xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if (size == 0)
57 		return vgpu_gmadr_is_valid(vgpu, addr);
58 
59 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 		return true;
62 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 		return true;
65 
66 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 		     addr, size);
68 	return false;
69 }
70 
71 /* translate a guest gmadr to host gmadr */
72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75 
76 	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 		     "invalid guest gmadr %llx\n", g_addr))
78 		return -EACCES;
79 
80 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
82 			  + (g_addr - vgpu_aperture_offset(vgpu));
83 	else
84 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
85 			  + (g_addr - vgpu_hidden_offset(vgpu));
86 	return 0;
87 }
88 
89 /* translate a host gmadr to guest gmadr */
90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93 
94 	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 		     "invalid host gmadr %llx\n", h_addr))
96 		return -EACCES;
97 
98 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
100 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101 	else
102 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
103 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104 	return 0;
105 }
106 
107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 			     unsigned long *h_index)
109 {
110 	u64 h_addr;
111 	int ret;
112 
113 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114 				       &h_addr);
115 	if (ret)
116 		return ret;
117 
118 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119 	return 0;
120 }
121 
122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 			     unsigned long *g_index)
124 {
125 	u64 g_addr;
126 	int ret;
127 
128 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129 				       &g_addr);
130 	if (ret)
131 		return ret;
132 
133 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134 	return 0;
135 }
136 
137 #define gtt_type_is_entry(type) \
138 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141 
142 #define gtt_type_is_pt(type) \
143 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144 
145 #define gtt_type_is_pte_pt(type) \
146 	(type == GTT_TYPE_PPGTT_PTE_PT)
147 
148 #define gtt_type_is_root_pointer(type) \
149 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150 
151 #define gtt_init_entry(e, t, p, v) do { \
152 	(e)->type = t; \
153 	(e)->pdev = p; \
154 	memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156 
157 /*
158  * Mappings between GTT_TYPE* enumerations.
159  * Following information can be found according to the given type:
160  * - type of next level page table
161  * - type of entry inside this level page table
162  * - type of entry with PSE set
163  *
164  * If the given type doesn't have such a kind of information,
165  * e.g. give a l4 root entry type, then request to get its PSE type,
166  * give a PTE page table type, then request to get its next level page
167  * table type, as we know l4 root entry doesn't have a PSE bit,
168  * and a PTE page table doesn't have a next level page table type,
169  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170  * page table.
171  */
172 
173 struct gtt_type_table_entry {
174 	int entry_type;
175 	int pt_type;
176 	int next_pt_type;
177 	int pse_entry_type;
178 };
179 
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181 	[type] = { \
182 		.entry_type = e_type, \
183 		.pt_type = cpt_type, \
184 		.next_pt_type = npt_type, \
185 		.pse_entry_type = pse_type, \
186 	}
187 
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 			GTT_TYPE_INVALID,
192 			GTT_TYPE_PPGTT_PML4_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 			GTT_TYPE_PPGTT_PML4_ENTRY,
196 			GTT_TYPE_PPGTT_PML4_PT,
197 			GTT_TYPE_PPGTT_PDP_PT,
198 			GTT_TYPE_INVALID),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 			GTT_TYPE_PPGTT_PML4_ENTRY,
201 			GTT_TYPE_PPGTT_PML4_PT,
202 			GTT_TYPE_PPGTT_PDP_PT,
203 			GTT_TYPE_INVALID),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 			GTT_TYPE_INVALID,
212 			GTT_TYPE_PPGTT_PDE_PT,
213 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 			GTT_TYPE_PPGTT_PDP_ENTRY,
216 			GTT_TYPE_PPGTT_PDP_PT,
217 			GTT_TYPE_PPGTT_PDE_PT,
218 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 			GTT_TYPE_PPGTT_PDE_ENTRY,
221 			GTT_TYPE_PPGTT_PDE_PT,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 			GTT_TYPE_PPGTT_PDE_ENTRY,
226 			GTT_TYPE_PPGTT_PDE_PT,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 	/* We take IPS bit as 'PSE' for PTE level. */
