1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #if defined(VERBOSE_DEBUG) 42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 43 #else 44 #define gvt_vdbg_mm(fmt, args...) 45 #endif 46 47 static bool enable_out_of_sync = false; 48 static int preallocated_oos_pages = 8192; 49 50 /* 51 * validate a gm address and related range size, 52 * translate it to host gm address 53 */ 54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 55 { 56 if (size == 0) 57 return vgpu_gmadr_is_valid(vgpu, addr); 58 59 if (vgpu_gmadr_is_aperture(vgpu, addr) && 60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 61 return true; 62 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 64 return true; 65 66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 67 addr, size); 68 return false; 69 } 70 71 /* translate a guest gmadr to host gmadr */ 72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 73 { 74 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr), 75 "invalid guest gmadr %llx\n", g_addr)) 76 return -EACCES; 77 78 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 79 *h_addr = vgpu_aperture_gmadr_base(vgpu) 80 + (g_addr - vgpu_aperture_offset(vgpu)); 81 else 82 *h_addr = vgpu_hidden_gmadr_base(vgpu) 83 + (g_addr - vgpu_hidden_offset(vgpu)); 84 return 0; 85 } 86 87 /* translate a host gmadr to guest gmadr */ 88 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 89 { 90 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr), 91 "invalid host gmadr %llx\n", h_addr)) 92 return -EACCES; 93 94 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 95 *g_addr = vgpu_aperture_gmadr_base(vgpu) 96 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 97 else 98 *g_addr = vgpu_hidden_gmadr_base(vgpu) 99 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 100 return 0; 101 } 102 103 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 104 unsigned long *h_index) 105 { 106 u64 h_addr; 107 int ret; 108 109 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 110 &h_addr); 111 if (ret) 112 return ret; 113 114 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 115 return 0; 116 } 117 118 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 119 unsigned long *g_index) 120 { 121 u64 g_addr; 122 int ret; 123 124 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 125 &g_addr); 126 if (ret) 127 return ret; 128 129 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 130 return 0; 131 } 132 133 #define gtt_type_is_entry(type) \ 134 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 135 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 136 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 137 138 #define gtt_type_is_pt(type) \ 139 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 140 141 #define gtt_type_is_pte_pt(type) \ 142 (type == GTT_TYPE_PPGTT_PTE_PT) 143 144 #define gtt_type_is_root_pointer(type) \ 145 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 146 147 #define gtt_init_entry(e, t, p, v) do { \ 148 (e)->type = t; \ 149 (e)->pdev = p; \ 150 memcpy(&(e)->val64, &v, sizeof(v)); \ 151 } while (0) 152 153 /* 154 * Mappings between GTT_TYPE* enumerations. 155 * Following information can be found according to the given type: 156 * - type of next level page table 157 * - type of entry inside this level page table 158 * - type of entry with PSE set 159 * 160 * If the given type doesn't have such a kind of information, 161 * e.g. give a l4 root entry type, then request to get its PSE type, 162 * give a PTE page table type, then request to get its next level page 163 * table type, as we know l4 root entry doesn't have a PSE bit, 164 * and a PTE page table doesn't have a next level page table type, 165 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 166 * page table. 167 */ 168 169 struct gtt_type_table_entry { 170 int entry_type; 171 int pt_type; 172 int next_pt_type; 173 int pse_entry_type; 174 }; 175 176 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 177 [type] = { \ 178 .entry_type = e_type, \ 179 .pt_type = cpt_type, \ 180 .next_pt_type = npt_type, \ 181 .pse_entry_type = pse_type, \ 182 } 183 184 static struct gtt_type_table_entry gtt_type_table[] = { 185 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 186 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 187 GTT_TYPE_INVALID, 188 GTT_TYPE_PPGTT_PML4_PT, 189 GTT_TYPE_INVALID), 190 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 191 GTT_TYPE_PPGTT_PML4_ENTRY, 192 GTT_TYPE_PPGTT_PML4_PT, 193 GTT_TYPE_PPGTT_PDP_PT, 194 GTT_TYPE_INVALID), 195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 196 GTT_TYPE_PPGTT_PML4_ENTRY, 197 GTT_TYPE_PPGTT_PML4_PT, 198 GTT_TYPE_PPGTT_PDP_PT, 199 GTT_TYPE_INVALID), 200 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 201 GTT_TYPE_PPGTT_PDP_ENTRY, 202 GTT_TYPE_PPGTT_PDP_PT, 203 GTT_TYPE_PPGTT_PDE_PT, 204 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 205 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 206 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 207 GTT_TYPE_INVALID, 208 GTT_TYPE_PPGTT_PDE_PT, 209 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 210 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 211 GTT_TYPE_PPGTT_PDP_ENTRY, 212 GTT_TYPE_PPGTT_PDP_PT, 213 GTT_TYPE_PPGTT_PDE_PT, 214 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 216 GTT_TYPE_PPGTT_PDE_ENTRY, 217 GTT_TYPE_PPGTT_PDE_PT, 218 GTT_TYPE_PPGTT_PTE_PT, 219 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 221 GTT_TYPE_PPGTT_PDE_ENTRY, 222 GTT_TYPE_PPGTT_PDE_PT, 223 GTT_TYPE_PPGTT_PTE_PT, 224 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 225 /* We take IPS bit as 'PSE' for PTE level. */ 226 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 227 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 228 GTT_TYPE_PPGTT_PTE_PT, 229 GTT_TYPE_INVALID, 230 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 231 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 232 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 233 GTT_TYPE_PPGTT_PTE_PT, 234 GTT_TYPE_INVALID, 235 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 236 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 237 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 238 GTT_TYPE_PPGTT_PTE_PT, 239 GTT_TYPE_INVALID, 240 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 241 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 242 GTT_TYPE_PPGTT_PDE_ENTRY, 243 GTT_TYPE_PPGTT_PDE_PT, 244 GTT_TYPE_INVALID, 245 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 246 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 247 GTT_TYPE_PPGTT_PDP_ENTRY, 248 GTT_TYPE_PPGTT_PDP_PT, 249 GTT_TYPE_INVALID, 250 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 251 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 252 GTT_TYPE_GGTT_PTE, 253 GTT_TYPE_INVALID, 254 GTT_TYPE_INVALID, 255 GTT_TYPE_INVALID), 256 }; 257 258 static inline int get_next_pt_type(int type) 259 { 260 return gtt_type_table[type].next_pt_type; 261 } 262 263 static inline int get_pt_type(int type) 264 { 265 return gtt_type_table[type].pt_type; 266 } 267 268 static inline int get_entry_type(int type) 269 { 270 return gtt_type_table[type].entry_type; 271 } 272 273 static inline int get_pse_type(int type) 274 { 275 return gtt_type_table[type].pse_entry_type; 276 } 277 278 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index) 279 { 280 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 281 282 return readq(addr); 283 } 284 285 static void ggtt_invalidate(struct drm_i915_private *dev_priv) 286 { 287 mmio_hw_access_pre(dev_priv); 288 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 289 mmio_hw_access_post(dev_priv); 290 } 291 292 static void write_pte64(struct drm_i915_private *dev_priv, 293 unsigned long index, u64 pte) 294 { 295 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 296 297 writeq(pte, addr); 298 } 299 300 static inline int gtt_get_entry64(void *pt, 301 struct intel_gvt_gtt_entry *e, 302 unsigned long index, bool hypervisor_access, unsigned long gpa, 303 struct intel_vgpu *vgpu) 304 { 305 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 306 int ret; 307 308 if (WARN_ON(info->gtt_entry_size != 8)) 309 return -EINVAL; 310 311 if (hypervisor_access) { 312 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 313 (index << info->gtt_entry_size_shift), 314 &e->val64, 8); 315 if (WARN_ON(ret)) 316 return ret; 317 } else if (!pt) { 318 e->val64 = read_pte64(vgpu->gvt->dev_priv, index); 319 } else { 320 e->val64 = *((u64 *)pt + index); 321 } 322 return 0; 323 } 324 325 static inline int gtt_set_entry64(void *pt, 326 struct intel_gvt_gtt_entry *e, 327 unsigned long index, bool hypervisor_access, unsigned long gpa, 328 struct intel_vgpu *vgpu) 329 { 330 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 331 int ret; 332 333 if (WARN_ON(info->gtt_entry_size != 8)) 334 return -EINVAL; 335 336 if (hypervisor_access) { 337 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 338 (index << info->gtt_entry_size_shift), 339 &e->val64, 8); 340 if (WARN_ON(ret)) 341 return ret; 342 } else if (!pt) { 343 write_pte64(vgpu->gvt->dev_priv, index, e->val64); 344 } else { 345 *((u64 *)pt + index) = e->val64; 346 } 347 return 0; 348 } 349 350 #define GTT_HAW 46 351 352 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 353 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 354 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 355 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 356 357 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 358 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 359 360 #define GTT_64K_PTE_STRIDE 16 361 362 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 363 { 364 unsigned long pfn; 365 366 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 367 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 368 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 369 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 370 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 371 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 372 else 373 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 374 return pfn; 375 } 376 377 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 378 { 379 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 380 e->val64 &= ~ADDR_1G_MASK; 381 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 382 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 383 e->val64 &= ~ADDR_2M_MASK; 384 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 385 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 386 e->val64 &= ~ADDR_64K_MASK; 387 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 388 } else { 389 e->val64 &= ~ADDR_4K_MASK; 390 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 391 } 392 393 e->val64 |= (pfn << PAGE_SHIFT); 394 } 395 396 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 397 { 398 return !!