xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision f79e4d5f)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 				addr, size);
60 		return false;
61 	}
62 	return true;
63 }
64 
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 		 "invalid guest gmadr %llx\n", g_addr))
70 		return -EACCES;
71 
72 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
74 			  + (g_addr - vgpu_aperture_offset(vgpu));
75 	else
76 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
77 			  + (g_addr - vgpu_hidden_offset(vgpu));
78 	return 0;
79 }
80 
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 		 "invalid host gmadr %llx\n", h_addr))
86 		return -EACCES;
87 
88 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
90 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 	else
92 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
93 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 	return 0;
95 }
96 
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 			     unsigned long *h_index)
99 {
100 	u64 h_addr;
101 	int ret;
102 
103 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 				       &h_addr);
105 	if (ret)
106 		return ret;
107 
108 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 	return 0;
110 }
111 
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 			     unsigned long *g_index)
114 {
115 	u64 g_addr;
116 	int ret;
117 
118 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 				       &g_addr);
120 	if (ret)
121 		return ret;
122 
123 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 	return 0;
125 }
126 
127 #define gtt_type_is_entry(type) \
128 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131 
132 #define gtt_type_is_pt(type) \
133 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134 
135 #define gtt_type_is_pte_pt(type) \
136 	(type == GTT_TYPE_PPGTT_PTE_PT)
137 
138 #define gtt_type_is_root_pointer(type) \
139 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140 
141 #define gtt_init_entry(e, t, p, v) do { \
142 	(e)->type = t; \
143 	(e)->pdev = p; \
144 	memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146 
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162 
163 struct gtt_type_table_entry {
164 	int entry_type;
165 	int pt_type;
166 	int next_pt_type;
167 	int pse_entry_type;
168 };
169 
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 	[type] = { \
172 		.entry_type = e_type, \
173 		.pt_type = cpt_type, \
174 		.next_pt_type = npt_type, \
175 		.pse_entry_type = pse_type, \
176 	}
177 
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 			GTT_TYPE_INVALID,
182 			GTT_TYPE_PPGTT_PML4_PT,
183 			GTT_TYPE_INVALID),
184 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 			GTT_TYPE_PPGTT_PML4_ENTRY,
186 			GTT_TYPE_PPGTT_PML4_PT,
187 			GTT_TYPE_PPGTT_PDP_PT,
188 			GTT_TYPE_INVALID),
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 			GTT_TYPE_PPGTT_PML4_ENTRY,
191 			GTT_TYPE_PPGTT_PML4_PT,
192 			GTT_TYPE_PPGTT_PDP_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 			GTT_TYPE_PPGTT_PDP_ENTRY,
196 			GTT_TYPE_PPGTT_PDP_PT,
197 			GTT_TYPE_PPGTT_PDE_PT,
198 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 			GTT_TYPE_INVALID,
202 			GTT_TYPE_PPGTT_PDE_PT,
203 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 			GTT_TYPE_PPGTT_PDE_ENTRY,
211 			GTT_TYPE_PPGTT_PDE_PT,
212 			GTT_TYPE_PPGTT_PTE_PT,
213 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 			GTT_TYPE_PPGTT_PDE_ENTRY,
216 			GTT_TYPE_PPGTT_PDE_PT,
217 			GTT_TYPE_PPGTT_PTE_PT,
218 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
220 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
221 			GTT_TYPE_PPGTT_PTE_PT,
222 			GTT_TYPE_INVALID,
223 			GTT_TYPE_INVALID),
224 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
225 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 			GTT_TYPE_PPGTT_PTE_PT,
227 			GTT_TYPE_INVALID,
228 			GTT_TYPE_INVALID),
229 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
230 			GTT_TYPE_PPGTT_PDE_ENTRY,
231 			GTT_TYPE_PPGTT_PDE_PT,
232 			GTT_TYPE_INVALID,
233 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
234 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
235 			GTT_TYPE_PPGTT_PDP_ENTRY,
236 			GTT_TYPE_PPGTT_PDP_PT,
237 			GTT_TYPE_INVALID,
238 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
239 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
240 			GTT_TYPE_GGTT_PTE,
241 			GTT_TYPE_INVALID,
242 			GTT_TYPE_INVALID,
243 			GTT_TYPE_INVALID),
244 };
245 
246 static inline int get_next_pt_type(int type)
247 {
248 	return gtt_type_table[type].next_pt_type;
249 }
250 
251 static inline int get_pt_type(int type)
252 {
253 	return gtt_type_table[type].pt_type;
254 }
255 
256 static inline int get_entry_type(int type)
257 {
258 	return gtt_type_table[type].entry_type;
259 }
260 
261 static inline int get_pse_type(int type)
262 {
263 	return gtt_type_table[type].pse_entry_type;
264 }
265 
266 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
267 {
268 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
269 
270 	return readq(addr);
271 }
272 
273 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
274 {
275 	mmio_hw_access_pre(dev_priv);
276 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
277 	mmio_hw_access_post(dev_priv);
278 }
279 
280 static void write_pte64(struct drm_i915_private *dev_priv,
281 		unsigned long index, u64 pte)
282 {
283 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
284 
285 	writeq(pte, addr);
286 }
287 
288 static inline int gtt_get_entry64(void *pt,
289 		struct intel_gvt_gtt_entry *e,
290 		unsigned long index, bool hypervisor_access, unsigned long gpa,
291 		struct intel_vgpu *vgpu)
292 {
293 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
294 	int ret;
295 
296 	if (WARN_ON(info->gtt_entry_size != 8))
297 		return -EINVAL;
298 
299 	if (hypervisor_access) {
300 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
301 				(index << info->gtt_entry_size_shift),
302 				&e->val64, 8);
303 		if (WARN_ON(ret))
304 			return ret;
305 	} else if (!pt) {
306 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
307 	} else {
308 		e->val64 = *((u64 *)pt + index);
309 	}
310 	return 0;
311 }
312 
313 static inline int gtt_set_entry64(void *pt,
314 		struct intel_gvt_gtt_entry *e,
315 		unsigned long index, bool hypervisor_access, unsigned long gpa,
316 		struct intel_vgpu *vgpu)
317 {
318 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
319 	int ret;
320 
321 	if (WARN_ON(info->gtt_entry_size != 8))
322 		return -EINVAL;
323 
324 	if (hypervisor_access) {
325 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
326 				(index << info->gtt_entry_size_shift),
327 				&e->val64, 8);
328 		if (WARN_ON(ret))
329 			return ret;
330 	} else if (!pt) {
331 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
332 	} else {
333 		*((u64 *)pt + index) = e->val64;
334 	}
335 	return 0;
336 }
337 
338 #define GTT_HAW 46
339 
340 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
341 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
342 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
343 
344 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
345 {
346 	unsigned long pfn;
347 
348 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
349 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
350 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
351 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
352 	else
353 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
354 	return pfn;
355 }
356 
357 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
358 {
359 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
360 		e->val64 &= ~ADDR_1G_MASK;
361 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
362 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
363 		e->val64 &= ~ADDR_2M_MASK;
364 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
365 	} else {
366 		e->val64 &= ~ADDR_4K_MASK;
367 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
368 	}
369 
370 	e->val64 |= (pfn << PAGE_SHIFT);
371 }
372 
373 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
374 {
375 	/* Entry doesn't have PSE bit. */
376 	if (get_pse_type(e->type) == GTT_TYPE_INVALID)
377 		return false;
378 
379 	e->type = get_entry_type(e->type);
380 	if (!(e->val64 & _PAGE_PSE))
381 		return false;
382 
383 	e->type = get_pse_type(e->type);
384 	return true;
385 }
386 
387 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
388 {
389 	/*
390 	 * i915 writes PDP root pointer registers without present bit,
391 	 * it also works, so we need to treat root pointer entry
392 	 * specifically.
393 	 */
394 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
395 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
396 		return (e->val64 != 0);
397 	else
398 		return (e->val64 & _PAGE_PRESENT);
399 }
400 
401 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
402 {
403 	e->val64 &= ~_PAGE_PRESENT;
404 }
405 
406 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
407 {
408 	e->val64 |= _PAGE_PRESENT;
409 }
410 
411 /*
412  * Per-platform GMA routines.