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 			GTT_TYPE_PPGTT_PTE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 			GTT_TYPE_PPGTT_PTE_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 			GTT_TYPE_PPGTT_PDE_ENTRY,
247 			GTT_TYPE_PPGTT_PDE_PT,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 			GTT_TYPE_PPGTT_PDP_ENTRY,
252 			GTT_TYPE_PPGTT_PDP_PT,
253 			GTT_TYPE_INVALID,
254 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256 			GTT_TYPE_GGTT_PTE,
257 			GTT_TYPE_INVALID,
258 			GTT_TYPE_INVALID,
259 			GTT_TYPE_INVALID),
260 };
261 
262 static inline int get_next_pt_type(int type)
263 {
264 	return gtt_type_table[type].next_pt_type;
265 }
266 
267 static inline int get_pt_type(int type)
268 {
269 	return gtt_type_table[type].pt_type;
270 }
271 
272 static inline int get_entry_type(int type)
273 {
274 	return gtt_type_table[type].entry_type;
275 }
276 
277 static inline int get_pse_type(int type)
278 {
279 	return gtt_type_table[type].pse_entry_type;
280 }
281 
282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285 
286 	return readq(addr);
287 }
288 
289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291 	mmio_hw_access_pre(gt);
292 	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 	mmio_hw_access_post(gt);
294 }
295 
296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299 
300 	writeq(pte, addr);
301 }
302 
303 static inline int gtt_get_entry64(void *pt,
304 		struct intel_gvt_gtt_entry *e,
305 		unsigned long index, bool hypervisor_access, unsigned long gpa,
306 		struct intel_vgpu *vgpu)
307 {
308 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309 	int ret;
310 
311 	if (WARN_ON(info->gtt_entry_size != 8))
312 		return -EINVAL;
313 
314 	if (hypervisor_access) {
315 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 				(index << info->gtt_entry_size_shift),
317 				&e->val64, 8);
318 		if (WARN_ON(ret))
319 			return ret;
320 	} else if (!pt) {
321 		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322 	} else {
323 		e->val64 = *((u64 *)pt + index);
324 	}
325 	return 0;
326 }
327 
328 static inline int gtt_set_entry64(void *pt,
329 		struct intel_gvt_gtt_entry *e,
330 		unsigned long index, bool hypervisor_access, unsigned long gpa,
331 		struct intel_vgpu *vgpu)
332 {
333 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334 	int ret;
335 
336 	if (WARN_ON(info->gtt_entry_size != 8))
337 		return -EINVAL;
338 
339 	if (hypervisor_access) {
340 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 				(index << info->gtt_entry_size_shift),
342 				&e->val64, 8);
343 		if (WARN_ON(ret))
344 			return ret;
345 	} else if (!pt) {
346 		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347 	} else {
348 		*((u64 *)pt + index) = e->val64;
349 	}
350 	return 0;
351 }
352 
353 #define GTT_HAW 46
354 
355 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
359 
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362 
363 #define GTT_64K_PTE_STRIDE 16
364 
365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367 	unsigned long pfn;
368 
369 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375 	else
376 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 	return pfn;
378 }
379 
380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 		e->val64 &= ~ADDR_1G_MASK;
384 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 		e->val64 &= ~ADDR_2M_MASK;
387 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 		e->val64 &= ~ADDR_64K_MASK;
390 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391 	} else {
392 		e->val64 &= ~ADDR_4K_MASK;
393 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394 	}
395 
396 	e->val64 |= (pfn << PAGE_SHIFT);
397 }
398 
399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401 	return !!(e->val64 & _PAGE_PSE);
402 }
403 
404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406 	if (gen8_gtt_test_pse(e)) {
407 		switch (e->type) {
408 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 			e->val64 &= ~_PAGE_PSE;
410 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411 			break;
412 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 			e->val64 &= ~_PAGE_PSE;
415 			break;
416 		default:
417 			WARN_ON(1);
418 		}
419 	}
420 }
421 
422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425 		return false;
426 
427 	return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429 
430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433 		return;
434 
435 	e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437 
438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440 	/*
441 	 * i915 writes PDP root pointer registers without present bit,
442 	 * it also works, so we need to treat root pointer entry
443 	 * specifically.