(e->val64 & _PAGE_PSE); 399 } 400 401 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 402 { 403 if (gen8_gtt_test_pse(e)) { 404 switch (e->type) { 405 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 406 e->val64 &= ~_PAGE_PSE; 407 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 408 break; 409 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 410 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 411 e->val64 &= ~_PAGE_PSE; 412 break; 413 default: 414 WARN_ON(1); 415 } 416 } 417 } 418 419 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 420 { 421 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 422 return false; 423 424 return !!(e->val64 & GEN8_PDE_IPS_64K); 425 } 426 427 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 428 { 429 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 430 return; 431 432 e->val64 &= ~GEN8_PDE_IPS_64K; 433 } 434 435 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 436 { 437 /* 438 * i915 writes PDP root pointer registers without present bit, 439 * it also works, so we need to treat root pointer entry 440 * specifically. 441 */ 442 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 443 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 444 return (e->val64 != 0); 445 else 446 return (e->val64 & _PAGE_PRESENT); 447 } 448 449 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 450 { 451 e->val64 &= ~_PAGE_PRESENT; 452 } 453 454 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 455 { 456 e->val64 |= _PAGE_PRESENT; 457 } 458 459 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 460 { 461 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 462 } 463 464 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 465 { 466 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 467 } 468 469 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 470 { 471 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 472 } 473 474 /* 475 * Per-platform GMA routines. 476 */ 477 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 478 { 479 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 480 481 trace_gma_index(__func__, gma, x); 482 return x; 483 } 484 485 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 486 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 487 { \ 488 unsigned long x = (exp); \ 489 trace_gma_index(__func__, gma, x); \ 490 return x; \ 491 } 492 493 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 494 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 495 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 498 499 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 500 .get_entry = gtt_get_entry64, 501 .set_entry = gtt_set_entry64, 502 .clear_present = gtt_entry_clear_present, 503 .set_present = gtt_entry_set_present, 504 .test_present = gen8_gtt_test_present, 505 .test_pse = gen8_gtt_test_pse, 506 .clear_pse = gen8_gtt_clear_pse, 507 .clear_ips = gen8_gtt_clear_ips, 508 .test_ips = gen8_gtt_test_ips, 509 .clear_64k_splited = gen8_gtt_clear_64k_splited, 510 .set_64k_splited = gen8_gtt_set_64k_splited, 511 .test_64k_splited = gen8_gtt_test_64k_splited, 512 .get_pfn = gen8_gtt_get_pfn, 513 .set_pfn = gen8_gtt_set_pfn, 514 }; 515 516 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 517 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 518 .gma_to_pte_index = gen8_gma_to_pte_index, 519 .gma_to_pde_index = gen8_gma_to_pde_index, 520 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 521 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 522 .gma_to_pml4_index = gen8_gma_to_pml4_index, 523 }; 524 525 /* Update entry type per pse and ips bit. */ 526 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, 527 struct intel_gvt_gtt_entry *entry, bool ips) 528 { 529 switch (entry->type) { 530 case GTT_TYPE_PPGTT_PDE_ENTRY: 531 case GTT_TYPE_PPGTT_PDP_ENTRY: 532 if (pte_ops->test_pse(entry)) 533 entry->type = get_pse_type(entry->type); 534 break; 535 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 536 if (ips) 537 entry->type = get_pse_type(entry->type); 538 break; 539 default: 540 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 541 } 542 543 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 544 } 545 546 /* 547 * MM helpers. 548 */ 549 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 550 struct intel_gvt_gtt_entry *entry, unsigned long index, 551 bool guest) 552 { 553 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 554 555 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 556 557 entry->type = mm->ppgtt_mm.root_entry_type; 558 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 559 mm->ppgtt_mm.shadow_pdps, 560 entry, index, false, 0, mm->vgpu); 561 update_entry_type_for_real(pte_ops, entry, false); 562 } 563 564 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 565 struct intel_gvt_gtt_entry *entry, unsigned long index) 566 { 567 _ppgtt_get_root_entry(mm, entry, index, true); 568 } 569 570 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 571 struct intel_gvt_gtt_entry *entry, unsigned long index) 572 { 573 _ppgtt_get_root_entry(mm, entry, index, false); 574 } 575 576 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 577 struct intel_gvt_gtt_entry *entry, unsigned long index, 578 bool guest) 579 { 580 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 581 582 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 583 mm->ppgtt_mm.shadow_pdps, 584 entry, index, false, 0, mm->vgpu); 585 } 586 587 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm, 588 struct intel_gvt_gtt_entry *entry, unsigned long index) 589 { 590 _ppgtt_set_root_entry(mm, entry, index, true); 591 } 592 593 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 594 struct intel_gvt_gtt_entry *entry, unsigned long index) 595 { 596 _ppgtt_set_root_entry(mm, entry, index, false); 597 } 598 599 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 600 struct intel_gvt_gtt_entry *entry, unsigned long index) 601 { 602 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 603 604 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 605 606 entry->type = GTT_TYPE_GGTT_PTE; 607 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 608 false, 0, mm->vgpu); 609 } 610 611 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 612 struct intel_gvt_gtt_entry *entry, unsigned long index) 613 { 614 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 615 616 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 617 618 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 619 false, 0, mm->vgpu); 620 } 621 622 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 623 struct intel_gvt_gtt_entry *entry, unsigned long index) 624 { 625 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 626 627 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 628 629 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 630 } 631 632 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 633 struct intel_gvt_gtt_entry *entry, unsigned long index) 634 { 635 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 636 637 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 638 639 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 640 } 641 642 /* 643 * PPGTT shadow page table helpers. 644 */ 645 static inline int ppgtt_spt_get_entry( 646 struct intel_vgpu_ppgtt_spt *spt, 647 void *page_table, int type, 648 struct intel_gvt_gtt_entry *e, unsigned long index, 649 bool guest) 650 { 651 struct intel_gvt *gvt = spt->vgpu->gvt; 652 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 653 int ret; 654 655 e->type = get_entry_type(type); 656 657 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 658 return -EINVAL; 659 660 ret = ops->get_entry(page_table, e, index, guest, 661 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 662 spt->vgpu); 663 if (ret) 664 return ret; 665 666 update_entry_type_for_real(ops, e, guest ? 667 spt->guest_page.pde_ips : false); 668 669 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 670 type, e->type, index, e->val64); 671 return 0; 672 } 673 674 static inline int ppgtt_spt_set_entry( 675 struct intel_vgpu_ppgtt_spt *spt, 676 void *page_table, int type, 677 struct intel_gvt_gtt_entry *e, unsigned long index, 678 bool guest) 679 { 680 struct intel_gvt *gvt = spt->vgpu->gvt; 681 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 682 683 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 684 return -EINVAL; 685 686 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 687 type, e->type, index, e->val64); 688 689 return ops->set_entry(page_table, e, index, guest, 690 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 691 spt->vgpu); 692 } 693 694 #define ppgtt_get_guest_entry(spt, e, index) \ 695 ppgtt_spt_get_entry(spt, NULL, \ 696 spt->guest_page.type, e, index, true) 697 698 #define ppgtt_set_guest_entry(spt, e, index) \ 699 ppgtt_spt_set_entry(spt, NULL, \ 700 spt->guest_page.type, e, index, true) 701 702 #define ppgtt_get_shadow_entry(spt, e, index) \ 703 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 704 spt->shadow_page.type, e, index, false) 705 706 #define ppgtt_set_shadow_entry(spt, e, index) \ 707 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 708 spt->shadow_page.type, e, index, false) 709 710 static void *alloc_spt(gfp_t gfp_mask) 711 { 712 struct intel_vgpu_ppgtt_spt *spt; 713 714 spt = kzalloc(sizeof(*spt), gfp_mask); 715 if (!spt) 716 return NULL; 717 718 spt->shadow_page.page = alloc_page(gfp_mask); 719 if (!spt->shadow_page.page) { 720 kfree(spt); 721 return NULL; 722 } 723 return spt; 724 } 725 726 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 