xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision d203c2d3)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if (size == 0)
57 		return vgpu_gmadr_is_valid(vgpu, addr);
58 
59 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 		return true;
62 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 		return true;
65 
66 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 		     addr, size);
68 	return false;
69 }
70 
71 /* translate a guest gmadr to host gmadr */
72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75 
76 	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 		     "invalid guest gmadr %llx\n", g_addr))
78 		return -EACCES;
79 
80 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
82 			  + (g_addr - vgpu_aperture_offset(vgpu));
83 	else
84 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
85 			  + (g_addr - vgpu_hidden_offset(vgpu));
86 	return 0;
87 }
88 
89 /* translate a host gmadr to guest gmadr */
90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93 
94 	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 		     "invalid host gmadr %llx\n", h_addr))
96 		return -EACCES;
97 
98 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
100 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101 	else
102 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
103 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104 	return 0;
105 }
106 
107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 			     unsigned long *h_index)
109 {
110 	u64 h_addr;
111 	int ret;
112 
113 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114 				       &h_addr);
115 	if (ret)
116 		return ret;
117 
118 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119 	return 0;
120 }
121 
122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 			     unsigned long *g_index)
124 {
125 	u64 g_addr;
126 	int ret;
127 
128 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129 				       &g_addr);
130 	if (ret)
131 		return ret;
132 
133 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134 	return 0;
135 }
136 
137 #define gtt_type_is_entry(type) \
138 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141 
142 #define gtt_type_is_pt(type) \
143 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144 
145 #define gtt_type_is_pte_pt(type) \
146 	(type == GTT_TYPE_PPGTT_PTE_PT)
147 
148 #define gtt_type_is_root_pointer(type) \
149 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150 
151 #define gtt_init_entry(e, t, p, v) do { \
152 	(e)->type = t; \
153 	(e)->pdev = p; \
154 	memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156 
157 /*
158  * Mappings between GTT_TYPE* enumerations.
159  * Following information can be found according to the given type:
160  * - type of next level page table
161  * - type of entry inside this level page table
162  * - type of entry with PSE set
163  *
164  * If the given type doesn't have such a kind of information,
165  * e.g. give a l4 root entry type, then request to get its PSE type,
166  * give a PTE page table type, then request to get its next level page
167  * table type, as we know l4 root entry doesn't have a PSE bit,
168  * and a PTE page table doesn't have a next level page table type,
169  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170  * page table.
171  */
172 
173 struct gtt_type_table_entry {
174 	int entry_type;
175 	int pt_type;
176 	int next_pt_type;
177 	int pse_entry_type;
178 };
179 
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181 	[type] = { \
182 		.entry_type = e_type, \
183 		.pt_type = cpt_type, \
184 		.next_pt_type = npt_type, \
185 		.pse_entry_type = pse_type, \
186 	}
187 
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 			GTT_TYPE_INVALID,
192 			GTT_TYPE_PPGTT_PML4_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 			GTT_TYPE_PPGTT_PML4_ENTRY,
196 			GTT_TYPE_PPGTT_PML4_PT,
197 			GTT_TYPE_PPGTT_PDP_PT,
198 			GTT_TYPE_INVALID),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 			GTT_TYPE_PPGTT_PML4_ENTRY,
201 			GTT_TYPE_PPGTT_PML4_PT,
202 			GTT_TYPE_PPGTT_PDP_PT,
203 			GTT_TYPE_INVALID),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 			GTT_TYPE_INVALID,
212 			GTT_TYPE_PPGTT_PDE_PT,
213 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 			GTT_TYPE_PPGTT_PDP_ENTRY,
216 			GTT_TYPE_PPGTT_PDP_PT,
217 			GTT_TYPE_PPGTT_PDE_PT,
218 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 			GTT_TYPE_PPGTT_PDE_ENTRY,
221 			GTT_TYPE_PPGTT_PDE_PT,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 			GTT_TYPE_PPGTT_PDE_ENTRY,
226 			GTT_TYPE_PPGTT_PDE_PT,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 	/* We take IPS bit as 'PSE' for PTE level. */
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 			GTT_TYPE_PPGTT_PTE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 			GTT_TYPE_PPGTT_PTE_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 			GTT_TYPE_PPGTT_PDE_ENTRY,
247 			GTT_TYPE_PPGTT_PDE_PT,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 			GTT_TYPE_PPGTT_PDP_ENTRY,
252 			GTT_TYPE_PPGTT_PDP_PT,
253 			GTT_TYPE_INVALID,
254 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256 			GTT_TYPE_GGTT_PTE,
257 			GTT_TYPE_INVALID,
258 			GTT_TYPE_INVALID,
259 			GTT_TYPE_INVALID),
260 };
261 
262 static inline int get_next_pt_type(int type)
263 {
264 	return gtt_type_table[type].next_pt_type;
265 }
266 
267 static inline int get_pt_type(int type)
268 {
269 	return gtt_type_table[type].pt_type;
270 }
271 
272 static inline int get_entry_type(int type)
273 {
274 	return gtt_type_table[type].entry_type;
275 }
276 
277 static inline int get_pse_type(int type)
278 {
279 	return gtt_type_table[type].pse_entry_type;
280 }
281 
282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285 
286 	return readq(addr);
287 }
288 
289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291 	mmio_hw_access_pre(gt);
292 	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 	mmio_hw_access_post(gt);
294 }
295 
296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299 
300 	writeq(pte, addr);
301 }
302 
303 static inline int gtt_get_entry64(void *pt,
304 		struct intel_gvt_gtt_entry *e,
305 		unsigned long index, bool hypervisor_access, unsigned long gpa,
306 		struct intel_vgpu *vgpu)
307 {
308 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309 	int ret;
310 
311 	if (WARN_ON(info->gtt_entry_size != 8))
312 		return -EINVAL;
313 
314 	if (hypervisor_access) {
315 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 				(index << info->gtt_entry_size_shift),
317 				&e->val64, 8);
318 		if (WARN_ON(ret))
319 			return ret;
320 	} else if (!pt) {
321 		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322 	} else {
323 		e->val64 = *((u64 *)pt + index);
324 	}
325 	return 0;
326 }
327 
328 static inline int gtt_set_entry64(void *pt,
329 		struct intel_gvt_gtt_entry *e,
330 		unsigned long index, bool hypervisor_access, unsigned long gpa,
331 		struct intel_vgpu *vgpu)
332 {
333 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334 	int ret;
335 
336 	if (WARN_ON(info->gtt_entry_size != 8))
337 		return -EINVAL;
338 
339 	if (hypervisor_access) {
340 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 				(index << info->gtt_entry_size_shift),
342 				&e->val64, 8);
343 		if (WARN_ON(ret))
344 			return ret;
345 	} else if (!pt) {
346 		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347 	} else {
348 		*((u64 *)pt + index) = e->val64;
349 	}
350 	return 0;
351 }
352 
353 #define GTT_HAW 46
354 
355 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
359 
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362 
363 #define GTT_64K_PTE_STRIDE 16
364 
365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367 	unsigned long pfn;
368 
369 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375 	else
376 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 	return pfn;
378 }
379 
380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 		e->val64 &= ~ADDR_1G_MASK;
384 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 		e->val64 &= ~ADDR_2M_MASK;
387 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 		e->val64 &= ~ADDR_64K_MASK;
390 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391 	} else {
392 		e->val64 &= ~ADDR_4K_MASK;
393 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394 	}
395 
396 	e->val64 |= (pfn << PAGE_SHIFT);
397 }
398 
399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401 	return !!(e->val64 & _PAGE_PSE);
402 }
403 
404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406 	if (gen8_gtt_test_pse(e)) {
407 		switch (e->type) {
408 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 			e->val64 &= ~_PAGE_PSE;
410 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411 			break;
412 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 			e->val64 &= ~_PAGE_PSE;
415 			break;
416 		default:
417 			WARN_ON(1);
418 		}
419 	}
420 }
421 
422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425 		return false;
426 
427 	return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429 
430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433 		return;
434 
435 	e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437 
438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440 	/*
441 	 * i915 writes PDP root pointer registers without present bit,
442 	 * it also works, so we need to treat root pointer entry
443 	 * specifically.
444 	 */
445 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 		return (e->val64 != 0);
448 	else
449 		return (e->val64 & _PAGE_PRESENT);
450 }
451 
452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454 	e->val64 &= ~_PAGE_PRESENT;
455 }
456 
457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459 	e->val64 |= _PAGE_PRESENT;
460 }
461 
462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466 
467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471 
472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476 
477 /*
478  * Per-platform GMA routines.
