xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision ba61bb17)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 				addr, size);
60 		return false;
61 	}
62 	return true;
63 }
64 
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 		 "invalid guest gmadr %llx\n", g_addr))
70 		return -EACCES;
71 
72 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
74 			  + (g_addr - vgpu_aperture_offset(vgpu));
75 	else
76 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
77 			  + (g_addr - vgpu_hidden_offset(vgpu));
78 	return 0;
79 }
80 
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 		 "invalid host gmadr %llx\n", h_addr))
86 		return -EACCES;
87 
88 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
90 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 	else
92 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
93 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 	return 0;
95 }
96 
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 			     unsigned long *h_index)
99 {
100 	u64 h_addr;
101 	int ret;
102 
103 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 				       &h_addr);
105 	if (ret)
106 		return ret;
107 
108 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 	return 0;
110 }
111 
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 			     unsigned long *g_index)
114 {
115 	u64 g_addr;
116 	int ret;
117 
118 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 				       &g_addr);
120 	if (ret)
121 		return ret;
122 
123 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 	return 0;
125 }
126 
127 #define gtt_type_is_entry(type) \
128 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131 
132 #define gtt_type_is_pt(type) \
133 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134 
135 #define gtt_type_is_pte_pt(type) \
136 	(type == GTT_TYPE_PPGTT_PTE_PT)
137 
138 #define gtt_type_is_root_pointer(type) \
139 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140 
141 #define gtt_init_entry(e, t, p, v) do { \
142 	(e)->type = t; \
143 	(e)->pdev = p; \
144 	memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146 
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162 
163 struct gtt_type_table_entry {
164 	int entry_type;
165 	int pt_type;
166 	int next_pt_type;
167 	int pse_entry_type;
168 };
169 
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 	[type] = { \
172 		.entry_type = e_type, \
173 		.pt_type = cpt_type, \
174 		.next_pt_type = npt_type, \
175 		.pse_entry_type = pse_type, \
176 	}
177 
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 			GTT_TYPE_INVALID,
182 			GTT_TYPE_PPGTT_PML4_PT,
183 			GTT_TYPE_INVALID),
184 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 			GTT_TYPE_PPGTT_PML4_ENTRY,
186 			GTT_TYPE_PPGTT_PML4_PT,
187 			GTT_TYPE_PPGTT_PDP_PT,
188 			GTT_TYPE_INVALID),
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 			GTT_TYPE_PPGTT_PML4_ENTRY,
191 			GTT_TYPE_PPGTT_PML4_PT,
192 			GTT_TYPE_PPGTT_PDP_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 			GTT_TYPE_PPGTT_PDP_ENTRY,
196 			GTT_TYPE_PPGTT_PDP_PT,
197 			GTT_TYPE_PPGTT_PDE_PT,
198 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 			GTT_TYPE_INVALID,
202 			GTT_TYPE_PPGTT_PDE_PT,
203 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 			GTT_TYPE_PPGTT_PDE_ENTRY,
211 			GTT_TYPE_PPGTT_PDE_PT,
212 			GTT_TYPE_PPGTT_PTE_PT,
213 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 			GTT_TYPE_PPGTT_PDE_ENTRY,
216 			GTT_TYPE_PPGTT_PDE_PT,
217 			GTT_TYPE_PPGTT_PTE_PT,
218 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
220 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
221 			GTT_TYPE_PPGTT_PTE_PT,
222 			GTT_TYPE_INVALID,
223 			GTT_TYPE_INVALID),
224 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
225 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 			GTT_TYPE_PPGTT_PTE_PT,
227 			GTT_TYPE_INVALID,
228 			GTT_TYPE_INVALID),
229 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
230 			GTT_TYPE_PPGTT_PDE_ENTRY,
231 			GTT_TYPE_PPGTT_PDE_PT,
232 			GTT_TYPE_INVALID,
233 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
234 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
235 			GTT_TYPE_PPGTT_PDP_ENTRY,
236 			GTT_TYPE_PPGTT_PDP_PT,
237 			GTT_TYPE_INVALID,
238 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
239 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
240 			GTT_TYPE_GGTT_PTE,
241 			GTT_TYPE_INVALID,
242 			GTT_TYPE_INVALID,
243 			GTT_TYPE_INVALID),
244 };
245 
246 static inline int get_next_pt_type(int type)
247 {
248 	return gtt_type_table[type].next_pt_type;
249 }
250 
251 static inline int get_pt_type(int type)
252 {
253 	return gtt_type_table[type].pt_type;
254 }
255 
256 static inline int get_entry_type(int type)
257 {
258 	return gtt_type_table[type].entry_type;
259 }
260 
261 static inline int get_pse_type(int type)
262 {
263 	return gtt_type_table[type].pse_entry_type;
264 }
265 
266 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
267 {
268 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
269 
270 	return readq(addr);
271 }
272 
273 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
274 {
275 	mmio_hw_access_pre(dev_priv);
276 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
277 	mmio_hw_access_post(dev_priv);
278 }
279 
280 static void write_pte64(struct drm_i915_private *dev_priv,
281 		unsigned long index, u64 pte)
282 {
283 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
284 
285 	writeq(pte, addr);
286 }
287 
288 static inline int gtt_get_entry64(void *pt,
289 		struct intel_gvt_gtt_entry *e,
290 		unsigned long index, bool hypervisor_access, unsigned long gpa,
291 		struct intel_vgpu *vgpu)
292 {
293 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
294 	int ret;
295 
296 	if (WARN_ON(info->gtt_entry_size != 8))
297 		return -EINVAL;
298 
299 	if (hypervisor_access) {
300 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
301 				(index << info->gtt_entry_size_shift),
302 				&e->val64, 8);
303 		if (WARN_ON(ret))
304 			return ret;
305 	} else if (!pt) {
306 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
307 	} else {
308 		e->val64 = *((u64 *)pt + index);
309 	}
310 	return 0;
311 }
312 
313 static inline int gtt_set_entry64(void *pt,
314 		struct intel_gvt_gtt_entry *e,
315 		unsigned long index, bool hypervisor_access, unsigned long gpa,
316 		struct intel_vgpu *vgpu)
317 {
318 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
319 	int ret;
320 
321 	if (WARN_ON(info->gtt_entry_size != 8))
322 		return -EINVAL;
323 
324 	if (hypervisor_access) {
325 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
326 				(index << info->gtt_entry_size_shift),
327 				&e->val64, 8);
328 		if (WARN_ON(ret))
329 			return ret;
330 	} else if (!pt) {
331 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
332 	} else {
333 		*((u64 *)pt + index) = e->val64;
334 	}
335 	return 0;
336 }
337 
338 #define GTT_HAW 46
339 
340 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
341 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
342 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
343 
344 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
345 {
346 	unsigned long pfn;
347 
348 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
349 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
350 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
351 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
352 	else
353 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
354 	return pfn;
355 }
356 
357 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
358 {
359 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
360 		e->val64 &= ~ADDR_1G_MASK;
361 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
362 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
363 		e->val64 &= ~ADDR_2M_MASK;
364 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
365 	} else {
366 		e->val64 &= ~ADDR_4K_MASK;
367 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
368 	}
369 
370 	e->val64 |= (pfn << PAGE_SHIFT);
371 }
372 
373 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
374 {
375 	/* Entry doesn't have PSE bit. */
376 	if (get_pse_type(e->type) == GTT_TYPE_INVALID)
377 		return false;
378 
379 	e->type = get_entry_type(e->type);
380 	if (!(e->val64 & _PAGE_PSE))
381 		return false;
382 
383 	e->type = get_pse_type(e->type);
384 	return true;
385 }
386 
387 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
388 {
389 	/*
390 	 * i915 writes PDP root pointer registers without present bit,
391 	 * it also works, so we need to treat root pointer entry
392 	 * specifically.