727 { 728 __free_page(spt->shadow_page.page); 729 kfree(spt); 730 } 731 732 static int detach_oos_page(struct intel_vgpu *vgpu, 733 struct intel_vgpu_oos_page *oos_page); 734 735 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 736 { 737 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev; 738 739 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 740 741 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 742 PCI_DMA_BIDIRECTIONAL); 743 744 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 745 746 if (spt->guest_page.gfn) { 747 if (spt->guest_page.oos_page) 748 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 749 750 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 751 } 752 753 list_del_init(&spt->post_shadow_list); 754 free_spt(spt); 755 } 756 757 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 758 { 759 struct intel_vgpu_ppgtt_spt *spt, *spn; 760 struct radix_tree_iter iter; 761 LIST_HEAD(all_spt); 762 void __rcu **slot; 763 764 rcu_read_lock(); 765 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 766 spt = radix_tree_deref_slot(slot); 767 list_move(&spt->post_shadow_list, &all_spt); 768 } 769 rcu_read_unlock(); 770 771 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 772 ppgtt_free_spt(spt); 773 } 774 775 static int ppgtt_handle_guest_write_page_table_bytes( 776 struct intel_vgpu_ppgtt_spt *spt, 777 u64 pa, void *p_data, int bytes); 778 779 static int ppgtt_write_protection_handler( 780 struct intel_vgpu_page_track *page_track, 781 u64 gpa, void *data, int bytes) 782 { 783 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 784 785 int ret; 786 787 if (bytes != 4 && bytes != 8) 788 return -EINVAL; 789 790 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 791 if (ret) 792 return ret; 793 return ret; 794 } 795 796 /* Find a spt by guest gfn. */ 797 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 798 struct intel_vgpu *vgpu, unsigned long gfn) 799 { 800 struct intel_vgpu_page_track *track; 801 802 track = intel_vgpu_find_page_track(vgpu, gfn); 803 if (track && track->handler == ppgtt_write_protection_handler) 804 return track->priv_data; 805 806 return NULL; 807 } 808 809 /* Find the spt by shadow page mfn. */ 810 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 811 struct intel_vgpu *vgpu, unsigned long mfn) 812 { 813 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 814 } 815 816 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 817 818 /* Allocate shadow page table without guest page. */ 819 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 820 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 821 { 822 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; 823 struct intel_vgpu_ppgtt_spt *spt = NULL; 824 dma_addr_t daddr; 825 int ret; 826 827 retry: 828 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 829 if (!spt) { 830 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 831 goto retry; 832 833 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 834 return ERR_PTR(-ENOMEM); 835 } 836 837 spt->vgpu = vgpu; 838 atomic_set(&spt->refcount, 1); 839 INIT_LIST_HEAD(&spt->post_shadow_list); 840 841 /* 842 * Init shadow_page. 843 */ 844 spt->shadow_page.type = type; 845 daddr = dma_map_page(kdev, spt->shadow_page.page, 846 0, 4096, PCI_DMA_BIDIRECTIONAL); 847 if (dma_mapping_error(kdev, daddr)) { 848 gvt_vgpu_err("fail to map dma addr\n"); 849 ret = -EINVAL; 850 goto err_free_spt; 851 } 852 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 853 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 854 855 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 856 if (ret) 857 goto err_unmap_dma; 858 859 return spt; 860 861 err_unmap_dma: 862 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 863 err_free_spt: 864 free_spt(spt); 865 return ERR_PTR(ret); 866 } 867 868 /* Allocate shadow page table associated with specific gfn. */ 869 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 870 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 871 unsigned long gfn, bool guest_pde_ips) 872 { 873 struct intel_vgpu_ppgtt_spt *spt; 874 int ret; 875 876 spt = ppgtt_alloc_spt(vgpu, type); 877 if (IS_ERR(spt)) 878 return spt; 879 880 /* 881 * Init guest_page. 882 */ 883 ret = intel_vgpu_register_page_track(vgpu, gfn, 884 ppgtt_write_protection_handler, spt); 885 if (ret) { 886 ppgtt_free_spt(spt); 887 return ERR_PTR(ret); 888 } 889 890 spt->guest_page.type = type; 891 spt->guest_page.gfn = gfn; 892 spt->guest_page.pde_ips = guest_pde_ips; 893 894 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 895 896 return spt; 897 } 898 899 #define pt_entry_size_shift(spt) \ 900 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 901 902 #define pt_entries(spt) \ 903 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 904 905 #define for_each_present_guest_entry(spt, e, i) \ 906 for (i = 0; i < pt_entries(spt); \ 907 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 908 if (!ppgtt_get_guest_entry(spt, e, i) && \ 909 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 910 911 #define for_each_present_shadow_entry(spt, e, i) \ 912 for (i = 0; i < pt_entries(spt); \ 913 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 914 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 915 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 916 917 #define for_each_shadow_entry(spt, e, i) \ 918 for (i = 0; i < pt_entries(spt); \ 919 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 920 if (!ppgtt_get_shadow_entry(spt, e, i)) 921 922 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 923 { 924 int v = atomic_read(&spt->refcount); 925 926 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 927 atomic_inc(&spt->refcount); 928 } 929 930 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 931 { 932 int v = atomic_read(&spt->refcount); 933 934 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 935 return atomic_dec_return(&spt->refcount); 936 } 937 938 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 939 940 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 941 struct intel_gvt_gtt_entry *e) 942 { 943 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 944 struct intel_vgpu_ppgtt_spt *s; 945 enum intel_gvt_gtt_type cur_pt_type; 946 947 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 948 949 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 950 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 951 cur_pt_type = get_next_pt_type(e->type); 952 953 if (!gtt_type_is_pt(cur_pt_type) || 954 !gtt_type_is_pt(cur_pt_type + 1)) { 955 WARN(1, "Invalid page table type, cur_pt_type is: %d\n", cur_pt_type); 956 return -EINVAL; 957 } 958 959 cur_pt_type += 1; 960 961 if (ops->get_pfn(e) == 962 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 963 return 0; 964 } 965 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 966 if (!s) { 967 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 968 ops->get_pfn(e)); 969 return -ENXIO; 970 } 971 return ppgtt_invalidate_spt(s); 972 } 973 974 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 975 struct intel_gvt_gtt_entry *entry) 976 { 977 struct intel_vgpu *vgpu = spt->vgpu; 978 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 979 unsigned long pfn; 980 int type; 981 982 pfn = ops->get_pfn(entry); 983 type = spt->shadow_page.type; 984 985 /* Uninitialized spte or unshadowed spte. */ 986 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 987 return; 988 989 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 990 } 991 992 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 993 { 994 struct intel_vgpu *vgpu = spt->vgpu; 995 struct intel_gvt_gtt_entry e; 996 unsigned long index; 997 int ret; 998 999 trace_spt_change(spt->vgpu->id, "die", spt, 1000 spt->guest_page.gfn, spt->shadow_page.type); 1001 1002 if (ppgtt_put_spt(spt) > 0) 1003 return 0; 1004 1005 for_each_present_shadow_entry(spt, &e, index) { 1006 switch (e.type) { 1007 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1008 gvt_vdbg_mm("invalidate 4K entry\n"); 1009 ppgtt_invalidate_pte(spt, &e); 1010 break; 1011 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1012 /* We don't setup 64K shadow entry so far. */ 1013 WARN(1, "suspicious 64K gtt entry\n"); 1014 continue; 1015 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1016 gvt_vdbg_mm("invalidate 2M entry\n"); 1017 continue; 1018 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1019 WARN(1, "GVT doesn't support 1GB page\n"); 1020 continue; 1021 case GTT_TYPE_PPGTT_PML4_ENTRY: 1022 case GTT_TYPE_PPGTT_PDP_ENTRY: 1023 case GTT_TYPE_PPGTT_PDE_ENTRY: 1024 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1025 ret = ppgtt_invalidate_spt_by_shadow_entry( 1026 spt->vgpu, &e); 1027 if (ret) 1028 goto fail; 1029 break; 1030 default: 1031 GEM_BUG_ON(1); 1032 } 1033 } 1034 1035 trace_spt_change(spt->vgpu->id, "release", spt, 1036 spt->guest_page.gfn, spt->shadow_page.type); 1037 ppgtt_free_spt(spt); 1038 return 0; 1039 fail: 1040 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1041 spt, e.val64, e.type); 1042 return ret; 1043 } 1044 1045 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1046 { 1047 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1048 1049 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) { 1050 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1051 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1052 1053 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1054 } else if (INTEL_GEN(dev_priv) >= 11) { 1055 /* 64K paging only controlled by IPS bit in PTE now. */ 1056 return true; 1057 } else 1058 return false; 1059 } 1060 1061 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1062 1063 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1064 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1065 { 1066 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1067 struct intel_vgpu_ppgtt_spt *spt = NULL; 1068 bool ips = false; 1069 int ret; 1070 1071 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1072 1073 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1074 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1075 1076 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1077 if (spt) { 1078 ppgtt_get_spt(spt); 1079 1080 if (ips != spt->guest_page.pde_ips) { 1081 spt->guest_page.pde_ips = ips; 1082 1083 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1084 clear_page(spt->shadow_page.vaddr); 1085 ret = ppgtt_populate_spt(spt); 1086 if (ret) { 1087 ppgtt_put_spt(spt); 1088 goto err; 1089 } 1090 } 1091 } else { 1092 int type = get_next_pt_type(we->type); 1093 1094 if (!gtt_type_is_pt(type)) { 1095 ret = -EINVAL; 1096 goto err; 1097 } 1098 1099 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1100 if (IS_ERR(spt)) { 1101 ret = PTR_ERR(spt); 1102 goto err; 1103 } 1104 1105 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1106 if (ret) 1107 goto err_free_spt; 1108 1109 ret = ppgtt_populate_spt(spt); 1110 if (ret) 1111 goto err_free_spt; 1112 1113 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1114 spt->shadow_page.type); 1115 } 1116 return spt; 1117 1118 err_free_spt: 1119 ppgtt_free_spt(spt); 1120 spt = NULL; 1121 err: 1122 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1123 spt, we->val64, we->type); 1124 return ERR_PTR(ret); 1125 } 1126 1127 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1128 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1129 { 1130 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1131 1132 se->type = ge->type; 1133 se->val64 = ge->val64; 1134 1135 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1136 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1137 ops->clear_ips(se); 1138 1139 ops->set_pfn(se, s->shadow_page.mfn); 1140 } 1141 1142 /** 1143 * Check if can do 2M page 1144 * @vgpu: target vgpu 1145 * @entry: target pfn's gtt entry 1146 * 1147 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition, 1148 * negtive if found err. 1149 */ 1150 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1151 struct intel_gvt_gtt_entry *entry) 1152 { 1153 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1154 unsigned long pfn; 1155 1156 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M)) 1157 return 0; 1158 1159 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); 1160 if (pfn == INTEL_GVT_INVALID_ADDR) 1161 return -EINVAL; 1162 1163 return PageTransHuge(pfn_to_page(pfn)); 1164 } 1165 1166 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1167 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1168 struct intel_gvt_gtt_entry *se) 1169 { 1170 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1171 struct intel_vgpu_ppgtt_spt *sub_spt; 1172 struct intel_gvt_gtt_entry sub_se; 1173 unsigned long start_gfn; 1174 dma_addr_t dma_addr; 1175 unsigned long sub_index; 1176 int ret; 1177 1178 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1179 1180 start_gfn = ops->get_pfn(se); 1181 1182 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1183 if (IS_ERR(sub_spt)) 1184 return PTR_ERR(sub_spt); 1185 1186 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1187 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1188 start_gfn + sub_index, PAGE_SIZE, &dma_addr); 1189 if (ret) { 1190 ppgtt_invalidate_spt(spt); 1191 return ret; 1192 } 1193 sub_se.val64 = se->val64; 1194 1195 /* Copy the PAT field from PDE. */ 1196 sub_se.val64 &= ~_PAGE_PAT; 1197 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1198 1199 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1200 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1201 } 1202 1203 /* Clear dirty field. */ 1204 se->val64 &= ~_PAGE_DIRTY; 1205 1206 ops->clear_pse(se); 1207 ops->clear_ips(se); 1208 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1209 ppgtt_set_shadow_entry(spt, se, index); 1210 return 0; 1211 } 1212 1213 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1214 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1215 struct intel_gvt_gtt_entry *se) 1216 { 1217 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1218 struct intel_gvt_gtt_entry entry = *se; 1219 unsigned long start_gfn; 1220 dma_addr_t dma_addr; 1221 int i, ret; 1222 1223 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1224 1225 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1226 1227 start_gfn = ops->get_pfn(se); 1228 1229 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1230 ops->set_64k_splited(&entry); 1231 1232 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1233 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1234 start_gfn + i, PAGE_SIZE, &dma_addr); 1235 if (ret) 1236 return ret; 1237 1238 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1239 ppgtt_set_shadow_entry(spt, &entry, index + i); 1240 } 1241 return 0; 1242 } 1243 1244 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1245 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1246 struct intel_gvt_gtt_entry *ge) 1247 { 1248 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1249 struct intel_gvt_gtt_entry se = *ge; 1250 unsigned long gfn, page_size = PAGE_SIZE; 1251 dma_addr_t dma_addr; 1252 int ret; 1253 1254 if (!pte_ops->test_present(ge)) 1255 return 0; 1256 1257 gfn = pte_ops->get_pfn(ge); 1258 1259 switch (ge->type) { 1260 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1261 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1262 break; 1263 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1264 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1265 /* 1266 * The layout of 64K page is special, the page size is 1267 * controlled by uper PDE. To be simple, we always split 1268 * 64K page to smaller 4K pages in shadow PT. 1269 */ 1270 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1271 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1272 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1273 ret = is_2MB_gtt_possible(vgpu, ge); 1274 if (ret == 0) 1275 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1276 else if (ret < 0) 1277 return ret; 1278 page_size = I915_GTT_PAGE_SIZE_2M; 1279 break; 1280 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1281 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1282 return -EINVAL; 1283 default: 1284 GEM_BUG_ON(1); 1285 } 1286 1287 /* direct shadow */ 1288 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, 1289 &dma_addr); 1290 if (ret) 1291 return -ENXIO; 1292 1293 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1294 ppgtt_set_shadow_entry(spt, &se, index); 1295 return 0; 1296 } 1297 1298 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1299 { 1300 struct intel_vgpu *vgpu = spt->vgpu; 1301 struct intel_gvt *gvt = vgpu->gvt; 1302 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1303 struct intel_vgpu_ppgtt_spt *s; 1304 struct intel_gvt_gtt_entry se, ge; 1305 unsigned long gfn, i; 1306 int ret; 1307 1308 trace_spt_change(spt->vgpu->id, "born", spt, 1309 spt->guest_page.gfn, spt->shadow_page.type); 1310 1311 for_each_present_guest_entry(spt, &ge, i) { 1312 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1313 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1314 if (IS_ERR(s)) { 1315 ret = PTR_ERR(s); 1316 goto fail; 1317 } 1318 ppgtt_get_shadow_entry(spt, &se, i); 1319 ppgtt_generate_shadow_entry(&se, s, &ge); 1320 ppgtt_set_shadow_entry(spt, &se, i); 1321 } else { 1322 gfn = ops->get_pfn(&ge); 1323 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 1324 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1325 ppgtt_set_shadow_entry(spt, &se, i); 1326 continue; 1327 } 1328 1329 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1330 if (ret) 1331 goto fail; 1332 } 1333 } 1334 return 0; 1335 fail: 1336 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1337 spt, ge.val64, ge.type); 1338 return ret; 1339 } 1340 1341 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1342 struct intel_gvt_gtt_entry *se, unsigned long index) 1343 { 1344 struct intel_vgpu *vgpu = spt->vgpu; 1345 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1346 int ret; 1347 1348 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1349 spt->shadow_page.type, se->val64, index); 1350 1351 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1352 se->type, index, se->val64); 1353 1354 if (!ops->test_present(se)) 1355 return 0; 1356 1357 if (ops->get_pfn(se) == 1358 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1359 return 0; 1360 1361 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1362 struct intel_vgpu_ppgtt_spt *s = 1363 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1364 if (!s) { 1365 gvt_vgpu_err("fail to find guest page\n"); 1366 ret = -ENXIO; 1367 goto fail; 1368 } 1369 ret = ppgtt_invalidate_spt(s); 1370 if (ret) 1371 goto fail; 1372 } else { 1373 /* We don't setup 64K shadow entry so far. */ 1374 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1375 "suspicious 64K entry\n"); 1376 ppgtt_invalidate_pte(spt, se); 1377 } 1378 1379 return 0; 1380 fail: 1381 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1382 spt, se->val64, se->type); 1383 return ret; 1384 } 1385 1386 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1387 struct intel_gvt_gtt_entry *we, unsigned long index) 1388 { 1389 struct intel_vgpu *vgpu = spt->vgpu; 1390 struct intel_gvt_gtt_entry m; 1391 struct intel_vgpu_ppgtt_spt *s; 1392 int ret; 1393 1394 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1395 we->val64, index); 1396 1397 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1398 we->type, index, we->val64); 1399 1400 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1401 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1402 if (IS_ERR(s)) { 1403 ret = PTR_ERR(s); 1404 goto fail; 1405 } 1406 ppgtt_get_shadow_entry(spt, &m, index); 1407 ppgtt_generate_shadow_entry(&m, s, we); 1408 ppgtt_set_shadow_entry(spt, &m, index); 1409 } else { 1410 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1411 if (ret) 1412 goto fail; 1413 } 1414 return 0; 1415 fail: 1416 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1417 spt, we->val64, we->type); 1418 return ret; 1419 } 1420 1421 static int sync_oos_page(struct intel_vgpu *vgpu, 1422 struct intel_vgpu_oos_page *oos_page) 1423 { 1424 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1425 struct intel_gvt *gvt = vgpu->gvt; 1426 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1427 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1428 struct intel_gvt_gtt_entry old, new; 1429 int index; 1430 int ret; 1431 1432 trace_oos_change(vgpu->id, "sync", oos_page->id, 