413  */
414 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
415 {
416 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
417 
418 	trace_gma_index(__func__, gma, x);
419 	return x;
420 }
421 
422 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
423 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
424 { \
425 	unsigned long x = (exp); \
426 	trace_gma_index(__func__, gma, x); \
427 	return x; \
428 }
429 
430 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
431 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
432 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
433 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
434 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
435 
436 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
437 	.get_entry = gtt_get_entry64,
438 	.set_entry = gtt_set_entry64,
439 	.clear_present = gtt_entry_clear_present,
440 	.set_present = gtt_entry_set_present,
441 	.test_present = gen8_gtt_test_present,
442 	.test_pse = gen8_gtt_test_pse,
443 	.get_pfn = gen8_gtt_get_pfn,
444 	.set_pfn = gen8_gtt_set_pfn,
445 };
446 
447 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
448 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
449 	.gma_to_pte_index = gen8_gma_to_pte_index,
450 	.gma_to_pde_index = gen8_gma_to_pde_index,
451 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
452 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
453 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
454 };
455 
456 /*
457  * MM helpers.
458  */
459 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
460 		struct intel_gvt_gtt_entry *entry, unsigned long index,
461 		bool guest)
462 {
463 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
464 
465 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
466 
467 	entry->type = mm->ppgtt_mm.root_entry_type;
468 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
469 			   mm->ppgtt_mm.shadow_pdps,
470 			   entry, index, false, 0, mm->vgpu);
471 
472 	pte_ops->test_pse(entry);
473 }
474 
475 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
476 		struct intel_gvt_gtt_entry *entry, unsigned long index)
477 {
478 	_ppgtt_get_root_entry(mm, entry, index, true);
479 }
480 
481 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
482 		struct intel_gvt_gtt_entry *entry, unsigned long index)
483 {
484 	_ppgtt_get_root_entry(mm, entry, index, false);
485 }
486 
487 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
488 		struct intel_gvt_gtt_entry *entry, unsigned long index,
489 		bool guest)
490 {
491 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
492 
493 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
494 			   mm->ppgtt_mm.shadow_pdps,
495 			   entry, index, false, 0, mm->vgpu);
496 }
497 
498 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
499 		struct intel_gvt_gtt_entry *entry, unsigned long index)
500 {
501 	_ppgtt_set_root_entry(mm, entry, index, true);
502 }
503 
504 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
505 		struct intel_gvt_gtt_entry *entry, unsigned long index)
506 {
507 	_ppgtt_set_root_entry(mm, entry, index, false);
508 }
509 
510 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
511 		struct intel_gvt_gtt_entry *entry, unsigned long index)
512 {
513 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
514 
515 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
516 
517 	entry->type = GTT_TYPE_GGTT_PTE;
518 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
519 			   false, 0, mm->vgpu);
520 }
521 
522 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
523 		struct intel_gvt_gtt_entry *entry, unsigned long index)
524 {
525 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
526 
527 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
528 
529 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
530 			   false, 0, mm->vgpu);
531 }
532 
533 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
534 		struct intel_gvt_gtt_entry *entry, unsigned long index)
535 {
536 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
537 
538 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
539 
540 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
541 }
542 
543 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
544 		struct intel_gvt_gtt_entry *entry, unsigned long index)
545 {
546 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
547 
548 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
549 
550 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
551 }
552 
553 /*
554  * PPGTT shadow page table helpers.
555  */
556 static inline int ppgtt_spt_get_entry(
557 		struct intel_vgpu_ppgtt_spt *spt,
558 		void *page_table, int type,
559 		struct intel_gvt_gtt_entry *e, unsigned long index,
560 		bool guest)
561 {
562 	struct intel_gvt *gvt = spt->vgpu->gvt;
563 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
564 	int ret;
565 
566 	e->type = get_entry_type(type);
567 
568 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
569 		return -EINVAL;
570 
571 	ret = ops->get_entry(page_table, e, index, guest,
572 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
573 			spt->vgpu);
574 	if (ret)
575 		return ret;
576 
577 	ops->test_pse(e);
578 
579 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
580 		    type, e->type, index, e->val64);
581 	return 0;
582 }
583 
584 static inline int ppgtt_spt_set_entry(
585 		struct intel_vgpu_ppgtt_spt *spt,
586 		void *page_table, int type,
587 		struct intel_gvt_gtt_entry *e, unsigned long index,
588 		bool guest)
589 {
590 	struct intel_gvt *gvt = spt->vgpu->gvt;
591 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
592 
593 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
594 		return -EINVAL;
595 
596 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
597 		    type, e->type, index, e->val64);
598 
599 	return ops->set_entry(page_table, e, index, guest,
600 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
601 			spt->vgpu);
602 }
603 
604 #define ppgtt_get_guest_entry(spt, e, index) \
605 	ppgtt_spt_get_entry(spt, NULL, \
606 		spt->guest_page.type, e, index, true)
607 
608 #define ppgtt_set_guest_entry(spt, e, index) \
609 	ppgtt_spt_set_entry(spt, NULL, \
610 		spt->guest_page.type, e, index, true)
611 
612 #define ppgtt_get_shadow_entry(spt, e, index) \
613 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
614 		spt->shadow_page.type, e, index, false)
615 
616 #define ppgtt_set_shadow_entry(spt, e, index) \
617 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
618 		spt->shadow_page.type, e, index, false)
619 
620 static void *alloc_spt(gfp_t gfp_mask)
621 {
622 	struct intel_vgpu_ppgtt_spt *spt;
623 
624 	spt = kzalloc(sizeof(*spt), gfp_mask);
625 	if (!spt)
626 		return NULL;
627 
628 	spt->shadow_page.page = alloc_page(gfp_mask);
629 	if (!spt->shadow_page.page) {
630 		kfree(spt);
631 		return NULL;
632 	}
633 	return spt;
634 }
635 
636 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
637 {
638 	__free_page(spt->shadow_page.page);
639 	kfree(spt);
640 }
641 
642 static int detach_oos_page(struct intel_vgpu *vgpu,
643 		struct intel_vgpu_oos_page *oos_page);
644 
645 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
646 {
647 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
648 
649 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
650 
651 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
652 		       PCI_DMA_BIDIRECTIONAL);
653 
654 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
655 
656 	if (spt->guest_page.oos_page)
657 		detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
658 
659 	intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
660 
661 	list_del_init(&spt->post_shadow_list);
662 	free_spt(spt);
663 }
664 
665 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
666 {
667 	struct intel_vgpu_ppgtt_spt *spt;
668 	struct radix_tree_iter iter;
669 	void **slot;
670 
671 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
672 		spt = radix_tree_deref_slot(slot);
673 		ppgtt_free_spt(spt);
674 	}
675 }
676 
677 static int ppgtt_handle_guest_write_page_table_bytes(
678 		struct intel_vgpu_ppgtt_spt *spt,
679 		u64 pa, void *p_data, int bytes);
680 
681 static int ppgtt_write_protection_handler(
682 		struct intel_vgpu_page_track *page_track,
683 		u64 gpa, void *data, int bytes)
684 {
685 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
686 
687 	int ret;
688 
689 	if (bytes != 4 && bytes != 8)
690 		return -EINVAL;
691 
692 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
693 	if (ret)
694 		return ret;
695 	return ret;
696 }
697 
698 /* Find a spt by guest gfn. */
699 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
700 		struct intel_vgpu *vgpu, unsigned long gfn)
701 {
702 	struct intel_vgpu_page_track *track;
703 
704 	track = intel_vgpu_find_page_track(vgpu, gfn);
705 	if (track && track->handler == ppgtt_write_protection_handler)
706 		return track->priv_data;
707 
708 	return NULL;
709 }
710 
711 /* Find the spt by shadow page mfn. */
712 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
713 		struct intel_vgpu *vgpu, unsigned long mfn)
714 {
715 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
716 }
717 
718 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
719 
720 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
721 		struct intel_vgpu *vgpu, int type, unsigned long gfn)
722 {
723 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
724 	struct intel_vgpu_ppgtt_spt *spt = NULL;
725 	dma_addr_t daddr;
726 	int ret;
727 
728 retry:
729 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
730 	if (!spt) {
731 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
732 			goto retry;
733 
734 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
735 		return ERR_PTR(-ENOMEM);
736 	}
737 
738 	spt->vgpu = vgpu;
739 	atomic_set(&spt->refcount, 1);
740 	INIT_LIST_HEAD(&spt->post_shadow_list);
741 
742 	/*
743 	 * Init shadow_page.
