1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #include "gt/intel_gt_regs.h" 42 43 #if defined(VERBOSE_DEBUG) 44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 45 #else 46 #define gvt_vdbg_mm(fmt, args...) 47 #endif 48 49 static bool enable_out_of_sync = false; 50 static int preallocated_oos_pages = 8192; 51 52 static bool intel_gvt_is_valid_gfn(struct intel_vgpu *vgpu, unsigned long gfn) 53 { 54 struct kvm *kvm = vgpu->vfio_device.kvm; 55 int idx; 56 bool ret; 57 58 if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status)) 59 return false; 60 61 idx = srcu_read_lock(&kvm->srcu); 62 ret = kvm_is_visible_gfn(kvm, gfn); 63 srcu_read_unlock(&kvm->srcu, idx); 64 65 return ret; 66 } 67 68 /* 69 * validate a gm address and related range size, 70 * translate it to host gm address 71 */ 72 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 73 { 74 if (size == 0) 75 return vgpu_gmadr_is_valid(vgpu, addr); 76 77 if (vgpu_gmadr_is_aperture(vgpu, addr) && 78 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 79 return true; 80 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 81 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 82 return true; 83 84 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 85 addr, size); 86 return false; 87 } 88 89 /* translate a guest gmadr to host gmadr */ 90 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 91 { 92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 93 94 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr), 95 "invalid guest gmadr %llx\n", g_addr)) 96 return -EACCES; 97 98 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 99 *h_addr = vgpu_aperture_gmadr_base(vgpu) 100 + (g_addr - vgpu_aperture_offset(vgpu)); 101 else 102 *h_addr = vgpu_hidden_gmadr_base(vgpu) 103 + (g_addr - vgpu_hidden_offset(vgpu)); 104 return 0; 105 } 106 107 /* translate a host gmadr to guest gmadr */ 108 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 109 { 110 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 111 112 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr), 113 "invalid host gmadr %llx\n", h_addr)) 114 return -EACCES; 115 116 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 117 *g_addr = vgpu_aperture_gmadr_base(vgpu) 118 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 119 else 120 *g_addr = vgpu_hidden_gmadr_base(vgpu) 121 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 122 return 0; 123 } 124 125 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 126 unsigned long *h_index) 127 { 128 u64 h_addr; 129 int ret; 130 131 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 132 &h_addr); 133 if (ret) 134 return ret; 135 136 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 137 return 0; 138 } 139 140 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 141 unsigned long *g_index) 142 { 143 u64 g_addr; 144 int ret; 145 146 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 147 &g_addr); 148 if (ret) 149 return ret; 150 151 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 152 return 0; 153 } 154 155 #define gtt_type_is_entry(type) \ 156 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 157 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 158 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 159 160 #define gtt_type_is_pt(type) \ 161 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 162 163 #define gtt_type_is_pte_pt(type) \ 164 (type == GTT_TYPE_PPGTT_PTE_PT) 165 166 #define gtt_type_is_root_pointer(type) \ 167 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 168 169 #define gtt_init_entry(e, t, p, v) do { \ 170 (e)->type = t; \ 171 (e)->pdev = p; \ 172 memcpy(&(e)->val64, &v, sizeof(v)); \ 173 } while (0) 174 175 /* 176 * Mappings between GTT_TYPE* enumerations. 177 * Following information can be found according to the given type: 178 * - type of next level page table 179 * - type of entry inside this level page table 180 * - type of entry with PSE set 181 * 182 * If the given type doesn't have such a kind of information, 183 * e.g. give a l4 root entry type, then request to get its PSE type, 184 * give a PTE page table type, then request to get its next level page 185 * table type, as we know l4 root entry doesn't have a PSE bit, 186 * and a PTE page table doesn't have a next level page table type, 187 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 188 * page table. 189 */ 190 191 struct gtt_type_table_entry { 192 int entry_type; 193 int pt_type; 194 int next_pt_type; 195 int pse_entry_type; 196 }; 197 198 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 199 [type] = { \ 200 .entry_type = e_type, \ 201 .pt_type = cpt_type, \ 202 .next_pt_type = npt_type, \ 203 .pse_entry_type = pse_type, \ 204 } 205 206 static const struct gtt_type_table_entry gtt_type_table[] = { 207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 208 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 209 GTT_TYPE_INVALID, 210 GTT_TYPE_PPGTT_PML4_PT, 211 GTT_TYPE_INVALID), 212 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 213 GTT_TYPE_PPGTT_PML4_ENTRY, 214 GTT_TYPE_PPGTT_PML4_PT, 215 GTT_TYPE_PPGTT_PDP_PT, 216 GTT_TYPE_INVALID), 217 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 218 GTT_TYPE_PPGTT_PML4_ENTRY, 219 GTT_TYPE_PPGTT_PML4_PT, 220 GTT_TYPE_PPGTT_PDP_PT, 221 GTT_TYPE_INVALID), 222 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 223 GTT_TYPE_PPGTT_PDP_ENTRY, 224 GTT_TYPE_PPGTT_PDP_PT, 225 GTT_TYPE_PPGTT_PDE_PT, 226 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 227 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 228 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 229 GTT_TYPE_INVALID, 230 GTT_TYPE_PPGTT_PDE_PT, 231 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 232 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 233 GTT_TYPE_PPGTT_PDP_ENTRY, 234 GTT_TYPE_PPGTT_PDP_PT, 235 GTT_TYPE_PPGTT_PDE_PT, 236 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 237 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 238 GTT_TYPE_PPGTT_PDE_ENTRY, 239 GTT_TYPE_PPGTT_PDE_PT, 240 GTT_TYPE_PPGTT_PTE_PT, 241 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 242 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 243 GTT_TYPE_PPGTT_PDE_ENTRY, 244 GTT_TYPE_PPGTT_PDE_PT, 245 GTT_TYPE_PPGTT_PTE_PT, 246 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 247 /* We take IPS bit as 'PSE' for PTE level. */ 248 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 249 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 250 GTT_TYPE_PPGTT_PTE_PT, 251 GTT_TYPE_INVALID, 252 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 253 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 254 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 255 GTT_TYPE_PPGTT_PTE_PT, 256 GTT_TYPE_INVALID, 257 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 258 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 259 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 260 GTT_TYPE_PPGTT_PTE_PT, 261 GTT_TYPE_INVALID, 262 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 263 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 264 GTT_TYPE_PPGTT_PDE_ENTRY, 265 GTT_TYPE_PPGTT_PDE_PT, 266 GTT_TYPE_INVALID, 267 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 268 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 269 GTT_TYPE_PPGTT_PDP_ENTRY, 270 GTT_TYPE_PPGTT_PDP_PT, 271 GTT_TYPE_INVALID, 272 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 273 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 274 GTT_TYPE_GGTT_PTE, 275 GTT_TYPE_INVALID, 276 GTT_TYPE_INVALID, 277 GTT_TYPE_INVALID), 278 }; 279 280 static inline int get_next_pt_type(int type) 281 { 282 return gtt_type_table[type].next_pt_type; 283 } 284 285 static inline int get_entry_type(int type) 286 { 287 return gtt_type_table[type].entry_type; 288 } 289 290 static inline int get_pse_type(int type) 291 { 292 return gtt_type_table[type].pse_entry_type; 293 } 294 295 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index) 296 { 297 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 298 299 return readq(addr); 300 } 301 302 static void ggtt_invalidate(struct intel_gt *gt) 303 { 304 mmio_hw_access_pre(gt); 305 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 306 mmio_hw_access_post(gt); 307 } 308 309 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte) 310 { 311 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 312 313 writeq(pte, addr); 314 } 315 316 static inline int gtt_get_entry64(void *pt, 317 struct intel_gvt_gtt_entry *e, 318 unsigned long index, bool hypervisor_access, unsigned long gpa, 319 struct intel_vgpu *vgpu) 320 { 321 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 322 int ret; 323 324 if (WARN_ON(info->gtt_entry_size != 8)) 325 return -EINVAL; 326 327 if (hypervisor_access) { 328 ret = intel_gvt_read_gpa(vgpu, gpa + 329 (index << info->gtt_entry_size_shift), 330 &e->val64, 8); 331 if (WARN_ON(ret)) 332 return ret; 333 } else if (!pt) { 334 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index); 335 } else { 336 e->val64 = *((u64 *)pt + index); 337 } 338 return 0; 339 } 340 341 static inline int gtt_set_entry64(void *pt, 342 struct intel_gvt_gtt_entry *e, 343 unsigned long index, bool hypervisor_access, unsigned long gpa, 344 struct intel_vgpu *vgpu) 345 { 346 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 347 int ret; 348 349 if (WARN_ON(info->gtt_entry_size != 8)) 350 return -EINVAL; 351 352 if (hypervisor_access) { 353 ret = intel_gvt_write_gpa(vgpu, gpa + 354 (index << info->gtt_entry_size_shift), 355 &e->val64, 8); 356 if (WARN_ON(ret)) 357 return ret; 358 } else if (!pt) { 359 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64); 360 } else { 361 *((u64 *)pt + index) = e->val64; 362 } 363 return 0; 364 } 365 366 #define GTT_HAW 46 367 368 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 369 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 370 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 371 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 372 373 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 374 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 375 376 #define GTT_64K_PTE_STRIDE 16 377 378 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 379 { 380 unsigned long pfn; 381 382 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 383 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 384 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 385 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 386 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 387 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 388 else 389 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 390 return pfn; 391 } 392 393 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 394 { 395 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 396 e->val64 &= ~ADDR_1G_MASK; 397 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 398 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 399 e->val64 &= ~ADDR_2M_MASK; 400 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 401 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 402 e->val64 &= ~ADDR_64K_MASK; 403 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 404 } else { 405 e->val64 &= ~ADDR_4K_MASK; 406 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 407 } 408 409 e->val64 |= (pfn << PAGE_SHIFT); 410 } 411 412 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 413 { 414 return !!