479  */
480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483 
484 	trace_gma_index(__func__, gma, x);
485 	return x;
486 }
487 
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491 	unsigned long x = (exp); \
492 	trace_gma_index(__func__, gma, x); \
493 	return x; \
494 }
495 
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501 
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 	.get_entry = gtt_get_entry64,
504 	.set_entry = gtt_set_entry64,
505 	.clear_present = gtt_entry_clear_present,
506 	.set_present = gtt_entry_set_present,
507 	.test_present = gen8_gtt_test_present,
508 	.test_pse = gen8_gtt_test_pse,
509 	.clear_pse = gen8_gtt_clear_pse,
510 	.clear_ips = gen8_gtt_clear_ips,
511 	.test_ips = gen8_gtt_test_ips,
512 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
513 	.set_64k_splited = gen8_gtt_set_64k_splited,
514 	.test_64k_splited = gen8_gtt_test_64k_splited,
515 	.get_pfn = gen8_gtt_get_pfn,
516 	.set_pfn = gen8_gtt_set_pfn,
517 };
518 
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 	.gma_to_pte_index = gen8_gma_to_pte_index,
522 	.gma_to_pde_index = gen8_gma_to_pde_index,
523 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527 
528 /* Update entry type per pse and ips bit. */
529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 	struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532 	switch (entry->type) {
533 	case GTT_TYPE_PPGTT_PDE_ENTRY:
534 	case GTT_TYPE_PPGTT_PDP_ENTRY:
535 		if (pte_ops->test_pse(entry))
536 			entry->type = get_pse_type(entry->type);
537 		break;
538 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539 		if (ips)
540 			entry->type = get_pse_type(entry->type);
541 		break;
542 	default:
543 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544 	}
545 
546 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548 
549 /*
550  * MM helpers.
551  */
552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 		struct intel_gvt_gtt_entry *entry, unsigned long index,
554 		bool guest)
555 {
556 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557 
558 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559 
560 	entry->type = mm->ppgtt_mm.root_entry_type;
561 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 			   mm->ppgtt_mm.shadow_pdps,
563 			   entry, index, false, 0, mm->vgpu);
564 	update_entry_type_for_real(pte_ops, entry, false);
565 }
566 
567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 		struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570 	_ppgtt_get_root_entry(mm, entry, index, true);
571 }
572 
573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 		struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576 	_ppgtt_get_root_entry(mm, entry, index, false);
577 }
578 
579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 		struct intel_gvt_gtt_entry *entry, unsigned long index,
581 		bool guest)
582 {
583 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584 
585 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 			   mm->ppgtt_mm.shadow_pdps,
587 			   entry, index, false, 0, mm->vgpu);
588 }
589 
590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
591 		struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593 	_ppgtt_set_root_entry(mm, entry, index, true);
594 }
595 
596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
597 		struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599 	_ppgtt_set_root_entry(mm, entry, index, false);
600 }
601 
602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
603 		struct intel_gvt_gtt_entry *entry, unsigned long index)
604 {
605 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
606 
607 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
608 
609 	entry->type = GTT_TYPE_GGTT_PTE;
610 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
611 			   false, 0, mm->vgpu);
612 }
613 
614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
615 		struct intel_gvt_gtt_entry *entry, unsigned long index)
616 {
617 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
618 
619 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
620 
621 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
622 			   false, 0, mm->vgpu);
623 }
624 
625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
626 		struct intel_gvt_gtt_entry *entry, unsigned long index)
627 {
628 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
629 
630 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
631 
632 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
633 }
634 
635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
636 		struct intel_gvt_gtt_entry *entry, unsigned long index)
637 {
638 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
639 
640 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
641 
642 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
643 }
644 
645 /*
646  * PPGTT shadow page table helpers.
647  */
648 static inline int ppgtt_spt_get_entry(
649 		struct intel_vgpu_ppgtt_spt *spt,
650 		void *page_table, int type,
651 		struct intel_gvt_gtt_entry *e, unsigned long index,
652 		bool guest)
653 {
654 	struct intel_gvt *gvt = spt->vgpu->gvt;
655 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
656 	int ret;
657 
658 	e->type = get_entry_type(type);
659 
660 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
661 		return -EINVAL;
662 
663 	ret = ops->get_entry(page_table, e, index, guest,
664 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
665 			spt->vgpu);
666 	if (ret)
667 		return ret;
668 
669 	update_entry_type_for_real(ops, e, guest ?
670 				   spt->guest_page.pde_ips : false);
671 
672 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
673 		    type, e->type, index, e->val64);
674 	return 0;
675 }
676 
677 static inline int ppgtt_spt_set_entry(
678 		struct intel_vgpu_ppgtt_spt *spt,
679 		void *page_table, int type,
680 		struct intel_gvt_gtt_entry *e, unsigned long index,
681 		bool guest)
682 {
683 	struct intel_gvt *gvt = spt->vgpu->gvt;
684 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
685 
686 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
687 		return -EINVAL;
688 
689 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
690 		    type, e->type, index, e->val64);
691 
692 	return ops->set_entry(page_table, e, index, guest,
693 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
694 			spt->vgpu);
695 }
696 
697 #define ppgtt_get_guest_entry(spt, e, index) \
698 	ppgtt_spt_get_entry(spt, NULL, \
699 		spt->guest_page.type, e, index, true)
700 
701 #define ppgtt_set_guest_entry(spt, e, index) \
702 	ppgtt_spt_set_entry(spt, NULL, \
703 		spt->guest_page.type, e, index, true)
704 
705 #define ppgtt_get_shadow_entry(spt, e, index) \
706 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
707 		spt->shadow_page.type, e, index, false)
708 
709 #define ppgtt_set_shadow_entry(spt, e, index) \
710 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
711 		spt->shadow_page.type, e, index, false)
712 
713 static void *alloc_spt(gfp_t gfp_mask)
714 {
715 	struct intel_vgpu_ppgtt_spt *spt;
716 
717 	spt = kzalloc(sizeof(*spt), gfp_mask);
718 	if (!spt)
719 		return NULL;
720 
721 	spt->shadow_page.page = alloc_page(gfp_mask);
722 	if (!spt->shadow_page.page) {
723 		kfree(spt);
724 		return NULL;
725 	}
726 	return spt;
727 }
728 
729 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 	__free_page(spt->shadow_page.page);
732 	kfree(spt);
733 }
734 
735 static int detach_oos_page(struct intel_vgpu *vgpu,
736 		struct intel_vgpu_oos_page *oos_page);
737 
738 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
739 {
740 	struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
741 
742 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
743 
744 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
745 		       PCI_DMA_BIDIRECTIONAL);
746 
747 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
748 
749 	if (spt->guest_page.gfn) {
750 		if (spt->guest_page.oos_page)
751 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
752 
753 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
754 	}
755 
756 	list_del_init(&spt->post_shadow_list);
757 	free_spt(spt);
758 }
759 
760 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
761 {
762 	struct intel_vgpu_ppgtt_spt *spt, *spn;
763 	struct radix_tree_iter iter;
764 	LIST_HEAD(all_spt);
765 	void __rcu **slot;
766 
767 	rcu_read_lock();
768 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
769 		spt = radix_tree_deref_slot(slot);
770 		list_move(&spt->post_shadow_list, &all_spt);
771 	}
772 	rcu_read_unlock();
773 
774 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
775 		ppgtt_free_spt(spt);
776 }
777 
778 static int ppgtt_handle_guest_write_page_table_bytes(
779 		struct intel_vgpu_ppgtt_spt *spt,
780 		u64 pa, void *p_data, int bytes);
781 
782 static int ppgtt_write_protection_handler(
783 		struct intel_vgpu_page_track *page_track,
784 		u64 gpa, void *data, int bytes)
785 {
786 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
787 
788 	int ret;
789 
790 	if (bytes != 4 && bytes != 8)
791 		return -EINVAL;
792 
793 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
794 	if (ret)
795 		return ret;
796 	return ret;
797 }
798 
799 /* Find a spt by guest gfn. */
800 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
801 		struct intel_vgpu *vgpu, unsigned long gfn)
802 {
803 	struct intel_vgpu_page_track *track;
804 
805 	track = intel_vgpu_find_page_track(vgpu, gfn);
806 	if (track && track->handler == ppgtt_write_protection_handler)
807 		return track->priv_data;
808 
809 	return NULL;
810 }
811 
812 /* Find the spt by shadow page mfn. */
813 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
814 		struct intel_vgpu *vgpu, unsigned long mfn)
815 {
816 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
817 }
818 
819 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
820 
821 /* Allocate shadow page table without guest page. */
822 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
823 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
824 {
825 	struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
826 	struct intel_vgpu_ppgtt_spt *spt = NULL;
827 	dma_addr_t daddr;
828 	int ret;
829 
830 retry:
831 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
832 	if (!spt) {
833 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
834 			goto retry;
835 
836 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
837 		return ERR_PTR(-ENOMEM);
838 	}
839 
840 	spt->vgpu = vgpu;
841 	atomic_set(&spt->refcount, 1);
842 	INIT_LIST_HEAD(&spt->post_shadow_list);
843 
844 	/*
845 	 * Init shadow_page.