744 	 */
745 	spt->shadow_page.type = type;
746 	daddr = dma_map_page(kdev, spt->shadow_page.page,
747 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
748 	if (dma_mapping_error(kdev, daddr)) {
749 		gvt_vgpu_err("fail to map dma addr\n");
750 		ret = -EINVAL;
751 		goto err_free_spt;
752 	}
753 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
754 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
755 
756 	/*
757 	 * Init guest_page.
758 	 */
759 	spt->guest_page.type = type;
760 	spt->guest_page.gfn = gfn;
761 
762 	ret = intel_vgpu_register_page_track(vgpu, spt->guest_page.gfn,
763 					ppgtt_write_protection_handler, spt);
764 	if (ret)
765 		goto err_unmap_dma;
766 
767 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
768 	if (ret)
769 		goto err_unreg_page_track;
770 
771 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
772 	return spt;
773 
774 err_unreg_page_track:
775 	intel_vgpu_unregister_page_track(vgpu, spt->guest_page.gfn);
776 err_unmap_dma:
777 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
778 err_free_spt:
779 	free_spt(spt);
780 	return ERR_PTR(ret);
781 }
782 
783 #define pt_entry_size_shift(spt) \
784 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
785 
786 #define pt_entries(spt) \
787 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
788 
789 #define for_each_present_guest_entry(spt, e, i) \
790 	for (i = 0; i < pt_entries(spt); i++) \
791 		if (!ppgtt_get_guest_entry(spt, e, i) && \
792 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
793 
794 #define for_each_present_shadow_entry(spt, e, i) \
795 	for (i = 0; i < pt_entries(spt); i++) \
796 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
797 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
798 
799 static void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
800 {
801 	int v = atomic_read(&spt->refcount);
802 
803 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
804 
805 	atomic_inc(&spt->refcount);
806 }
807 
808 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
809 
810 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
811 		struct intel_gvt_gtt_entry *e)
812 {
813 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
814 	struct intel_vgpu_ppgtt_spt *s;
815 	intel_gvt_gtt_type_t cur_pt_type;
816 
817 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
818 
819 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
820 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
821 		cur_pt_type = get_next_pt_type(e->type) + 1;
822 		if (ops->get_pfn(e) ==
823 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
824 			return 0;
825 	}
826 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
827 	if (!s) {
828 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
829 				ops->get_pfn(e));
830 		return -ENXIO;
831 	}
832 	return ppgtt_invalidate_spt(s);
833 }
834 
835 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
836 		struct intel_gvt_gtt_entry *entry)
837 {
838 	struct intel_vgpu *vgpu = spt->vgpu;
839 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
840 	unsigned long pfn;
841 	int type;
842 
843 	pfn = ops->get_pfn(entry);
844 	type = spt->shadow_page.type;
845 
846 	if (pfn == vgpu->gtt.scratch_pt[type].page_mfn)
847 		return;
848 
849 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
850 }
851 
852 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
853 {
854 	struct intel_vgpu *vgpu = spt->vgpu;
855 	struct intel_gvt_gtt_entry e;
856 	unsigned long index;
857 	int ret;
858 	int v = atomic_read(&spt->refcount);
859 
860 	trace_spt_change(spt->vgpu->id, "die", spt,
861 			spt->guest_page.gfn, spt->shadow_page.type);
862 
863 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
864 
865 	if (atomic_dec_return(&spt->refcount) > 0)
866 		return 0;
867 
868 	for_each_present_shadow_entry(spt, &e, index) {
869 		switch (e.type) {
870 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
871 			gvt_vdbg_mm("invalidate 4K entry\n");
872 			ppgtt_invalidate_pte(spt, &e);
873 			break;
874 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
875 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
876 			WARN(1, "GVT doesn't support 2M/1GB page\n");
877 			continue;
878 		case GTT_TYPE_PPGTT_PML4_ENTRY:
879 		case GTT_TYPE_PPGTT_PDP_ENTRY:
880 		case GTT_TYPE_PPGTT_PDE_ENTRY:
881 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
882 			ret = ppgtt_invalidate_spt_by_shadow_entry(
883 					spt->vgpu, &e);
884 			if (ret)
885 				goto fail;
886 			break;
887 		default:
888 			GEM_BUG_ON(1);
889 		}
890 	}
891 
892 	trace_spt_change(spt->vgpu->id, "release", spt,
893 			 spt->guest_page.gfn, spt->shadow_page.type);
894 	ppgtt_free_spt(spt);
895 	return 0;
896 fail:
897 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
898 			spt, e.val64, e.type);
899 	return ret;
900 }
901 
902 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
903 
904 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
905 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
906 {
907 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
908 	struct intel_vgpu_ppgtt_spt *spt = NULL;
909 	int ret;
910 
911 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
912 
913 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
914 	if (spt)
915 		ppgtt_get_spt(spt);
916 	else {
917 		int type = get_next_pt_type(we->type);
918 
919 		spt = ppgtt_alloc_spt(vgpu, type, ops->get_pfn(we));
920 		if (IS_ERR(spt)) {
921 			ret = PTR_ERR(spt);
922 			goto fail;
923 		}
924 
925 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
926 		if (ret)
927 			goto fail;
928 
929 		ret = ppgtt_populate_spt(spt);
930 		if (ret)
931 			goto fail;
932 
933 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
934 				 spt->shadow_page.type);
935 	}
936 	return spt;
937 fail:
938 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
939 		     spt, we->val64, we->type);
940 	return ERR_PTR(ret);
941 }
942 
943 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
944 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
945 {
946 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
947 
948 	se->type = ge->type;
949 	se->val64 = ge->val64;
950 
951 	ops->set_pfn(se, s->shadow_page.mfn);
952 }
953 
954 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
955 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
956 	struct intel_gvt_gtt_entry *ge)
957 {
958 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
959 	struct intel_gvt_gtt_entry se = *ge;
960 	unsigned long gfn;
961 	dma_addr_t dma_addr;
962 	int ret;
963 
964 	if (!pte_ops->test_present(ge))
965 		return 0;
966 
967 	gfn = pte_ops->get_pfn(ge);
968 
969 	switch (ge->type) {
970 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
971 		gvt_vdbg_mm("shadow 4K gtt entry\n");
972 		break;
973 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
974 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
975 		gvt_vgpu_err("GVT doesn't support 2M/1GB entry\n");
976 		return -EINVAL;
977 	default:
978 		GEM_BUG_ON(1);
979 	};
980 
981 	/* direct shadow */
982 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, &dma_addr);
983 	if (ret)
984 		return -ENXIO;
985 
986 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
987 	ppgtt_set_shadow_entry(spt, &se, index);
988 	return 0;
989 }
990 
991 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
992 {
993 	struct intel_vgpu *vgpu = spt->vgpu;
994 	struct intel_gvt *gvt = vgpu->gvt;
995 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
996 	struct intel_vgpu_ppgtt_spt *s;
997 	struct intel_gvt_gtt_entry se, ge;
998 	unsigned long gfn, i;
999 	int ret;
1000 
1001 	trace_spt_change(spt->vgpu->id, "born", spt,
1002 			 spt->guest_page.gfn, spt->shadow_page.type);
1003 
1004 	for_each_present_guest_entry(spt, &ge, i) {
1005 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1006 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1007 			if (IS_ERR(s)) {
1008 				ret = PTR_ERR(s);
1009 				goto fail;
1010 			}
1011 			ppgtt_get_shadow_entry(spt, &se, i);
1012 			ppgtt_generate_shadow_entry(&se, s, &ge);
1013 			ppgtt_set_shadow_entry(spt, &se, i);
1014 		} else {
1015 			gfn = ops->get_pfn(&ge);
1016 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1017 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1018 				ppgtt_set_shadow_entry(spt, &se, i);