(e->val64 & _PAGE_PSE); 415 } 416 417 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 418 { 419 if (gen8_gtt_test_pse(e)) { 420 switch (e->type) { 421 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 422 e->val64 &= ~_PAGE_PSE; 423 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 424 break; 425 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 426 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 427 e->val64 &= ~_PAGE_PSE; 428 break; 429 default: 430 WARN_ON(1); 431 } 432 } 433 } 434 435 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 436 { 437 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 438 return false; 439 440 return !!(e->val64 & GEN8_PDE_IPS_64K); 441 } 442 443 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 444 { 445 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 446 return; 447 448 e->val64 &= ~GEN8_PDE_IPS_64K; 449 } 450 451 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 452 { 453 /* 454 * i915 writes PDP root pointer registers without present bit, 455 * it also works, so we need to treat root pointer entry 456 * specifically. 457 */ 458 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 459 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 460 return (e->val64 != 0); 461 else 462 return (e->val64 & GEN8_PAGE_PRESENT); 463 } 464 465 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 466 { 467 e->val64 &= ~GEN8_PAGE_PRESENT; 468 } 469 470 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 471 { 472 e->val64 |= GEN8_PAGE_PRESENT; 473 } 474 475 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 476 { 477 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 478 } 479 480 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 481 { 482 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 483 } 484 485 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 486 { 487 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 488 } 489 490 /* 491 * Per-platform GMA routines. 492 */ 493 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 494 { 495 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 496 497 trace_gma_index(__func__, gma, x); 498 return x; 499 } 500 501 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 502 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 503 { \ 504 unsigned long x = (exp); \ 505 trace_gma_index(__func__, gma, x); \ 506 return x; \ 507 } 508 509 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 510 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 511 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 512 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 513 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 514 515 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 516 .get_entry = gtt_get_entry64, 517 .set_entry = gtt_set_entry64, 518 .clear_present = gtt_entry_clear_present, 519 .set_present = gtt_entry_set_present, 520 .test_present = gen8_gtt_test_present, 521 .test_pse = gen8_gtt_test_pse, 522 .clear_pse = gen8_gtt_clear_pse, 523 .clear_ips = gen8_gtt_clear_ips, 524 .test_ips = gen8_gtt_test_ips, 525 .clear_64k_splited = gen8_gtt_clear_64k_splited, 526 .set_64k_splited = gen8_gtt_set_64k_splited, 527 .test_64k_splited = gen8_gtt_test_64k_splited, 528 .get_pfn = gen8_gtt_get_pfn, 529 .set_pfn = gen8_gtt_set_pfn, 530 }; 531 532 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 533 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 534 .gma_to_pte_index = gen8_gma_to_pte_index, 535 .gma_to_pde_index = gen8_gma_to_pde_index, 536 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 537 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 538 .gma_to_pml4_index = gen8_gma_to_pml4_index, 539 }; 540 541 /* Update entry type per pse and ips bit. */ 542 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops, 543 struct intel_gvt_gtt_entry *entry, bool ips) 544 { 545 switch (entry->type) { 546 case GTT_TYPE_PPGTT_PDE_ENTRY: 547 case GTT_TYPE_PPGTT_PDP_ENTRY: 548 if (pte_ops->test_pse(entry)) 549 entry->type = get_pse_type(entry->type); 550 break; 551 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 552 if (ips) 553 entry->type = get_pse_type(entry->type); 554 break; 555 default: 556 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 557 } 558 559 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 560 } 561 562 /* 563 * MM helpers. 564 */ 565 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 566 struct intel_gvt_gtt_entry *entry, unsigned long index, 567 bool guest) 568 { 569 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 570 571 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 572 573 entry->type = mm->ppgtt_mm.root_entry_type; 574 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 575 mm->ppgtt_mm.shadow_pdps, 576 entry, index, false, 0, mm->vgpu); 577 update_entry_type_for_real(pte_ops, entry, false); 578 } 579 580 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 581 struct intel_gvt_gtt_entry *entry, unsigned long index) 582 { 583 _ppgtt_get_root_entry(mm, entry, index, true); 584 } 585 586 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 587 struct intel_gvt_gtt_entry *entry, unsigned long index) 588 { 589 _ppgtt_get_root_entry(mm, entry, index, false); 590 } 591 592 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 593 struct intel_gvt_gtt_entry *entry, unsigned long index, 594 bool guest) 595 { 596 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 597 598 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 599 mm->ppgtt_mm.shadow_pdps, 600 entry, index, false, 0, mm->vgpu); 601 } 602 603 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 604 struct intel_gvt_gtt_entry *entry, unsigned long index) 605 { 606 _ppgtt_set_root_entry(mm, entry, index, false); 607 } 608 609 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 610 struct intel_gvt_gtt_entry *entry, unsigned long index) 611 { 612 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 613 614 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 615 616 entry->type = GTT_TYPE_GGTT_PTE; 617 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 618 false, 0, mm->vgpu); 619 } 620 621 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 622 struct intel_gvt_gtt_entry *entry, unsigned long index) 623 { 624 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 625 626 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 627 628 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 629 false, 0, mm->vgpu); 630 } 631 632 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 633 struct intel_gvt_gtt_entry *entry, unsigned long index) 634 { 635 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 636 637 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 638 639 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 640 } 641 642 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 643 struct intel_gvt_gtt_entry *entry, unsigned long index) 644 { 645 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 646 unsigned long offset = index; 647 648 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 649 650 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 651 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 652 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64; 653 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 654 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 655 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64; 656 } 657 658 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 659 } 660 661 /* 662 * PPGTT shadow page table helpers. 663 */ 664 static inline int ppgtt_spt_get_entry( 665 struct intel_vgpu_ppgtt_spt *spt, 666 void *page_table, int type, 667 struct intel_gvt_gtt_entry *e, unsigned long index, 668 bool guest) 669 { 670 struct intel_gvt *gvt = spt->vgpu->gvt; 671 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 672 int ret; 673 674 e->type = get_entry_type(type); 675 676 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 677 return -EINVAL; 678 679 ret = ops->get_entry(page_table, e, index, guest, 680 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 681 spt->vgpu); 682 if (ret) 683 return ret; 684 685 update_entry_type_for_real(ops, e, guest ? 686 spt->guest_page.pde_ips : false); 687 688 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 689 type, e->type, index, e->val64); 690 return 0; 691 } 692 693 static inline int ppgtt_spt_set_entry( 694 struct intel_vgpu_ppgtt_spt *spt, 695 void *page_table, int type, 696 struct intel_gvt_gtt_entry *e, unsigned long index, 697 bool guest) 698 { 699 struct intel_gvt *gvt = spt->vgpu->gvt; 700 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 701 702 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 703 return -EINVAL; 704 705 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 706 type, e->type, index, e->val64); 707 708 return ops->set_entry(page_table, e, index, guest, 709 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 710 spt->vgpu); 711 } 712 713 #define ppgtt_get_guest_entry(spt, e, index) \ 714 ppgtt_spt_get_entry(spt, NULL, \ 715 spt->guest_page.type, e, index, true) 716 717 #define ppgtt_set_guest_entry(spt, e, index) \ 718 ppgtt_spt_set_entry(spt, NULL, \ 719 spt->guest_page.type, e, index, true) 720 721 #define ppgtt_get_shadow_entry(spt, e, index) \ 722 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 723 spt->shadow_page.type, e, index, false) 724 725 #define ppgtt_set_shadow_entry(spt, e, index) \ 726 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 727 spt->shadow_page.type, e, index, false) 728 729 static void *alloc_spt(gfp_t gfp_mask) 730 { 731 struct intel_vgpu_ppgtt_spt *spt; 732 733 spt = kzalloc(sizeof(*spt), gfp_mask); 734 if (!spt) 735 return NULL; 736 737 spt->shadow_page.page = alloc_page(gfp_mask); 738 if (!spt->shadow_page.page) { 739 kfree(spt); 740 return NULL; 741 } 742 return spt; 743 } 744 745 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 