846 	 */
847 	spt->shadow_page.type = type;
848 	daddr = dma_map_page(kdev, spt->shadow_page.page,
849 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
850 	if (dma_mapping_error(kdev, daddr)) {
851 		gvt_vgpu_err("fail to map dma addr\n");
852 		ret = -EINVAL;
853 		goto err_free_spt;
854 	}
855 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
856 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
857 
858 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
859 	if (ret)
860 		goto err_unmap_dma;
861 
862 	return spt;
863 
864 err_unmap_dma:
865 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
866 err_free_spt:
867 	free_spt(spt);
868 	return ERR_PTR(ret);
869 }
870 
871 /* Allocate shadow page table associated with specific gfn. */
872 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
873 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
874 		unsigned long gfn, bool guest_pde_ips)
875 {
876 	struct intel_vgpu_ppgtt_spt *spt;
877 	int ret;
878 
879 	spt = ppgtt_alloc_spt(vgpu, type);
880 	if (IS_ERR(spt))
881 		return spt;
882 
883 	/*
884 	 * Init guest_page.
885 	 */
886 	ret = intel_vgpu_register_page_track(vgpu, gfn,
887 			ppgtt_write_protection_handler, spt);
888 	if (ret) {
889 		ppgtt_free_spt(spt);
890 		return ERR_PTR(ret);
891 	}
892 
893 	spt->guest_page.type = type;
894 	spt->guest_page.gfn = gfn;
895 	spt->guest_page.pde_ips = guest_pde_ips;
896 
897 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
898 
899 	return spt;
900 }
901 
902 #define pt_entry_size_shift(spt) \
903 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
904 
905 #define pt_entries(spt) \
906 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
907 
908 #define for_each_present_guest_entry(spt, e, i) \
909 	for (i = 0; i < pt_entries(spt); \
910 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
911 		if (!ppgtt_get_guest_entry(spt, e, i) && \
912 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
913 
914 #define for_each_present_shadow_entry(spt, e, i) \
915 	for (i = 0; i < pt_entries(spt); \
916 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
917 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
918 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
919 
920 #define for_each_shadow_entry(spt, e, i) \
921 	for (i = 0; i < pt_entries(spt); \
922 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
923 		if (!ppgtt_get_shadow_entry(spt, e, i))
924 
925 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
926 {
927 	int v = atomic_read(&spt->refcount);
928 
929 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
930 	atomic_inc(&spt->refcount);
931 }
932 
933 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
934 {
935 	int v = atomic_read(&spt->refcount);
936 
937 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
938 	return atomic_dec_return(&spt->refcount);
939 }
940 
941 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
942 
943 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
944 		struct intel_gvt_gtt_entry *e)
945 {
946 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
947 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
948 	struct intel_vgpu_ppgtt_spt *s;
949 	enum intel_gvt_gtt_type cur_pt_type;
950 
951 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
952 
953 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
954 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
955 		cur_pt_type = get_next_pt_type(e->type);
956 
957 		if (!gtt_type_is_pt(cur_pt_type) ||
958 				!gtt_type_is_pt(cur_pt_type + 1)) {
959 			drm_WARN(&i915->drm, 1,
960 				 "Invalid page table type, cur_pt_type is: %d\n",
961 				 cur_pt_type);
962 			return -EINVAL;
963 		}
964 
965 		cur_pt_type += 1;
966 
967 		if (ops->get_pfn(e) ==
968 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
969 			return 0;
970 	}
971 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
972 	if (!s) {
973 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
974 				ops->get_pfn(e));
975 		return -ENXIO;
976 	}
977 	return ppgtt_invalidate_spt(s);
978 }
979 
980 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
981 		struct intel_gvt_gtt_entry *entry)
982 {
983 	struct intel_vgpu *vgpu = spt->vgpu;
984 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
985 	unsigned long pfn;
986 	int type;
987 
988 	pfn = ops->get_pfn(entry);
989 	type = spt->shadow_page.type;
990 
991 	/* Uninitialized spte or unshadowed spte. */
992 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
993 		return;
994 
995 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
996 }
997 
998 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
999 {
1000 	struct intel_vgpu *vgpu = spt->vgpu;
1001 	struct intel_gvt_gtt_entry e;
1002 	unsigned long index;
1003 	int ret;
1004 
1005 	trace_spt_change(spt->vgpu->id, "die", spt,
1006 			spt->guest_page.gfn, spt->shadow_page.type);
1007 
1008 	if (ppgtt_put_spt(spt) > 0)
1009 		return 0;
1010 
1011 	for_each_present_shadow_entry(spt, &e, index) {
1012 		switch (e.type) {
1013 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014 			gvt_vdbg_mm("invalidate 4K entry\n");
1015 			ppgtt_invalidate_pte(spt, &e);
1016 			break;
1017 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018 			/* We don't setup 64K shadow entry so far. */
1019 			WARN(1, "suspicious 64K gtt entry\n");
1020 			continue;
1021 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022 			gvt_vdbg_mm("invalidate 2M entry\n");
1023 			continue;
1024 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025 			WARN(1, "GVT doesn't support 1GB page\n");
1026 			continue;
1027 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1028 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1029 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1030 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1032 					spt->vgpu, &e);
1033 			if (ret)
1034 				goto fail;
1035 			break;
1036 		default:
1037 			GEM_BUG_ON(1);
1038 		}
1039 	}
1040 
1041 	trace_spt_change(spt->vgpu->id, "release", spt,
1042 			 spt->guest_page.gfn, spt->shadow_page.type);
1043 	ppgtt_free_spt(spt);
1044 	return 0;
1045 fail:
1046 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047 			spt, e.val64, e.type);
1048 	return ret;
1049 }
1050 
1051 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1052 {
1053 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1054 
1055 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1056 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1058 
1059 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060 	} else if (INTEL_GEN(dev_priv) >= 11) {
1061 		/* 64K paging only controlled by IPS bit in PTE now. */
1062 		return true;
1063 	} else
1064 		return false;
1065 }
1066 
1067 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1068 
1069 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1071 {
1072 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1074 	bool ips = false;
1075 	int ret;
1076 
1077 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1078 
1079 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1081 
1082 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1083 	if (spt) {
1084 		ppgtt_get_spt(spt);
1085 
1086 		if (ips != spt->guest_page.pde_ips) {
1087 			spt->guest_page.pde_ips = ips;
1088 
1089 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1090 			clear_page(spt->shadow_page.vaddr);
1091 			ret = ppgtt_populate_spt(spt);
1092 			if (ret) {
1093 				ppgtt_put_spt(spt);
1094 				goto err;
1095 			}
1096 		}
1097 	} else {
1098 		int type = get_next_pt_type(we->type);
1099 
1100 		if (!gtt_type_is_pt(type)) {
1101 			ret = -EINVAL;
1102 			goto err;
1103 		}
1104 
1105 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1106 		if (IS_ERR(spt)) {
1107 			ret = PTR_ERR(spt);
1108 			goto err;
1109 		}
1110 
1111 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1112 		if (ret)
1113 			goto err_free_spt;
1114 
1115 		ret = ppgtt_populate_spt(spt);
1116 		if (ret)
1117 			goto err_free_spt;
1118 
1119 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120 				 spt->shadow_page.type);
1121 	}
1122 	return spt;
1123 
1124 err_free_spt:
1125 	ppgtt_free_spt(spt);
1126 	spt = NULL;
1127 err:
1128 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129 		     spt, we->val64, we->type);
1130 	return ERR_PTR(ret);
1131 }
1132 
1133 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1135 {
1136 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1137 
1138 	se->type = ge->type;
1139 	se->val64 = ge->val64;
1140 
1141 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1143 		ops->clear_ips(se);
1144 
1145 	ops->set_pfn(se, s->shadow_page.mfn);
1146 }
1147 
1148 /**
1149  * Check if can do 2M page
1150  * @vgpu: target vgpu
1151  * @entry: target pfn's gtt entry
1152  *
1153  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1154  * negtive if found err.