393 	 */
394 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
395 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
396 		return (e->val64 != 0);
397 	else
398 		return (e->val64 & _PAGE_PRESENT);
399 }
400 
401 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
402 {
403 	e->val64 &= ~_PAGE_PRESENT;
404 }
405 
406 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
407 {
408 	e->val64 |= _PAGE_PRESENT;
409 }
410 
411 /*
412  * Per-platform GMA routines.
413  */
414 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
415 {
416 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
417 
418 	trace_gma_index(__func__, gma, x);
419 	return x;
420 }
421 
422 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
423 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
424 { \
425 	unsigned long x = (exp); \
426 	trace_gma_index(__func__, gma, x); \
427 	return x; \
428 }
429 
430 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
431 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
432 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
433 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
434 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
435 
436 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
437 	.get_entry = gtt_get_entry64,
438 	.set_entry = gtt_set_entry64,
439 	.clear_present = gtt_entry_clear_present,
440 	.set_present = gtt_entry_set_present,
441 	.test_present = gen8_gtt_test_present,
442 	.test_pse = gen8_gtt_test_pse,
443 	.get_pfn = gen8_gtt_get_pfn,
444 	.set_pfn = gen8_gtt_set_pfn,
445 };
446 
447 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
448 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
449 	.gma_to_pte_index = gen8_gma_to_pte_index,
450 	.gma_to_pde_index = gen8_gma_to_pde_index,
451 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
452 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
453 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
454 };
455 
456 /*
457  * MM helpers.
458  */
459 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
460 		struct intel_gvt_gtt_entry *entry, unsigned long index,
461 		bool guest)
462 {
463 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
464 
465 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
466 
467 	entry->type = mm->ppgtt_mm.root_entry_type;
468 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
469 			   mm->ppgtt_mm.shadow_pdps,
470 			   entry, index, false, 0, mm->vgpu);
471 
472 	pte_ops->test_pse(entry);
473 }
474 
475 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
476 		struct intel_gvt_gtt_entry *entry, unsigned long index)
477 {
478 	_ppgtt_get_root_entry(mm, entry, index, true);
479 }
480 
481 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
482 		struct intel_gvt_gtt_entry *entry, unsigned long index)
483 {
484 	_ppgtt_get_root_entry(mm, entry, index, false);
485 }
486 
487 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
488 		struct intel_gvt_gtt_entry *entry, unsigned long index,
489 		bool guest)
490 {
491 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
492 
493 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
494 			   mm->ppgtt_mm.shadow_pdps,
495 			   entry, index, false, 0, mm->vgpu);
496 }
497 
498 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
499 		struct intel_gvt_gtt_entry *entry, unsigned long index)
500 {
501 	_ppgtt_set_root_entry(mm, entry, index, true);
502 }
503 
504 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
505 		struct intel_gvt_gtt_entry *entry, unsigned long index)
506 {
507 	_ppgtt_set_root_entry(mm, entry, index, false);
508 }
509 
510 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
511 		struct intel_gvt_gtt_entry *entry, unsigned long index)
512 {
513 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
514 
515 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
516 
517 	entry->type = GTT_TYPE_GGTT_PTE;
518 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
519 			   false, 0, mm->vgpu);
520 }
521 
522 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
523 		struct intel_gvt_gtt_entry *entry, unsigned long index)
524 {
525 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
526 
527 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
528 
529 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
530 			   false, 0, mm->vgpu);
531 }
532 
533 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
534 		struct intel_gvt_gtt_entry *entry, unsigned long index)
535 {
536 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
537 
538 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
539 
540 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
541 }
542 
543 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
544 		struct intel_gvt_gtt_entry *entry, unsigned long index)
545 {
546 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
547 
548 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
549 
550 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
551 }
552 
553 /*
554  * PPGTT shadow page table helpers.
555  */
556 static inline int ppgtt_spt_get_entry(
557 		struct intel_vgpu_ppgtt_spt *spt,
558 		void *page_table, int type,
559 		struct intel_gvt_gtt_entry *e, unsigned long index,
560 		bool guest)
561 {
562 	struct intel_gvt *gvt = spt->vgpu->gvt;
563 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
564 	int ret;
565 
566 	e->type = get_entry_type(type);
567 
568 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
569 		return -EINVAL;
570 
571 	ret = ops->get_entry(page_table, e, index, guest,
572 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
573 			spt->vgpu);
574 	if (ret)
575 		return ret;
576 
577 	ops->test_pse(e);
578 
579 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
580 		    type, e->type, index, e->val64);
581 	return 0;
582 }
583 
584 static inline int ppgtt_spt_set_entry(
585 		struct intel_vgpu_ppgtt_spt *spt,
586 		void *page_table, int type,
587 		struct intel_gvt_gtt_entry *e, unsigned long index,
588 		bool guest)
589 {
590 	struct intel_gvt *gvt = spt->vgpu->gvt;
591 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
592 
593 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
594 		return -EINVAL;
595 
596 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
597 		    type, e->type, index, e->val64);
598 
599 	return ops->set_entry(page_table, e, index, guest,
600 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
601 			spt->vgpu);
602 }
603 
604 #define ppgtt_get_guest_entry(spt, e, index) \
605 	ppgtt_spt_get_entry(spt, NULL, \
606 		spt->guest_page.type, e, index, true)
607 
608 #define ppgtt_set_guest_entry(spt, e, index) \
609 	ppgtt_spt_set_entry(spt, NULL, \
610 		spt->guest_page.type, e, index, true)
611 
612 #define ppgtt_get_shadow_entry(spt, e, index) \
613 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
614 		spt->shadow_page.type, e, index, false)
615 
616 #define ppgtt_set_shadow_entry(spt, e, index) \
617 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
618 		spt->shadow_page.type, e, index, false)
619 
620 static void *alloc_spt(gfp_t gfp_mask)
621 {
622 	struct intel_vgpu_ppgtt_spt *spt;
623 
624 	spt = kzalloc(sizeof(*spt), gfp_mask);
625 	if (!spt)
626 		return NULL;
627 
628 	spt->shadow_page.page = alloc_page(gfp_mask);
629 	if (!spt->shadow_page.page) {
630 		kfree(spt);
631 		return NULL;
632 	}
633 	return spt;
634 }
635 
636 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
637 {
638 	__free_page(spt->shadow_page.page);
639 	kfree(spt);
640 }
641 
642 static int detach_oos_page(struct intel_vgpu *vgpu,
643 		struct intel_vgpu_oos_page *oos_page);
644 
645 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
646 {
647 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
648 
649 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
650 
651 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
652 		       PCI_DMA_BIDIRECTIONAL);
653 
654 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
655 
656 	if (spt->guest_page.oos_page)
657 		detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
658 
659 	intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
660 
661 	list_del_init(&spt->post_shadow_list);
662 	free_spt(spt);
663 }
664 
665 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
666 {
667 	struct intel_vgpu_ppgtt_spt *spt;
668 	struct radix_tree_iter iter;
669 	void **slot;
670 
671 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
672 		spt = radix_tree_deref_slot(slot);
673 		ppgtt_free_spt(spt);
674 	}
675 }
676 
677 static int ppgtt_handle_guest_write_page_table_bytes(
678 		struct intel_vgpu_ppgtt_spt *spt,
679 		u64 pa, void *p_data, int bytes);
680 
681 static int ppgtt_write_protection_handler(
682 		struct intel_vgpu_page_track *page_track,
683 		u64 gpa, void *data, int bytes)
684 {
685 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
686 
687 	int ret;
688 
689 	if (bytes != 4 && bytes != 8)
690 		return -EINVAL;
691 
692 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
693 	if (ret)
694 		return ret;
695 	return ret;
696 }
697 
698 /* Find a spt by guest gfn. */
699 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
700 		struct intel_vgpu *vgpu, unsigned long gfn)
701 {
702 	struct intel_vgpu_page_track *track;
703 
704 	track = intel_vgpu_find_page_track(vgpu, gfn);
705 	if (track && track->handler == ppgtt_write_protection_handler)
706 		return track->priv_data;
707 
708 	return NULL;
709 }
710 
711 /* Find the spt by shadow page mfn. */
712 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
713 		struct intel_vgpu *vgpu, unsigned long mfn)
714 {
715 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
716 }
717 
718 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
719 
720 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
721 		struct intel_vgpu *vgpu, int type, unsigned long gfn)
722 {
723 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
724 	struct intel_vgpu_ppgtt_spt *spt = NULL;
725 	dma_addr_t daddr;
726 	int ret;
727 
728 retry:
729 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
730 	if (!spt) {
731 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
732 			goto retry;
733 
734 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
735 		return ERR_PTR(-ENOMEM);
736 	}
737 
738 	spt->vgpu = vgpu;
739 	atomic_set(&spt->refcount, 1);
740 	INIT_LIST_HEAD(&spt->post_shadow_list);
741 
742 	/*
743 	 * Init shadow_page.