746 { 747 __free_page(spt->shadow_page.page); 748 kfree(spt); 749 } 750 751 static int detach_oos_page(struct intel_vgpu *vgpu, 752 struct intel_vgpu_oos_page *oos_page); 753 754 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 755 { 756 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev; 757 758 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 759 760 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 761 DMA_BIDIRECTIONAL); 762 763 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 764 765 if (spt->guest_page.gfn) { 766 if (spt->guest_page.oos_page) 767 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 768 769 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 770 } 771 772 list_del_init(&spt->post_shadow_list); 773 free_spt(spt); 774 } 775 776 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 777 { 778 struct intel_vgpu_ppgtt_spt *spt, *spn; 779 struct radix_tree_iter iter; 780 LIST_HEAD(all_spt); 781 void __rcu **slot; 782 783 rcu_read_lock(); 784 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 785 spt = radix_tree_deref_slot(slot); 786 list_move(&spt->post_shadow_list, &all_spt); 787 } 788 rcu_read_unlock(); 789 790 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 791 ppgtt_free_spt(spt); 792 } 793 794 static int ppgtt_handle_guest_write_page_table_bytes( 795 struct intel_vgpu_ppgtt_spt *spt, 796 u64 pa, void *p_data, int bytes); 797 798 static int ppgtt_write_protection_handler( 799 struct intel_vgpu_page_track *page_track, 800 u64 gpa, void *data, int bytes) 801 { 802 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 803 804 int ret; 805 806 if (bytes != 4 && bytes != 8) 807 return -EINVAL; 808 809 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 810 if (ret) 811 return ret; 812 return ret; 813 } 814 815 /* Find a spt by guest gfn. */ 816 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 817 struct intel_vgpu *vgpu, unsigned long gfn) 818 { 819 struct intel_vgpu_page_track *track; 820 821 track = intel_vgpu_find_page_track(vgpu, gfn); 822 if (track && track->handler == ppgtt_write_protection_handler) 823 return track->priv_data; 824 825 return NULL; 826 } 827 828 /* Find the spt by shadow page mfn. */ 829 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 830 struct intel_vgpu *vgpu, unsigned long mfn) 831 { 832 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 833 } 834 835 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 836 837 /* Allocate shadow page table without guest page. */ 838 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 839 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 840 { 841 struct device *kdev = vgpu->gvt->gt->i915->drm.dev; 842 struct intel_vgpu_ppgtt_spt *spt = NULL; 843 dma_addr_t daddr; 844 int ret; 845 846 retry: 847 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 848 if (!spt) { 849 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 850 goto retry; 851 852 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 853 return ERR_PTR(-ENOMEM); 854 } 855 856 spt->vgpu = vgpu; 857 atomic_set(&spt->refcount, 1); 858 INIT_LIST_HEAD(&spt->post_shadow_list); 859 860 /* 861 * Init shadow_page. 862 */ 863 spt->shadow_page.type = type; 864 daddr = dma_map_page(kdev, spt->shadow_page.page, 865 0, 4096, DMA_BIDIRECTIONAL); 866 if (dma_mapping_error(kdev, daddr)) { 867 gvt_vgpu_err("fail to map dma addr\n"); 868 ret = -EINVAL; 869 goto err_free_spt; 870 } 871 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 872 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 873 874 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 875 if (ret) 876 goto err_unmap_dma; 877 878 return spt; 879 880 err_unmap_dma: 881 dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL); 882 err_free_spt: 883 free_spt(spt); 884 return ERR_PTR(ret); 885 } 886 887 /* Allocate shadow page table associated with specific gfn. */ 888 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 889 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 890 unsigned long gfn, bool guest_pde_ips) 891 { 892 struct intel_vgpu_ppgtt_spt *spt; 893 int ret; 894 895 spt = ppgtt_alloc_spt(vgpu, type); 896 if (IS_ERR(spt)) 897 return spt; 898 899 /* 900 * Init guest_page. 901 */ 902 ret = intel_vgpu_register_page_track(vgpu, gfn, 903 ppgtt_write_protection_handler, spt); 904 if (ret) { 905 ppgtt_free_spt(spt); 906 return ERR_PTR(ret); 907 } 908 909 spt->guest_page.type = type; 910 spt->guest_page.gfn = gfn; 911 spt->guest_page.pde_ips = guest_pde_ips; 912 913 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 914 915 return spt; 916 } 917 918 #define pt_entry_size_shift(spt) \ 919 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 920 921 #define pt_entries(spt) \ 922 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 923 924 #define for_each_present_guest_entry(spt, e, i) \ 925 for (i = 0; i < pt_entries(spt); \ 926 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 927 if (!ppgtt_get_guest_entry(spt, e, i) && \ 928 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 929 930 #define for_each_present_shadow_entry(spt, e, i) \ 931 for (i = 0; i < pt_entries(spt); \ 932 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 933 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 934 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 935 936 #define for_each_shadow_entry(spt, e, i) \ 937 for (i = 0; i < pt_entries(spt); \ 938 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 939 if (!ppgtt_get_shadow_entry(spt, e, i)) 940 941 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 942 { 943 int v = atomic_read(&spt->refcount); 944 945 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 946 atomic_inc(&spt->refcount); 947 } 948 949 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 950 { 951 int v = atomic_read(&spt->refcount); 952 953 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 954 return atomic_dec_return(&spt->refcount); 955 } 956 957 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 958 959 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 960 struct intel_gvt_gtt_entry *e) 961 { 962 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 963 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 964 struct intel_vgpu_ppgtt_spt *s; 965 enum intel_gvt_gtt_type cur_pt_type; 966 967 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 968 969 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 970 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 971 cur_pt_type = get_next_pt_type(e->type); 972 973 if (!gtt_type_is_pt(cur_pt_type) || 974 !gtt_type_is_pt(cur_pt_type + 1)) { 975 drm_WARN(&i915->drm, 1, 976 "Invalid page table type, cur_pt_type is: %d\n", 977 cur_pt_type); 978 return -EINVAL; 979 } 980 981 cur_pt_type += 1; 982 983 if (ops->get_pfn(e) == 984 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 985 return 0; 986 } 987 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 988 if (!s) { 989 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 990 ops->get_pfn(e)); 991 return -ENXIO; 992 } 993 return ppgtt_invalidate_spt(s); 994 } 995 996 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 997 struct intel_gvt_gtt_entry *entry) 998 { 999 struct intel_vgpu *vgpu = spt->vgpu; 1000 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1001 unsigned long pfn; 1002 int type; 1003 1004 pfn = ops->get_pfn(entry); 1005 type = spt->shadow_page.type; 1006 1007 /* Uninitialized spte or unshadowed spte. */ 1008 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 1009 return; 1010 1011 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 1012 } 1013 1014 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 1015 { 1016 struct intel_vgpu *vgpu = spt->vgpu; 1017 struct intel_gvt_gtt_entry e; 1018 unsigned long index; 1019 int ret; 1020 1021 trace_spt_change(spt->vgpu->id, "die", spt, 1022 spt->guest_page.gfn, spt->shadow_page.type); 1023 1024 if (ppgtt_put_spt(spt) > 0) 1025 return 0; 1026 1027 for_each_present_shadow_entry(spt, &e, index) { 1028 switch (e.type) { 1029 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1030 gvt_vdbg_mm("invalidate 4K entry\n"); 1031 ppgtt_invalidate_pte(spt, &e); 1032 break; 1033 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1034 /* We don't setup 64K shadow entry so far. */ 1035 WARN(1, "suspicious 64K gtt entry\n"); 1036 continue; 1037 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1038 gvt_vdbg_mm("invalidate 2M entry\n"); 1039 continue; 1040 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1041 WARN(1, "GVT doesn't support 1GB page\n"); 1042 continue; 1043 case GTT_TYPE_PPGTT_PML4_ENTRY: 1044 case GTT_TYPE_PPGTT_PDP_ENTRY: 1045 case GTT_TYPE_PPGTT_PDE_ENTRY: 1046 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1047 ret = ppgtt_invalidate_spt_by_shadow_entry( 1048 spt->vgpu, &e); 1049 if (ret) 1050 goto fail; 1051 break; 1052 default: 1053 GEM_BUG_ON(1); 1054 } 1055 } 1056 1057 trace_spt_change(spt->vgpu->id, "release", spt, 1058 spt->guest_page.gfn, spt->shadow_page.type); 1059 ppgtt_free_spt(spt); 1060 return 0; 1061 fail: 1062 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1063 spt, e.val64, e.type); 1064 return ret; 1065 } 1066 1067 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1068 { 1069 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1070 1071 if (GRAPHICS_VER(dev_priv) == 9) { 1072 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1073 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1074 1075 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1076 } else if (GRAPHICS_VER(dev_priv) >= 11) { 1077 /* 64K paging only controlled by IPS bit in PTE now. */ 1078 return true; 1079 } else 1080 return false; 1081 } 1082 1083 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1084 1085 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1086 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1087 { 1088 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1089 struct intel_vgpu_ppgtt_spt *spt = NULL; 1090 bool ips = false; 1091 int ret; 1092 1093 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1094 1095 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1096 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1097 1098 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1099 if (spt) { 1100 ppgtt_get_spt(spt); 1101 1102 if (ips != spt->guest_page.pde_ips) { 1103 spt->guest_page.pde_ips = ips; 1104 1105 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1106 clear_page(spt->shadow_page.vaddr); 1107 ret = ppgtt_populate_spt(spt); 1108 if (ret) { 1109 ppgtt_put_spt(spt); 1110 goto err; 1111 } 1112 } 1113 } else { 1114 int type = get_next_pt_type(we->type); 1115 1116 if (!gtt_type_is_pt(type)) { 