1019 				continue;
1020 			}
1021 
1022 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1023 			if (ret)
1024 				goto fail;
1025 		}
1026 	}
1027 	return 0;
1028 fail:
1029 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1030 			spt, ge.val64, ge.type);
1031 	return ret;
1032 }
1033 
1034 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1035 		struct intel_gvt_gtt_entry *se, unsigned long index)
1036 {
1037 	struct intel_vgpu *vgpu = spt->vgpu;
1038 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1039 	int ret;
1040 
1041 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1042 			       spt->shadow_page.type, se->val64, index);
1043 
1044 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1045 		    se->type, index, se->val64);
1046 
1047 	if (!ops->test_present(se))
1048 		return 0;
1049 
1050 	if (ops->get_pfn(se) ==
1051 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1052 		return 0;
1053 
1054 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1055 		struct intel_vgpu_ppgtt_spt *s =
1056 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1057 		if (!s) {
1058 			gvt_vgpu_err("fail to find guest page\n");
1059 			ret = -ENXIO;
1060 			goto fail;
1061 		}
1062 		ret = ppgtt_invalidate_spt(s);
1063 		if (ret)
1064 			goto fail;
1065 	} else
1066 		ppgtt_invalidate_pte(spt, se);
1067 
1068 	return 0;
1069 fail:
1070 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1071 			spt, se->val64, se->type);
1072 	return ret;
1073 }
1074 
1075 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1076 		struct intel_gvt_gtt_entry *we, unsigned long index)
1077 {
1078 	struct intel_vgpu *vgpu = spt->vgpu;
1079 	struct intel_gvt_gtt_entry m;
1080 	struct intel_vgpu_ppgtt_spt *s;
1081 	int ret;
1082 
1083 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1084 			       we->val64, index);
1085 
1086 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1087 		    we->type, index, we->val64);
1088 
1089 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1090 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1091 		if (IS_ERR(s)) {
1092 			ret = PTR_ERR(s);
1093 			goto fail;
1094 		}
1095 		ppgtt_get_shadow_entry(spt, &m, index);
1096 		ppgtt_generate_shadow_entry(&m, s, we);
1097 		ppgtt_set_shadow_entry(spt, &m, index);
1098 	} else {
1099 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1100 		if (ret)
1101 			goto fail;
1102 	}
1103 	return 0;
1104 fail:
1105 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1106 		spt, we->val64, we->type);
1107 	return ret;
1108 }
1109 
1110 static int sync_oos_page(struct intel_vgpu *vgpu,
1111 		struct intel_vgpu_oos_page *oos_page)
1112 {
1113 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1114 	struct intel_gvt *gvt = vgpu->gvt;
1115 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1116 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1117 	struct intel_gvt_gtt_entry old, new;
1118 	int index;
1119 	int ret;
1120 
1121 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1122 			 spt, spt->guest_page.type);
1123 
1124 	old.type = new.type = get_entry_type(spt->guest_page.type);
1125 	old.val64 = new.val64 = 0;
1126 
1127 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1128 				info->gtt_entry_size_shift); index++) {
1129 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1130 		ops->get_entry(NULL, &new, index, true,
1131 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1132 
1133 		if (old.val64 == new.val64
1134 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1135 			continue;
1136 
1137 		trace_oos_sync(vgpu->id, oos_page->id,
1138 				spt, spt->guest_page.type,
1139 				new.val64, index);
1140 
1141 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1142 		if (ret)
1143 			return ret;
1144 
1145 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1146 	}
1147 
1148 	spt->guest_page.write_cnt = 0;
1149 	list_del_init(&spt->post_shadow_list);
1150 	return 0;
1151 }
1152 
1153 static int detach_oos_page(struct intel_vgpu *vgpu,
1154 		struct intel_vgpu_oos_page *oos_page)
1155 {
1156 	struct intel_gvt *gvt = vgpu->gvt;
1157 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1158 
1159 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1160 			 spt, spt->guest_page.type);
1161 
1162 	spt->guest_page.write_cnt = 0;
1163 	spt->guest_page.oos_page = NULL;
1164 	oos_page->spt = NULL;
1165 
1166 	list_del_init(&oos_page->vm_list);
1167 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1168 
1169 	return 0;
1170 }
1171 
1172 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1173 		struct intel_vgpu_ppgtt_spt *spt)
1174 {
1175 	struct intel_gvt *gvt = spt->vgpu->gvt;
1176 	int ret;
1177 
1178 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1179 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1180 			oos_page->mem, I915_GTT_PAGE_SIZE);
1181 	if (ret)
1182 		return ret;
1183 
1184 	oos_page->spt = spt;
1185 	spt->guest_page.oos_page = oos_page;
1186 
1187 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1188 
1189 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1190 			 spt, spt->guest_page.type);
1191 	return 0;
1192 }
1193 
1194 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1195 {
1196 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1197 	int ret;
1198 
1199 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1200 	if (ret)
1201 		return ret;
1202 
1203 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1204 			 spt, spt->guest_page.type);
1205 
1206 	list_del_init(&oos_page->vm_list);
1207 	return sync_oos_page(spt->vgpu, oos_page);
1208 }
1209 
1210 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1211 {
1212 	struct intel_gvt *gvt = spt->vgpu->gvt;
1213 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1214 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1215 	int ret;
1216 
1217 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1218 
1219 	if (list_empty(&gtt->oos_page_free_list_head)) {
1220 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1221 			struct intel_vgpu_oos_page, list);
1222 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1223 		if (ret)
1224 			return ret;
1225 		ret = detach_oos_page(spt->vgpu, oos_page);
1226 		if (ret)
1227 			return ret;
1228 	} else
1229 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1230 			struct intel_vgpu_oos_page, list);
1231 	return attach_oos_page(oos_page, spt);
1232 }
1233 
1234 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1235 {
1236 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1237 
1238 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1239 		return -EINVAL;
1240 
1241 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1242 			 spt, spt->guest_page.type);
1243 
1244 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1245 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1246 }
1247 
1248 /**
1249  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1250  * @vgpu: a vGPU
1251  *
1252  * This function is called before submitting a guest workload to host,
1253  * to sync all the out-of-synced shadow for vGPU
1254  *
1255  * Returns:
1256  * Zero on success, negative error code if failed.
1257  */
1258 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1259 {
1260 	struct list_head *pos, *n;
1261 	struct intel_vgpu_oos_page *oos_page;
1262 	int ret;
1263 
1264 	if (!enable_out_of_sync)
1265 		return 0;
1266 
1267 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1268 		oos_page = container_of(pos,
1269 				struct intel_vgpu_oos_page, vm_list);
1270 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1271 		if (ret)
1272 			return ret;
1273 	}
1274 	return 0;
1275 }
1276 
1277 /*
1278  * The heart of PPGTT shadow page table.
1279  */
1280 static int ppgtt_handle_guest_write_page_table(
1281 		struct intel_vgpu_ppgtt_spt *spt,
1282 		struct intel_gvt_gtt_entry *we, unsigned long index)
1283 {
1284 	struct intel_vgpu *vgpu = spt->vgpu;
1285 	int type = spt->shadow_page.type;
1286 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1287 	struct intel_gvt_gtt_entry old_se;
1288 	int new_present;
1289 	int ret;
1290 
1291 	new_present = ops->test_present(we);
1292 
1293 	/*
1294 	 * Adding the new entry first and then removing the old one, that can
1295 	 * guarantee the ppgtt table is validated during the window between
1296 	 * adding and removal.