444 	 */
445 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 		return (e->val64 != 0);
448 	else
449 		return (e->val64 & _PAGE_PRESENT);
450 }
451 
452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454 	e->val64 &= ~_PAGE_PRESENT;
455 }
456 
457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459 	e->val64 |= _PAGE_PRESENT;
460 }
461 
462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466 
467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471 
472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476 
477 /*
478  * Per-platform GMA routines.
479  */
480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483 
484 	trace_gma_index(__func__, gma, x);
485 	return x;
486 }
487 
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491 	unsigned long x = (exp); \
492 	trace_gma_index(__func__, gma, x); \
493 	return x; \
494 }
495 
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501 
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 	.get_entry = gtt_get_entry64,
504 	.set_entry = gtt_set_entry64,
505 	.clear_present = gtt_entry_clear_present,
506 	.set_present = gtt_entry_set_present,
507 	.test_present = gen8_gtt_test_present,
508 	.test_pse = gen8_gtt_test_pse,
509 	.clear_pse = gen8_gtt_clear_pse,
510 	.clear_ips = gen8_gtt_clear_ips,
511 	.test_ips = gen8_gtt_test_ips,
512 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
513 	.set_64k_splited = gen8_gtt_set_64k_splited,
514 	.test_64k_splited = gen8_gtt_test_64k_splited,
515 	.get_pfn = gen8_gtt_get_pfn,
516 	.set_pfn = gen8_gtt_set_pfn,
517 };
518 
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 	.gma_to_pte_index = gen8_gma_to_pte_index,
522 	.gma_to_pde_index = gen8_gma_to_pde_index,
523 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527 
528 /* Update entry type per pse and ips bit. */
529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 	struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532 	switch (entry->type) {
533 	case GTT_TYPE_PPGTT_PDE_ENTRY:
534 	case GTT_TYPE_PPGTT_PDP_ENTRY:
535 		if (pte_ops->test_pse(entry))
536 			entry->type = get_pse_type(entry->type);
537 		break;
538 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539 		if (ips)
540 			entry->type = get_pse_type(entry->type);
541 		break;
542 	default:
543 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544 	}
545 
546 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548 
549 /*
550  * MM helpers.
551  */
552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 		struct intel_gvt_gtt_entry *entry, unsigned long index,
554 		bool guest)
555 {
556 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557 
558 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559 
560 	entry->type = mm->ppgtt_mm.root_entry_type;
561 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 			   mm->ppgtt_mm.shadow_pdps,
563 			   entry, index, false, 0, mm->vgpu);
564 	update_entry_type_for_real(pte_ops, entry, false);
565 }
566 
567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 		struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570 	_ppgtt_get_root_entry(mm, entry, index, true);
571 }
572 
573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 		struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576 	_ppgtt_get_root_entry(mm, entry, index, false);
577 }
578 
579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 		struct intel_gvt_gtt_entry *entry, unsigned long index,
581 		bool guest)
582 {
583 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584 
585 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 			   mm->ppgtt_mm.shadow_pdps,
587 			   entry, index, false, 0, mm->vgpu);
588 }
589 
590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
591 		struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593 	_ppgtt_set_root_entry(mm, entry, index, true);
594 }
595 
596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
597 		struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599 	_ppgtt_set_root_entry(mm, entry, index, false);
600 }
601 
602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
603 		struct intel_gvt_gtt_entry *entry, unsigned long index)
604 {
605 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
606 
607 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
608 
609 	entry->type = GTT_TYPE_GGTT_PTE;
610 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
611 			   false, 0, mm->vgpu);
612 }
613 
614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
615 		struct intel_gvt_gtt_entry *entry, unsigned long index)
616 {
617 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
618 
619 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
620 
621 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
622 			   false, 0, mm->vgpu);
623 }
624 
625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
626 		struct intel_gvt_gtt_entry *entry, unsigned long index)
627 {
628 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
629 
630 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
631 
632 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
633 }
634 
635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
636 		struct intel_gvt_gtt_entry *entry, unsigned long index)
637 {
638 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
639 	unsigned long offset = index;
640 
641 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
642 
643 	if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
644 		offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
645 		mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
646 	} else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
647 		offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
648 		mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
649 	}
650 
651 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
652 }
653 
654 /*
655  * PPGTT shadow page table helpers.