1117 ret = -EINVAL; 1118 goto err; 1119 } 1120 1121 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1122 if (IS_ERR(spt)) { 1123 ret = PTR_ERR(spt); 1124 goto err; 1125 } 1126 1127 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1128 if (ret) 1129 goto err_free_spt; 1130 1131 ret = ppgtt_populate_spt(spt); 1132 if (ret) 1133 goto err_free_spt; 1134 1135 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1136 spt->shadow_page.type); 1137 } 1138 return spt; 1139 1140 err_free_spt: 1141 ppgtt_free_spt(spt); 1142 spt = NULL; 1143 err: 1144 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1145 spt, we->val64, we->type); 1146 return ERR_PTR(ret); 1147 } 1148 1149 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1150 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1151 { 1152 const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1153 1154 se->type = ge->type; 1155 se->val64 = ge->val64; 1156 1157 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1158 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1159 ops->clear_ips(se); 1160 1161 ops->set_pfn(se, s->shadow_page.mfn); 1162 } 1163 1164 /* 1165 * Check if can do 2M page 1166 * @vgpu: target vgpu 1167 * @entry: target pfn's gtt entry 1168 * 1169 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition, 1170 * negative if found err. 1171 */ 1172 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1173 struct intel_gvt_gtt_entry *entry) 1174 { 1175 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1176 kvm_pfn_t pfn; 1177 1178 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M)) 1179 return 0; 1180 1181 if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status)) 1182 return -EINVAL; 1183 pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry)); 1184 if (is_error_noslot_pfn(pfn)) 1185 return -EINVAL; 1186 return PageTransHuge(pfn_to_page(pfn)); 1187 } 1188 1189 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1190 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1191 struct intel_gvt_gtt_entry *se) 1192 { 1193 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1194 struct intel_vgpu_ppgtt_spt *sub_spt; 1195 struct intel_gvt_gtt_entry sub_se; 1196 unsigned long start_gfn; 1197 dma_addr_t dma_addr; 1198 unsigned long sub_index; 1199 int ret; 1200 1201 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1202 1203 start_gfn = ops->get_pfn(se); 1204 1205 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1206 if (IS_ERR(sub_spt)) 1207 return PTR_ERR(sub_spt); 1208 1209 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1210 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index, 1211 PAGE_SIZE, &dma_addr); 1212 if (ret) 1213 goto err; 1214 sub_se.val64 = se->val64; 1215 1216 /* Copy the PAT field from PDE. */ 1217 sub_se.val64 &= ~_PAGE_PAT; 1218 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1219 1220 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1221 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1222 } 1223 1224 /* Clear dirty field. */ 1225 se->val64 &= ~_PAGE_DIRTY; 1226 1227 ops->clear_pse(se); 1228 ops->clear_ips(se); 1229 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1230 ppgtt_set_shadow_entry(spt, se, index); 1231 return 0; 1232 err: 1233 /* Cancel the existing addess mappings of DMA addr. */ 1234 for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) { 1235 gvt_vdbg_mm("invalidate 4K entry\n"); 1236 ppgtt_invalidate_pte(sub_spt, &sub_se); 1237 } 1238 /* Release the new allocated spt. */ 1239 trace_spt_change(sub_spt->vgpu->id, "release", sub_spt, 1240 sub_spt->guest_page.gfn, sub_spt->shadow_page.type); 1241 ppgtt_free_spt(sub_spt); 1242 return ret; 1243 } 1244 1245 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1246 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1247 struct intel_gvt_gtt_entry *se) 1248 { 1249 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1250 struct intel_gvt_gtt_entry entry = *se; 1251 unsigned long start_gfn; 1252 dma_addr_t dma_addr; 1253 int i, ret; 1254 1255 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1256 1257 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1258 1259 start_gfn = ops->get_pfn(se); 1260 1261 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1262 ops->set_64k_splited(&entry); 1263 1264 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1265 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i, 1266 PAGE_SIZE, &dma_addr); 1267 if (ret) 1268 return ret; 1269 1270 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1271 ppgtt_set_shadow_entry(spt, &entry, index + i); 1272 } 1273 return 0; 1274 } 1275 1276 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1277 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1278 struct intel_gvt_gtt_entry *ge) 1279 { 1280 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1281 struct intel_gvt_gtt_entry se = *ge; 1282 unsigned long gfn, page_size = PAGE_SIZE; 1283 dma_addr_t dma_addr; 1284 int ret; 1285 1286 if (!pte_ops->test_present(ge)) 1287 return 0; 1288 1289 gfn = pte_ops->get_pfn(ge); 1290 1291 switch (ge->type) { 1292 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1293 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1294 break; 1295 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1296 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1297 /* 1298 * The layout of 64K page is special, the page size is 1299 * controlled by uper PDE. To be simple, we always split 1300 * 64K page to smaller 4K pages in shadow PT. 1301 */ 1302 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1303 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1304 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1305 ret = is_2MB_gtt_possible(vgpu, ge); 1306 if (ret == 0) 1307 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1308 else if (ret < 0) 1309 return ret; 1310 page_size = I915_GTT_PAGE_SIZE_2M; 1311 break; 1312 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1313 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1314 return -EINVAL; 1315 default: 1316 GEM_BUG_ON(1); 1317 } 1318 1319 /* direct shadow */ 1320 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr); 1321 if (ret) 1322 return -ENXIO; 1323 1324 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1325 ppgtt_set_shadow_entry(spt, &se, index); 1326 return 0; 1327 } 1328 1329 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1330 { 1331 struct intel_vgpu *vgpu = spt->vgpu; 1332 struct intel_gvt *gvt = vgpu->gvt; 1333 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1334 struct intel_vgpu_ppgtt_spt *s; 1335 struct intel_gvt_gtt_entry se, ge; 1336 unsigned long gfn, i; 1337 int ret; 1338 1339 trace_spt_change(spt->vgpu->id, "born", spt, 1340 spt->guest_page.gfn, spt->shadow_page.type); 1341 1342 for_each_present_guest_entry(spt, &ge, i) { 1343 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1344 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1345 if (IS_ERR(s)) { 1346 ret = PTR_ERR(s); 1347 goto fail; 1348 } 1349 ppgtt_get_shadow_entry(spt, &se, i); 1350 ppgtt_generate_shadow_entry(&se, s, &ge); 1351 ppgtt_set_shadow_entry(spt, &se, i); 1352 } else { 1353 gfn = ops->get_pfn(&ge); 1354 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) { 1355 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1356 ppgtt_set_shadow_entry(spt, &se, i); 1357 continue; 1358 } 1359 1360 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1361 if (ret) 1362 goto fail; 1363 } 1364 } 1365 return 0; 1366 fail: 1367 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1368 spt, ge.val64, ge.type); 1369 return ret; 1370 } 1371 1372 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1373 struct intel_gvt_gtt_entry *se, unsigned long index) 1374 { 1375 struct intel_vgpu *vgpu = spt->vgpu; 1376 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1377 int ret; 1378 1379 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1380 spt->shadow_page.type, se->val64, index); 1381 1382 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1383 se->type, index, se->val64); 1384 1385 if (!ops->test_present(se)) 1386 return 0; 1387 1388 if (ops->get_pfn(se) == 1389 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1390 return 0; 1391 1392 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1393 struct intel_vgpu_ppgtt_spt *s = 1394 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1395 if (!s) { 1396 gvt_vgpu_err("fail to find guest page\n"); 1397 ret = -ENXIO; 1398 goto fail; 1399 } 1400 ret = ppgtt_invalidate_spt(s); 1401 if (ret) 1402 goto fail; 1403 } else { 1404 /* We don't setup 64K shadow entry so far. */ 1405 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1406 "suspicious 64K entry\n"); 1407 ppgtt_invalidate_pte(spt, se); 1408 } 1409 1410 return 0; 1411 fail: 1412 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1413 spt, se->val64, se->type); 1414 return ret; 1415 } 1416 1417 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1418 struct intel_gvt_gtt_entry *we, unsigned long index) 1419 { 1420 struct intel_vgpu *vgpu = spt->vgpu; 1421 struct intel_gvt_gtt_entry m; 1422 struct intel_vgpu_ppgtt_spt *s; 1423 int ret; 1424 1425 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1426 we->val64, index); 1427 1428 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1429 we->type, index, we->val64); 1430 1431 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1432 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1433 if (IS_ERR(s)) { 1434 ret = PTR_ERR(s); 1435 goto fail; 1436 } 1437 ppgtt_get_shadow_entry(spt, &m, index); 1438 ppgtt_generate_shadow_entry(&m, s, we); 1439 ppgtt_set_shadow_entry(spt, &m, index); 1440 } else { 1441 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1442 if (ret) 1443 goto fail; 1444 } 1445 return 0; 1446 fail: 1447 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1448 spt, we->val64, we->type); 1449 return ret; 1450 } 1451 1452 static int sync_oos_page(struct intel_vgpu *vgpu, 1453 struct intel_vgpu_oos_page *oos_page) 1454 { 1455 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1456 struct intel_gvt *gvt = vgpu->gvt; 1457 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1458 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1459 struct intel_gvt_gtt_entry old, new; 1460 int index; 1461 int ret; 1462 1463 trace_oos_change(vgpu->id, "sync", oos_page->id, 1464 spt, spt->guest_page.type); 1465 1466 old.type = new.type = get_entry_type(spt->guest_page.type); 1467 old.val64 = new.val64 = 0; 1468 1469 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1470 info->gtt_entry_size_shift); index++) { 1471 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1472 ops->get_entry(NULL, &new, index, true, 1473 