1155  */
1156 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1157 	struct intel_gvt_gtt_entry *entry)
1158 {
1159 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1160 	unsigned long pfn;
1161 
1162 	if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1163 		return 0;
1164 
1165 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1166 	if (pfn == INTEL_GVT_INVALID_ADDR)
1167 		return -EINVAL;
1168 
1169 	return PageTransHuge(pfn_to_page(pfn));
1170 }
1171 
1172 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1173 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1174 	struct intel_gvt_gtt_entry *se)
1175 {
1176 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1177 	struct intel_vgpu_ppgtt_spt *sub_spt;
1178 	struct intel_gvt_gtt_entry sub_se;
1179 	unsigned long start_gfn;
1180 	dma_addr_t dma_addr;
1181 	unsigned long sub_index;
1182 	int ret;
1183 
1184 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1185 
1186 	start_gfn = ops->get_pfn(se);
1187 
1188 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1189 	if (IS_ERR(sub_spt))
1190 		return PTR_ERR(sub_spt);
1191 
1192 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1193 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1194 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1195 		if (ret) {
1196 			ppgtt_invalidate_spt(spt);
1197 			return ret;
1198 		}
1199 		sub_se.val64 = se->val64;
1200 
1201 		/* Copy the PAT field from PDE. */
1202 		sub_se.val64 &= ~_PAGE_PAT;
1203 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1204 
1205 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1206 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1207 	}
1208 
1209 	/* Clear dirty field. */
1210 	se->val64 &= ~_PAGE_DIRTY;
1211 
1212 	ops->clear_pse(se);
1213 	ops->clear_ips(se);
1214 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1215 	ppgtt_set_shadow_entry(spt, se, index);
1216 	return 0;
1217 }
1218 
1219 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1220 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1221 	struct intel_gvt_gtt_entry *se)
1222 {
1223 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1224 	struct intel_gvt_gtt_entry entry = *se;
1225 	unsigned long start_gfn;
1226 	dma_addr_t dma_addr;
1227 	int i, ret;
1228 
1229 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1230 
1231 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1232 
1233 	start_gfn = ops->get_pfn(se);
1234 
1235 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1236 	ops->set_64k_splited(&entry);
1237 
1238 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1239 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1240 					start_gfn + i, PAGE_SIZE, &dma_addr);
1241 		if (ret)
1242 			return ret;
1243 
1244 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1245 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1246 	}
1247 	return 0;
1248 }
1249 
1250 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1251 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1252 	struct intel_gvt_gtt_entry *ge)
1253 {
1254 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1255 	struct intel_gvt_gtt_entry se = *ge;
1256 	unsigned long gfn, page_size = PAGE_SIZE;
1257 	dma_addr_t dma_addr;
1258 	int ret;
1259 
1260 	if (!pte_ops->test_present(ge))
1261 		return 0;
1262 
1263 	gfn = pte_ops->get_pfn(ge);
1264 
1265 	switch (ge->type) {
1266 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1267 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1268 		break;
1269 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1270 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1271 		/*
1272 		 * The layout of 64K page is special, the page size is
1273 		 * controlled by uper PDE. To be simple, we always split
1274 		 * 64K page to smaller 4K pages in shadow PT.
1275 		 */
1276 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1277 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1278 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1279 		ret = is_2MB_gtt_possible(vgpu, ge);
1280 		if (ret == 0)
1281 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1282 		else if (ret < 0)
1283 			return ret;
1284 		page_size = I915_GTT_PAGE_SIZE_2M;
1285 		break;
1286 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1287 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1288 		return -EINVAL;
1289 	default:
1290 		GEM_BUG_ON(1);
1291 	}
1292 
1293 	/* direct shadow */
1294 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1295 						      &dma_addr);
1296 	if (ret)
1297 		return -ENXIO;
1298 
1299 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1300 	ppgtt_set_shadow_entry(spt, &se, index);
1301 	return 0;
1302 }
1303 
1304 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1305 {
1306 	struct intel_vgpu *vgpu = spt->vgpu;
1307 	struct intel_gvt *gvt = vgpu->gvt;
1308 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1309 	struct intel_vgpu_ppgtt_spt *s;
1310 	struct intel_gvt_gtt_entry se, ge;
1311 	unsigned long gfn, i;
1312 	int ret;
1313 
1314 	trace_spt_change(spt->vgpu->id, "born", spt,
1315 			 spt->guest_page.gfn, spt->shadow_page.type);
1316 
1317 	for_each_present_guest_entry(spt, &ge, i) {
1318 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1319 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1320 			if (IS_ERR(s)) {
1321 				ret = PTR_ERR(s);
1322 				goto fail;
1323 			}
1324 			ppgtt_get_shadow_entry(spt, &se, i);
1325 			ppgtt_generate_shadow_entry(&se, s, &ge);
1326 			ppgtt_set_shadow_entry(spt, &se, i);
1327 		} else {
1328 			gfn = ops->get_pfn(&ge);
1329 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1330 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1331 				ppgtt_set_shadow_entry(spt, &se, i);
1332 				continue;
1333 			}
1334 
1335 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1336 			if (ret)
1337 				goto fail;
1338 		}
1339 	}
1340 	return 0;
1341 fail:
1342 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1343 			spt, ge.val64, ge.type);
1344 	return ret;
1345 }
1346 
1347 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1348 		struct intel_gvt_gtt_entry *se, unsigned long index)
1349 {
1350 	struct intel_vgpu *vgpu = spt->vgpu;
1351 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1352 	int ret;
1353 
1354 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1355 			       spt->shadow_page.type, se->val64, index);
1356 
1357 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1358 		    se->type, index, se->val64);
1359 
1360 	if (!ops->test_present(se))
1361 		return 0;
1362 
1363 	if (ops->get_pfn(se) ==
1364 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1365 		return 0;
1366 
1367 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1368 		struct intel_vgpu_ppgtt_spt *s =
1369 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1370 		if (!s) {
1371 			gvt_vgpu_err("fail to find guest page\n");
1372 			ret = -ENXIO;
1373 			goto fail;
1374 		}
1375 		ret = ppgtt_invalidate_spt(s);
1376 		if (ret)
1377 			goto fail;
1378 	} else {
1379 		/* We don't setup 64K shadow entry so far. */
1380 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1381 		     "suspicious 64K entry\n");
1382 		ppgtt_invalidate_pte(spt, se);
1383 	}
1384 
1385 	return 0;
1386 fail:
1387 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1388 			spt, se->val64, se->type);
1389 	return ret;
1390 }
1391 
1392 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1393 		struct intel_gvt_gtt_entry *we, unsigned long index)
1394 {
1395 	struct intel_vgpu *vgpu = spt->vgpu;
1396 	struct intel_gvt_gtt_entry m;
1397 	struct intel_vgpu_ppgtt_spt *s;
1398 	int ret;
1399 
1400 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1401 			       we->val64, index);
1402 
1403 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1404 		    we->type, index, we->val64);
1405 
1406 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1407 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1408 		if (IS_ERR(s)) {
1409 			ret = PTR_ERR(s);
1410 			goto fail;
1411 		}
1412 		ppgtt_get_shadow_entry(spt, &m, index);
1413 		ppgtt_generate_shadow_entry(&m, s, we);
1414 		ppgtt_set_shadow_entry(spt, &m, index);
1415 	} else {
1416 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1417 		if (ret)
1418 			goto fail;
1419 	}
1420 	return 0;
1421 fail:
1422 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1423 		spt, we->val64, we->type);
1424 	return ret;
1425 }
1426 
1427 static int sync_oos_page(struct intel_vgpu *vgpu,
1428 		struct intel_vgpu_oos_page *oos_page)
1429 {
1430 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1431 	struct intel_gvt *gvt = vgpu->gvt;
1432 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1433 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1434 	struct intel_gvt_gtt_entry old, new;
1435 	int index;
1436 	int ret;
1437 
1438 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1439 			 spt, spt->guest_page.type);
1440 
1441 	old.type = new.type = get_entry_type(spt->guest_page.type);
1442 	old.val64 = new.val64 = 0;
1443 
1444 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1445 				info->gtt_entry_size_shift); index++) {
1446 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1447 		ops->get_entry(NULL, &new, index, true,
1448 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1449 
1450 		if (old.val64 == new.val64
1451 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1452 			continue;
1453 
1454 		trace_oos_sync(vgpu->id, oos_page->id,
1455 				spt, spt->guest_page.type,
1456 				new.val64, index);
1457 
1458 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1459 		if (ret)
1460 			return ret;
1461 
1462 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1463 	}
1464 
1465 	spt->guest_page.write_cnt = 0;
1466 	list_del_init(&spt->post_shadow_list);
1467 	return 0;
1468 }
1469 
1470 static int detach_oos_page(struct intel_vgpu *vgpu,
1471 		struct intel_vgpu_oos_page *oos_page)
1472 {
1473 	struct intel_gvt *gvt = vgpu->gvt;
1474 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1475 
1476 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1477 			 spt, spt->guest_page.type);
1478 
1479 	spt->guest_page.write_cnt = 0;
1480 	spt->guest_page.oos_page = NULL;
1481 	oos_page->spt = NULL;
1482 
1483 	list_del_init(&oos_page->vm_list);
1484 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1485 
1486 	return 0;
1487 }
1488 
1489 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1490 		struct intel_vgpu_ppgtt_spt *spt)
1491 {
1492 	struct intel_gvt *gvt = spt->vgpu->gvt;
1493 	int ret;
1494 
1495 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1496 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1497 			oos_page->mem, I915_GTT_PAGE_SIZE);
1498 	if (ret)
1499 		return ret;
1500 
1501 	oos_page->spt = spt;
1502 	spt->guest_page.oos_page = oos_page;
1503 
1504 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1505 
1506 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1507 			 spt, spt->guest_page.type);
1508 	return 0;
1509 }
1510 
1511 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1512 {
1513 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1514 	int ret;
1515 
1516 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1517 	if (ret)
1518 		return ret;
1519 
1520 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1521 			 spt, spt->guest_page.type);
1522 
1523 	list_del_init(&oos_page->vm_list);
1524 	return sync_oos_page(spt->vgpu, oos_page);
1525 }
1526 
1527 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1528 {
1529 	struct intel_gvt *gvt = spt->vgpu->gvt;
1530 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1531 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1532 	int ret;
1533 
1534 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1535 
1536 	if (list_empty(&gtt->oos_page_free_list_head)) {
1537 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1538 			struct intel_vgpu_oos_page, list);
1539 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1540 		if (ret)
1541 			return ret;
1542 		ret = detach_oos_page(spt->vgpu, oos_page);
1543 		if (ret)
1544 			return ret;
1545 	} else
1546 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1547 			struct intel_vgpu_oos_page, list);
1548 	return attach_oos_page(oos_page, spt);
1549 }
1550 
1551 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1552 {
1553 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1554 
1555 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1556 		return -EINVAL;
1557 
1558 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1559 			 spt, spt->guest_page.type);
1560 
1561 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1562 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1563 }
1564 
1565 /**
1566  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1567  * @vgpu: a vGPU
1568  *
1569  * This function is called before submitting a guest workload to host,
1570  * to sync all the out-of-synced shadow for vGPU
1571  *
1572  * Returns:
1573  * Zero on success, negative error code if failed.