744 	 */
745 	spt->shadow_page.type = type;
746 	daddr = dma_map_page(kdev, spt->shadow_page.page,
747 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
748 	if (dma_mapping_error(kdev, daddr)) {
749 		gvt_vgpu_err("fail to map dma addr\n");
750 		ret = -EINVAL;
751 		goto err_free_spt;
752 	}
753 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
754 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
755 
756 	/*
757 	 * Init guest_page.
758 	 */
759 	spt->guest_page.type = type;
760 	spt->guest_page.gfn = gfn;
761 
762 	ret = intel_vgpu_register_page_track(vgpu, spt->guest_page.gfn,
763 					ppgtt_write_protection_handler, spt);
764 	if (ret)
765 		goto err_unmap_dma;
766 
767 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
768 	if (ret)
769 		goto err_unreg_page_track;
770 
771 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
772 	return spt;
773 
774 err_unreg_page_track:
775 	intel_vgpu_unregister_page_track(vgpu, spt->guest_page.gfn);
776 err_unmap_dma:
777 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
778 err_free_spt:
779 	free_spt(spt);
780 	return ERR_PTR(ret);
781 }
782 
783 #define pt_entry_size_shift(spt) \
784 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
785 
786 #define pt_entries(spt) \
787 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
788 
789 #define for_each_present_guest_entry(spt, e, i) \
790 	for (i = 0; i < pt_entries(spt); i++) \
791 		if (!ppgtt_get_guest_entry(spt, e, i) && \
792 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
793 
794 #define for_each_present_shadow_entry(spt, e, i) \
795 	for (i = 0; i < pt_entries(spt); i++) \
796 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
797 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
798 
799 static void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
800 {
801 	int v = atomic_read(&spt->refcount);
802 
803 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
804 
805 	atomic_inc(&spt->refcount);
806 }
807 
808 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
809 
810 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
811 		struct intel_gvt_gtt_entry *e)
812 {
813 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
814 	struct intel_vgpu_ppgtt_spt *s;
815 	intel_gvt_gtt_type_t cur_pt_type;
816 
817 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
818 
819 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
820 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
821 		cur_pt_type = get_next_pt_type(e->type) + 1;
822 		if (ops->get_pfn(e) ==
823 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
824 			return 0;
825 	}
826 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
827 	if (!s) {
828 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
829 				ops->get_pfn(e));
830 		return -ENXIO;
831 	}
832 	return ppgtt_invalidate_spt(s);
833 }
834 
835 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
836 		struct intel_gvt_gtt_entry *entry)
837 {
838 	struct intel_vgpu *vgpu = spt->vgpu;
839 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
840 	unsigned long pfn;
841 	int type;
842 
843 	pfn = ops->get_pfn(entry);
844 	type = spt->shadow_page.type;
845 
846 	if (pfn == vgpu->gtt.scratch_pt[type].page_mfn)
847 		return;
848 
849 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
850 }
851 
852 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
853 {
854 	struct intel_vgpu *vgpu = spt->vgpu;
855 	struct intel_gvt_gtt_entry e;
856 	unsigned long index;
857 	int ret;
858 	int v = atomic_read(&spt->refcount);
859 
860 	trace_spt_change(spt->vgpu->id, "die", spt,
861 			spt->guest_page.gfn, spt->shadow_page.type);
862 
863 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
864 
865 	if (atomic_dec_return(&spt->refcount) > 0)
866 		return 0;
867 
868 	for_each_present_shadow_entry(spt, &e, index) {
869 		switch (e.type) {
870 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
871 			gvt_vdbg_mm("invalidate 4K entry\n");
872 			ppgtt_invalidate_pte(spt, &e);
873 			break;
874 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
875 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
876 			WARN(1, "GVT doesn't support 2M/1GB page\n");
877 			continue;
878 		case GTT_TYPE_PPGTT_PML4_ENTRY:
879 		case GTT_TYPE_PPGTT_PDP_ENTRY:
880 		case GTT_TYPE_PPGTT_PDE_ENTRY:
881 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
882 			ret = ppgtt_invalidate_spt_by_shadow_entry(
883 					spt->vgpu, &e);
884 			if (ret)
885 				goto fail;
886 			break;
887 		default:
888 			GEM_BUG_ON(1);
889 		}
890 	}
891 
892 	trace_spt_change(spt->vgpu->id, "release", spt,
893 			 spt->guest_page.gfn, spt->shadow_page.type);
894 	ppgtt_free_spt(spt);
895 	return 0;
896 fail:
897 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
898 			spt, e.val64, e.type);
899 	return ret;
900 }
901 
902 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
903 
904 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
905 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
906 {
907 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
908 	struct intel_vgpu_ppgtt_spt *spt = NULL;
909 	int ret;
910 
911 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
912 
913 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
914 	if (spt)
915 		ppgtt_get_spt(spt);
916 	else {
917 		int type = get_next_pt_type(we->type);
918 
919 		spt = ppgtt_alloc_spt(vgpu, type, ops->get_pfn(we));
920 		if (IS_ERR(spt)) {
921 			ret = PTR_ERR(spt);
922 			goto fail;
923 		}
924 
925 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
926 		if (ret)
927 			goto fail;
928 
929 		ret = ppgtt_populate_spt(spt);
930 		if (ret)
931 			goto fail;
932 
933 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
934 				 spt->shadow_page.type);
935 	}
936 	return spt;
937 fail:
938 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
939 		     spt, we->val64, we->type);
940 	return ERR_PTR(ret);
941 }
942 
943 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
944 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
945 {
946 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
947 
948 	se->type = ge->type;
949 	se->val64 = ge->val64;
950 
951 	ops->set_pfn(se, s->shadow_page.mfn);
952 }
953 
954 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
955 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
956 	struct intel_gvt_gtt_entry *ge)
957 {
958 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
959 	struct intel_gvt_gtt_entry se = *ge;
960 	unsigned long gfn;
961 	dma_addr_t dma_addr;
962 	int ret;
963 
964 	if (!pte_ops->test_present(ge))
965 		return 0;
966 
967 	gfn = pte_ops->get_pfn(ge);
968 
969 	switch (ge->type) {
970 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
971 		gvt_vdbg_mm("shadow 4K gtt entry\n");
972 		break;
973 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
974 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
975 		gvt_vgpu_err("GVT doesn't support 2M/1GB entry\n");
976 		return -EINVAL;
977 	default:
978 		GEM_BUG_ON(1);
979 	};
980 
981 	/* direct shadow */
982 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, &dma_addr);
983 	if (ret)
984 		return -ENXIO;
985 
986 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
987 	ppgtt_set_shadow_entry(spt, &se, index);
988 	return 0;
989 }
990 
991 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
992 {
993 	struct intel_vgpu *vgpu = spt->vgpu;
994 	struct intel_gvt *gvt = vgpu->gvt;
995 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
996 	struct intel_vgpu_ppgtt_spt *s;
997 	struct intel_gvt_gtt_entry se, ge;
998 	unsigned long gfn, i;
999 	int ret;
1000 
1001 	trace_spt_change(spt->vgpu->id, "born", spt,
1002 			 spt->guest_page.gfn, spt->shadow_page.type);
1003 