1433 spt, spt->guest_page.type); 1434 1435 old.type = new.type = get_entry_type(spt->guest_page.type); 1436 old.val64 = new.val64 = 0; 1437 1438 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1439 info->gtt_entry_size_shift); index++) { 1440 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1441 ops->get_entry(NULL, &new, index, true, 1442 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1443 1444 if (old.val64 == new.val64 1445 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1446 continue; 1447 1448 trace_oos_sync(vgpu->id, oos_page->id, 1449 spt, spt->guest_page.type, 1450 new.val64, index); 1451 1452 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1453 if (ret) 1454 return ret; 1455 1456 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1457 } 1458 1459 spt->guest_page.write_cnt = 0; 1460 list_del_init(&spt->post_shadow_list); 1461 return 0; 1462 } 1463 1464 static int detach_oos_page(struct intel_vgpu *vgpu, 1465 struct intel_vgpu_oos_page *oos_page) 1466 { 1467 struct intel_gvt *gvt = vgpu->gvt; 1468 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1469 1470 trace_oos_change(vgpu->id, "detach", oos_page->id, 1471 spt, spt->guest_page.type); 1472 1473 spt->guest_page.write_cnt = 0; 1474 spt->guest_page.oos_page = NULL; 1475 oos_page->spt = NULL; 1476 1477 list_del_init(&oos_page->vm_list); 1478 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1479 1480 return 0; 1481 } 1482 1483 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1484 struct intel_vgpu_ppgtt_spt *spt) 1485 { 1486 struct intel_gvt *gvt = spt->vgpu->gvt; 1487 int ret; 1488 1489 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, 1490 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1491 oos_page->mem, I915_GTT_PAGE_SIZE); 1492 if (ret) 1493 return ret; 1494 1495 oos_page->spt = spt; 1496 spt->guest_page.oos_page = oos_page; 1497 1498 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1499 1500 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1501 spt, spt->guest_page.type); 1502 return 0; 1503 } 1504 1505 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1506 { 1507 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1508 int ret; 1509 1510 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1511 if (ret) 1512 return ret; 1513 1514 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1515 spt, spt->guest_page.type); 1516 1517 list_del_init(&oos_page->vm_list); 1518 return sync_oos_page(spt->vgpu, oos_page); 1519 } 1520 1521 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1522 { 1523 struct intel_gvt *gvt = spt->vgpu->gvt; 1524 struct intel_gvt_gtt *gtt = &gvt->gtt; 1525 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1526 int ret; 1527 1528 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1529 1530 if (list_empty(>t->oos_page_free_list_head)) { 1531 oos_page = container_of(gtt->oos_page_use_list_head.next, 1532 struct intel_vgpu_oos_page, list); 1533 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1534 if (ret) 1535 return ret; 1536 ret = detach_oos_page(spt->vgpu, oos_page); 1537 if (ret) 1538 return ret; 1539 } else 1540 oos_page = container_of(gtt->oos_page_free_list_head.next, 1541 struct intel_vgpu_oos_page, list); 1542 return attach_oos_page(oos_page, spt); 1543 } 1544 1545 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1546 { 1547 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1548 1549 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1550 return -EINVAL; 1551 1552 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1553 spt, spt->guest_page.type); 1554 1555 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1556 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1557 } 1558 1559 /** 1560 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1561 * @vgpu: a vGPU 1562 * 1563 * This function is called before submitting a guest workload to host, 1564 * to sync all the out-of-synced shadow for vGPU 1565 * 1566 * Returns: 1567 * Zero on success, negative error code if failed. 1568 */ 1569 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1570 { 1571 struct list_head *pos, *n; 1572 struct intel_vgpu_oos_page *oos_page; 1573 int ret; 1574 1575 if (!enable_out_of_sync) 1576 return 0; 1577 1578 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1579 oos_page = container_of(pos, 1580 struct intel_vgpu_oos_page, vm_list); 1581 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1582 if (ret) 1583 return ret; 1584 } 1585 return 0; 1586 } 1587 1588 /* 1589 * The heart of PPGTT shadow page table. 1590 */ 1591 static int ppgtt_handle_guest_write_page_table( 1592 struct intel_vgpu_ppgtt_spt *spt, 1593 struct intel_gvt_gtt_entry *we, unsigned long index) 1594 { 1595 struct intel_vgpu *vgpu = spt->vgpu; 1596 int type = spt->shadow_page.type; 1597 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1598 struct intel_gvt_gtt_entry old_se; 1599 int new_present; 1600 int i, ret; 1601 1602 new_present = ops->test_present(we); 1603 1604 /* 1605 * Adding the new entry first and then removing the old one, that can 1606 * guarantee the ppgtt table is validated during the window between 1607 * adding and removal. 1608 */ 1609 ppgtt_get_shadow_entry(spt, &old_se, index); 1610 1611 if (new_present) { 1612 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1613 if (ret) 1614 goto fail; 1615 } 1616 1617 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1618 if (ret) 1619 goto fail; 1620 1621 if (!new_present) { 1622 /* For 64KB splited entries, we need clear them all. */ 1623 if (ops->test_64k_splited(&old_se) && 1624 !(index % GTT_64K_PTE_STRIDE)) { 1625 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1626 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1627 ops->clear_64k_splited(&old_se); 1628 ops->set_pfn(&old_se, 1629 vgpu->gtt.scratch_pt[type].page_mfn); 1630 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1631 } 1632 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1633 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1634 ops->clear_pse(&old_se); 1635 ops->set_pfn(&old_se, 1636 vgpu->gtt.scratch_pt[type].page_mfn); 1637 ppgtt_set_shadow_entry(spt, &old_se, index); 1638 } else { 1639 ops->set_pfn(&old_se, 1640 vgpu->gtt.scratch_pt[type].page_mfn); 1641 ppgtt_set_shadow_entry(spt, &old_se, index); 1642 } 1643 } 1644 1645 return 0; 1646 fail: 1647 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1648 spt, we->val64, we->type); 1649 return ret; 1650 } 1651 1652 1653 1654 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1655 { 1656 return enable_out_of_sync 1657 && gtt_type_is_pte_pt(spt->guest_page.type) 1658 && spt->guest_page.write_cnt >= 2; 1659 } 1660 1661 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1662 unsigned long index) 1663 { 1664 set_bit(index, spt->post_shadow_bitmap); 1665 if (!list_empty(&spt->post_shadow_list)) 1666 return; 1667 1668 list_add_tail(&spt->post_shadow_list, 1669 &spt->vgpu->gtt.post_shadow_list_head); 1670 } 1671 1672 /** 1673 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1674 * @vgpu: a vGPU 1675 * 1676 * This function is called before submitting a guest workload to host, 1677 * to flush all the post shadows for a vGPU. 1678 * 1679 * Returns: 1680 * Zero on success, negative error code if failed. 1681 */ 1682 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1683 { 1684 struct list_head *pos, *n; 1685 struct intel_vgpu_ppgtt_spt *spt; 1686 struct intel_gvt_gtt_entry ge; 1687 unsigned long index; 1688 int ret; 1689 1690 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1691 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1692 post_shadow_list); 1693 1694 for_each_set_bit(index, spt->post_shadow_bitmap, 1695 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1696 ppgtt_get_guest_entry(spt, &ge, index); 1697 1698 ret = ppgtt_handle_guest_write_page_table(spt, 1699 &ge, index); 1700 if (ret) 1701 return ret; 1702 clear_bit(index, spt->post_shadow_bitmap); 1703 } 1704 list_del_init(&spt->post_shadow_list); 1705 } 1706 return 0; 1707 } 1708 1709 static int ppgtt_handle_guest_write_page_table_bytes( 1710 struct intel_vgpu_ppgtt_spt *spt, 1711 u64 pa, void *p_data, int bytes) 1712 { 1713 struct intel_vgpu *vgpu = spt->vgpu; 1714 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1715 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1716 struct intel_gvt_gtt_entry we, se; 1717 unsigned long index; 1718 int ret; 1719 1720 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1721 1722 ppgtt_get_guest_entry(spt, &we, index); 1723 1724 /* 1725 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1726 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1727 * ignored. 1728 */ 1729 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1730 (index % GTT_64K_PTE_STRIDE)) { 1731 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1732 index); 1733 return 0; 1734 } 1735 1736 if (bytes == info->gtt_entry_size) { 1737 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1738 if (ret) 1739 return ret; 1740 } else { 1741 if (!test_bit(index, spt->post_shadow_bitmap)) { 1742 int type = spt->shadow_page.type; 1743 1744 ppgtt_get_shadow_entry(spt, &se, index); 1745 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1746 if (ret) 1747 return ret; 1748 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1749 ppgtt_set_shadow_entry(spt, &se, index); 1750 } 1751 ppgtt_set_post_shadow(spt, index); 1752 } 1753 1754 if (!enable_out_of_sync) 1755 return 0; 1756 1757 spt->guest_page.write_cnt++; 1758 1759 if (spt->guest_page.oos_page) 1760 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1761 false, 0, vgpu); 1762 1763 if (can_do_out_of_sync(spt)) { 1764 if (!spt->guest_page.oos_page) 1765 ppgtt_allocate_oos_page(spt); 1766 1767 ret = ppgtt_set_guest_page_oos(spt); 1768 if (ret < 0) 1769 return ret; 1770 } 1771 return 0; 1772 } 1773 1774 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1775 { 1776 struct intel_vgpu *vgpu = mm->vgpu; 1777 struct intel_gvt *gvt = vgpu->gvt; 1778 struct intel_gvt_gtt *gtt = &gvt->gtt; 1779 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1780 struct intel_gvt_gtt_entry se; 1781 int index; 1782 1783 if (!mm->ppgtt_mm.shadowed) 1784 return; 1785 1786 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1787 