1574  */
1575 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1576 {
1577 	struct list_head *pos, *n;
1578 	struct intel_vgpu_oos_page *oos_page;
1579 	int ret;
1580 
1581 	if (!enable_out_of_sync)
1582 		return 0;
1583 
1584 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1585 		oos_page = container_of(pos,
1586 				struct intel_vgpu_oos_page, vm_list);
1587 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1588 		if (ret)
1589 			return ret;
1590 	}
1591 	return 0;
1592 }
1593 
1594 /*
1595  * The heart of PPGTT shadow page table.
1596  */
1597 static int ppgtt_handle_guest_write_page_table(
1598 		struct intel_vgpu_ppgtt_spt *spt,
1599 		struct intel_gvt_gtt_entry *we, unsigned long index)
1600 {
1601 	struct intel_vgpu *vgpu = spt->vgpu;
1602 	int type = spt->shadow_page.type;
1603 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1604 	struct intel_gvt_gtt_entry old_se;
1605 	int new_present;
1606 	int i, ret;
1607 
1608 	new_present = ops->test_present(we);
1609 
1610 	/*
1611 	 * Adding the new entry first and then removing the old one, that can
1612 	 * guarantee the ppgtt table is validated during the window between
1613 	 * adding and removal.
1614 	 */
1615 	ppgtt_get_shadow_entry(spt, &old_se, index);
1616 
1617 	if (new_present) {
1618 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1619 		if (ret)
1620 			goto fail;
1621 	}
1622 
1623 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1624 	if (ret)
1625 		goto fail;
1626 
1627 	if (!new_present) {
1628 		/* For 64KB splited entries, we need clear them all. */
1629 		if (ops->test_64k_splited(&old_se) &&
1630 		    !(index % GTT_64K_PTE_STRIDE)) {
1631 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1632 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1633 				ops->clear_64k_splited(&old_se);
1634 				ops->set_pfn(&old_se,
1635 					vgpu->gtt.scratch_pt[type].page_mfn);
1636 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1637 			}
1638 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1639 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1640 			ops->clear_pse(&old_se);
1641 			ops->set_pfn(&old_se,
1642 				     vgpu->gtt.scratch_pt[type].page_mfn);
1643 			ppgtt_set_shadow_entry(spt, &old_se, index);
1644 		} else {
1645 			ops->set_pfn(&old_se,
1646 				     vgpu->gtt.scratch_pt[type].page_mfn);
1647 			ppgtt_set_shadow_entry(spt, &old_se, index);
1648 		}
1649 	}
1650 
1651 	return 0;
1652 fail:
1653 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1654 			spt, we->val64, we->type);
1655 	return ret;
1656 }
1657 
1658 
1659 
1660 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1661 {
1662 	return enable_out_of_sync
1663 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1664 		&& spt->guest_page.write_cnt >= 2;
1665 }
1666 
1667 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1668 		unsigned long index)
1669 {
1670 	set_bit(index, spt->post_shadow_bitmap);
1671 	if (!list_empty(&spt->post_shadow_list))
1672 		return;
1673 
1674 	list_add_tail(&spt->post_shadow_list,
1675 			&spt->vgpu->gtt.post_shadow_list_head);
1676 }
1677 
1678 /**
1679  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1680  * @vgpu: a vGPU
1681  *
1682  * This function is called before submitting a guest workload to host,
1683  * to flush all the post shadows for a vGPU.
1684  *
1685  * Returns:
1686  * Zero on success, negative error code if failed.
1687  */
1688 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1689 {
1690 	struct list_head *pos, *n;
1691 	struct intel_vgpu_ppgtt_spt *spt;
1692 	struct intel_gvt_gtt_entry ge;
1693 	unsigned long index;
1694 	int ret;
1695 
1696 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1697 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1698 				post_shadow_list);
1699 
1700 		for_each_set_bit(index, spt->post_shadow_bitmap,
1701 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1702 			ppgtt_get_guest_entry(spt, &ge, index);
1703 
1704 			ret = ppgtt_handle_guest_write_page_table(spt,
1705 							&ge, index);
1706 			if (ret)
1707 				return ret;
1708 			clear_bit(index, spt->post_shadow_bitmap);
1709 		}
1710 		list_del_init(&spt->post_shadow_list);
1711 	}
1712 	return 0;
1713 }
1714 
1715 static int ppgtt_handle_guest_write_page_table_bytes(
1716 		struct intel_vgpu_ppgtt_spt *spt,
1717 		u64 pa, void *p_data, int bytes)
1718 {
1719 	struct intel_vgpu *vgpu = spt->vgpu;
1720 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1721 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1722 	struct intel_gvt_gtt_entry we, se;
1723 	unsigned long index;
1724 	int ret;
1725 
1726 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1727 
1728 	ppgtt_get_guest_entry(spt, &we, index);
1729 
1730 	/*
1731 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1732 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1733 	 * ignored.
1734 	 */
1735 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1736 	    (index % GTT_64K_PTE_STRIDE)) {
1737 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1738 			    index);
1739 		return 0;
1740 	}
1741 
1742 	if (bytes == info->gtt_entry_size) {
1743 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1744 		if (ret)
1745 			return ret;
1746 	} else {
1747 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1748 			int type = spt->shadow_page.type;
1749 
1750 			ppgtt_get_shadow_entry(spt, &se, index);
1751 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1752 			if (ret)
1753 				return ret;
1754 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1755 			ppgtt_set_shadow_entry(spt, &se, index);
1756 		}
1757 		ppgtt_set_post_shadow(spt, index);
1758 	}
1759 
1760 	if (!enable_out_of_sync)
1761 		return 0;
1762 
1763 	spt->guest_page.write_cnt++;
1764 
1765 	if (spt->guest_page.oos_page)
1766 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1767 				false, 0, vgpu);
1768 
1769 	if (can_do_out_of_sync(spt)) {
1770 		if (!spt->guest_page.oos_page)
1771 			ppgtt_allocate_oos_page(spt);
1772 
1773 		ret = ppgtt_set_guest_page_oos(spt);
1774 		if (ret < 0)
1775 			return ret;
1776 	}
1777 	return 0;
1778 }
1779 
1780 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1781 {
1782 	struct intel_vgpu *vgpu = mm->vgpu;
1783 	struct intel_gvt *gvt = vgpu->gvt;
1784 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1785 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1786 	struct intel_gvt_gtt_entry se;
1787 	int index;
1788 
1789 	if (!mm->ppgtt_mm.shadowed)
1790 		return;
1791 
1792 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1793 		ppgtt_get_shadow_root_entry(mm, &se, index);
1794 
1795 		if (!ops->test_present(&se))
1796 			continue;
1797 
1798 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1799 		se.val64 = 0;
1800 		ppgtt_set_shadow_root_entry(mm, &se, index);
1801 
1802 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1803 				       NULL, se.type, se.val64, index);
1804 	}
1805 
1806 	mm->ppgtt_mm.shadowed = false;
1807 }
1808 
1809 
1810 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1811 {
1812 	struct intel_vgpu *vgpu = mm->vgpu;
1813 	struct intel_gvt *gvt = vgpu->gvt;
1814 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1815 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1816 	struct intel_vgpu_ppgtt_spt *spt;
1817 	struct intel_gvt_gtt_entry ge, se;
1818 	int index, ret;
1819 
1820 	if (mm->ppgtt_mm.shadowed)
1821 		return 0;
1822 
1823 	mm->ppgtt_mm.shadowed = true;
1824 
1825 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1826 		ppgtt_get_guest_root_entry(mm, &ge, index);
1827 
1828 		if (!ops->test_present(&ge))
1829 			continue;
1830 
1831 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1832 				       ge.type, ge.val64, index);
1833 
1834 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1835 		if (IS_ERR(spt)) {
1836 			gvt_vgpu_err("fail to populate guest root pointer\n");
1837 			ret = PTR_ERR(spt);
1838 			goto fail;
1839 		}
1840 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1841 		ppgtt_set_shadow_root_entry(mm, &se, index);
1842 
1843 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1844 				       NULL, se.type, se.val64, index);
1845 	}
1846 
1847 	return 0;
1848 fail:
1849 	invalidate_ppgtt_mm(mm);
1850 	return ret;
1851 }
1852 
1853 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1854 {
1855 	struct intel_vgpu_mm *mm;
1856 
1857 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1858 	if (!mm)
1859 		return NULL;
1860 
1861 	mm->vgpu = vgpu;
1862 	kref_init(&mm->ref);
1863 	atomic_set(&mm->pincount, 0);
1864 
1865 	return mm;
1866 }
1867 
1868 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1869 {
1870 	kfree(mm);
1871 }
1872 
1873 /**
1874  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1875  * @vgpu: a vGPU
1876  * @root_entry_type: ppgtt root entry type
1877  * @pdps: guest pdps.