1004 	for_each_present_guest_entry(spt, &ge, i) {
1005 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1006 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1007 			if (IS_ERR(s)) {
1008 				ret = PTR_ERR(s);
1009 				goto fail;
1010 			}
1011 			ppgtt_get_shadow_entry(spt, &se, i);
1012 			ppgtt_generate_shadow_entry(&se, s, &ge);
1013 			ppgtt_set_shadow_entry(spt, &se, i);
1014 		} else {
1015 			gfn = ops->get_pfn(&ge);
1016 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1017 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1018 				ppgtt_set_shadow_entry(spt, &se, i);
1019 				continue;
1020 			}
1021 
1022 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1023 			if (ret)
1024 				goto fail;
1025 		}
1026 	}
1027 	return 0;
1028 fail:
1029 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1030 			spt, ge.val64, ge.type);
1031 	return ret;
1032 }
1033 
1034 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1035 		struct intel_gvt_gtt_entry *se, unsigned long index)
1036 {
1037 	struct intel_vgpu *vgpu = spt->vgpu;
1038 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1039 	int ret;
1040 
1041 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1042 			       spt->shadow_page.type, se->val64, index);
1043 
1044 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1045 		    se->type, index, se->val64);
1046 
1047 	if (!ops->test_present(se))
1048 		return 0;
1049 
1050 	if (ops->get_pfn(se) ==
1051 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1052 		return 0;
1053 
1054 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1055 		struct intel_vgpu_ppgtt_spt *s =
1056 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1057 		if (!s) {
1058 			gvt_vgpu_err("fail to find guest page\n");
1059 			ret = -ENXIO;
1060 			goto fail;
1061 		}
1062 		ret = ppgtt_invalidate_spt(s);
1063 		if (ret)
1064 			goto fail;
1065 	} else
1066 		ppgtt_invalidate_pte(spt, se);
1067 
1068 	return 0;
1069 fail:
1070 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1071 			spt, se->val64, se->type);
1072 	return ret;
1073 }
1074 
1075 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1076 		struct intel_gvt_gtt_entry *we, unsigned long index)
1077 {
1078 	struct intel_vgpu *vgpu = spt->vgpu;
1079 	struct intel_gvt_gtt_entry m;
1080 	struct intel_vgpu_ppgtt_spt *s;
1081 	int ret;
1082 
1083 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1084 			       we->val64, index);
1085 
1086 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1087 		    we->type, index, we->val64);
1088 
1089 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1090 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1091 		if (IS_ERR(s)) {
1092 			ret = PTR_ERR(s);
1093 			goto fail;
1094 		}
1095 		ppgtt_get_shadow_entry(spt, &m, index);
1096 		ppgtt_generate_shadow_entry(&m, s, we);
1097 		ppgtt_set_shadow_entry(spt, &m, index);
1098 	} else {
1099 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1100 		if (ret)
1101 			goto fail;
1102 	}
1103 	return 0;
1104 fail:
1105 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1106 		spt, we->val64, we->type);
1107 	return ret;
1108 }
1109 
1110 static int sync_oos_page(struct intel_vgpu *vgpu,
1111 		struct intel_vgpu_oos_page *oos_page)
1112 {
1113 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1114 	struct intel_gvt *gvt = vgpu->gvt;
1115 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1116 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1117 	struct intel_gvt_gtt_entry old, new;
1118 	int index;
1119 	int ret;
1120 
1121 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1122 			 spt, spt->guest_page.type);
1123 
1124 	old.type = new.type = get_entry_type(spt->guest_page.type);
1125 	old.val64 = new.val64 = 0;
1126 
1127 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1128 				info->gtt_entry_size_shift); index++) {
1129 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1130 		ops->get_entry(NULL, &new, index, true,
1131 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1132 
1133 		if (old.val64 == new.val64
1134 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1135 			continue;
1136 
1137 		trace_oos_sync(vgpu->id, oos_page->id,
1138 				spt, spt->guest_page.type,
1139 				new.val64, index);
1140 
1141 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1142 		if (ret)
1143 			return ret;
1144 
1145 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1146 	}
1147 
1148 	spt->guest_page.write_cnt = 0;
1149 	list_del_init(&spt->post_shadow_list);
1150 	return 0;
1151 }
1152 
1153 static int detach_oos_page(struct intel_vgpu *vgpu,
1154 		struct intel_vgpu_oos_page *oos_page)
1155 {
1156 	struct intel_gvt *gvt = vgpu->gvt;
1157 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1158 
1159 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1160 			 spt, spt->guest_page.type);
1161 
1162 	spt->guest_page.write_cnt = 0;
1163 	spt->guest_page.oos_page = NULL;
1164 	oos_page->spt = NULL;
1165 
1166 	list_del_init(&oos_page->vm_list);
1167 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1168 
1169 	return 0;
1170 }
1171 
1172 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1173 		struct intel_vgpu_ppgtt_spt *spt)
1174 {
1175 	struct intel_gvt *gvt = spt->vgpu->gvt;
1176 	int ret;
1177 
1178 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1179 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1180 			oos_page->mem, I915_GTT_PAGE_SIZE);
1181 	if (ret)
1182 		return ret;
1183 
1184 	oos_page->spt = spt;
1185 	spt->guest_page.oos_page = oos_page;
1186 
1187 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1188 
1189 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1190 			 spt, spt->guest_page.type);
1191 	return 0;
1192 }
1193 
1194 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1195 {
1196 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1197 	int ret;
1198 
1199 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1200 	if (ret)
1201 		return ret;
1202 
1203 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1204 			 spt, spt->guest_page.type);
1205 
1206 	list_del_init(&oos_page->vm_list);
1207 	return sync_oos_page(spt->vgpu, oos_page);
1208 }
1209 
1210 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1211 {
1212 	struct intel_gvt *gvt = spt->vgpu->gvt;
1213 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1214 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1215 	int ret;
1216 
1217 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1218 
1219 	if (list_empty(&gtt->oos_page_free_list_head)) {
1220 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1221 			struct intel_vgpu_oos_page, list);
1222 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1223 		if (ret)
1224 			return ret;
1225 		ret = detach_oos_page(spt->vgpu, oos_page);
1226 		if (ret)
1227 			return ret;
1228 	} else
1229 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1230 			struct intel_vgpu_oos_page, list);
1231 	return attach_oos_page(oos_page, spt);
1232 }
1233 
1234 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1235 {
1236 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1237 
1238 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1239 		return -EINVAL;
1240 
1241 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1242 			 spt, spt->guest_page.type);
1243 
1244 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1245 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1246 }
1247 
1248 /**
1249  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1250  * @vgpu: a vGPU
1251  *
1252  * This function is called before submitting a guest workload to host,
1253  * to sync all the out-of-synced shadow for vGPU
1254  *
1255  * Returns:
1256  * Zero on success, negative error code if failed.