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1474 1475 if (old.val64 == new.val64 1476 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1477 continue; 1478 1479 trace_oos_sync(vgpu->id, oos_page->id, 1480 spt, spt->guest_page.type, 1481 new.val64, index); 1482 1483 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1484 if (ret) 1485 return ret; 1486 1487 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1488 } 1489 1490 spt->guest_page.write_cnt = 0; 1491 list_del_init(&spt->post_shadow_list); 1492 return 0; 1493 } 1494 1495 static int detach_oos_page(struct intel_vgpu *vgpu, 1496 struct intel_vgpu_oos_page *oos_page) 1497 { 1498 struct intel_gvt *gvt = vgpu->gvt; 1499 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1500 1501 trace_oos_change(vgpu->id, "detach", oos_page->id, 1502 spt, spt->guest_page.type); 1503 1504 spt->guest_page.write_cnt = 0; 1505 spt->guest_page.oos_page = NULL; 1506 oos_page->spt = NULL; 1507 1508 list_del_init(&oos_page->vm_list); 1509 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1510 1511 return 0; 1512 } 1513 1514 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1515 struct intel_vgpu_ppgtt_spt *spt) 1516 { 1517 struct intel_gvt *gvt = spt->vgpu->gvt; 1518 int ret; 1519 1520 ret = intel_gvt_read_gpa(spt->vgpu, 1521 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1522 oos_page->mem, I915_GTT_PAGE_SIZE); 1523 if (ret) 1524 return ret; 1525 1526 oos_page->spt = spt; 1527 spt->guest_page.oos_page = oos_page; 1528 1529 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1530 1531 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1532 spt, spt->guest_page.type); 1533 return 0; 1534 } 1535 1536 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1537 { 1538 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1539 int ret; 1540 1541 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1542 if (ret) 1543 return ret; 1544 1545 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1546 spt, spt->guest_page.type); 1547 1548 list_del_init(&oos_page->vm_list); 1549 return sync_oos_page(spt->vgpu, oos_page); 1550 } 1551 1552 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1553 { 1554 struct intel_gvt *gvt = spt->vgpu->gvt; 1555 struct intel_gvt_gtt *gtt = &gvt->gtt; 1556 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1557 int ret; 1558 1559 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1560 1561 if (list_empty(>t->oos_page_free_list_head)) { 1562 oos_page = container_of(gtt->oos_page_use_list_head.next, 1563 struct intel_vgpu_oos_page, list); 1564 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1565 if (ret) 1566 return ret; 1567 ret = detach_oos_page(spt->vgpu, oos_page); 1568 if (ret) 1569 return ret; 1570 } else 1571 oos_page = container_of(gtt->oos_page_free_list_head.next, 1572 struct intel_vgpu_oos_page, list); 1573 return attach_oos_page(oos_page, spt); 1574 } 1575 1576 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1577 { 1578 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1579 1580 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1581 return -EINVAL; 1582 1583 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1584 spt, spt->guest_page.type); 1585 1586 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1587 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1588 } 1589 1590 /** 1591 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1592 * @vgpu: a vGPU 1593 * 1594 * This function is called before submitting a guest workload to host, 1595 * to sync all the out-of-synced shadow for vGPU 1596 * 1597 * Returns: 1598 * Zero on success, negative error code if failed. 1599 */ 1600 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1601 { 1602 struct list_head *pos, *n; 1603 struct intel_vgpu_oos_page *oos_page; 1604 int ret; 1605 1606 if (!enable_out_of_sync) 1607 return 0; 1608 1609 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1610 oos_page = container_of(pos, 1611 struct intel_vgpu_oos_page, vm_list); 1612 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1613 if (ret) 1614 return ret; 1615 } 1616 return 0; 1617 } 1618 1619 /* 1620 * The heart of PPGTT shadow page table. 1621 */ 1622 static int ppgtt_handle_guest_write_page_table( 1623 struct intel_vgpu_ppgtt_spt *spt, 1624 struct intel_gvt_gtt_entry *we, unsigned long index) 1625 { 1626 struct intel_vgpu *vgpu = spt->vgpu; 1627 int type = spt->shadow_page.type; 1628 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1629 struct intel_gvt_gtt_entry old_se; 1630 int new_present; 1631 int i, ret; 1632 1633 new_present = ops->test_present(we); 1634 1635 /* 1636 * Adding the new entry first and then removing the old one, that can 1637 * guarantee the ppgtt table is validated during the window between 1638 * adding and removal. 1639 */ 1640 ppgtt_get_shadow_entry(spt, &old_se, index); 1641 1642 if (new_present) { 1643 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1644 if (ret) 1645 goto fail; 1646 } 1647 1648 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1649 if (ret) 1650 goto fail; 1651 1652 if (!new_present) { 1653 /* For 64KB splited entries, we need clear them all. */ 1654 if (ops->test_64k_splited(&old_se) && 1655 !(index % GTT_64K_PTE_STRIDE)) { 1656 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1657 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1658 ops->clear_64k_splited(&old_se); 1659 ops->set_pfn(&old_se, 1660 vgpu->gtt.scratch_pt[type].page_mfn); 1661 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1662 } 1663 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1664 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1665 ops->clear_pse(&old_se); 1666 ops->set_pfn(&old_se, 1667 vgpu->gtt.scratch_pt[type].page_mfn); 1668 ppgtt_set_shadow_entry(spt, &old_se, index); 1669 } else { 1670 ops->set_pfn(&old_se, 1671 vgpu->gtt.scratch_pt[type].page_mfn); 1672 ppgtt_set_shadow_entry(spt, &old_se, index); 1673 } 1674 } 1675 1676 return 0; 1677 fail: 1678 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1679 spt, we->val64, we->type); 1680 return ret; 1681 } 1682 1683 1684 1685 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1686 { 1687 return enable_out_of_sync 1688 && gtt_type_is_pte_pt(spt->guest_page.type) 1689 && spt->guest_page.write_cnt >= 2; 1690 } 1691 1692 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1693 unsigned long index) 1694 { 1695 set_bit(index, spt->post_shadow_bitmap); 1696 if (!list_empty(&spt->post_shadow_list)) 1697 return; 1698 1699 list_add_tail(&spt->post_shadow_list, 1700 &spt->vgpu->gtt.post_shadow_list_head); 1701 } 1702 1703 /** 1704 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1705 * @vgpu: a vGPU 1706 * 1707 * This function is called before submitting a guest workload to host, 1708 * to flush all the post shadows for a vGPU. 1709 * 1710 * Returns: 1711 * Zero on success, negative error code if failed. 1712 */ 1713 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1714 { 1715 struct list_head *pos, *n; 1716 struct intel_vgpu_ppgtt_spt *spt; 1717 struct intel_gvt_gtt_entry ge; 1718 unsigned long index; 1719 int ret; 1720 1721 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1722 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1723 post_shadow_list); 1724 1725 for_each_set_bit(index, spt->post_shadow_bitmap, 1726 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1727 ppgtt_get_guest_entry(spt, &ge, index); 1728 1729 ret = ppgtt_handle_guest_write_page_table(spt, 1730 &ge, index); 1731 if (ret) 1732 return ret; 1733 clear_bit(index, spt->post_shadow_bitmap); 1734 } 1735 list_del_init(&spt->post_shadow_list); 1736 } 1737 return 0; 1738 } 1739 1740 static int ppgtt_handle_guest_write_page_table_bytes( 1741 struct intel_vgpu_ppgtt_spt *spt, 1742 u64 pa, void *p_data, int bytes) 1743 { 1744 struct intel_vgpu *vgpu = spt->vgpu; 1745 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1746 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1747 struct intel_gvt_gtt_entry we, se; 1748 unsigned long index; 1749 int ret; 1750 1751 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1752 1753 ppgtt_get_guest_entry(spt, &we, index); 1754 1755 /* 1756 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1757 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1758 * ignored. 1759 */ 1760 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1761 (index % GTT_64K_PTE_STRIDE)) { 1762 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1763 index); 1764 return 0; 1765 } 1766 1767 if (bytes == info->gtt_entry_size) { 1768 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1769 if (ret) 1770 return ret; 1771 } else { 1772 if (!test_bit(index, spt->post_shadow_bitmap)) { 1773 int type = spt->shadow_page.type; 1774 1775 ppgtt_get_shadow_entry(spt, &se, index); 1776 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1777 if (ret) 1778 return ret; 1779 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1780 ppgtt_set_shadow_entry(spt, &se, index); 1781 } 1782 ppgtt_set_post_shadow(spt, index); 1783 } 1784 1785 if (!enable_out_of_sync) 1786 return 0; 1787 1788 spt->guest_page.write_cnt++; 1789 1790 if (spt->guest_page.oos_page) 1791 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1792 false, 0, vgpu); 1793 1794 if (can_do_out_of_sync(spt)) { 1795 if (!spt->guest_page.oos_page) 1796 ppgtt_allocate_oos_page(spt); 1797 1798 ret = ppgtt_set_guest_page_oos(spt); 1799 if (ret < 0) 1800 return ret; 1801 } 1802 return 0; 1803 } 1804 1805 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1806 { 1807 struct intel_vgpu *vgpu = mm->vgpu; 1808 struct intel_gvt *gvt = vgpu->gvt; 1809 struct intel_gvt_gtt *gtt = &gvt->gtt; 1810 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1811 struct intel_gvt_gtt_entry se; 1812 int index; 1813 1814 if (!mm->ppgtt_mm.shadowed) 1815 return; 1816 1817 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1818 ppgtt_get_shadow_root_entry(mm, &se, index); 1819 1820 if (!ops->test_present(&se)) 1821 continue; 1822 1823 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1824 se.val64 = 0; 1825 ppgtt_set_shadow_root_entry(mm, &se, index); 1826 1827 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1828 NULL, se.type, se.val64, index); 1829 } 1830 1831 mm->ppgtt_mm.shadowed = false; 1832 } 1833 1834 1835 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1836 { 1837 struct intel_vgpu *vgpu = mm->vgpu; 1838 struct intel_gvt *gvt = vgpu->gvt; 1839 struct intel_gvt_gtt *gtt = &gvt->gtt; 1840 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1841 struct intel_vgpu_ppgtt_spt *spt; 1842 struct intel_gvt_gtt_entry ge, se; 1843 int index, ret; 1844 1845 if (mm->ppgtt_mm.shadowed) 1846 return 0; 1847 1848 mm->ppgtt_mm.shadowed = true; 1849 1850 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1851 ppgtt_get_guest_root_entry(mm, &ge, index); 1852 1853 if (!ops->test_present(&ge)) 1854 continue; 1855 1856 trace_spt_guest_change(vgpu->id, __func__, NULL, 1857 ge.type, ge.val64, index); 1858 1859 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1860 if (IS_ERR(spt)) { 1861 gvt_vgpu_err("fail to populate guest root pointer\n"); 1862 ret = PTR_ERR(spt); 1863 goto fail; 1864 } 1865 ppgtt_generate_shadow_entry(&se, spt, &ge); 1866 ppgtt_set_shadow_root_entry(mm, &se, index); 1867 1868 trace_spt_guest_change(vgpu->id, "populate root pointer", 1869 NULL, se.type, se.val64, index); 1870 } 1871 1872 return 0; 1873 fail: 1874 invalidate_ppgtt_mm(mm); 1875 return ret; 1876 } 1877 1878 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1879 { 1880 struct intel_vgpu_mm *mm; 1881 1882 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1883 if (!mm) 1884 return NULL; 1885 1886 mm->vgpu = vgpu; 1887 kref_init(&mm->ref); 1888 atomic_set(&mm->pincount, 0); 1889 1890 return mm; 1891 } 1892 1893 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1894 { 1895 kfree(mm); 1896 } 1897 1898 /** 1899 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1900 * @vgpu: a vGPU 1901 * @root_entry_type: ppgtt root entry type 1902 * @pdps: guest pdps. 1903 * 1904 * This function is used to create a ppgtt mm object for a vGPU. 1905 * 1906 * Returns: 1907 * Zero on success, negative error code in pointer if failed. 