> 16; 3189 3190 vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) 3191 | (vgpu_vreg(vgpu, offset) & mask); 3192 } 3193 } 3194 3195 return ret; 3196 3197 default_rw: 3198 return is_read ? 3199 intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) : 3200 intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes); 3201 } 3202 3203 void intel_gvt_restore_fence(struct intel_gvt *gvt) 3204 { 3205 struct intel_vgpu *vgpu; 3206 int i, id; 3207 3208 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { 3209 mmio_hw_access_pre(gvt->gt); 3210 for (i = 0; i < vgpu_fence_sz(vgpu); i++) 3211 intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i))); 3212 mmio_hw_access_post(gvt->gt); 3213 } 3214 } 3215 3216 static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data) 3217 { 3218 struct intel_vgpu *vgpu = data; 3219 struct drm_i915_private *dev_priv = gvt->gt->i915; 3220 3221 if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE) 3222 intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset)); 3223 3224 return 0; 3225 } 3226 3227 void intel_gvt_restore_mmio(struct intel_gvt *gvt) 3228 { 3229 struct intel_vgpu *vgpu; 3230 int id; 3231 3232 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { 3233 mmio_hw_access_pre(gvt->gt); 3234 intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu); 3235 mmio_hw_access_post(gvt->gt); 3236 } 3237 } 3238