1878  *
1879  * This function is used to create a ppgtt mm object for a vGPU.
1880  *
1881  * Returns:
1882  * Zero on success, negative error code in pointer if failed.
1883  */
1884 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1885 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1886 {
1887 	struct intel_gvt *gvt = vgpu->gvt;
1888 	struct intel_vgpu_mm *mm;
1889 	int ret;
1890 
1891 	mm = vgpu_alloc_mm(vgpu);
1892 	if (!mm)
1893 		return ERR_PTR(-ENOMEM);
1894 
1895 	mm->type = INTEL_GVT_MM_PPGTT;
1896 
1897 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1898 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1899 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1900 
1901 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1902 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1903 
1904 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1905 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1906 	else
1907 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1908 		       sizeof(mm->ppgtt_mm.guest_pdps));
1909 
1910 	ret = shadow_ppgtt_mm(mm);
1911 	if (ret) {
1912 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1913 		vgpu_free_mm(mm);
1914 		return ERR_PTR(ret);
1915 	}
1916 
1917 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1918 
1919 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1920 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1921 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1922 
1923 	return mm;
1924 }
1925 
1926 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1927 {
1928 	struct intel_vgpu_mm *mm;
1929 	unsigned long nr_entries;
1930 
1931 	mm = vgpu_alloc_mm(vgpu);
1932 	if (!mm)
1933 		return ERR_PTR(-ENOMEM);
1934 
1935 	mm->type = INTEL_GVT_MM_GGTT;
1936 
1937 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1938 	mm->ggtt_mm.virtual_ggtt =
1939 		vzalloc(array_size(nr_entries,
1940 				   vgpu->gvt->device_info.gtt_entry_size));
1941 	if (!mm->ggtt_mm.virtual_ggtt) {
1942 		vgpu_free_mm(mm);
1943 		return ERR_PTR(-ENOMEM);
1944 	}
1945 
1946 	return mm;
1947 }
1948 
1949 /**
1950  * _intel_vgpu_mm_release - destroy a mm object
1951  * @mm_ref: a kref object
1952  *
1953  * This function is used to destroy a mm object for vGPU
1954  *
1955  */
1956 void _intel_vgpu_mm_release(struct kref *mm_ref)
1957 {
1958 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1959 
1960 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1961 		gvt_err("vgpu mm pin count bug detected\n");
1962 
1963 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1964 		list_del(&mm->ppgtt_mm.list);
1965 
1966 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1967 		list_del(&mm->ppgtt_mm.lru_list);
1968 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1969 
1970 		invalidate_ppgtt_mm(mm);
1971 	} else {
1972 		vfree(mm->ggtt_mm.virtual_ggtt);
1973 	}
1974 
1975 	vgpu_free_mm(mm);
1976 }
1977 
1978 /**
1979  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1980  * @mm: a vGPU mm object
1981  *
1982  * This function is called when user doesn't want to use a vGPU mm object
1983  */
1984 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1985 {
1986 	atomic_dec_if_positive(&mm->pincount);
1987 }
1988 
1989 /**
1990  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1991  * @mm: target vgpu mm
1992  *
1993  * This function is called when user wants to use a vGPU mm object. If this
1994  * mm object hasn't been shadowed yet, the shadow will be populated at this
1995  * time.
1996  *
1997  * Returns:
1998  * Zero on success, negative error code if failed.
1999  */
2000 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2001 {
2002 	int ret;
2003 
2004 	atomic_inc(&mm->pincount);
2005 
2006 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2007 		ret = shadow_ppgtt_mm(mm);
2008 		if (ret)
2009 			return ret;
2010 
2011 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2012 		list_move_tail(&mm->ppgtt_mm.lru_list,
2013 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2014 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2021 {
2022 	struct intel_vgpu_mm *mm;
2023 	struct list_head *pos, *n;
2024 
2025 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2026 
2027 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2028 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2029 
2030 		if (atomic_read(&mm->pincount))
2031 			continue;
2032 
2033 		list_del_init(&mm->ppgtt_mm.lru_list);
2034 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2035 		invalidate_ppgtt_mm(mm);
2036 		return 1;
2037 	}
2038 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2039 	return 0;
2040 }
2041 
2042 /*
2043  * GMA translation APIs.
2044  */
2045 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2046 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2047 {
2048 	struct intel_vgpu *vgpu = mm->vgpu;
2049 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2050 	struct intel_vgpu_ppgtt_spt *s;
2051 
2052 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2053 	if (!s)
2054 		return -ENXIO;
2055 
2056 	if (!guest)
2057 		ppgtt_get_shadow_entry(s, e, index);
2058 	else
2059 		ppgtt_get_guest_entry(s, e, index);
2060 	return 0;
2061 }
2062 
2063 /**
2064  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2065  * @mm: mm object. could be a PPGTT or GGTT mm object
2066  * @gma: graphics memory address in this mm object
2067  *
2068  * This function is used to translate a graphics memory address in specific
2069  * graphics memory space to guest physical address.
2070  *
2071  * Returns:
2072  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2073  */
2074 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2075 {
2076 	struct intel_vgpu *vgpu = mm->vgpu;
2077 	struct intel_gvt *gvt = vgpu->gvt;
2078 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2079 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2080 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2081 	unsigned long gma_index[4];
2082 	struct intel_gvt_gtt_entry e;
2083 	int i, levels = 0;
2084 	int ret;
2085 
2086 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2087 		   mm->type != INTEL_GVT_MM_PPGTT);
2088 
2089 	if (mm->type == INTEL_GVT_MM_GGTT) {
2090 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2091 			goto err;
2092 
2093 		ggtt_get_guest_entry(mm, &e,
2094 			gma_ops->gma_to_ggtt_pte_index(gma));
2095 
2096 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2097 			+ (gma & ~I915_GTT_PAGE_MASK);
2098 
2099 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2100 	} else {
2101 		switch (mm->ppgtt_mm.root_entry_type) {
2102 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2103 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2104 
2105 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2106 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2107 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2108 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2109 			levels = 4;
2110 			break;
2111 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2112 			ppgtt_get_shadow_root_entry(mm, &e,
2113 					gma_ops->gma_to_l3_pdp_index(gma));
2114 
2115 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2116 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2117 			levels = 2;
2118 			break;
2119 		default:
2120 			GEM_BUG_ON(1);
2121 		}
2122 
2123 		/* walk the shadow page table and get gpa from guest entry */
2124 		for (i = 0; i < levels; i++) {
2125 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2126 				(i == levels - 1));
2127 			if (ret)
2128 				goto err;
2129 
2130 			if (!pte_ops->test_present(&e)) {
2131 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2132 				goto err;
2133 			}
2134 		}
2135 
2136 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2137 					(gma & ~I915_GTT_PAGE_MASK);
2138 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2139 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2140 	}
2141 
2142 	return gpa;
2143 err:
2144 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2145 	return INTEL_GVT_INVALID_ADDR;
2146 }
2147 
2148 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2149 	unsigned int off, void *p_data, unsigned int bytes)
2150 {
2151 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2152 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2153 	unsigned long index = off >> info->gtt_entry_size_shift;
2154 	unsigned long gma;
2155 	struct intel_gvt_gtt_entry e;
2156 
2157 	if (bytes != 4 && bytes != 8)
2158 		return -EINVAL;
2159 
2160 	gma = index << I915_GTT_PAGE_SHIFT;
2161 	if (!intel_gvt_ggtt_validate_range(vgpu,
2162 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2163 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2164 		memset(p_data, 0, bytes);
2165 		return 0;
2166 	}
2167 
2168 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2169 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2170 			bytes);
2171 	return 0;
2172 }
2173 
2174 /**
2175  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2176  * @vgpu: a vGPU
2177  * @off: register offset
2178  * @p_data: data will be returned to guest
2179  * @bytes: data length
2180  *
2181  * This function is used to emulate the GTT MMIO register read
2182  *
2183  * Returns:
2184  * Zero on success, error code if failed.