1908 */ 1909 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1910 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1911 { 1912 struct intel_gvt *gvt = vgpu->gvt; 1913 struct intel_vgpu_mm *mm; 1914 int ret; 1915 1916 mm = vgpu_alloc_mm(vgpu); 1917 if (!mm) 1918 return ERR_PTR(-ENOMEM); 1919 1920 mm->type = INTEL_GVT_MM_PPGTT; 1921 1922 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1923 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1924 mm->ppgtt_mm.root_entry_type = root_entry_type; 1925 1926 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1927 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1928 INIT_LIST_HEAD(&mm->ppgtt_mm.link); 1929 1930 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1931 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1932 else 1933 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1934 sizeof(mm->ppgtt_mm.guest_pdps)); 1935 1936 ret = shadow_ppgtt_mm(mm); 1937 if (ret) { 1938 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1939 vgpu_free_mm(mm); 1940 return ERR_PTR(ret); 1941 } 1942 1943 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1944 1945 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1946 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1947 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1948 1949 return mm; 1950 } 1951 1952 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1953 { 1954 struct intel_vgpu_mm *mm; 1955 unsigned long nr_entries; 1956 1957 mm = vgpu_alloc_mm(vgpu); 1958 if (!mm) 1959 return ERR_PTR(-ENOMEM); 1960 1961 mm->type = INTEL_GVT_MM_GGTT; 1962 1963 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1964 mm->ggtt_mm.virtual_ggtt = 1965 vzalloc(array_size(nr_entries, 1966 vgpu->gvt->device_info.gtt_entry_size)); 1967 if (!mm->ggtt_mm.virtual_ggtt) { 1968 vgpu_free_mm(mm); 1969 return ERR_PTR(-ENOMEM); 1970 } 1971 1972 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1973 if (!mm->ggtt_mm.host_ggtt_aperture) { 1974 vfree(mm->ggtt_mm.virtual_ggtt); 1975 vgpu_free_mm(mm); 1976 return ERR_PTR(-ENOMEM); 1977 } 1978 1979 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1980 if (!mm->ggtt_mm.host_ggtt_hidden) { 1981 vfree(mm->ggtt_mm.host_ggtt_aperture); 1982 vfree(mm->ggtt_mm.virtual_ggtt); 1983 vgpu_free_mm(mm); 1984 return ERR_PTR(-ENOMEM); 1985 } 1986 1987 return mm; 1988 } 1989 1990 /** 1991 * _intel_vgpu_mm_release - destroy a mm object 1992 * @mm_ref: a kref object 1993 * 1994 * This function is used to destroy a mm object for vGPU 1995 * 1996 */ 1997 void _intel_vgpu_mm_release(struct kref *mm_ref) 1998 { 1999 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 2000 2001 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 2002 gvt_err("vgpu mm pin count bug detected\n"); 2003 2004 if (mm->type == INTEL_GVT_MM_PPGTT) { 2005 list_del(&mm->ppgtt_mm.list); 2006 2007 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2008 list_del(&mm->ppgtt_mm.lru_list); 2009 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2010 2011 invalidate_ppgtt_mm(mm); 2012 } else { 2013 vfree(mm->ggtt_mm.virtual_ggtt); 2014 vfree(mm->ggtt_mm.host_ggtt_aperture); 2015 vfree(mm->ggtt_mm.host_ggtt_hidden); 2016 } 2017 2018 vgpu_free_mm(mm); 2019 } 2020 2021 /** 2022 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 2023 * @mm: a vGPU mm object 2024 * 2025 * This function is called when user doesn't want to use a vGPU mm object 2026 */ 2027 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 2028 { 2029 atomic_dec_if_positive(&mm->pincount); 2030 } 2031 2032 /** 2033 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 2034 * @mm: target vgpu mm 2035 * 2036 * This function is called when user wants to use a vGPU mm object. If this 2037 * mm object hasn't been shadowed yet, the shadow will be populated at this 2038 * time. 2039 * 2040 * Returns: 2041 * Zero on success, negative error code if failed. 2042 */ 2043 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 2044 { 2045 int ret; 2046 2047 atomic_inc(&mm->pincount); 2048 2049 if (mm->type == INTEL_GVT_MM_PPGTT) { 2050 ret = shadow_ppgtt_mm(mm); 2051 if (ret) 2052 return ret; 2053 2054 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2055 list_move_tail(&mm->ppgtt_mm.lru_list, 2056 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2057 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2058 } 2059 2060 return 0; 2061 } 2062 2063 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2064 { 2065 struct intel_vgpu_mm *mm; 2066 struct list_head *pos, *n; 2067 2068 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2069 2070 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2071 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2072 2073 if (atomic_read(&mm->pincount)) 2074 continue; 2075 2076 list_del_init(&mm->ppgtt_mm.lru_list); 2077 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2078 invalidate_ppgtt_mm(mm); 2079 return 1; 2080 } 2081 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2082 return 0; 2083 } 2084 2085 /* 2086 * GMA translation APIs. 2087 */ 2088 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2089 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2090 { 2091 struct intel_vgpu *vgpu = mm->vgpu; 2092 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2093 struct intel_vgpu_ppgtt_spt *s; 2094 2095 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2096 if (!s) 2097 return -ENXIO; 2098 2099 if (!guest) 2100 ppgtt_get_shadow_entry(s, e, index); 2101 else 2102 ppgtt_get_guest_entry(s, e, index); 2103 return 0; 2104 } 2105 2106 /** 2107 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2108 * @mm: mm object. could be a PPGTT or GGTT mm object 2109 * @gma: graphics memory address in this mm object 2110 * 2111 * This function is used to translate a graphics memory address in specific 2112 * graphics memory space to guest physical address. 2113 * 2114 * Returns: 2115 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2116 */ 2117 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2118 { 2119 struct intel_vgpu *vgpu = mm->vgpu; 2120 struct intel_gvt *gvt = vgpu->gvt; 2121 const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2122 const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2123 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2124 unsigned long gma_index[4]; 2125 struct intel_gvt_gtt_entry e; 2126 int i, levels = 0; 2127 int ret; 2128 2129 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2130 mm->type != INTEL_GVT_MM_PPGTT); 2131 2132 if (mm->type == INTEL_GVT_MM_GGTT) { 2133 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2134 goto err; 2135 2136 ggtt_get_guest_entry(mm, &e, 2137 gma_ops->gma_to_ggtt_pte_index(gma)); 2138 2139 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2140 + (gma & ~I915_GTT_PAGE_MASK); 2141 2142 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2143 } else { 2144 switch (mm->ppgtt_mm.root_entry_type) { 2145 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2146 ppgtt_get_shadow_root_entry(mm, &e, 0); 2147 2148 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2149 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2150 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2151 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2152 levels = 4; 2153 break; 2154 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2155 ppgtt_get_shadow_root_entry(mm, &e, 2156 gma_ops->gma_to_l3_pdp_index(gma)); 2157 2158 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2159 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2160 levels = 2; 2161 break; 2162 default: 2163 GEM_BUG_ON(1); 2164 } 2165 2166 /* walk the shadow page table and get gpa from guest entry */ 2167 for (i = 0; i < levels; i++) { 2168 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2169 (i == levels - 1)); 2170 if (ret) 2171 goto err; 2172 2173 if (!pte_ops->test_present(&e)) { 2174 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2175 goto err; 2176 } 2177 } 2178 2179 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2180 (gma & ~I915_GTT_PAGE_MASK); 2181 trace_gma_translate(vgpu->id, "ppgtt", 0, 2182 mm->ppgtt_mm.root_entry_type, gma, gpa); 2183 } 2184 2185 return gpa; 2186 err: 2187 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2188 return INTEL_GVT_INVALID_ADDR; 2189 } 2190 2191 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2192 unsigned int off, void *p_data, unsigned int bytes) 2193 { 2194 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2195 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2196 unsigned long index = off >> info->gtt_entry_size_shift; 2197 unsigned long gma; 2198 struct intel_gvt_gtt_entry e; 2199 2200 if (bytes != 4 && bytes != 8) 2201 return -EINVAL; 2202 2203 gma = index << I915_GTT_PAGE_SHIFT; 2204 if (!intel_gvt_ggtt_validate_range(vgpu, 2205 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2206 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2207 memset(p_data, 0, bytes); 2208 return 0; 2209 } 2210 2211 ggtt_get_guest_entry(ggtt_mm, &e, index); 2212 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2213 bytes); 2214 return 0; 2215 } 2216 2217 /** 2218 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read 2219 * @vgpu: a vGPU 2220 * @off: register offset 2221 * @p_data: data will be returned to guest 2222 * @bytes: data length 2223 * 2224 * This function is used to emulate the GTT MMIO register read 2225 * 2226 * Returns: 2227 * Zero on success, error code if failed. 