ppgtt_get_shadow_root_entry(mm, &se, index); 1788 1789 if (!ops->test_present(&se)) 1790 continue; 1791 1792 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1793 se.val64 = 0; 1794 ppgtt_set_shadow_root_entry(mm, &se, index); 1795 1796 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1797 NULL, se.type, se.val64, index); 1798 } 1799 1800 mm->ppgtt_mm.shadowed = false; 1801 } 1802 1803 1804 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1805 { 1806 struct intel_vgpu *vgpu = mm->vgpu; 1807 struct intel_gvt *gvt = vgpu->gvt; 1808 struct intel_gvt_gtt *gtt = &gvt->gtt; 1809 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1810 struct intel_vgpu_ppgtt_spt *spt; 1811 struct intel_gvt_gtt_entry ge, se; 1812 int index, ret; 1813 1814 if (mm->ppgtt_mm.shadowed) 1815 return 0; 1816 1817 mm->ppgtt_mm.shadowed = true; 1818 1819 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1820 ppgtt_get_guest_root_entry(mm, &ge, index); 1821 1822 if (!ops->test_present(&ge)) 1823 continue; 1824 1825 trace_spt_guest_change(vgpu->id, __func__, NULL, 1826 ge.type, ge.val64, index); 1827 1828 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1829 if (IS_ERR(spt)) { 1830 gvt_vgpu_err("fail to populate guest root pointer\n"); 1831 ret = PTR_ERR(spt); 1832 goto fail; 1833 } 1834 ppgtt_generate_shadow_entry(&se, spt, &ge); 1835 ppgtt_set_shadow_root_entry(mm, &se, index); 1836 1837 trace_spt_guest_change(vgpu->id, "populate root pointer", 1838 NULL, se.type, se.val64, index); 1839 } 1840 1841 return 0; 1842 fail: 1843 invalidate_ppgtt_mm(mm); 1844 return ret; 1845 } 1846 1847 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1848 { 1849 struct intel_vgpu_mm *mm; 1850 1851 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1852 if (!mm) 1853 return NULL; 1854 1855 mm->vgpu = vgpu; 1856 kref_init(&mm->ref); 1857 atomic_set(&mm->pincount, 0); 1858 1859 return mm; 1860 } 1861 1862 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1863 { 1864 kfree(mm); 1865 } 1866 1867 /** 1868 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1869 * @vgpu: a vGPU 1870 * @root_entry_type: ppgtt root entry type 1871 * @pdps: guest pdps. 1872 * 1873 * This function is used to create a ppgtt mm object for a vGPU. 1874 * 1875 * Returns: 1876 * Zero on success, negative error code in pointer if failed. 1877 */ 1878 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1879 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1880 { 1881 struct intel_gvt *gvt = vgpu->gvt; 1882 struct intel_vgpu_mm *mm; 1883 int ret; 1884 1885 mm = vgpu_alloc_mm(vgpu); 1886 if (!mm) 1887 return ERR_PTR(-ENOMEM); 1888 1889 mm->type = INTEL_GVT_MM_PPGTT; 1890 1891 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1892 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1893 mm->ppgtt_mm.root_entry_type = root_entry_type; 1894 1895 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1896 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1897 1898 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1899 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1900 else 1901 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1902 sizeof(mm->ppgtt_mm.guest_pdps)); 1903 1904 ret = shadow_ppgtt_mm(mm); 1905 if (ret) { 1906 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1907 vgpu_free_mm(mm); 1908 return ERR_PTR(ret); 1909 } 1910 1911 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1912 1913 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1914 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1915 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1916 1917 return mm; 1918 } 1919 1920 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1921 { 1922 struct intel_vgpu_mm *mm; 1923 unsigned long nr_entries; 1924 1925 mm = vgpu_alloc_mm(vgpu); 1926 if (!mm) 1927 return ERR_PTR(-ENOMEM); 1928 1929 mm->type = INTEL_GVT_MM_GGTT; 1930 1931 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1932 mm->ggtt_mm.virtual_ggtt = 1933 vzalloc(array_size(nr_entries, 1934 vgpu->gvt->device_info.gtt_entry_size)); 1935 if (!mm->ggtt_mm.virtual_ggtt) { 1936 vgpu_free_mm(mm); 1937 return ERR_PTR(-ENOMEM); 1938 } 1939 1940 return mm; 1941 } 1942 1943 /** 1944 * _intel_vgpu_mm_release - destroy a mm object 1945 * @mm_ref: a kref object 1946 * 1947 * This function is used to destroy a mm object for vGPU 1948 * 1949 */ 1950 void _intel_vgpu_mm_release(struct kref *mm_ref) 1951 { 1952 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1953 1954 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1955 gvt_err("vgpu mm pin count bug detected\n"); 1956 1957 if (mm->type == INTEL_GVT_MM_PPGTT) { 1958 list_del(&mm->ppgtt_mm.list); 1959 1960 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1961 list_del(&mm->ppgtt_mm.lru_list); 1962 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1963 1964 invalidate_ppgtt_mm(mm); 1965 } else { 1966 vfree(mm->ggtt_mm.virtual_ggtt); 1967 } 1968 1969 vgpu_free_mm(mm); 1970 } 1971 1972 /** 1973 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 1974 * @mm: a vGPU mm object 1975 * 1976 * This function is called when user doesn't want to use a vGPU mm object 1977 */ 1978 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 1979 { 1980 atomic_dec_if_positive(&mm->pincount); 1981 } 1982 1983 /** 1984 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 1985 * @mm: target vgpu mm 1986 * 1987 * This function is called when user wants to use a vGPU mm object. If this 1988 * mm object hasn't been shadowed yet, the shadow will be populated at this 1989 * time. 1990 * 1991 * Returns: 1992 * Zero on success, negative error code if failed. 1993 */ 1994 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 1995 { 1996 int ret; 1997 1998 atomic_inc(&mm->pincount); 1999 2000 if (mm->type == INTEL_GVT_MM_PPGTT) { 2001 ret = shadow_ppgtt_mm(mm); 2002 if (ret) 2003 return ret; 2004 2005 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2006 list_move_tail(&mm->ppgtt_mm.lru_list, 2007 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2008 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2009 } 2010 2011 return 0; 2012 } 2013 2014 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2015 { 2016 struct intel_vgpu_mm *mm; 2017 struct list_head *pos, *n; 2018 2019 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2020 2021 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2022 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2023 2024 if (atomic_read(&mm->pincount)) 2025 continue; 2026 2027 list_del_init(&mm->ppgtt_mm.lru_list); 2028 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2029 invalidate_ppgtt_mm(mm); 2030 return 1; 2031 } 2032 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2033 return 0; 2034 } 2035 2036 /* 2037 * GMA translation APIs. 2038 */ 2039 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2040 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2041 { 2042 struct intel_vgpu *vgpu = mm->vgpu; 2043 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2044 struct intel_vgpu_ppgtt_spt *s; 2045 2046 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2047 if (!s) 2048 return -ENXIO; 2049 2050 if (!guest) 2051 ppgtt_get_shadow_entry(s, e, index); 2052 else 2053 ppgtt_get_guest_entry(s, e, index); 2054 return 0; 2055 } 2056 2057 /** 2058 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2059 * @mm: mm object. could be a PPGTT or GGTT mm object 2060 * @gma: graphics memory address in this mm object 2061 * 2062 * This function is used to translate a graphics memory address in specific 2063 * graphics memory space to guest physical address. 2064 * 2065 * Returns: 2066 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2067 */ 2068 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2069 { 2070 struct intel_vgpu *vgpu = mm->vgpu; 2071 struct intel_gvt *gvt = vgpu->gvt; 2072 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2073 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2074 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2075 unsigned long gma_index[4]; 2076 struct intel_gvt_gtt_entry e; 2077 int i, levels = 0; 2078 int ret; 2079 2080 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2081 mm->type != INTEL_GVT_MM_PPGTT); 2082 2083 if (mm->type == INTEL_GVT_MM_GGTT) { 2084 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2085 goto err; 2086 2087 ggtt_get_guest_entry(mm, &e, 2088 gma_ops->gma_to_ggtt_pte_index(gma)); 2089 2090 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2091 + (gma & ~I915_GTT_PAGE_MASK); 2092 2093 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2094 } else { 2095 switch (mm->ppgtt_mm.root_entry_type) { 2096 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2097 ppgtt_get_shadow_root_entry(mm, &e, 0); 2098 2099 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2100 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2101 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2102 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2103 levels = 4; 2104 break; 2105 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2106 ppgtt_get_shadow_root_entry(mm, &e, 2107 gma_ops->gma_to_l3_pdp_index(gma)); 2108 2109 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2110 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2111 levels = 2; 2112 break; 2113 default: 2114 GEM_BUG_ON(1); 2115 } 2116 2117 /* walk the shadow page table and get gpa from guest entry */ 2118 for (i = 0; i < levels; i++) { 2119 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2120 (i == levels - 1)); 2121 if (ret) 2122 goto err; 2123 2124 if (!pte_ops->test_present(&e)) { 2125 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2126 goto err; 2127 } 2128 } 2129 2130 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2131 (gma & ~I915_GTT_PAGE_MASK); 2132 trace_gma_translate(vgpu->id, "ppgtt", 0, 2133 mm->ppgtt_mm.root_entry_type, gma, gpa); 2134 } 2135 2136 return gpa; 2137 err: 2138 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2139 return INTEL_GVT_INVALID_ADDR; 2140 } 2141 2142 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2143 unsigned int off, void *p_data, unsigned int bytes) 2144 { 2145 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2146 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2147 unsigned long index = off >> info->gtt_entry_size_shift; 2148 unsigned long gma; 2149 struct intel_gvt_gtt_entry e; 2150 2151 if (bytes != 4 && bytes != 8) 2152 return -EINVAL; 2153 2154 gma = index << I915_GTT_PAGE_SHIFT; 2155 if (!intel_gvt_ggtt_validate_range(vgpu, 2156 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2157 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2158 memset(p_data, 0, bytes); 2159 return 0; 2160 } 2161 2162 ggtt_get_guest_entry(ggtt_mm, &e, index); 2163 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2164 bytes); 2165 return 0; 2166 } 2167 2168 /** 2169 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 2170 * @vgpu: a vGPU 2171 * @off: register offset 2172 * @p_data: data will be returned to guest 2173 * @bytes: data length 2174 * 2175 * This function is used to emulate the GTT MMIO register read 2176 * 2177 * Returns: 2178 * Zero on success, error code if failed. 