656  */
657 static inline int ppgtt_spt_get_entry(
658 		struct intel_vgpu_ppgtt_spt *spt,
659 		void *page_table, int type,
660 		struct intel_gvt_gtt_entry *e, unsigned long index,
661 		bool guest)
662 {
663 	struct intel_gvt *gvt = spt->vgpu->gvt;
664 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
665 	int ret;
666 
667 	e->type = get_entry_type(type);
668 
669 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
670 		return -EINVAL;
671 
672 	ret = ops->get_entry(page_table, e, index, guest,
673 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
674 			spt->vgpu);
675 	if (ret)
676 		return ret;
677 
678 	update_entry_type_for_real(ops, e, guest ?
679 				   spt->guest_page.pde_ips : false);
680 
681 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
682 		    type, e->type, index, e->val64);
683 	return 0;
684 }
685 
686 static inline int ppgtt_spt_set_entry(
687 		struct intel_vgpu_ppgtt_spt *spt,
688 		void *page_table, int type,
689 		struct intel_gvt_gtt_entry *e, unsigned long index,
690 		bool guest)
691 {
692 	struct intel_gvt *gvt = spt->vgpu->gvt;
693 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
694 
695 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
696 		return -EINVAL;
697 
698 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
699 		    type, e->type, index, e->val64);
700 
701 	return ops->set_entry(page_table, e, index, guest,
702 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
703 			spt->vgpu);
704 }
705 
706 #define ppgtt_get_guest_entry(spt, e, index) \
707 	ppgtt_spt_get_entry(spt, NULL, \
708 		spt->guest_page.type, e, index, true)
709 
710 #define ppgtt_set_guest_entry(spt, e, index) \
711 	ppgtt_spt_set_entry(spt, NULL, \
712 		spt->guest_page.type, e, index, true)
713 
714 #define ppgtt_get_shadow_entry(spt, e, index) \
715 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
716 		spt->shadow_page.type, e, index, false)
717 
718 #define ppgtt_set_shadow_entry(spt, e, index) \
719 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
720 		spt->shadow_page.type, e, index, false)
721 
722 static void *alloc_spt(gfp_t gfp_mask)
723 {
724 	struct intel_vgpu_ppgtt_spt *spt;
725 
726 	spt = kzalloc(sizeof(*spt), gfp_mask);
727 	if (!spt)
728 		return NULL;
729 
730 	spt->shadow_page.page = alloc_page(gfp_mask);
731 	if (!spt->shadow_page.page) {
732 		kfree(spt);
733 		return NULL;
734 	}
735 	return spt;
736 }
737 
738 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
739 {
740 	__free_page(spt->shadow_page.page);
741 	kfree(spt);
742 }
743 
744 static int detach_oos_page(struct intel_vgpu *vgpu,
745 		struct intel_vgpu_oos_page *oos_page);
746 
747 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
748 {
749 	struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
750 
751 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
752 
753 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
754 		       PCI_DMA_BIDIRECTIONAL);
755 
756 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
757 
758 	if (spt->guest_page.gfn) {
759 		if (spt->guest_page.oos_page)
760 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
761 
762 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
763 	}
764 
765 	list_del_init(&spt->post_shadow_list);
766 	free_spt(spt);
767 }
768 
769 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
770 {
771 	struct intel_vgpu_ppgtt_spt *spt, *spn;
772 	struct radix_tree_iter iter;