2185  */
2186 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2187 	void *p_data, unsigned int bytes)
2188 {
2189 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2190 	int ret;
2191 
2192 	if (bytes != 4 && bytes != 8)
2193 		return -EINVAL;
2194 
2195 	off -= info->gtt_start_offset;
2196 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2197 	return ret;
2198 }
2199 
2200 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2201 		struct intel_gvt_gtt_entry *entry)
2202 {
2203 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2204 	unsigned long pfn;
2205 
2206 	pfn = pte_ops->get_pfn(entry);
2207 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2208 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2209 						pfn << PAGE_SHIFT);
2210 }
2211 
2212 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2213 	void *p_data, unsigned int bytes)
2214 {
2215 	struct intel_gvt *gvt = vgpu->gvt;
2216 	const struct intel_gvt_device_info *info = &gvt->device_info;
2217 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2218 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2219 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2220 	unsigned long gma, gfn;
2221 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2222 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2223 	dma_addr_t dma_addr;
2224 	int ret;
2225 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2226 	bool partial_update = false;
2227 
2228 	if (bytes != 4 && bytes != 8)
2229 		return -EINVAL;
2230 
2231 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2232 
2233 	/* the VM may configure the whole GM space when ballooning is used */
2234 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2235 		return 0;
2236 
2237 	e.type = GTT_TYPE_GGTT_PTE;
2238 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2239 			bytes);
2240 
2241 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2242 	 * write, save the first 4 bytes in a list and update virtual
2243 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2244 	 */
2245 	if (bytes < info->gtt_entry_size) {
2246 		bool found = false;
2247 
2248 		list_for_each_entry_safe(pos, n,
2249 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2250 			if (g_gtt_index == pos->offset >>
2251 					info->gtt_entry_size_shift) {
2252 				if (off != pos->offset) {
2253 					/* the second partial part*/
2254 					int last_off = pos->offset &
2255 						(info->gtt_entry_size - 1);
2256 
2257 					memcpy((void *)&e.val64 + last_off,
2258 						(void *)&pos->data + last_off,
2259 						bytes);
2260 
2261 					list_del(&pos->list);
2262 					kfree(pos);
2263 					found = true;
2264 					break;
2265 				}
2266 
2267 				/* update of the first partial part */
2268 				pos->data = e.val64;
2269 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2270 				return 0;
2271 			}
2272 		}
2273 
2274 		if (!found) {
2275 			/* the first partial part */
2276 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2277 			if (!partial_pte)
2278 				return -ENOMEM;
2279 			partial_pte->offset = off;
2280 			partial_pte->data = e.val64;
2281 			list_add_tail(&partial_pte->list,
2282 				&ggtt_mm->ggtt_mm.partial_pte_list);
2283 			partial_update = true;
2284 		}
2285 	}
2286 
2287 	if (!partial_update && (ops->test_present(&e))) {
2288 		gfn = ops->get_pfn(&e);
2289 		m.val64 = e.val64;
2290 		m.type = e.type;
2291 
2292 		/* one PTE update may be issued in multiple writes and the
2293 		 * first write may not construct a valid gfn
2294 		 */
2295 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2296 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2297 			goto out;
2298 		}
2299 
2300 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2301 							PAGE_SIZE, &dma_addr);
2302 		if (ret) {
2303 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2304 			/* guest driver may read/write the entry when partial
2305 			 * update the entry in this situation p2m will fail
2306 			 * settting the shadow entry to point to a scratch page
2307 			 */
2308 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2309 		} else
2310 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2311 	} else {
2312 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2313 		ops->clear_present(&m);
2314 	}
2315 
2316 out:
2317 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2318 
2319 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2320 	ggtt_invalidate_pte(vgpu, &e);
2321 
2322 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2323 	ggtt_invalidate(gvt->gt);
2324 	return 0;
2325 }
2326 
2327 /*
2328  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2329  * @vgpu: a vGPU
2330  * @off: register offset
2331  * @p_data: data from guest write
2332  * @bytes: data length
2333  *
2334  * This function is used to emulate the GTT MMIO register write
2335  *
2336  * Returns:
2337  * Zero on success, error code if failed.
2338  */
2339 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2340 		unsigned int off, void *p_data, unsigned int bytes)
2341 {
2342 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2343 	int ret;
2344 
2345 	if (bytes != 4 && bytes != 8)
2346 		return -EINVAL;
2347 
2348 	off -= info->gtt_start_offset;
2349 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2350 	return ret;
2351 }
2352 
2353 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2354 		enum intel_gvt_gtt_type type)
2355 {
2356 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2357 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2358 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2359 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2360 				vgpu->gvt->device_info.gtt_entry_size_shift;
2361 	void *scratch_pt;
2362 	int i;
2363 	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2364 	dma_addr_t daddr;
2365 
2366 	if (drm_WARN_ON(&i915->drm,
2367 			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2368 		return -EINVAL;
2369 
2370 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2371 	if (!scratch_pt) {
2372 		gvt_vgpu_err("fail to allocate scratch page\n");
2373 		return -ENOMEM;
2374 	}
2375 
2376 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2377 			4096, PCI_DMA_BIDIRECTIONAL);
2378 	if (dma_mapping_error(dev, daddr)) {
2379 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2380 		__free_page(virt_to_page(scratch_pt));
2381 		return -ENOMEM;
2382 	}
2383 	gtt->scratch_pt[type].page_mfn =
2384 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2385 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2386 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2387 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2388 
2389 	/* Build the tree by full filled the scratch pt with the entries which
2390 	 * point to the next level scratch pt or scratch page. The
2391 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2392 	 * 'type' pt.
2393 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2394 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2395 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2396 	 */
2397 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2398 		struct intel_gvt_gtt_entry se;
2399 
2400 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2401 		se.type = get_entry_type(type - 1);
2402 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2403 
2404 		/* The entry parameters like present/writeable/cache type
2405 		 * set to the same as i915's scratch page tree.
2406 		 */
2407 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2408 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2409 			se.val64 |= PPAT_CACHED;
2410 
2411 		for (i = 0; i < page_entry_num; i++)
2412 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2413 	}
2414 
2415 	return 0;
2416 }
2417 
2418 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2419 {
2420 	int i;
2421 	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2422 	dma_addr_t daddr;
2423 
2424 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2425 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2426 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2427 					I915_GTT_PAGE_SHIFT);
2428 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2429 			__free_page(vgpu->gtt.scratch_pt[i].page);
2430 			vgpu->gtt.scratch_pt[i].page = NULL;
2431 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2432 		}
2433 	}
2434 
2435 	return 0;
2436 }
2437 
2438 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2439 {
2440 	int i, ret;
2441 
2442 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2443 		ret = alloc_scratch_pages(vgpu, i);
2444 		if (ret)
2445 			goto err;
2446 	}
2447 
2448 	return 0;
2449 
2450 err:
2451 	release_scratch_page_tree(vgpu);
2452 	return ret;
2453 }
2454 
2455 /**
2456  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2457  * @vgpu: a vGPU
2458  *
2459  * This function is used to initialize per-vGPU graphics memory virtualization
2460  * components.
2461  *
2462  * Returns:
2463  * Zero on success, error code if failed.
2464  */
2465 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2466 {
2467 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2468 
2469 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2470 
2471 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2472 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2473 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2474 
2475 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2476 	if (IS_ERR(gtt->ggtt_mm)) {
2477 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2478 		return PTR_ERR(gtt->ggtt_mm);
2479 	}
2480 
2481 	intel_vgpu_reset_ggtt(vgpu, false);
2482 
2483 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2484 
2485 	return create_scratch_page_tree(vgpu);
2486 }
2487 
2488 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2489 {
2490 	struct list_head *pos, *n;
2491 	struct intel_vgpu_mm *mm;
2492 
2493 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2494 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2495 		intel_vgpu_destroy_mm(mm);
2496 	}
2497 
2498 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2499 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2500 
2501 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2502 		gvt_err("Why we still has spt not freed?\n");
2503 		ppgtt_free_all_spt(vgpu);
2504 	}
2505 }
2506 
2507 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2508 {
2509 	struct intel_gvt_partial_pte *pos, *next;
2510 
2511 	list_for_each_entry_safe(pos, next,
2512 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2513 				 list) {
2514 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2515 			pos->offset, pos->data);
2516 		kfree(pos);
2517 	}
2518 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2519 	vgpu->gtt.ggtt_mm = NULL;
2520 }
2521 
2522 /**
2523  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2524  * @vgpu: a vGPU
2525  *
2526  * This function is used to clean up per-vGPU graphics memory virtualization
2527  * components.