1257  */
1258 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1259 {
1260 	struct list_head *pos, *n;
1261 	struct intel_vgpu_oos_page *oos_page;
1262 	int ret;
1263 
1264 	if (!enable_out_of_sync)
1265 		return 0;
1266 
1267 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1268 		oos_page = container_of(pos,
1269 				struct intel_vgpu_oos_page, vm_list);
1270 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1271 		if (ret)
1272 			return ret;
1273 	}
1274 	return 0;
1275 }
1276 
1277 /*
1278  * The heart of PPGTT shadow page table.
1279  */
1280 static int ppgtt_handle_guest_write_page_table(
1281 		struct intel_vgpu_ppgtt_spt *spt,
1282 		struct intel_gvt_gtt_entry *we, unsigned long index)
1283 {
1284 	struct intel_vgpu *vgpu = spt->vgpu;
1285 	int type = spt->shadow_page.type;
1286 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1287 	struct intel_gvt_gtt_entry old_se;
1288 	int new_present;
1289 	int ret;
1290 
1291 	new_present = ops->test_present(we);
1292 
1293 	/*
1294 	 * Adding the new entry first and then removing the old one, that can
1295 	 * guarantee the ppgtt table is validated during the window between
1296 	 * adding and removal.
1297 	 */
1298 	ppgtt_get_shadow_entry(spt, &old_se, index);
1299 
1300 	if (new_present) {
1301 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1302 		if (ret)
1303 			goto fail;
1304 	}
1305 
1306 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1307 	if (ret)
1308 		goto fail;
1309 
1310 	if (!new_present) {
1311 		ops->set_pfn(&old_se, vgpu->gtt.scratch_pt[type].page_mfn);
1312 		ppgtt_set_shadow_entry(spt, &old_se, index);
1313 	}
1314 
1315 	return 0;
1316 fail:
1317 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1318 			spt, we->val64, we->type);
1319 	return ret;
1320 }
1321 
1322 
1323 
1324 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1325 {
1326 	return enable_out_of_sync
1327 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1328 		&& spt->guest_page.write_cnt >= 2;
1329 }
1330 
1331 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1332 		unsigned long index)
1333 {
1334 	set_bit(index, spt->post_shadow_bitmap);
1335 	if (!list_empty(&spt->post_shadow_list))
1336 		return;
1337 
1338 	list_add_tail(&spt->post_shadow_list,
1339 			&spt->vgpu->gtt.post_shadow_list_head);
1340 }
1341 
1342 /**
1343  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1344  * @vgpu: a vGPU
1345  *
1346  * This function is called before submitting a guest workload to host,
1347  * to flush all the post shadows for a vGPU.
1348  *
1349  * Returns:
1350  * Zero on success, negative error code if failed.
1351  */
1352 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1353 {
1354 	struct list_head *pos, *n;
1355 	struct intel_vgpu_ppgtt_spt *spt;
1356 	struct intel_gvt_gtt_entry ge;
1357 	unsigned long index;
1358 	int ret;
1359 
1360 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1361 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1362 				post_shadow_list);
1363 
1364 		for_each_set_bit(index, spt->post_shadow_bitmap,
1365 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1366 			ppgtt_get_guest_entry(spt, &ge, index);
1367 
1368 			ret = ppgtt_handle_guest_write_page_table(spt,
1369 							&ge, index);
1370 			if (ret)
1371 				return ret;
1372 			clear_bit(index, spt->post_shadow_bitmap);
1373 		}
1374 		list_del_init(&spt->post_shadow_list);
1375 	}
1376 	return 0;
1377 }
1378 
1379 static int ppgtt_handle_guest_write_page_table_bytes(
1380 		struct intel_vgpu_ppgtt_spt *spt,
1381 		u64 pa, void *p_data, int bytes)
1382 {
1383 	struct intel_vgpu *vgpu = spt->vgpu;
1384 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1385 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1386 	struct intel_gvt_gtt_entry we, se;
1387 	unsigned long index;
1388 	int ret;
1389 
1390 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1391 
1392 	ppgtt_get_guest_entry(spt, &we, index);
1393 
1394 	ops->test_pse(&we);
1395 
1396 	if (bytes == info->gtt_entry_size) {
1397 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1398 		if (ret)
1399 			return ret;
1400 	} else {
1401 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1402 			int type = spt->shadow_page.type;
1403 
1404 			ppgtt_get_shadow_entry(spt, &se, index);
1405 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1406 			if (ret)
1407 				return ret;
1408 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1409 			ppgtt_set_shadow_entry(spt, &se, index);
1410 		}
1411 		ppgtt_set_post_shadow(spt, index);
1412 	}
1413 
1414 	if (!enable_out_of_sync)
1415 		return 0;
1416 
1417 	spt->guest_page.write_cnt++;
1418 
1419 	if (spt->guest_page.oos_page)
1420 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1421 				false, 0, vgpu);
1422 
1423 	if (can_do_out_of_sync(spt)) {
1424 		if (!spt->guest_page.oos_page)
1425 			ppgtt_allocate_oos_page(spt);
1426 
1427 		ret = ppgtt_set_guest_page_oos(spt);
1428 		if (ret < 0)
1429 			return ret;
1430 	}
1431 	return 0;
1432 }
1433 
1434 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1435 {
1436 	struct intel_vgpu *vgpu = mm->vgpu;
1437 	struct intel_gvt *gvt = vgpu->gvt;
1438 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1439 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1440 	struct intel_gvt_gtt_entry se;
1441 	int index;
1442 
1443 	if (!mm->ppgtt_mm.shadowed)
1444 		return;
1445 
1446 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1447 		ppgtt_get_shadow_root_entry(mm, &se, index);
1448 
1449 		if (!ops->test_present(&se))
1450 			continue;
1451 
1452 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1453 		se.val64 = 0;
1454 		ppgtt_set_shadow_root_entry(mm, &se, index);
1455 
1456 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1457 				       NULL, se.type, se.val64, index);
1458 	}
1459 
1460 	mm->ppgtt_mm.shadowed = false;
1461 }
1462 
1463 
1464 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1465 {
1466 	struct intel_vgpu *vgpu = mm->vgpu;
1467 	struct intel_gvt *gvt = vgpu->gvt;
1468 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1469 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1470 	struct intel_vgpu_ppgtt_spt *spt;
1471 	struct intel_gvt_gtt_entry ge, se;
1472 	int index, ret;
1473 
1474 	if (mm->ppgtt_mm.shadowed)
1475 		return 0;
1476 
1477 	mm->ppgtt_mm.shadowed = true;
1478 
1479 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1480 		ppgtt_get_guest_root_entry(mm, &ge, index);
1481 
1482 		if (!ops->test_present(&ge))
1483 			continue;
1484 
1485 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1486 				       ge.type, ge.val64, index);
1487 
1488 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1489 		if (IS_ERR(spt)) {
1490 			gvt_vgpu_err("fail to populate guest root pointer\n");
1491 			ret = PTR_ERR(spt);
1492 			goto fail;
1493 		}
1494 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1495 		ppgtt_set_shadow_root_entry(mm, &se, index);
1496 
1497 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1498 				       NULL, se.type, se.val64, index);
1499 	}
1500 
1501 	return 0;
1502 fail:
1503 	invalidate_ppgtt_mm(mm);
1504 	return ret;
1505 }
1506 
1507 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1508 {
1509 	struct intel_vgpu_mm *mm;
1510 
1511 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1512 	if (!mm)
1513 		return NULL;
1514 
1515 	mm->vgpu = vgpu;
1516 	kref_init(&mm->ref);
1517 	atomic_set(&mm->pincount, 0);
1518 
1519 	return mm;
1520 }
1521 
1522 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1523 {
1524 	kfree(mm);
1525 }
1526 
1527 /**
1528  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1529  * @vgpu: a vGPU
1530  * @root_entry_type: ppgtt root entry type
1531  * @pdps: guest pdps.