773 	LIST_HEAD(all_spt);
774 	void __rcu **slot;
775 
776 	rcu_read_lock();
777 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
778 		spt = radix_tree_deref_slot(slot);
779 		list_move(&spt->post_shadow_list, &all_spt);
780 	}
781 	rcu_read_unlock();
782 
783 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
784 		ppgtt_free_spt(spt);
785 }
786 
787 static int ppgtt_handle_guest_write_page_table_bytes(
788 		struct intel_vgpu_ppgtt_spt *spt,
789 		u64 pa, void *p_data, int bytes);
790 
791 static int ppgtt_write_protection_handler(
792 		struct intel_vgpu_page_track *page_track,
793 		u64 gpa, void *data, int bytes)
794 {
795 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
796 
797 	int ret;
798 
799 	if (bytes != 4 && bytes != 8)
800 		return -EINVAL;
801 
802 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
803 	if (ret)
804 		return ret;
805 	return ret;
806 }
807 
808 /* Find a spt by guest gfn. */
809 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
810 		struct intel_vgpu *vgpu, unsigned long gfn)
811 {
812 	struct intel_vgpu_page_track *track;
813 
814 	track = intel_vgpu_find_page_track(vgpu, gfn);
815 	if (track && track->handler == ppgtt_write_protection_handler)
816 		return track->priv_data;
817 
818 	return NULL;
819 }
820 
821 /* Find the spt by shadow page mfn. */
822 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
823 		struct intel_vgpu *vgpu, unsigned long mfn)
824 {
825 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
826 }
827 
828 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
829 
830 /* Allocate shadow page table without guest page. */
831 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
832 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
833 {
834 	struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
835 	struct intel_vgpu_ppgtt_spt *spt = NULL;
836 	dma_addr_t daddr;
837 	int ret;
838 
839 retry:
840 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
841 	if (!spt) {
842 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
843 			goto retry;
844 
845 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
846 		return ERR_PTR(-ENOMEM);
847 	}
848 
849 	spt->vgpu = vgpu;
850 	atomic_set(&spt->refcount, 1);
851 	INIT_LIST_HEAD(&spt->post_shadow_list);
852 
853 	/*
854 	 * Init shadow_page.
855 	 */
856 	spt->shadow_page.type = type;
857 	daddr = dma_map_page(kdev, spt->shadow_page.page,
858 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
859 	if (dma_mapping_error(kdev, daddr)) {
860 		gvt_vgpu_err("fail to map dma addr\n");
861 		ret = -EINVAL;
862 		goto err_free_spt;
863 	}
864 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
865 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
866 
867 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
868 	if (ret)
869 		goto err_unmap_dma;
870 
871 	return spt;
872 
873 err_unmap_dma:
874 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
875 err_free_spt:
876 	free_spt(spt);
877 	return ERR_PTR(ret);
878 }
879 
880 /* Allocate shadow page table associated with specific gfn. */
881 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
882 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
883 		unsigned long gfn, bool guest_pde_ips)
884 {
885 	struct intel_vgpu_ppgtt_spt *spt;
886 	int ret;
887 
888 	spt = ppgtt_alloc_spt(vgpu, type);
889 	if (IS_ERR(spt))
890 		return spt;
891 
892 	/*
893 	 * Init guest_page.