2228 */ 2229 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2230 void *p_data, unsigned int bytes) 2231 { 2232 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2233 int ret; 2234 2235 if (bytes != 4 && bytes != 8) 2236 return -EINVAL; 2237 2238 off -= info->gtt_start_offset; 2239 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2240 return ret; 2241 } 2242 2243 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2244 struct intel_gvt_gtt_entry *entry) 2245 { 2246 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2247 unsigned long pfn; 2248 2249 pfn = pte_ops->get_pfn(entry); 2250 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2251 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 2252 } 2253 2254 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2255 void *p_data, unsigned int bytes) 2256 { 2257 struct intel_gvt *gvt = vgpu->gvt; 2258 const struct intel_gvt_device_info *info = &gvt->device_info; 2259 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2260 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2261 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2262 unsigned long gma, gfn; 2263 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2264 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2265 dma_addr_t dma_addr; 2266 int ret; 2267 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2268 bool partial_update = false; 2269 2270 if (bytes != 4 && bytes != 8) 2271 return -EINVAL; 2272 2273 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2274 2275 /* the VM may configure the whole GM space when ballooning is used */ 2276 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2277 return 0; 2278 2279 e.type = GTT_TYPE_GGTT_PTE; 2280 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2281 bytes); 2282 2283 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2284 * write, save the first 4 bytes in a list and update virtual 2285 * PTE. Only update shadow PTE when the second 4 bytes comes. 2286 */ 2287 if (bytes < info->gtt_entry_size) { 2288 bool found = false; 2289 2290 list_for_each_entry_safe(pos, n, 2291 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2292 if (g_gtt_index == pos->offset >> 2293 info->gtt_entry_size_shift) { 2294 if (off != pos->offset) { 2295 /* the second partial part*/ 2296 int last_off = pos->offset & 2297 (info->gtt_entry_size - 1); 2298 2299 memcpy((void *)&e.val64 + last_off, 2300 (void *)&pos->data + last_off, 2301 bytes); 2302 2303 list_del(&pos->list); 2304 kfree(pos); 2305 found = true; 2306 break; 2307 } 2308 2309 /* update of the first partial part */ 2310 pos->data = e.val64; 2311 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2312 return 0; 2313 } 2314 } 2315 2316 if (!found) { 2317 /* the first partial part */ 2318 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2319 if (!partial_pte) 2320 return -ENOMEM; 2321 partial_pte->offset = off; 2322 partial_pte->data = e.val64; 2323 list_add_tail(&partial_pte->list, 2324 &ggtt_mm->ggtt_mm.partial_pte_list); 2325 partial_update = true; 2326 } 2327 } 2328 2329 if (!partial_update && (ops->test_present(&e))) { 2330 gfn = ops->get_pfn(&e); 2331 m.val64 = e.val64; 2332 m.type = e.type; 2333 2334 /* one PTE update may be issued in multiple writes and the 2335 * first write may not construct a valid gfn 2336 */ 2337 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) { 2338 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2339 goto out; 2340 } 2341 2342 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, 2343 &dma_addr); 2344 if (ret) { 2345 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2346 /* guest driver may read/write the entry when partial 2347 * update the entry in this situation p2m will fail 2348 * setting the shadow entry to point to a scratch page 2349 */ 2350 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2351 } else 2352 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2353 } else { 2354 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2355 ops->clear_present(&m); 2356 } 2357 2358 out: 2359 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2360 2361 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2362 ggtt_invalidate_pte(vgpu, &e); 2363 2364 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2365 ggtt_invalidate(gvt->gt); 2366 return 0; 2367 } 2368 2369 /* 2370 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2371 * @vgpu: a vGPU 2372 * @off: register offset 2373 * @p_data: data from guest write 2374 * @bytes: data length 2375 * 2376 * This function is used to emulate the GTT MMIO register write 2377 * 2378 * Returns: 2379 * Zero on success, error code if failed. 2380 */ 2381 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2382 unsigned int off, void *p_data, unsigned int bytes) 2383 { 2384 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2385 int ret; 2386 struct intel_vgpu_submission *s = &vgpu->submission; 2387 struct intel_engine_cs *engine; 2388 int i; 2389 2390 if (bytes != 4 && bytes != 8) 2391 return -EINVAL; 2392 2393 off -= info->gtt_start_offset; 2394 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2395 2396 /* if ggtt of last submitted context is written, 2397 * that context is probably got unpinned. 2398 * Set last shadowed ctx to invalid. 2399 */ 2400 for_each_engine(engine, vgpu->gvt->gt, i) { 2401 if (!s->last_ctx[i].valid) 2402 continue; 2403 2404 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift)) 2405 s->last_ctx[i].valid = false; 2406 } 2407 return ret; 2408 } 2409 2410 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2411 enum intel_gvt_gtt_type type) 2412 { 2413 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 2414 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2415 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2416 int page_entry_num = I915_GTT_PAGE_SIZE >> 2417 vgpu->gvt->device_info.gtt_entry_size_shift; 2418 void *scratch_pt; 2419 int i; 2420 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2421 dma_addr_t daddr; 2422 2423 if (drm_WARN_ON(&i915->drm, 2424 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2425 return -EINVAL; 2426 2427 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2428 if (!scratch_pt) { 2429 gvt_vgpu_err("fail to allocate scratch page\n"); 2430 return -ENOMEM; 2431 } 2432 2433 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL); 2434 if (dma_mapping_error(dev, daddr)) { 2435 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2436 __free_page(virt_to_page(scratch_pt)); 2437 return -ENOMEM; 2438 } 2439 gtt->scratch_pt[type].page_mfn = 2440 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2441 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2442 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2443 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2444 2445 /* Build the tree by full filled the scratch pt with the entries which 2446 * point to the next level scratch pt or scratch page. The 2447 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2448 * 'type' pt. 2449 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2450 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2451 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2452 */ 2453 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2454 struct intel_gvt_gtt_entry se; 2455 2456 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2457 se.type = get_entry_type(type - 1); 2458 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2459 2460 /* The entry parameters like present/writeable/cache type 2461 * set to the same as i915's scratch page tree. 2462 */ 2463 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW; 2464 if (type == GTT_TYPE_PPGTT_PDE_PT) 2465 se.val64 |= PPAT_CACHED; 2466 2467 for (i = 0; i < page_entry_num; i++) 2468 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2469 } 2470 2471 return 0; 2472 } 2473 2474 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2475 { 2476 int i; 2477 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2478 dma_addr_t daddr; 2479 2480 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2481 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2482 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2483 I915_GTT_PAGE_SHIFT); 2484 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2485 __free_page(vgpu->gtt.scratch_pt[i].page); 2486 vgpu->gtt.scratch_pt[i].page = NULL; 2487 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2488 } 2489 } 2490 2491 return 0; 2492 } 2493 2494 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2495 { 2496 int i, ret; 2497 2498 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2499 ret = alloc_scratch_pages(vgpu, i); 2500 if (ret) 2501 goto err; 2502 } 2503 2504 return 0; 2505 2506 err: 2507 release_scratch_page_tree(vgpu); 2508 return ret; 2509 } 2510 2511 /** 2512 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2513 * @vgpu: a vGPU 2514 * 2515 * This function is used to initialize per-vGPU graphics memory virtualization 2516 * components. 2517 * 2518 * Returns: 2519 * Zero on success, error code if failed. 2520 */ 2521 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2522 { 2523 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2524 2525 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2526 2527 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2528 INIT_LIST_HEAD(>t->oos_page_list_head); 2529 INIT_LIST_HEAD(>t->post_shadow_list_head); 2530 2531 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2532 if (IS_ERR(gtt->ggtt_mm)) { 2533 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2534 return PTR_ERR(gtt->ggtt_mm); 2535 } 2536 2537 intel_vgpu_reset_ggtt(vgpu, false); 2538 2539 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2540 2541 return create_scratch_page_tree(vgpu); 2542 } 2543 2544 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2545 { 2546 struct list_head *pos, *n; 2547 struct intel_vgpu_mm *mm; 2548 2549 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2550 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2551 intel_vgpu_destroy_mm(mm); 2552 } 2553 2554 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2555 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2556 2557 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2558 gvt_err("Why we still has spt not freed?