2528  *
2529  * Returns:
2530  * Zero on success, error code if failed.
2531  */
2532 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2533 {
2534 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2535 	intel_vgpu_destroy_ggtt_mm(vgpu);
2536 	release_scratch_page_tree(vgpu);
2537 }
2538 
2539 static void clean_spt_oos(struct intel_gvt *gvt)
2540 {
2541 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2542 	struct list_head *pos, *n;
2543 	struct intel_vgpu_oos_page *oos_page;
2544 
2545 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2546 		"someone is still using oos page\n");
2547 
2548 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2549 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2550 		list_del(&oos_page->list);
2551 		free_page((unsigned long)oos_page->mem);
2552 		kfree(oos_page);
2553 	}
2554 }
2555 
2556 static int setup_spt_oos(struct intel_gvt *gvt)
2557 {
2558 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2559 	struct intel_vgpu_oos_page *oos_page;
2560 	int i;
2561 	int ret;
2562 
2563 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2564 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2565 
2566 	for (i = 0; i < preallocated_oos_pages; i++) {
2567 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2568 		if (!oos_page) {
2569 			ret = -ENOMEM;
2570 			goto fail;
2571 		}
2572 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2573 		if (!oos_page->mem) {
2574 			ret = -ENOMEM;
2575 			kfree(oos_page);
2576 			goto fail;
2577 		}
2578 
2579 		INIT_LIST_HEAD(&oos_page->list);
2580 		INIT_LIST_HEAD(&oos_page->vm_list);
2581 		oos_page->id = i;
2582 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2583 	}
2584 
2585 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2586 
2587 	return 0;
2588 fail:
2589 	clean_spt_oos(gvt);
2590 	return ret;
2591 }
2592 
2593 /**
2594  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2595  * @vgpu: a vGPU
2596  * @pdps: pdp root array
2597  *
2598  * This function is used to find a PPGTT mm object from mm object pool
2599  *
2600  * Returns:
2601  * pointer to mm object on success, NULL if failed.
2602  */
2603 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2604 		u64 pdps[])
2605 {
2606 	struct intel_vgpu_mm *mm;
2607 	struct list_head *pos;
2608 
2609 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2610 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2611 
2612 		switch (mm->ppgtt_mm.root_entry_type) {
2613 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2614 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2615 				return mm;
2616 			break;
2617 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2618 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2619 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2620 				return mm;
2621 			break;
2622 		default:
2623 			GEM_BUG_ON(1);
2624 		}
2625 	}
2626 	return NULL;
2627 }
2628 
2629 /**
2630  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2631  * @vgpu: a vGPU
2632  * @root_entry_type: ppgtt root entry type
2633  * @pdps: guest pdps
2634  *
2635  * This function is used to find or create a PPGTT mm object from a guest.
2636  *
2637  * Returns:
2638  * Zero on success, negative error code if failed.
2639  */
2640 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2641 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2642 {
2643 	struct intel_vgpu_mm *mm;
2644 
2645 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2646 	if (mm) {
2647 		intel_vgpu_mm_get(mm);
2648 	} else {
2649 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2650 		if (IS_ERR(mm))
2651 			gvt_vgpu_err("fail to create mm\n");
2652 	}
2653 	return mm;
2654 }
2655 
2656 /**
2657  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2658  * @vgpu: a vGPU
2659  * @pdps: guest pdps
2660  *
2661  * This function is used to find a PPGTT mm object from a guest and destroy it.
2662  *
2663  * Returns:
2664  * Zero on success, negative error code if failed.
2665  */
2666 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2667 {
2668 	struct intel_vgpu_mm *mm;
2669 
2670 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2671 	if (!mm) {
2672 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2673 		return -EINVAL;
2674 	}
2675 	intel_vgpu_mm_put(mm);
2676 	return 0;
2677 }
2678 
2679 /**
2680  * intel_gvt_init_gtt - initialize mm components of a GVT device
2681  * @gvt: GVT device
2682  *
2683  * This function is called at the initialization stage, to initialize
2684  * the mm components of a GVT device.
2685  *
2686  * Returns:
2687  * zero on success, negative error code if failed.
2688  */
2689 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2690 {
2691 	int ret;
2692 	void *page;
2693 	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2694 	dma_addr_t daddr;
2695 
2696 	gvt_dbg_core("init gtt\n");
2697 
2698 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2699 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2700 
2701 	page = (void *)get_zeroed_page(GFP_KERNEL);
2702 	if (!page) {
2703 		gvt_err("fail to allocate scratch ggtt page\n");
2704 		return -ENOMEM;
2705 	}
2706 
2707 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2708 			4096, PCI_DMA_BIDIRECTIONAL);
2709 	if (dma_mapping_error(dev, daddr)) {
2710 		gvt_err("fail to dmamap scratch ggtt page\n");
2711 		__free_page(virt_to_page(page));
2712 		return -ENOMEM;
2713 	}
2714 
2715 	gvt->gtt.scratch_page = virt_to_page(page);
2716 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2717 
2718 	if (enable_out_of_sync) {
2719 		ret = setup_spt_oos(gvt);
2720 		if (ret) {
2721 			gvt_err("fail to initialize SPT oos\n");
2722 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2723 			__free_page(gvt->gtt.scratch_page);
2724 			return ret;
2725 		}
2726 	}
2727 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2728 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2729 	return 0;
2730 }
2731 
2732 /**
2733  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2734  * @gvt: GVT device
2735  *
2736  * This function is called at the driver unloading stage, to clean up the
2737  * the mm components of a GVT device.
2738  *
2739  */
2740 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2741 {
2742 	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2743 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2744 					I915_GTT_PAGE_SHIFT);
2745 
2746 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2747 
2748 	__free_page(gvt->gtt.scratch_page);
2749 
2750 	if (enable_out_of_sync)
2751 		clean_spt_oos(gvt);
2752 }
2753 
2754 /**
2755  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2756  * @vgpu: a vGPU
2757  *
2758  * This function is called when invalidate all PPGTT instances of a vGPU.
2759  *
2760  */
2761 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2762 {
2763 	struct list_head *pos, *n;
2764 	struct intel_vgpu_mm *mm;
2765 
2766 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2767 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2768 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2769 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2770 			list_del_init(&mm->ppgtt_mm.lru_list);
2771 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2772 			if (mm->ppgtt_mm.shadowed)
2773 				invalidate_ppgtt_mm(mm);
2774 		}
2775 	}
2776 }
2777 
2778 /**
2779  * intel_vgpu_reset_ggtt - reset the GGTT entry
2780  * @vgpu: a vGPU
2781  * @invalidate_old: invalidate old entries
2782  *
2783  * This function is called at the vGPU create stage
2784  * to reset all the GGTT entries.
2785  *
2786  */
2787 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2788 {
2789 	struct intel_gvt *gvt = vgpu->gvt;
2790 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2791 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2792 	struct intel_gvt_gtt_entry old_entry;
2793 	u32 index;
2794 	u32 num_entries;
2795 
2796 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2797 	pte_ops->set_present(&entry);
2798 
2799 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2800 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2801 	while (num_entries--) {
2802 		if (invalidate_old) {
2803 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2804 			ggtt_invalidate_pte(vgpu, &old_entry);
2805 		}
2806 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2807 	}
2808 
2809 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2810 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2811 	while (num_entries--) {
2812 		if (invalidate_old) {
2813 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2814 			ggtt_invalidate_pte(vgpu, &old_entry);
2815 		}
2816 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2817 	}
2818 
2819 	ggtt_invalidate(gvt->gt);
2820 }
2821 
2822 /**
2823  * intel_vgpu_reset_gtt - reset the all GTT related status
2824  * @vgpu: a vGPU
2825  *
2826  * This function is called from vfio core to reset reset all
2827  * GTT related status, including GGTT, PPGTT, scratch page.
2828  *
2829  */
2830 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2831 {
2832 	/* Shadow pages are only created when there is no page
2833 	 * table tracking data, so remove page tracking data after
2834 	 * removing the shadow pages.
2835 	 */
2836 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2837 	intel_vgpu_reset_ggtt(vgpu, true);
2838 }
2839