894 	 */
895 	ret = intel_vgpu_register_page_track(vgpu, gfn,
896 			ppgtt_write_protection_handler, spt);
897 	if (ret) {
898 		ppgtt_free_spt(spt);
899 		return ERR_PTR(ret);
900 	}
901 
902 	spt->guest_page.type = type;
903 	spt->guest_page.gfn = gfn;
904 	spt->guest_page.pde_ips = guest_pde_ips;
905 
906 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
907 
908 	return spt;
909 }
910 
911 #define pt_entry_size_shift(spt) \
912 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
913 
914 #define pt_entries(spt) \
915 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
916 
917 #define for_each_present_guest_entry(spt, e, i) \
918 	for (i = 0; i < pt_entries(spt); \
919 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
920 		if (!ppgtt_get_guest_entry(spt, e, i) && \
921 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
922 
923 #define for_each_present_shadow_entry(spt, e, i) \
924 	for (i = 0; i < pt_entries(spt); \
925 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
926 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
927 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
928 
929 #define for_each_shadow_entry(spt, e, i) \
930 	for (i = 0; i < pt_entries(spt); \
931 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
932 		if (!ppgtt_get_shadow_entry(spt, e, i))
933 
934 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
935 {
936 	int v = atomic_read(&spt->refcount);
937 
938 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
939 	atomic_inc(&spt->refcount);
940 }
941 
942 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
943 {
944 	int v = atomic_read(&spt->refcount);
945 
946 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
947 	return atomic_dec_return(&spt->refcount);
948 }
949 
950 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
951 
952 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
953 		struct intel_gvt_gtt_entry *e)
954 {
955 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
956 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
957 	struct intel_vgpu_ppgtt_spt *s;
958 	enum intel_gvt_gtt_type cur_pt_type;
959 
960 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
961 
962 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
963 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
964 		cur_pt_type = get_next_pt_type(e->type);
965 
966 		if (!gtt_type_is_pt(cur_pt_type) ||
967 				!gtt_type_is_pt(cur_pt_type + 1)) {
968 			drm_WARN(&i915->drm, 1,
969 				 "Invalid page table type, cur_pt_type is: %d\n",
970 				 cur_pt_type);
971 			return -EINVAL;
972 		}
973 
974 		cur_pt_type += 1;
975 
976 		if (ops->get_pfn(e) ==
977 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
978 			return 0;
979 	}
980 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
981 	if (!s) {
982 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
983 				ops->get_pfn(e));
984 		return -ENXIO;
985 	}
986 	return ppgtt_invalidate_spt(s);
987 }
988 
989 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
990 		struct intel_gvt_gtt_entry *entry)
991 {
992 	struct intel_vgpu *vgpu = spt->vgpu;
993 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
994 	unsigned long pfn;
995 	int type;
996 
997 	pfn = ops->get_pfn(entry);
998 	type = spt->shadow_page.type;
999 
1000 	/* Uninitialized spte or unshadowed spte. */
1001 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
1002 		return;
1003 
1004 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
1005 }
1006 
1007 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1008 {
1009 	struct intel_vgpu *vgpu = spt->vgpu;
1010 	struct intel_gvt_gtt_entry e;
1011 	unsigned long index;
1012 	int ret;
1013 
1014 	trace_spt_change(spt->vgpu->id, "die", spt,
1015 			spt->guest_page.gfn, spt->shadow_page.type);
1016 
1017 	if (ppgtt_put_spt(spt) > 0)
1018 		return 0;
1019 
1020 	for_each_present_shadow_entry(spt, &e, index) {
1021 		switch (e.type) {
1022 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1023 			gvt_vdbg_mm("invalidate 4K entry\n");
1024 			ppgtt_invalidate_pte(spt, &e);
1025 			break;
1026 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1027 			/* We don't setup 64K shadow entry so far. */
1028 			WARN(1, "suspicious 64K gtt entry\n");
1029 			continue;
1030 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1031 			gvt_vdbg_mm("invalidate 2M entry\n");
1032 			continue;
1033 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1034 			WARN(1, "GVT doesn't support 1GB page\n");
1035 			continue;
1036 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1037 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1038 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1039 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1040 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1041 					spt->vgpu, &e);
1042 			if (ret)
1043 				goto fail;
1044 			break;
1045 		default:
1046 			GEM_BUG_ON(1);
1047 		}
1048 	}
1049 
1050 	trace_spt_change(spt->vgpu->id, "release", spt,
1051 			 spt->guest_page.gfn, spt->shadow_page.type);
1052 	ppgtt_free_spt(spt);
1053 	return 0;
1054 fail:
1055 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1056 			spt, e.val64, e.type);
1057 	return ret;