1532  *
1533  * This function is used to create a ppgtt mm object for a vGPU.
1534  *
1535  * Returns:
1536  * Zero on success, negative error code in pointer if failed.
1537  */
1538 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1539 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1540 {
1541 	struct intel_gvt *gvt = vgpu->gvt;
1542 	struct intel_vgpu_mm *mm;
1543 	int ret;
1544 
1545 	mm = vgpu_alloc_mm(vgpu);
1546 	if (!mm)
1547 		return ERR_PTR(-ENOMEM);
1548 
1549 	mm->type = INTEL_GVT_MM_PPGTT;
1550 
1551 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1552 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1553 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1554 
1555 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1556 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1557 
1558 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1559 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1560 	else
1561 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1562 		       sizeof(mm->ppgtt_mm.guest_pdps));
1563 
1564 	ret = shadow_ppgtt_mm(mm);
1565 	if (ret) {
1566 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1567 		vgpu_free_mm(mm);
1568 		return ERR_PTR(ret);
1569 	}
1570 
1571 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1572 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1573 	return mm;
1574 }
1575 
1576 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1577 {
1578 	struct intel_vgpu_mm *mm;
1579 	unsigned long nr_entries;
1580 
1581 	mm = vgpu_alloc_mm(vgpu);
1582 	if (!mm)
1583 		return ERR_PTR(-ENOMEM);
1584 
1585 	mm->type = INTEL_GVT_MM_GGTT;
1586 
1587 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1588 	mm->ggtt_mm.virtual_ggtt =
1589 		vzalloc(array_size(nr_entries,
1590 				   vgpu->gvt->device_info.gtt_entry_size));
1591 	if (!mm->ggtt_mm.virtual_ggtt) {
1592 		vgpu_free_mm(mm);
1593 		return ERR_PTR(-ENOMEM);
1594 	}
1595 
1596 	return mm;
1597 }
1598 
1599 /**
1600  * _intel_vgpu_mm_release - destroy a mm object
1601  * @mm_ref: a kref object
1602  *
1603  * This function is used to destroy a mm object for vGPU
1604  *
1605  */
1606 void _intel_vgpu_mm_release(struct kref *mm_ref)
1607 {
1608 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1609 
1610 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1611 		gvt_err("vgpu mm pin count bug detected\n");
1612 
1613 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1614 		list_del(&mm->ppgtt_mm.list);
1615 		list_del(&mm->ppgtt_mm.lru_list);
1616 		invalidate_ppgtt_mm(mm);
1617 	} else {
1618 		vfree(mm->ggtt_mm.virtual_ggtt);
1619 	}
1620 
1621 	vgpu_free_mm(mm);
1622 }
1623 
1624 /**
1625  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1626  * @mm: a vGPU mm object
1627  *
1628  * This function is called when user doesn't want to use a vGPU mm object
1629  */
1630 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1631 {
1632 	atomic_dec(&mm->pincount);
1633 }
1634 
1635 /**
1636  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1637  * @vgpu: a vGPU
1638  *
1639  * This function is called when user wants to use a vGPU mm object. If this
1640  * mm object hasn't been shadowed yet, the shadow will be populated at this
1641  * time.
1642  *
1643  * Returns:
1644  * Zero on success, negative error code if failed.
1645  */
1646 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1647 {
1648 	int ret;
1649 
1650 	atomic_inc(&mm->pincount);
1651 
1652 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1653 		ret = shadow_ppgtt_mm(mm);
1654 		if (ret)
1655 			return ret;
1656 
1657 		list_move_tail(&mm->ppgtt_mm.lru_list,
1658 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1659 
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1666 {
1667 	struct intel_vgpu_mm *mm;
1668 	struct list_head *pos, *n;
1669 
1670 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1671 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1672 
1673 		if (atomic_read(&mm->pincount))
1674 			continue;
1675 
1676 		list_del_init(&mm->ppgtt_mm.lru_list);
1677 		invalidate_ppgtt_mm(mm);
1678 		return 1;
1679 	}
1680 	return 0;
1681 }
1682 
1683 /*
1684  * GMA translation APIs.
1685  */
1686 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1687 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1688 {
1689 	struct intel_vgpu *vgpu = mm->vgpu;
1690 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1691 	struct intel_vgpu_ppgtt_spt *s;
1692 
1693 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
1694 	if (!s)
1695 		return -ENXIO;
1696 
1697 	if (!guest)
1698 		ppgtt_get_shadow_entry(s, e, index);
1699 	else
1700 		ppgtt_get_guest_entry(s, e, index);
1701 	return 0;
1702 }
1703 
1704 /**
1705  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1706  * @mm: mm object. could be a PPGTT or GGTT mm object
1707  * @gma: graphics memory address in this mm object
1708  *
1709  * This function is used to translate a graphics memory address in specific
1710  * graphics memory space to guest physical address.
1711  *
1712  * Returns:
1713  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1714  */
1715 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1716 {
1717 	struct intel_vgpu *vgpu = mm->vgpu;
1718 	struct intel_gvt *gvt = vgpu->gvt;
1719 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1720 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1721 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1722 	unsigned long gma_index[4];
1723 	struct intel_gvt_gtt_entry e;
1724 	int i, levels = 0;
1725 	int ret;
1726 
1727 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
1728 		   mm->type != INTEL_GVT_MM_PPGTT);
1729 
1730 	if (mm->type == INTEL_GVT_MM_GGTT) {
1731 		if (!vgpu_gmadr_is_valid(vgpu, gma))
1732 			goto err;
1733 
1734 		ggtt_get_guest_entry(mm, &e,
1735 			gma_ops->gma_to_ggtt_pte_index(gma));
1736 
1737 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1738 			+ (gma & ~I915_GTT_PAGE_MASK);
1739 
1740 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1741 	} else {
1742 		switch (mm->ppgtt_mm.root_entry_type) {
1743 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
1744 			ppgtt_get_shadow_root_entry(mm, &e, 0);
1745 
1746 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1747 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1748 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
1749 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
1750 			levels = 4;
1751 			break;
1752 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
1753 			ppgtt_get_shadow_root_entry(mm, &e,
1754 					gma_ops->gma_to_l3_pdp_index(gma));
1755 
1756 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
1757 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
1758 			levels = 2;
1759 			break;
1760 		default:
1761 			GEM_BUG_ON(1);
1762 		}
1763 
1764 		/* walk the shadow page table and get gpa from guest entry */
1765 		for (i = 0; i < levels; i++) {
1766 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1767 				(i == levels - 1));
1768 			if (ret)
1769 				goto err;
1770 
1771 			if (!pte_ops->test_present(&e)) {
1772 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1773 				goto err;
1774 			}
1775 		}
1776 
1777 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
1778 					(gma & ~I915_GTT_PAGE_MASK);
1779 		trace_gma_translate(vgpu->id, "ppgtt", 0,
1780 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
1781 	}
1782 
1783 	return gpa;
1784 err:
1785 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1786 	return INTEL_GVT_INVALID_ADDR;
1787 }
1788 
1789 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
1790 	unsigned int off, void *p_data, unsigned int bytes)
1791 {
1792 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1793 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1794 	unsigned long index = off >> info->gtt_entry_size_shift;
1795 	struct intel_gvt_gtt_entry e;
1796 
1797 	if (bytes != 4 && bytes != 8)
1798 		return -EINVAL;
1799 
1800 	ggtt_get_guest_entry(ggtt_mm, &e, index);
1801 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1802 			bytes);
1803 	return 0;
1804 }
1805 
1806 /**
1807  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1808  * @vgpu: a vGPU
1809  * @off: register offset
1810  * @p_data: data will be returned to guest
1811  * @bytes: data length
1812  *
1813  * This function is used to emulate the GTT MMIO register read
1814  *
1815  * Returns:
1816  * Zero on success, error code if failed.