2179 */ 2180 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2181 void *p_data, unsigned int bytes) 2182 { 2183 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2184 int ret; 2185 2186 if (bytes != 4 && bytes != 8) 2187 return -EINVAL; 2188 2189 off -= info->gtt_start_offset; 2190 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2191 return ret; 2192 } 2193 2194 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2195 struct intel_gvt_gtt_entry *entry) 2196 { 2197 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2198 unsigned long pfn; 2199 2200 pfn = pte_ops->get_pfn(entry); 2201 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2202 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, 2203 pfn << PAGE_SHIFT); 2204 } 2205 2206 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2207 void *p_data, unsigned int bytes) 2208 { 2209 struct intel_gvt *gvt = vgpu->gvt; 2210 const struct intel_gvt_device_info *info = &gvt->device_info; 2211 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2212 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2213 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2214 unsigned long gma, gfn; 2215 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2216 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2217 dma_addr_t dma_addr; 2218 int ret; 2219 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2220 bool partial_update = false; 2221 2222 if (bytes != 4 && bytes != 8) 2223 return -EINVAL; 2224 2225 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2226 2227 /* the VM may configure the whole GM space when ballooning is used */ 2228 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2229 return 0; 2230 2231 e.type = GTT_TYPE_GGTT_PTE; 2232 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2233 bytes); 2234 2235 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2236 * write, save the first 4 bytes in a list and update virtual 2237 * PTE. Only update shadow PTE when the second 4 bytes comes. 2238 */ 2239 if (bytes < info->gtt_entry_size) { 2240 bool found = false; 2241 2242 list_for_each_entry_safe(pos, n, 2243 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2244 if (g_gtt_index == pos->offset >> 2245 info->gtt_entry_size_shift) { 2246 if (off != pos->offset) { 2247 /* the second partial part*/ 2248 int last_off = pos->offset & 2249 (info->gtt_entry_size - 1); 2250 2251 memcpy((void *)&e.val64 + last_off, 2252 (void *)&pos->data + last_off, 2253 bytes); 2254 2255 list_del(&pos->list); 2256 kfree(pos); 2257 found = true; 2258 break; 2259 } 2260 2261 /* update of the first partial part */ 2262 pos->data = e.val64; 2263 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2264 return 0; 2265 } 2266 } 2267 2268 if (!found) { 2269 /* the first partial part */ 2270 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2271 if (!partial_pte) 2272 return -ENOMEM; 2273 partial_pte->offset = off; 2274 partial_pte->data = e.val64; 2275 list_add_tail(&partial_pte->list, 2276 &ggtt_mm->ggtt_mm.partial_pte_list); 2277 partial_update = true; 2278 } 2279 } 2280 2281 if (!partial_update && (ops->test_present(&e))) { 2282 gfn = ops->get_pfn(&e); 2283 m.val64 = e.val64; 2284 m.type = e.type; 2285 2286 /* one PTE update may be issued in multiple writes and the 2287 * first write may not construct a valid gfn 2288 */ 2289 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 2290 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2291 goto out; 2292 } 2293 2294 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, 2295 PAGE_SIZE, &dma_addr); 2296 if (ret) { 2297 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2298 /* guest driver may read/write the entry when partial 2299 * update the entry in this situation p2m will fail 2300 * settting the shadow entry to point to a scratch page 2301 */ 2302 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2303 } else 2304 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2305 } else { 2306 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2307 ops->clear_present(&m); 2308 } 2309 2310 out: 2311 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2312 2313 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2314 ggtt_invalidate_pte(vgpu, &e); 2315 2316 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2317 ggtt_invalidate(gvt->dev_priv); 2318 return 0; 2319 } 2320 2321 /* 2322 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2323 * @vgpu: a vGPU 2324 * @off: register offset 2325 * @p_data: data from guest write 2326 * @bytes: data length 2327 * 2328 * This function is used to emulate the GTT MMIO register write 2329 * 2330 * Returns: 2331 * Zero on success, error code if failed. 2332 */ 2333 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2334 unsigned int off, void *p_data, unsigned int bytes) 2335 { 2336 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2337 int ret; 2338 2339 if (bytes != 4 && bytes != 8) 2340 return -EINVAL; 2341 2342 off -= info->gtt_start_offset; 2343 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2344 return ret; 2345 } 2346 2347 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2348 enum intel_gvt_gtt_type type) 2349 { 2350 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2351 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2352 int page_entry_num = I915_GTT_PAGE_SIZE >> 2353 vgpu->gvt->device_info.gtt_entry_size_shift; 2354 void *scratch_pt; 2355 int i; 2356 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2357 dma_addr_t daddr; 2358 2359 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2360 return -EINVAL; 2361 2362 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2363 if (!scratch_pt) { 2364 gvt_vgpu_err("fail to allocate scratch page\n"); 2365 return -ENOMEM; 2366 } 2367 2368 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 2369 4096, PCI_DMA_BIDIRECTIONAL); 2370 if (dma_mapping_error(dev, daddr)) { 2371 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2372 __free_page(virt_to_page(scratch_pt)); 2373 return -ENOMEM; 2374 } 2375 gtt->scratch_pt[type].page_mfn = 2376 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2377 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2378 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2379 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2380 2381 /* Build the tree by full filled the scratch pt with the entries which 2382 * point to the next level scratch pt or scratch page. The 2383 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2384 * 'type' pt. 2385 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2386 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2387 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2388 */ 2389 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2390 struct intel_gvt_gtt_entry se; 2391 2392 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2393 se.type = get_entry_type(type - 1); 2394 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2395 2396 /* The entry parameters like present/writeable/cache type 2397 * set to the same as i915's scratch page tree. 2398 */ 2399 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 2400 if (type == GTT_TYPE_PPGTT_PDE_PT) 2401 se.val64 |= PPAT_CACHED; 2402 2403 for (i = 0; i < page_entry_num; i++) 2404 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2405 } 2406 2407 return 0; 2408 } 2409 2410 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2411 { 2412 int i; 2413 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2414 dma_addr_t daddr; 2415 2416 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2417 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2418 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2419 I915_GTT_PAGE_SHIFT); 2420 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2421 __free_page(vgpu->gtt.scratch_pt[i].page); 2422 vgpu->gtt.scratch_pt[i].page = NULL; 2423 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2424 } 2425 } 2426 2427 return 0; 2428 } 2429 2430 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2431 { 2432 int i, ret; 2433 2434 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2435 ret = alloc_scratch_pages(vgpu, i); 2436 if (ret) 2437 goto err; 2438 } 2439 2440 return 0; 2441 2442 err: 2443 release_scratch_page_tree(vgpu); 2444 return ret; 2445 } 2446 2447 /** 2448 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2449 * @vgpu: a vGPU 2450 * 2451 * This function is used to initialize per-vGPU graphics memory virtualization 2452 * components. 2453 * 2454 * Returns: 2455 * Zero on success, error code if failed. 2456 */ 2457 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2458 { 2459 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2460 2461 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2462 2463 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2464 INIT_LIST_HEAD(>t->oos_page_list_head); 2465 INIT_LIST_HEAD(>t->post_shadow_list_head); 2466 2467 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2468 if (IS_ERR(gtt->ggtt_mm)) { 2469 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2470 return PTR_ERR(gtt->ggtt_mm); 2471 } 2472 2473 intel_vgpu_reset_ggtt(vgpu, false); 2474 2475 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2476 2477 return create_scratch_page_tree(vgpu); 2478 } 2479 2480 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2481 { 2482 struct list_head *pos, *n; 2483 struct intel_vgpu_mm *mm; 2484 2485 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2486 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2487 intel_vgpu_destroy_mm(mm); 2488 } 2489 2490 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2491 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2492 2493 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2494 gvt_err("Why we still has spt not freed?