\n"); 2559 ppgtt_free_all_spt(vgpu); 2560 } 2561 } 2562 2563 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2564 { 2565 struct intel_gvt_partial_pte *pos, *next; 2566 2567 list_for_each_entry_safe(pos, next, 2568 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2569 list) { 2570 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2571 pos->offset, pos->data); 2572 kfree(pos); 2573 } 2574 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2575 vgpu->gtt.ggtt_mm = NULL; 2576 } 2577 2578 /** 2579 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2580 * @vgpu: a vGPU 2581 * 2582 * This function is used to clean up per-vGPU graphics memory virtualization 2583 * components. 2584 * 2585 * Returns: 2586 * Zero on success, error code if failed. 2587 */ 2588 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2589 { 2590 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2591 intel_vgpu_destroy_ggtt_mm(vgpu); 2592 release_scratch_page_tree(vgpu); 2593 } 2594 2595 static void clean_spt_oos(struct intel_gvt *gvt) 2596 { 2597 struct intel_gvt_gtt *gtt = &gvt->gtt; 2598 struct list_head *pos, *n; 2599 struct intel_vgpu_oos_page *oos_page; 2600 2601 WARN(!list_empty(>t->oos_page_use_list_head), 2602 "someone is still using oos page\n"); 2603 2604 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2605 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2606 list_del(&oos_page->list); 2607 free_page((unsigned long)oos_page->mem); 2608 kfree(oos_page); 2609 } 2610 } 2611 2612 static int setup_spt_oos(struct intel_gvt *gvt) 2613 { 2614 struct intel_gvt_gtt *gtt = &gvt->gtt; 2615 struct intel_vgpu_oos_page *oos_page; 2616 int i; 2617 int ret; 2618 2619 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2620 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2621 2622 for (i = 0; i < preallocated_oos_pages; i++) { 2623 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2624 if (!oos_page) { 2625 ret = -ENOMEM; 2626 goto fail; 2627 } 2628 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2629 if (!oos_page->mem) { 2630 ret = -ENOMEM; 2631 kfree(oos_page); 2632 goto fail; 2633 } 2634 2635 INIT_LIST_HEAD(&oos_page->list); 2636 INIT_LIST_HEAD(&oos_page->vm_list); 2637 oos_page->id = i; 2638 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2639 } 2640 2641 gvt_dbg_mm("%d oos pages preallocated\n", i); 2642 2643 return 0; 2644 fail: 2645 clean_spt_oos(gvt); 2646 return ret; 2647 } 2648 2649 /** 2650 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2651 * @vgpu: a vGPU 2652 * @pdps: pdp root array 2653 * 2654 * This function is used to find a PPGTT mm object from mm object pool 2655 * 2656 * Returns: 2657 * pointer to mm object on success, NULL if failed. 2658 */ 2659 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2660 u64 pdps[]) 2661 { 2662 struct intel_vgpu_mm *mm; 2663 struct list_head *pos; 2664 2665 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2666 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2667 2668 switch (mm->ppgtt_mm.root_entry_type) { 2669 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2670 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2671 return mm; 2672 break; 2673 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2674 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2675 sizeof(mm->ppgtt_mm.guest_pdps))) 2676 return mm; 2677 break; 2678 default: 2679 GEM_BUG_ON(1); 2680 } 2681 } 2682 return NULL; 2683 } 2684 2685 /** 2686 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2687 * @vgpu: a vGPU 2688 * @root_entry_type: ppgtt root entry type 2689 * @pdps: guest pdps 2690 * 2691 * This function is used to find or create a PPGTT mm object from a guest. 2692 * 2693 * Returns: 2694 * Zero on success, negative error code if failed. 2695 */ 2696 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2697 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2698 { 2699 struct intel_vgpu_mm *mm; 2700 2701 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2702 if (mm) { 2703 intel_vgpu_mm_get(mm); 2704 } else { 2705 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2706 if (IS_ERR(mm)) 2707 gvt_vgpu_err("fail to create mm\n"); 2708 } 2709 return mm; 2710 } 2711 2712 /** 2713 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2714 * @vgpu: a vGPU 2715 * @pdps: guest pdps 2716 * 2717 * This function is used to find a PPGTT mm object from a guest and destroy it. 2718 * 2719 * Returns: 2720 * Zero on success, negative error code if failed. 2721 */ 2722 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2723 { 2724 struct intel_vgpu_mm *mm; 2725 2726 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2727 if (!mm) { 2728 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2729 return -EINVAL; 2730 } 2731 intel_vgpu_mm_put(mm); 2732 return 0; 2733 } 2734 2735 /** 2736 * intel_gvt_init_gtt - initialize mm components of a GVT device 2737 * @gvt: GVT device 2738 * 2739 * This function is called at the initialization stage, to initialize 2740 * the mm components of a GVT device. 2741 * 2742 * Returns: 2743 * zero on success, negative error code if failed. 2744 */ 2745 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2746 { 2747 int ret; 2748 void *page; 2749 struct device *dev = gvt->gt->i915->drm.dev; 2750 dma_addr_t daddr; 2751 2752 gvt_dbg_core("init gtt\n"); 2753 2754 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2755 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2756 2757 page = (void *)get_zeroed_page(GFP_KERNEL); 2758 if (!page) { 2759 gvt_err("fail to allocate scratch ggtt page\n"); 2760 return -ENOMEM; 2761 } 2762 2763 daddr = dma_map_page(dev, virt_to_page(page), 0, 2764 4096, DMA_BIDIRECTIONAL); 2765 if (dma_mapping_error(dev, daddr)) { 2766 gvt_err("fail to dmamap scratch ggtt page\n"); 2767 __free_page(virt_to_page(page)); 2768 return -ENOMEM; 2769 } 2770 2771 gvt->gtt.scratch_page = virt_to_page(page); 2772 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2773 2774 if (enable_out_of_sync) { 2775 ret = setup_spt_oos(gvt); 2776 if (ret) { 2777 gvt_err("fail to initialize SPT oos\n"); 2778 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2779 __free_page(gvt->gtt.scratch_page); 2780 return ret; 2781 } 2782 } 2783 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2784 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2785 return 0; 2786 } 2787 2788 /** 2789 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2790 * @gvt: GVT device 2791 * 2792 * This function is called at the driver unloading stage, to clean up 2793 * the mm components of a GVT device. 2794 * 2795 */ 2796 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2797 { 2798 struct device *dev = gvt->gt->i915->drm.dev; 2799 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2800 I915_GTT_PAGE_SHIFT); 2801 2802 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2803 2804 __free_page(gvt->gtt.scratch_page); 2805 2806 if (enable_out_of_sync) 2807 clean_spt_oos(gvt); 2808 } 2809 2810 /** 2811 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2812 * @vgpu: a vGPU 2813 * 2814 * This function is called when invalidate all PPGTT instances of a vGPU. 2815 * 2816 */ 2817 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2818 { 2819 struct list_head *pos, *n; 2820 struct intel_vgpu_mm *mm; 2821 2822 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2823 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2824 if (mm->type == INTEL_GVT_MM_PPGTT) { 2825 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2826 list_del_init(&mm->ppgtt_mm.lru_list); 2827 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2828 if (mm->ppgtt_mm.shadowed) 2829 invalidate_ppgtt_mm(mm); 2830 } 2831 } 2832 } 2833 2834 /** 2835 * intel_vgpu_reset_ggtt - reset the GGTT entry 2836 * @vgpu: a vGPU 2837 * @invalidate_old: invalidate old entries 2838 * 2839 * This function is called at the vGPU create stage 2840 * to reset all the GGTT entries. 2841 * 2842 */ 2843 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2844 { 2845 struct intel_gvt *gvt = vgpu->gvt; 2846 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2847 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2848 struct intel_gvt_gtt_entry old_entry; 2849 u32 index; 2850 u32 num_entries; 2851 2852 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2853 pte_ops->set_present(&entry); 2854 2855 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2856 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2857 while (num_entries--) { 2858 if (invalidate_old) { 2859 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2860 ggtt_invalidate_pte(vgpu, &old_entry); 2861 } 2862 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2863 } 2864 2865 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2866 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2867 while (num_entries--) { 2868 if (invalidate_old) { 2869 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2870 ggtt_invalidate_pte(vgpu, &old_entry); 2871 } 2872 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2873 } 2874 2875 ggtt_invalidate(gvt->gt); 2876 } 2877 2878 /** 2879 * intel_vgpu_reset_gtt - reset the all GTT related status 2880 * @vgpu: a vGPU 2881 * 2882 * This function is called from vfio core to reset reset all 2883 * GTT related status, including GGTT, PPGTT, scratch page. 2884 * 2885 */ 2886 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2887 { 2888 /* Shadow pages are only created when there is no page 2889 * table tracking data, so remove page tracking data after 2890 * removing the shadow pages. 2891 */ 2892 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2893 intel_vgpu_reset_ggtt(vgpu, true); 2894 } 2895 2896 /** 2897 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries 2898 * @gvt: intel gvt device 2899 * 2900 * This function is called at driver resume stage to restore 2901 * GGTT entries of every vGPU. 2902 * 2903 */ 2904 void intel_gvt_restore_ggtt(struct intel_gvt *gvt) 2905 { 2906 struct intel_vgpu *vgpu; 2907 struct intel_vgpu_mm *mm; 2908 int id; 2909 gen8_pte_t pte; 2910 u32 idx, num_low, num_hi, offset; 2911 2912 /* Restore dirty host ggtt for all vGPUs */ 2913 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { 2914 mm = vgpu->gtt.ggtt_mm; 2915 2916 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2917 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2918 for (idx = 0; idx < num_low; idx++) { 2919 pte = mm->ggtt_mm.host_ggtt_aperture[idx]; 2920 if (pte & GEN8_PAGE_PRESENT) 2921 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2922 } 2923 2924 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2925 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2926 for (idx = 0; idx < num_hi; idx++) { 2927 pte = mm->ggtt_mm.host_ggtt_hidden[idx]; 2928 if (pte & GEN8_PAGE_PRESENT) 2929 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2930 } 2931 } 2932 } 2933