1817  */
1818 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1819 	void *p_data, unsigned int bytes)
1820 {
1821 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1822 	int ret;
1823 
1824 	if (bytes != 4 && bytes != 8)
1825 		return -EINVAL;
1826 
1827 	off -= info->gtt_start_offset;
1828 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
1829 	return ret;
1830 }
1831 
1832 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
1833 		struct intel_gvt_gtt_entry *entry)
1834 {
1835 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1836 	unsigned long pfn;
1837 
1838 	pfn = pte_ops->get_pfn(entry);
1839 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
1840 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
1841 						pfn << PAGE_SHIFT);
1842 }
1843 
1844 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1845 	void *p_data, unsigned int bytes)
1846 {
1847 	struct intel_gvt *gvt = vgpu->gvt;
1848 	const struct intel_gvt_device_info *info = &gvt->device_info;
1849 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1850 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1851 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1852 	unsigned long gma, gfn;
1853 	struct intel_gvt_gtt_entry e, m;
1854 	dma_addr_t dma_addr;
1855 	int ret;
1856 
1857 	if (bytes != 4 && bytes != 8)
1858 		return -EINVAL;
1859 
1860 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1861 
1862 	/* the VM may configure the whole GM space when ballooning is used */
1863 	if (!vgpu_gmadr_is_valid(vgpu, gma))
1864 		return 0;
1865 
1866 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1867 
1868 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1869 			bytes);
1870 
1871 	if (ops->test_present(&e)) {
1872 		gfn = ops->get_pfn(&e);
1873 		m = e;
1874 
1875 		/* one PTE update may be issued in multiple writes and the
1876 		 * first write may not construct a valid gfn
1877 		 */
1878 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1879 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1880 			goto out;
1881 		}
1882 
1883 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
1884 							      &dma_addr);
1885 		if (ret) {
1886 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
1887 			/* guest driver may read/write the entry when partial
1888 			 * update the entry in this situation p2m will fail
1889 			 * settting the shadow entry to point to a scratch page
1890 			 */
1891 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1892 		} else
1893 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
1894 	} else {
1895 		ggtt_get_host_entry(ggtt_mm, &m, g_gtt_index);
1896 		ggtt_invalidate_pte(vgpu, &m);
1897 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1898 		ops->clear_present(&m);
1899 	}
1900 
1901 out:
1902 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
1903 	ggtt_invalidate(gvt->dev_priv);
1904 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1905 	return 0;
1906 }
1907 
1908 /*
1909  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
1910  * @vgpu: a vGPU
1911  * @off: register offset
1912  * @p_data: data from guest write
1913  * @bytes: data length
1914  *
1915  * This function is used to emulate the GTT MMIO register write
1916  *
1917  * Returns:
1918  * Zero on success, error code if failed.
1919  */
1920 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
1921 		unsigned int off, void *p_data, unsigned int bytes)
1922 {
1923 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1924 	int ret;
1925 
1926 	if (bytes != 4 && bytes != 8)
1927 		return -EINVAL;
1928 
1929 	off -= info->gtt_start_offset;
1930 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
1931 	return ret;
1932 }
1933 
1934 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1935 		intel_gvt_gtt_type_t type)
1936 {
1937 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1938 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1939 	int page_entry_num = I915_GTT_PAGE_SIZE >>
1940 				vgpu->gvt->device_info.gtt_entry_size_shift;
1941 	void *scratch_pt;
1942 	int i;
1943 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1944 	dma_addr_t daddr;
1945 
1946 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1947 		return -EINVAL;
1948 
1949 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1950 	if (!scratch_pt) {
1951 		gvt_vgpu_err("fail to allocate scratch page\n");
1952 		return -ENOMEM;
1953 	}
1954 
1955 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1956 			4096, PCI_DMA_BIDIRECTIONAL);
1957 	if (dma_mapping_error(dev, daddr)) {
1958 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
1959 		__free_page(virt_to_page(scratch_pt));
1960 		return -ENOMEM;
1961 	}
1962 	gtt->scratch_pt[type].page_mfn =
1963 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
1964 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1965 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1966 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1967 
1968 	/* Build the tree by full filled the scratch pt with the entries which
1969 	 * point to the next level scratch pt or scratch page. The
1970 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
1971 	 * 'type' pt.
1972 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1973 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1974 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1975 	 */
1976 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
1977 		struct intel_gvt_gtt_entry se;
1978 
1979 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1980 		se.type = get_entry_type(type - 1);
1981 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1982 
1983 		/* The entry parameters like present/writeable/cache type
1984 		 * set to the same as i915's scratch page tree.
1985 		 */
1986 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1987 		if (type == GTT_TYPE_PPGTT_PDE_PT)
1988 			se.val64 |= PPAT_CACHED;
1989 
1990 		for (i = 0; i < page_entry_num; i++)
1991 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1998 {
1999 	int i;
2000 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2001 	dma_addr_t daddr;
2002 
2003 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2004 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2005 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2006 					I915_GTT_PAGE_SHIFT);
2007 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2008 			__free_page(vgpu->gtt.scratch_pt[i].page);
2009 			vgpu->gtt.scratch_pt[i].page = NULL;
2010 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2011 		}
2012 	}
2013 
2014 	return 0;
2015 }
2016 
2017 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2018 {
2019 	int i, ret;
2020 
2021 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2022 		ret = alloc_scratch_pages(vgpu, i);
2023 		if (ret)
2024 			goto err;
2025 	}
2026 
2027 	return 0;
2028 
2029 err:
2030 	release_scratch_page_tree(vgpu);
2031 	return ret;
2032 }
2033 
2034 /**
2035  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2036  * @vgpu: a vGPU
2037  *
2038  * This function is used to initialize per-vGPU graphics memory virtualization
2039  * components.
2040  *
2041  * Returns:
2042  * Zero on success, error code if failed.
2043  */
2044 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2045 {
2046 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2047 
2048 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2049 
2050 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2051 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2052 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2053 
2054 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2055 	if (IS_ERR(gtt->ggtt_mm)) {
2056 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2057 		return PTR_ERR(gtt->ggtt_mm);
2058 	}
2059 
2060 	intel_vgpu_reset_ggtt(vgpu, false);
2061 
2062 	return create_scratch_page_tree(vgpu);
2063 }
2064 
2065 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2066 {
2067 	struct list_head *pos, *n;
2068 	struct intel_vgpu_mm *mm;
2069 
2070 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2071 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2072 		intel_vgpu_destroy_mm(mm);
2073 	}
2074 
2075 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2076 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2077 
2078 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2079 		gvt_err("Why we still has spt not freed?\n");
2080 		ppgtt_free_all_spt(vgpu);
2081 	}
2082 }
2083 
2084 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2085 {
2086 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2087 	vgpu->gtt.ggtt_mm = NULL;
2088 }
2089 
2090 /**
2091  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2092  * @vgpu: a vGPU
2093  *
2094  * This function is used to clean up per-vGPU graphics memory virtualization
2095  * components.
2096  *
2097  * Returns:
2098  * Zero on success, error code if failed.