1297 	 */
1298 	ppgtt_get_shadow_entry(spt, &old_se, index);
1299 
1300 	if (new_present) {
1301 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1302 		if (ret)
1303 			goto fail;
1304 	}
1305 
1306 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1307 	if (ret)
1308 		goto fail;
1309 
1310 	if (!new_present) {
1311 		ops->set_pfn(&old_se, vgpu->gtt.scratch_pt[type].page_mfn);
1312 		ppgtt_set_shadow_entry(spt, &old_se, index);
1313 	}
1314 
1315 	return 0;
1316 fail:
1317 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1318 			spt, we->val64, we->type);
1319 	return ret;
1320 }
1321 
1322 
1323 
1324 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1325 {
1326 	return enable_out_of_sync
1327 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1328 		&& spt->guest_page.write_cnt >= 2;
1329 }
1330 
1331 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1332 		unsigned long index)
1333 {
1334 	set_bit(index, spt->post_shadow_bitmap);
1335 	if (!list_empty(&spt->post_shadow_list))
1336 		return;
1337 
1338 	list_add_tail(&spt->post_shadow_list,
1339 			&spt->vgpu->gtt.post_shadow_list_head);
1340 }
1341 
1342 /**
1343  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1344  * @vgpu: a vGPU
1345  *
1346  * This function is called before submitting a guest workload to host,
1347  * to flush all the post shadows for a vGPU.
1348  *
1349  * Returns:
1350  * Zero on success, negative error code if failed.
1351  */
1352 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1353 {
1354 	struct list_head *pos, *n;
1355 	struct intel_vgpu_ppgtt_spt *spt;
1356 	struct intel_gvt_gtt_entry ge;
1357 	unsigned long index;
1358 	int ret;
1359 
1360 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1361 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1362 				post_shadow_list);
1363 
1364 		for_each_set_bit(index, spt->post_shadow_bitmap,
1365 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1366 			ppgtt_get_guest_entry(spt, &ge, index);
1367 
1368 			ret = ppgtt_handle_guest_write_page_table(spt,
1369 							&ge, index);
1370 			if (ret)
1371 				return ret;
1372 			clear_bit(index, spt->post_shadow_bitmap);
1373 		}
1374 		list_del_init(&spt->post_shadow_list);
1375 	}
1376 	return 0;
1377 }
1378 
1379 static int ppgtt_handle_guest_write_page_table_bytes(
1380 		struct intel_vgpu_ppgtt_spt *spt,
1381 		u64 pa, void *p_data, int bytes)
1382 {
1383 	struct intel_vgpu *vgpu = spt->vgpu;
1384 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1385 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1386 	struct intel_gvt_gtt_entry we, se;
1387 	unsigned long index;
1388 	int ret;
1389 
1390 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1391 
1392 	ppgtt_get_guest_entry(spt, &we, index);
1393 
1394 	ops->test_pse(&we);
1395 
1396 	if (bytes == info->gtt_entry_size) {
1397 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1398 		if (ret)
1399 			return ret;
1400 	} else {
1401 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1402 			int type = spt->shadow_page.type;
1403 
1404 			ppgtt_get_shadow_entry(spt, &se, index);
1405 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1406 			if (ret)
1407 				return ret;
1408 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1409 			ppgtt_set_shadow_entry(spt, &se, index);
1410 		}
1411 		ppgtt_set_post_shadow(spt, index);
1412 	}
1413 
1414 	if (!enable_out_of_sync)
1415 		return 0;
1416 
1417 	spt->guest_page.write_cnt++;
1418 
1419 	if (spt->guest_page.oos_page)
1420 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1421 				false, 0, vgpu);
1422 
1423 	if (can_do_out_of_sync(spt)) {
1424 		if (!spt->guest_page.oos_page)
1425 			ppgtt_allocate_oos_page(spt);
1426 
1427 		ret = ppgtt_set_guest_page_oos(spt);
1428 		if (ret < 0)
1429 			return ret;
1430 	}
1431 	return 0;
1432 }
1433 
1434 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1435 {
1436 	struct intel_vgpu *vgpu = mm->vgpu;
1437 	struct intel_gvt *gvt = vgpu->gvt;
1438 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1439 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1440 	struct intel_gvt_gtt_entry se;
1441 	int index;
1442 
1443 	if (!mm->ppgtt_mm.shadowed)
1444 		return;
1445 
1446 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1447 		ppgtt_get_shadow_root_entry(mm, &se, index);
1448 
1449 		if (!ops->test_present(&se))
1450 			continue;
1451 
1452 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1453 		se.val64 = 0;
1454 		ppgtt_set_shadow_root_entry(mm, &se, index);
1455 
1456 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1457 				       NULL, se.type, se.val64, index);
1458 	}
1459 
1460 	mm->ppgtt_mm.shadowed = false;
1461 }
1462 
1463 
1464 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1465 {
1466 	struct intel_vgpu *vgpu = mm->vgpu;
1467 	struct intel_gvt *gvt = vgpu->gvt;
1468 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1469 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1470 	struct intel_vgpu_ppgtt_spt *spt;
1471 	struct intel_gvt_gtt_entry ge, se;
1472 	int index, ret;
1473 
1474 	if (mm->ppgtt_mm.shadowed)
1475 		return 0;
1476 
1477 	mm->ppgtt_mm.shadowed = true;
1478 
1479 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1480 		ppgtt_get_guest_root_entry(mm, &ge, index);
1481 
1482 		if (!ops->test_present(&ge))
1483 			continue;
1484 
1485 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1486 				       ge.type, ge.val64, index);
1487 
1488 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1489 		if (IS_ERR(spt)) {
1490 			gvt_vgpu_err("fail to populate guest root pointer\n");
1491 			ret = PTR_ERR(spt);
1492 			goto fail;
1493 		}
1494 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1495 		ppgtt_set_shadow_root_entry(mm, &se, index);
1496 
1497 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1498 				       NULL, se.type, se.val64, index);
1499 	}
1500 
1501 	return 0;
1502 fail:
1503 	invalidate_ppgtt_mm(mm);
1504 	return ret;
1505 }
1506 
1507 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1508 {
1509 	struct intel_vgpu_mm *mm;
1510 
1511 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1512 	if (!mm)
1513 		return NULL;
1514 
1515 	mm->vgpu = vgpu;
1516 	kref_init(&mm->ref);
1517 	atomic_set(&mm->pincount, 0);
1518 
1519 	return mm;
1520 }
1521 
1522 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1523 {
1524 	kfree(mm);
1525 }
1526 
1527 /**
1528  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1529  * @vgpu: a vGPU
1530  * @root_entry_type: ppgtt root entry type
1531  * @pdps: guest pdps.
1532  *
1533  * This function is used to create a ppgtt mm object for a vGPU.
1534  *
1535  * Returns:
1536  * Zero on success, negative error code in pointer if failed.