\n"); 2495 ppgtt_free_all_spt(vgpu); 2496 } 2497 } 2498 2499 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2500 { 2501 struct intel_gvt_partial_pte *pos, *next; 2502 2503 list_for_each_entry_safe(pos, next, 2504 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2505 list) { 2506 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2507 pos->offset, pos->data); 2508 kfree(pos); 2509 } 2510 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2511 vgpu->gtt.ggtt_mm = NULL; 2512 } 2513 2514 /** 2515 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2516 * @vgpu: a vGPU 2517 * 2518 * This function is used to clean up per-vGPU graphics memory virtualization 2519 * components. 2520 * 2521 * Returns: 2522 * Zero on success, error code if failed. 2523 */ 2524 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2525 { 2526 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2527 intel_vgpu_destroy_ggtt_mm(vgpu); 2528 release_scratch_page_tree(vgpu); 2529 } 2530 2531 static void clean_spt_oos(struct intel_gvt *gvt) 2532 { 2533 struct intel_gvt_gtt *gtt = &gvt->gtt; 2534 struct list_head *pos, *n; 2535 struct intel_vgpu_oos_page *oos_page; 2536 2537 WARN(!list_empty(>t->oos_page_use_list_head), 2538 "someone is still using oos page\n"); 2539 2540 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2541 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2542 list_del(&oos_page->list); 2543 free_page((unsigned long)oos_page->mem); 2544 kfree(oos_page); 2545 } 2546 } 2547 2548 static int setup_spt_oos(struct intel_gvt *gvt) 2549 { 2550 struct intel_gvt_gtt *gtt = &gvt->gtt; 2551 struct intel_vgpu_oos_page *oos_page; 2552 int i; 2553 int ret; 2554 2555 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2556 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2557 2558 for (i = 0; i < preallocated_oos_pages; i++) { 2559 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2560 if (!oos_page) { 2561 ret = -ENOMEM; 2562 goto fail; 2563 } 2564 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2565 if (!oos_page->mem) { 2566 ret = -ENOMEM; 2567 kfree(oos_page); 2568 goto fail; 2569 } 2570 2571 INIT_LIST_HEAD(&oos_page->list); 2572 INIT_LIST_HEAD(&oos_page->vm_list); 2573 oos_page->id = i; 2574 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2575 } 2576 2577 gvt_dbg_mm("%d oos pages preallocated\n", i); 2578 2579 return 0; 2580 fail: 2581 clean_spt_oos(gvt); 2582 return ret; 2583 } 2584 2585 /** 2586 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2587 * @vgpu: a vGPU 2588 * @pdps: pdp root array 2589 * 2590 * This function is used to find a PPGTT mm object from mm object pool 2591 * 2592 * Returns: 2593 * pointer to mm object on success, NULL if failed. 2594 */ 2595 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2596 u64 pdps[]) 2597 { 2598 struct intel_vgpu_mm *mm; 2599 struct list_head *pos; 2600 2601 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2602 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2603 2604 switch (mm->ppgtt_mm.root_entry_type) { 2605 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2606 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2607 return mm; 2608 break; 2609 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2610 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2611 sizeof(mm->ppgtt_mm.guest_pdps))) 2612 return mm; 2613 break; 2614 default: 2615 GEM_BUG_ON(1); 2616 } 2617 } 2618 return NULL; 2619 } 2620 2621 /** 2622 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2623 * @vgpu: a vGPU 2624 * @root_entry_type: ppgtt root entry type 2625 * @pdps: guest pdps 2626 * 2627 * This function is used to find or create a PPGTT mm object from a guest. 2628 * 2629 * Returns: 2630 * Zero on success, negative error code if failed. 2631 */ 2632 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2633 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2634 { 2635 struct intel_vgpu_mm *mm; 2636 2637 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2638 if (mm) { 2639 intel_vgpu_mm_get(mm); 2640 } else { 2641 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2642 if (IS_ERR(mm)) 2643 gvt_vgpu_err("fail to create mm\n"); 2644 } 2645 return mm; 2646 } 2647 2648 /** 2649 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2650 * @vgpu: a vGPU 2651 * @pdps: guest pdps 2652 * 2653 * This function is used to find a PPGTT mm object from a guest and destroy it. 2654 * 2655 * Returns: 2656 * Zero on success, negative error code if failed. 2657 */ 2658 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2659 { 2660 struct intel_vgpu_mm *mm; 2661 2662 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2663 if (!mm) { 2664 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2665 return -EINVAL; 2666 } 2667 intel_vgpu_mm_put(mm); 2668 return 0; 2669 } 2670 2671 /** 2672 * intel_gvt_init_gtt - initialize mm components of a GVT device 2673 * @gvt: GVT device 2674 * 2675 * This function is called at the initialization stage, to initialize 2676 * the mm components of a GVT device. 2677 * 2678 * Returns: 2679 * zero on success, negative error code if failed. 2680 */ 2681 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2682 { 2683 int ret; 2684 void *page; 2685 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2686 dma_addr_t daddr; 2687 2688 gvt_dbg_core("init gtt\n"); 2689 2690 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2691 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2692 2693 page = (void *)get_zeroed_page(GFP_KERNEL); 2694 if (!page) { 2695 gvt_err("fail to allocate scratch ggtt page\n"); 2696 return -ENOMEM; 2697 } 2698 2699 daddr = dma_map_page(dev, virt_to_page(page), 0, 2700 4096, PCI_DMA_BIDIRECTIONAL); 2701 if (dma_mapping_error(dev, daddr)) { 2702 gvt_err("fail to dmamap scratch ggtt page\n"); 2703 __free_page(virt_to_page(page)); 2704 return -ENOMEM; 2705 } 2706 2707 gvt->gtt.scratch_page = virt_to_page(page); 2708 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2709 2710 if (enable_out_of_sync) { 2711 ret = setup_spt_oos(gvt); 2712 if (ret) { 2713 gvt_err("fail to initialize SPT oos\n"); 2714 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2715 __free_page(gvt->gtt.scratch_page); 2716 return ret; 2717 } 2718 } 2719 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2720 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2721 return 0; 2722 } 2723 2724 /** 2725 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2726 * @gvt: GVT device 2727 * 2728 * This function is called at the driver unloading stage, to clean up the 2729 * the mm components of a GVT device. 2730 * 2731 */ 2732 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2733 { 2734 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2735 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2736 I915_GTT_PAGE_SHIFT); 2737 2738 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2739 2740 __free_page(gvt->gtt.scratch_page); 2741 2742 if (enable_out_of_sync) 2743 clean_spt_oos(gvt); 2744 } 2745 2746 /** 2747 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2748 * @vgpu: a vGPU 2749 * 2750 * This function is called when invalidate all PPGTT instances of a vGPU. 2751 * 2752 */ 2753 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2754 { 2755 struct list_head *pos, *n; 2756 struct intel_vgpu_mm *mm; 2757 2758 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2759 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2760 if (mm->type == INTEL_GVT_MM_PPGTT) { 2761 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2762 list_del_init(&mm->ppgtt_mm.lru_list); 2763 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2764 if (mm->ppgtt_mm.shadowed) 2765 invalidate_ppgtt_mm(mm); 2766 } 2767 } 2768 } 2769 2770 /** 2771 * intel_vgpu_reset_ggtt - reset the GGTT entry 2772 * @vgpu: a vGPU 2773 * @invalidate_old: invalidate old entries 2774 * 2775 * This function is called at the vGPU create stage 2776 * to reset all the GGTT entries. 2777 * 2778 */ 2779 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2780 { 2781 struct intel_gvt *gvt = vgpu->gvt; 2782 struct drm_i915_private *dev_priv = gvt->dev_priv; 2783 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2784 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2785 struct intel_gvt_gtt_entry old_entry; 2786 u32 index; 2787 u32 num_entries; 2788 2789 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2790 pte_ops->set_present(&entry); 2791 2792 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2793 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2794 while (num_entries--) { 2795 if (invalidate_old) { 2796 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2797 ggtt_invalidate_pte(vgpu, &old_entry); 2798 } 2799 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2800 } 2801 2802 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2803 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2804 while (num_entries--) { 2805 if (invalidate_old) { 2806 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2807 ggtt_invalidate_pte(vgpu, &old_entry); 2808 } 2809 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2810 } 2811 2812 ggtt_invalidate(dev_priv); 2813 } 2814 2815 /** 2816 * intel_vgpu_reset_gtt - reset the all GTT related status 2817 * @vgpu: a vGPU 2818 * 2819 * This function is called from vfio core to reset reset all 2820 * GTT related status, including GGTT, PPGTT, scratch page. 2821 * 2822 */ 2823 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2824 { 2825 /* Shadow pages are only created when there is no page 2826 * table tracking data, so remove page tracking data after 2827 * removing the shadow pages. 2828 */ 2829 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2830 intel_vgpu_reset_ggtt(vgpu, true); 2831 } 2832