2099  */
2100 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2101 {
2102 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2103 	intel_vgpu_destroy_ggtt_mm(vgpu);
2104 	release_scratch_page_tree(vgpu);
2105 }
2106 
2107 static void clean_spt_oos(struct intel_gvt *gvt)
2108 {
2109 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2110 	struct list_head *pos, *n;
2111 	struct intel_vgpu_oos_page *oos_page;
2112 
2113 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2114 		"someone is still using oos page\n");
2115 
2116 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2117 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2118 		list_del(&oos_page->list);
2119 		kfree(oos_page);
2120 	}
2121 }
2122 
2123 static int setup_spt_oos(struct intel_gvt *gvt)
2124 {
2125 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2126 	struct intel_vgpu_oos_page *oos_page;
2127 	int i;
2128 	int ret;
2129 
2130 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2131 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2132 
2133 	for (i = 0; i < preallocated_oos_pages; i++) {
2134 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2135 		if (!oos_page) {
2136 			ret = -ENOMEM;
2137 			goto fail;
2138 		}
2139 
2140 		INIT_LIST_HEAD(&oos_page->list);
2141 		INIT_LIST_HEAD(&oos_page->vm_list);
2142 		oos_page->id = i;
2143 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2144 	}
2145 
2146 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2147 
2148 	return 0;
2149 fail:
2150 	clean_spt_oos(gvt);
2151 	return ret;
2152 }
2153 
2154 /**
2155  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2156  * @vgpu: a vGPU
2157  * @page_table_level: PPGTT page table level
2158  * @root_entry: PPGTT page table root pointers
2159  *
2160  * This function is used to find a PPGTT mm object from mm object pool
2161  *
2162  * Returns:
2163  * pointer to mm object on success, NULL if failed.
2164  */
2165 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2166 		u64 pdps[])
2167 {
2168 	struct intel_vgpu_mm *mm;
2169 	struct list_head *pos;
2170 
2171 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2172 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2173 
2174 		switch (mm->ppgtt_mm.root_entry_type) {
2175 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2176 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2177 				return mm;
2178 			break;
2179 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2180 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2181 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2182 				return mm;
2183 			break;
2184 		default:
2185 			GEM_BUG_ON(1);
2186 		}
2187 	}
2188 	return NULL;
2189 }
2190 
2191 /**
2192  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2193  * @vgpu: a vGPU
2194  * @root_entry_type: ppgtt root entry type
2195  * @pdps: guest pdps
2196  *
2197  * This function is used to find or create a PPGTT mm object from a guest.
2198  *
2199  * Returns:
2200  * Zero on success, negative error code if failed.
2201  */
2202 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2203 		intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2204 {
2205 	struct intel_vgpu_mm *mm;
2206 
2207 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2208 	if (mm) {
2209 		intel_vgpu_mm_get(mm);
2210 	} else {
2211 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2212 		if (IS_ERR(mm))
2213 			gvt_vgpu_err("fail to create mm\n");
2214 	}
2215 	return mm;
2216 }
2217 
2218 /**
2219  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2220  * @vgpu: a vGPU
2221  * @pdps: guest pdps
2222  *
2223  * This function is used to find a PPGTT mm object from a guest and destroy it.
2224  *
2225  * Returns:
2226  * Zero on success, negative error code if failed.
2227  */
2228 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2229 {
2230 	struct intel_vgpu_mm *mm;
2231 
2232 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2233 	if (!mm) {
2234 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2235 		return -EINVAL;
2236 	}
2237 	intel_vgpu_mm_put(mm);
2238 	return 0;
2239 }
2240 
2241 /**
2242  * intel_gvt_init_gtt - initialize mm components of a GVT device
2243  * @gvt: GVT device
2244  *
2245  * This function is called at the initialization stage, to initialize
2246  * the mm components of a GVT device.
2247  *
2248  * Returns:
2249  * zero on success, negative error code if failed.
2250  */
2251 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2252 {
2253 	int ret;
2254 	void *page;
2255 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2256 	dma_addr_t daddr;
2257 
2258 	gvt_dbg_core("init gtt\n");
2259 
2260 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2261 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2262 
2263 	page = (void *)get_zeroed_page(GFP_KERNEL);
2264 	if (!page) {
2265 		gvt_err("fail to allocate scratch ggtt page\n");
2266 		return -ENOMEM;
2267 	}
2268 
2269 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2270 			4096, PCI_DMA_BIDIRECTIONAL);
2271 	if (dma_mapping_error(dev, daddr)) {
2272 		gvt_err("fail to dmamap scratch ggtt page\n");
2273 		__free_page(virt_to_page(page));
2274 		return -ENOMEM;
2275 	}
2276 
2277 	gvt->gtt.scratch_page = virt_to_page(page);
2278 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2279 
2280 	if (enable_out_of_sync) {
2281 		ret = setup_spt_oos(gvt);
2282 		if (ret) {
2283 			gvt_err("fail to initialize SPT oos\n");
2284 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2285 			__free_page(gvt->gtt.scratch_page);
2286 			return ret;
2287 		}
2288 	}
2289 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2290 	return 0;
2291 }
2292 
2293 /**
2294  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2295  * @gvt: GVT device
2296  *
2297  * This function is called at the driver unloading stage, to clean up the
2298  * the mm components of a GVT device.
2299  *
2300  */
2301 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2302 {
2303 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2304 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2305 					I915_GTT_PAGE_SHIFT);
2306 
2307 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2308 
2309 	__free_page(gvt->gtt.scratch_page);
2310 
2311 	if (enable_out_of_sync)
2312 		clean_spt_oos(gvt);
2313 }
2314 
2315 /**
2316  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2317  * @vgpu: a vGPU
2318  *
2319  * This function is called when invalidate all PPGTT instances of a vGPU.
2320  *
2321  */
2322 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2323 {
2324 	struct list_head *pos, *n;
2325 	struct intel_vgpu_mm *mm;
2326 
2327 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2328 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2329 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2330 			list_del_init(&mm->ppgtt_mm.lru_list);
2331 			if (mm->ppgtt_mm.shadowed)
2332 				invalidate_ppgtt_mm(mm);
2333 		}
2334 	}
2335 }
2336 
2337 /**
2338  * intel_vgpu_reset_ggtt - reset the GGTT entry
2339  * @vgpu: a vGPU
2340  * @invalidate_old: invalidate old entries
2341  *
2342  * This function is called at the vGPU create stage
2343  * to reset all the GGTT entries.
2344  *
2345  */
2346 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2347 {
2348 	struct intel_gvt *gvt = vgpu->gvt;
2349 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2350 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2351 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2352 	struct intel_gvt_gtt_entry old_entry;
2353 	u32 index;
2354 	u32 num_entries;
2355 
2356 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2357 	pte_ops->set_present(&entry);
2358 
2359 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2360 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2361 	while (num_entries--) {
2362 		if (invalidate_old) {
2363 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2364 			ggtt_invalidate_pte(vgpu, &old_entry);
2365 		}
2366 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2367 	}
2368 
2369 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2370 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2371 	while (num_entries--) {
2372 		if (invalidate_old) {
2373 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2374 			ggtt_invalidate_pte(vgpu, &old_entry);
2375 		}
2376 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2377 	}
2378 
2379 	ggtt_invalidate(dev_priv);
2380 }
2381 
2382 /**
2383  * intel_vgpu_reset_gtt - reset the all GTT related status
2384  * @vgpu: a vGPU
2385  *
2386  * This function is called from vfio core to reset reset all
2387  * GTT related status, including GGTT, PPGTT, scratch page.
2388  *
2389  */
2390 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2391 {
2392 	/* Shadow pages are only created when there is no page
2393 	 * table tracking data, so remove page tracking data after
2394 	 * removing the shadow pages.
2395 	 */
2396 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2397 	intel_vgpu_reset_ggtt(vgpu, true);
2398 }
2399