1537  */
1538 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1539 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1540 {
1541 	struct intel_gvt *gvt = vgpu->gvt;
1542 	struct intel_vgpu_mm *mm;
1543 	int ret;
1544 
1545 	mm = vgpu_alloc_mm(vgpu);
1546 	if (!mm)
1547 		return ERR_PTR(-ENOMEM);
1548 
1549 	mm->type = INTEL_GVT_MM_PPGTT;
1550 
1551 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1552 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1553 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1554 
1555 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1556 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1557 
1558 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1559 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1560 	else
1561 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1562 		       sizeof(mm->ppgtt_mm.guest_pdps));
1563 
1564 	ret = shadow_ppgtt_mm(mm);
1565 	if (ret) {
1566 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1567 		vgpu_free_mm(mm);
1568 		return ERR_PTR(ret);
1569 	}
1570 
1571 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1572 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1573 	return mm;
1574 }
1575 
1576 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1577 {
1578 	struct intel_vgpu_mm *mm;
1579 	unsigned long nr_entries;
1580 
1581 	mm = vgpu_alloc_mm(vgpu);
1582 	if (!mm)
1583 		return ERR_PTR(-ENOMEM);
1584 
1585 	mm->type = INTEL_GVT_MM_GGTT;
1586 
1587 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1588 	mm->ggtt_mm.virtual_ggtt =
1589 		vzalloc(array_size(nr_entries,
1590 				   vgpu->gvt->device_info.gtt_entry_size));
1591 	if (!mm->ggtt_mm.virtual_ggtt) {
1592 		vgpu_free_mm(mm);
1593 		return ERR_PTR(-ENOMEM);
1594 	}
1595 	mm->ggtt_mm.last_partial_off = -1UL;
1596 
1597 	return mm;
1598 }
1599 
1600 /**
1601  * _intel_vgpu_mm_release - destroy a mm object
1602  * @mm_ref: a kref object
1603  *
1604  * This function is used to destroy a mm object for vGPU
1605  *
1606  */
1607 void _intel_vgpu_mm_release(struct kref *mm_ref)
1608 {
1609 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1610 
1611 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1612 		gvt_err("vgpu mm pin count bug detected\n");
1613 
1614 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1615 		list_del(&mm->ppgtt_mm.list);
1616 		list_del(&mm->ppgtt_mm.lru_list);
1617 		invalidate_ppgtt_mm(mm);
1618 	} else {
1619 		vfree(mm->ggtt_mm.virtual_ggtt);
1620 		mm->ggtt_mm.last_partial_off = -1UL;
1621 	}
1622 
1623 	vgpu_free_mm(mm);
1624 }
1625 
1626 /**
1627  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1628  * @mm: a vGPU mm object
1629  *
1630  * This function is called when user doesn't want to use a vGPU mm object
1631  */
1632 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1633 {
1634 	atomic_dec(&mm->pincount);
1635 }
1636 
1637 /**
1638  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1639  * @vgpu: a vGPU
1640  *
1641  * This function is called when user wants to use a vGPU mm object. If this
1642  * mm object hasn't been shadowed yet, the shadow will be populated at this
1643  * time.
1644  *
1645  * Returns:
1646  * Zero on success, negative error code if failed.
1647  */
1648 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1649 {
1650 	int ret;
1651 
1652 	atomic_inc(&mm->pincount);
1653 
1654 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1655 		ret = shadow_ppgtt_mm(mm);
1656 		if (ret)
1657 			return ret;
1658 
1659 		list_move_tail(&mm->ppgtt_mm.lru_list,
1660 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1661 
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1668 {
1669 	struct intel_vgpu_mm *mm;
1670 	struct list_head *pos, *n;
1671 
1672 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1673 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1674 
1675 		if (atomic_read(&mm->pincount))
1676 			continue;
1677 
1678 		list_del_init(&mm->ppgtt_mm.lru_list);
1679 		invalidate_ppgtt_mm(mm);
1680 		return 1;
1681 	}
1682 	return 0;
1683 }
1684 
1685 /*
1686  * GMA translation APIs.
1687  */
1688 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1689 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1690 {
1691 	struct intel_vgpu *vgpu = mm->vgpu;
1692 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1693 	struct intel_vgpu_ppgtt_spt *s;
1694 
1695 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
1696 	if (!s)
1697 		return -ENXIO;
1698 
1699 	if (!guest)
1700 		ppgtt_get_shadow_entry(s, e, index);
1701 	else
1702 		ppgtt_get_guest_entry(s, e, index);
1703 	return 0;
1704 }
1705 
1706 /**
1707  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1708  * @mm: mm object. could be a PPGTT or GGTT mm object
1709  * @gma: graphics memory address in this mm object
1710  *
1711  * This function is used to translate a graphics memory address in specific
1712  * graphics memory space to guest physical address.
1713  *
1714  * Returns:
1715  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1716  */
1717 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1718 {
1719 	struct intel_vgpu *vgpu = mm->vgpu;
1720 	struct intel_gvt *gvt = vgpu->gvt;
1721 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1722 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1723 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1724 	unsigned long gma_index[4];
1725 	struct intel_gvt_gtt_entry e;
1726 	int i, levels = 0;
1727 	int ret;
1728 
1729 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
1730 		   mm->type != INTEL_GVT_MM_PPGTT);
1731 
1732 	if (mm->type == INTEL_GVT_MM_GGTT) {
1733 		if (!vgpu_gmadr_is_valid(vgpu, gma))
1734 			goto err;
1735 
1736 		ggtt_get_guest_entry(mm, &e,
1737 			gma_ops->gma_to_ggtt_pte_index(gma));
1738 
1739 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1740 			+ (gma & ~I915_GTT_PAGE_MASK);
1741 
1742 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1743 	} else {
1744 		switch (mm->ppgtt_mm.root_entry_type) {
1745 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
1746 			ppgtt_get_shadow_root_entry(mm, &e, 0);
1747 
1748 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1749 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1750 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
1751 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
1752 			levels = 4;
1753 			break;
1754 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
1755 			ppgtt_get_shadow_root_entry(mm, &e,
1756 					gma_ops->gma_to_l3_pdp_index(gma));
1757 
1758 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
1759 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
1760 			levels = 2;
1761 			break;
1762 		default:
1763 			GEM_BUG_ON(1);
1764 		}
1765 
1766 		/* walk the shadow page table and get gpa from guest entry */
1767 		for (i = 0; i < levels; i++) {
1768 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1769 				(i == levels - 1));
1770 			if (ret)
1771 				goto err;
1772 
1773 			if (!pte_ops->test_present(&e)) {
1774 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1775 				goto err;
1776 			}
1777 		}
1778 
1779 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
1780 					(gma & ~I915_GTT_PAGE_MASK);
1781 		trace_gma_translate(vgpu->id, "ppgtt", 0,
1782 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
1783 	}
1784 
1785 	return gpa;
1786 err:
1787 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1788 	return INTEL_GVT_INVALID_ADDR;
1789 }
1790 
1791 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
1792 	unsigned int off, void *p_data, unsigned int bytes)
1793 {
1794 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1795 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1796 	unsigned long index = off >> info->gtt_entry_size_shift;
1797 	struct intel_gvt_gtt_entry e;
1798 
1799 	if (bytes != 4 && bytes != 8)
1800 		return -EINVAL;
1801 
1802 	ggtt_get_guest_entry(ggtt_mm, &e, index);
1803 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1804 			bytes);
1805 	return 0;
1806 }
1807 
1808 /**
1809  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1810  * @vgpu: a vGPU
1811  * @off: register offset
1812  * @p_data: data will be returned to guest
1813  * @bytes: data length
1814  *
1815  * This function is used to emulate the GTT MMIO register read
1816  *
1817  * Returns:
1818  * Zero on success, error code if failed.
1819  */
1820 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1821 	void *p_data, unsigned int bytes)
1822 {
1823 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1824 	int ret;
1825 
1826 	if (bytes != 4 && bytes != 8)
1827 		return -EINVAL;
1828 
1829 	off -= info->gtt_start_offset;
1830 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
1831 	return ret;
1832 }
1833 
1834 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
1835 		struct intel_gvt_gtt_entry *entry)
1836 {
1837 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1838 	unsigned long pfn;
1839 
1840 	pfn = pte_ops->get_pfn(entry);
1841 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
1842 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
1843 						pfn << PAGE_SHIFT);
1844 }
1845 
1846 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1847 	void *p_data, unsigned int bytes)
1848 {
1849 	struct intel_gvt *gvt = vgpu->gvt;
1850 	const struct intel_gvt_device_info *info = &gvt->device_info;
1851 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1852 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1853 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1854 	unsigned long gma, gfn;
1855 	struct intel_gvt_gtt_entry e, m;
1856 	dma_addr_t dma_addr;
1857 	int ret;
1858 
1859 	if (bytes != 4 && bytes != 8)
1860 		return -EINVAL;
1861 
1862 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1863 
1864 	/* the VM may configure the whole GM space when ballooning is used */
1865 	if (!vgpu_gmadr_is_valid(vgpu, gma))
1866 		return 0;
1867 
1868 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1869 
1870 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1871 			bytes);
1872 
1873 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
1874 	 * write, we assume the two 4 bytes writes are consecutive.
1875 	 * Otherwise, we abort and report error
1876 	 */
1877 	if (bytes < info->gtt_entry_size) {
1878 		if (ggtt_mm->ggtt_mm.last_partial_off == -1UL) {
1879 			/* the first partial part*/
1880 			ggtt_mm->ggtt_mm.last_partial_off = off;
1881 			ggtt_mm->ggtt_mm.last_partial_data = e.val64;
1882 			return 0;
1883 		} else if ((g_gtt_index ==
1884 				(ggtt_mm->ggtt_mm.last_partial_off >>
1885 				info->gtt_entry_size_shift)) &&
1886 			(off !=	ggtt_mm->ggtt_mm.last_partial_off)) {
1887 			/* the second partial part */
1888 
1889 			int last_off = ggtt_mm->ggtt_mm.last_partial_off &
1890 				(info->gtt_entry_size - 1);
1891 
1892 			memcpy((void *)&e.val64 + last_off,
1893 				(void *)&ggtt_mm->ggtt_mm.last_partial_data +
1894 				last_off, bytes);
1895 
1896 			ggtt_mm->ggtt_mm.last_partial_off = -1UL;
1897 		} else {
1898 			int last_offset;
1899 
1900 			gvt_vgpu_err("failed to populate guest ggtt entry: abnormal ggtt entry write sequence, last_partial_off=%lx, offset=%x, bytes=%d, ggtt entry size=%d\n",
1901 					ggtt_mm->ggtt_mm.last_partial_off, off,
1902 					bytes, info->gtt_entry_size);
1903 
1904 			/* set host ggtt entry to scratch page and clear
1905 			 * virtual ggtt entry as not present for last
1906 			 * partially write offset
1907 			 */
1908 			last_offset = ggtt_mm->ggtt_mm.last_partial_off &
1909 					(~(info->gtt_entry_size - 1));
1910 
1911 			ggtt_get_host_entry(ggtt_mm, &m, last_offset);
1912 			ggtt_invalidate_pte(vgpu, &m);
1913 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1914 			ops->clear_present(&m);
1915 			ggtt_set_host_entry(ggtt_mm, &m, last_offset);
1916 			ggtt_invalidate(gvt->dev_priv);
1917 
1918 			ggtt_get_guest_entry(ggtt_mm, &e, last_offset);
1919 			ops->clear_present(&e);
1920 			ggtt_set_guest_entry(ggtt_mm, &e, last_offset);
1921 
1922 			ggtt_mm->ggtt_mm.last_partial_off = off;
1923 			ggtt_mm->ggtt_mm.last_partial_data = e.val64;
1924 
1925 			return 0;
1926 		}
1927 	}
1928 
1929 	if (ops->test_present(&e)) {
1930 		gfn = ops->get_pfn(&e);
1931 		m = e;
1932 
1933 		/* one PTE update may be issued in multiple writes and the
1934 		 * first write may not construct a valid gfn
1935 		 */
1936 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1937 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1938 			goto out;
1939 		}
1940 
1941 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
1942 							      &dma_addr);
1943 		if (ret) {
1944 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
1945 			/* guest driver may read/write the entry when partial
1946 			 * update the entry in this situation p2m will fail
1947 			 * settting the shadow entry to point to a scratch page
1948 			 */
1949 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1950 		} else
1951 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
1952 	} else {
1953 		ggtt_get_host_entry(ggtt_mm, &m, g_gtt_index);
1954 		ggtt_invalidate_pte(vgpu, &m);
1955 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1956 		ops->clear_present(&m);
1957 	}
1958 
1959 out:
1960 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
1961 	ggtt_invalidate(gvt->dev_priv);
1962 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1963 	return 0;
1964 }
1965 
1966 /*
1967  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
1968  * @vgpu: a vGPU
1969  * @off: register offset
1970  * @p_data: data from guest write
1971  * @bytes: data length
1972  *
1973  * This function is used to emulate the GTT MMIO register write
1974  *
1975  * Returns:
1976  * Zero on success, error code if failed.
1977  */
1978 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
1979 		unsigned int off, void *p_data, unsigned int bytes)
1980 {
1981 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1982 	int ret;
1983 
1984 	if (bytes != 4 && bytes != 8)
1985 		return -EINVAL;
1986 
1987 	off -= info->gtt_start_offset;
1988 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
1989 	return ret;
1990 }
1991 
1992 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1993 		intel_gvt_gtt_type_t type)
1994 {
1995 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1996 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1997 	int page_entry_num = I915_GTT_PAGE_SIZE >>
1998 				vgpu->gvt->device_info.gtt_entry_size_shift;
1999 	void *scratch_pt;
2000 	int i;
2001 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2002 	dma_addr_t daddr;
2003 
2004 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2005 		return -EINVAL;
2006 
2007 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2008 	if (!scratch_pt) {
2009 		gvt_vgpu_err("fail to allocate scratch page\n");
2010 		return -ENOMEM;
2011 	}
2012 
2013 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2014 			4096, PCI_DMA_BIDIRECTIONAL);
2015 	if (dma_mapping_error(dev, daddr)) {
2016 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2017 		__free_page(virt_to_page(scratch_pt));
2018 		return -ENOMEM;
2019 	}
2020 	gtt->scratch_pt[type].page_mfn =
2021 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2022 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2023 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2024 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2025 
2026 	/* Build the tree by full filled the scratch pt with the entries which
2027 	 * point to the next level scratch pt or scratch page. The
2028 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2029 	 * 'type' pt.
2030 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2031 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2032 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2033 	 */
2034 	if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
2035 		struct intel_gvt_gtt_entry se;
2036 
2037 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2038 		se.type = get_entry_type(type - 1);
2039 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2040 
2041 		/* The entry parameters like present/writeable/cache type
2042 		 * set to the same as i915's scratch page tree.
2043 		 */
2044 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2045 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2046 			se.val64 |= PPAT_CACHED;
2047 
2048 		for (i = 0; i < page_entry_num; i++)
2049 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2056 {
2057 	int i;
2058 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2059 	dma_addr_t daddr;
2060 
2061 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2062 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2063 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2064 					I915_GTT_PAGE_SHIFT);
2065 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2066 			__free_page(vgpu->gtt.scratch_pt[i].page);
2067 			vgpu->gtt.scratch_pt[i].page = NULL;
2068 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2069 		}
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2076 {
2077 	int i, ret;
2078 
2079 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2080 		ret = alloc_scratch_pages(vgpu, i);
2081 		if (ret)
2082 			goto err;
2083 	}
2084 
2085 	return 0;
2086 
2087 err:
2088 	release_scratch_page_tree(vgpu);
2089 	return ret;
2090 }
2091 
2092 /**
2093  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2094  * @vgpu: a vGPU
2095  *
2096  * This function is used to initialize per-vGPU graphics memory virtualization
2097  * components.
2098  *
2099  * Returns:
2100  * Zero on success, error code if failed.
2101  */
2102 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2103 {
2104 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2105 
2106 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2107 
2108 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2109 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2110 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2111 
2112 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2113 	if (IS_ERR(gtt->ggtt_mm)) {
2114 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2115 		return PTR_ERR(gtt->ggtt_mm);
2116 	}
2117 
2118 	intel_vgpu_reset_ggtt(vgpu, false);
2119 
2120 	return create_scratch_page_tree(vgpu);
2121 }
2122 
2123 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2124 {
2125 	struct list_head *pos, *n;
2126 	struct intel_vgpu_mm *mm;
2127 
2128 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2129 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2130 		intel_vgpu_destroy_mm(mm);
2131 	}
2132 
2133 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2134 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2135 
2136 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2137 		gvt_err("Why we still has spt not freed?\n");
2138 		ppgtt_free_all_spt(vgpu);
2139 	}
2140 }
2141 
2142 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2143 {
2144 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2145 	vgpu->gtt.ggtt_mm = NULL;
2146 }
2147 
2148 /**
2149  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2150  * @vgpu: a vGPU
2151  *
2152  * This function is used to clean up per-vGPU graphics memory virtualization
2153  * components.
2154  *
2155  * Returns:
2156  * Zero on success, error code if failed.
2157  */
2158 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2159 {
2160 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2161 	intel_vgpu_destroy_ggtt_mm(vgpu);
2162 	release_scratch_page_tree(vgpu);
2163 }
2164 
2165 static void clean_spt_oos(struct intel_gvt *gvt)
2166 {
2167 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2168 	struct list_head *pos, *n;
2169 	struct intel_vgpu_oos_page *oos_page;
2170 
2171 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2172 		"someone is still using oos page\n");
2173 
2174 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2175 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2176 		list_del(&oos_page->list);
2177 		kfree(oos_page);
2178 	}
2179 }
2180 
2181 static int setup_spt_oos(struct intel_gvt *gvt)
2182 {
2183 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2184 	struct intel_vgpu_oos_page *oos_page;
2185 	int i;
2186 	int ret;
2187 
2188 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2189 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2190 
2191 	for (i = 0; i < preallocated_oos_pages; i++) {
2192 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2193 		if (!oos_page) {
2194 			ret = -ENOMEM;
2195 			goto fail;
2196 		}
2197 
2198 		INIT_LIST_HEAD(&oos_page->list);
2199 		INIT_LIST_HEAD(&oos_page->vm_list);
2200 		oos_page->id = i;
2201 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2202 	}
2203 
2204 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2205 
2206 	return 0;
2207 fail:
2208 	clean_spt_oos(gvt);
2209 	return ret;
2210 }
2211 
2212 /**
2213  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2214  * @vgpu: a vGPU
2215  * @page_table_level: PPGTT page table level
2216  * @root_entry: PPGTT page table root pointers
2217  *
2218  * This function is used to find a PPGTT mm object from mm object pool
2219  *
2220  * Returns:
2221  * pointer to mm object on success, NULL if failed.
2222  */
2223 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2224 		u64 pdps[])
2225 {
2226 	struct intel_vgpu_mm *mm;
2227 	struct list_head *pos;
2228 
2229 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2230 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2231 
2232 		switch (mm->ppgtt_mm.root_entry_type) {
2233 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2234 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2235 				return mm;
2236 			break;
2237 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2238 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2239 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2240 				return mm;
2241 			break;
2242 		default:
2243 			GEM_BUG_ON(1);
2244 		}
2245 	}
2246 	return NULL;
2247 }
2248 
2249 /**
2250  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2251  * @vgpu: a vGPU
2252  * @root_entry_type: ppgtt root entry type
2253  * @pdps: guest pdps
2254  *
2255  * This function is used to find or create a PPGTT mm object from a guest.
2256  *
2257  * Returns:
2258  * Zero on success, negative error code if failed.
2259  */
2260 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2261 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2262 {
2263 	struct intel_vgpu_mm *mm;
2264 
2265 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2266 	if (mm) {
2267 		intel_vgpu_mm_get(mm);
2268 	} else {
2269 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2270 		if (IS_ERR(mm))
2271 			gvt_vgpu_err("fail to create mm\n");
2272 	}
2273 	return mm;
2274 }
2275 
2276 /**
2277  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2278  * @vgpu: a vGPU
2279  * @pdps: guest pdps
2280  *
2281  * This function is used to find a PPGTT mm object from a guest and destroy it.
2282  *
2283  * Returns:
2284  * Zero on success, negative error code if failed.
2285  */
2286 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2287 {
2288 	struct intel_vgpu_mm *mm;
2289 
2290 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2291 	if (!mm) {
2292 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2293 		return -EINVAL;
2294 	}
2295 	intel_vgpu_mm_put(mm);
2296 	return 0;
2297 }
2298 
2299 /**
2300  * intel_gvt_init_gtt - initialize mm components of a GVT device
2301  * @gvt: GVT device
2302  *
2303  * This function is called at the initialization stage, to initialize
2304  * the mm components of a GVT device.
2305  *
2306  * Returns:
2307  * zero on success, negative error code if failed.
2308  */
2309 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2310 {
2311 	int ret;
2312 	void *page;
2313 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2314 	dma_addr_t daddr;
2315 
2316 	gvt_dbg_core("init gtt\n");
2317 
2318 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2319 		|| IS_KABYLAKE(gvt->dev_priv)) {
2320 		gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2321 		gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2322 	} else {
2323 		return -ENODEV;
2324 	}
2325 
2326 	page = (void *)get_zeroed_page(GFP_KERNEL);
2327 	if (!page) {
2328 		gvt_err("fail to allocate scratch ggtt page\n");
2329 		return -ENOMEM;
2330 	}
2331 
2332 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2333 			4096, PCI_DMA_BIDIRECTIONAL);
2334 	if (dma_mapping_error(dev, daddr)) {
2335 		gvt_err("fail to dmamap scratch ggtt page\n");
2336 		__free_page(virt_to_page(page));
2337 		return -ENOMEM;
2338 	}
2339 
2340 	gvt->gtt.scratch_page = virt_to_page(page);
2341 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2342 
2343 	if (enable_out_of_sync) {
2344 		ret = setup_spt_oos(gvt);
2345 		if (ret) {
2346 			gvt_err("fail to initialize SPT oos\n");
2347 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2348 			__free_page(gvt->gtt.scratch_page);
2349 			return ret;
2350 		}
2351 	}
2352 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2353 	return 0;
2354 }
2355 
2356 /**
2357  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2358  * @gvt: GVT device
2359  *
2360  * This function is called at the driver unloading stage, to clean up the
2361  * the mm components of a GVT device.
2362  *
2363  */
2364 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2365 {
2366 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2367 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2368 					I915_GTT_PAGE_SHIFT);
2369 
2370 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2371 
2372 	__free_page(gvt->gtt.scratch_page);
2373 
2374 	if (enable_out_of_sync)
2375 		clean_spt_oos(gvt);
2376 }
2377 
2378 /**
2379  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2380  * @vgpu: a vGPU
2381  *
2382  * This function is called when invalidate all PPGTT instances of a vGPU.
2383  *
2384  */
2385 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2386 {
2387 	struct list_head *pos, *n;
2388 	struct intel_vgpu_mm *mm;
2389 
2390 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2391 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2392 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2393 			list_del_init(&mm->ppgtt_mm.lru_list);
2394 			if (mm->ppgtt_mm.shadowed)
2395 				invalidate_ppgtt_mm(mm);
2396 		}
2397 	}
2398 }
2399 
2400 /**
2401  * intel_vgpu_reset_ggtt - reset the GGTT entry
2402  * @vgpu: a vGPU
2403  * @invalidate_old: invalidate old entries
2404  *
2405  * This function is called at the vGPU create stage
2406  * to reset all the GGTT entries.
2407  *
2408  */
2409 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2410 {
2411 	struct intel_gvt *gvt = vgpu->gvt;
2412 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2413 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2414 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2415 	struct intel_gvt_gtt_entry old_entry;
2416 	u32 index;
2417 	u32 num_entries;
2418 
2419 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2420 	pte_ops->set_present(&entry);
2421 
2422 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2423 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2424 	while (num_entries--) {
2425 		if (invalidate_old) {
2426 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2427 			ggtt_invalidate_pte(vgpu, &old_entry);
2428 		}
2429 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2430 	}
2431 
2432 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2433 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2434 	while (num_entries--) {
2435 		if (invalidate_old) {
2436 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2437 			ggtt_invalidate_pte(vgpu, &old_entry);
2438 		}
2439 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2440 	}
2441 
2442 	ggtt_invalidate(dev_priv);
2443 }
2444 
2445 /**
2446  * intel_vgpu_reset_gtt - reset the all GTT related status
2447  * @vgpu: a vGPU
2448  *
2449  * This function is called from vfio core to reset reset all
2450  * GTT related status, including GGTT, PPGTT, scratch page.
2451  *
2452  */
2453 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2454 {
2455 	/* Shadow pages are only created when there is no page
2456 	 * table tracking data, so remove page tracking data after
2457 	 * removing the shadow pages.
2458 	 */
2459 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2460 	intel_vgpu_reset_ggtt(vgpu, true);
2461 }
2462