1058 }
1059 
1060 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1061 {
1062 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1063 
1064 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1065 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1066 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1067 
1068 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1069 	} else if (INTEL_GEN(dev_priv) >= 11) {
1070 		/* 64K paging only controlled by IPS bit in PTE now. */
1071 		return true;
1072 	} else
1073 		return false;
1074 }
1075 
1076 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1077 
1078 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1079 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1080 {
1081 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1082 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1083 	bool ips = false;
1084 	int ret;
1085 
1086 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1087 
1088 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1089 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1090 
1091 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1092 	if (spt) {
1093 		ppgtt_get_spt(spt);
1094 
1095 		if (ips != spt->guest_page.pde_ips) {
1096 			spt->guest_page.pde_ips = ips;
1097 
1098 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1099 			clear_page(spt->shadow_page.vaddr);
1100 			ret = ppgtt_populate_spt(spt);
1101 			if (ret) {
1102 				ppgtt_put_spt(spt);
1103 				goto err;
1104 			}
1105 		}
1106 	} else {
1107 		int type = get_next_pt_type(we->type);
1108 
1109 		if (!gtt_type_is_pt(type)) {
1110 			ret = -EINVAL;
1111 			goto err;
1112 		}
1113 
1114 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1115 		if (IS_ERR(spt)) {
1116 			ret = PTR_ERR(spt);
1117 			goto err;
1118 		}
1119 
1120 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1121 		if (ret)
1122 			goto err_free_spt;
1123 
1124 		ret = ppgtt_populate_spt(spt);
1125 		if (ret)
1126 			goto err_free_spt;
1127 
1128 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1129 				 spt->shadow_page.type);
1130 	}
1131 	return spt;
1132 
1133 err_free_spt:
1134 	ppgtt_free_spt(spt);
1135 	spt = NULL;
1136 err:
1137 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1138 		     spt, we->val64, we->type);
1139 	return ERR_PTR(ret);
1140 }
1141 
1142 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1143 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1144 {
1145 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1146 
1147 	se->type = ge->type;
1148 	se->val64 = ge->val64;
1149 
1150 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1151 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1152 		ops->clear_ips(se);
1153 
1154 	ops->set_pfn(se, s->shadow_page.mfn);
1155 }
1156 
1157 /**
1158  * Check if can do 2M page
1159  * @vgpu: target vgpu
1160  * @entry: target pfn's gtt entry
1161  *
1162  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1163  * negtive if found err.
1164  */
1165 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1166 	struct intel_gvt_gtt_entry *entry)
1167 {
1168 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1169 	unsigned long pfn;
1170 
1171 	if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1172 		return 0;
1173 
1174 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1175 	if (pfn == INTEL_GVT_INVALID_ADDR)
1176 		return -EINVAL;
1177 
1178 	return PageTransHuge(pfn_to_page(pfn));
1179 }
1180 
1181 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1182 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1183 	struct intel_gvt_gtt_entry *se)
1184 {
1185 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1186 	struct intel_vgpu_ppgtt_spt *sub_spt;
1187 	struct intel_gvt_gtt_entry sub_se;
1188 	unsigned long start_gfn;
1189 	dma_addr_t dma_addr;
1190 	unsigned long sub_index;
1191 	int ret;
1192 
1193 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1194 
1195 	start_gfn = ops->get_pfn(se);
1196 
1197 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1198 	if (IS_ERR(sub_spt))
1199 		return PTR_ERR(sub_spt);
1200 
1201 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1202 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1203 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1204 		if (ret) {
1205 			ppgtt_invalidate_spt(spt);
1206 			return ret;
1207 		}
1208 		sub_se.val64 = se->val64;
1209 
1210 		/* Copy the PAT field from PDE. */
1211 		sub_se.val64 &= ~_PAGE_PAT;
1212 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1213 
1214 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1215 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1216 	}
1217 
1218 	/* Clear dirty field. */
1219 	se->val64 &= ~_PAGE_DIRTY;
1220 
1221 	ops->clear_pse(se);
1222 	ops->clear_ips(se);
1223 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1224 	ppgtt_set_shadow_entry(spt, se, index);
1225 	return 0;
1226 }
1227 
1228 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1229 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1230 	struct intel_gvt_gtt_entry *se)
1231 {
1232 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1233 	struct intel_gvt_gtt_entry entry = *se;
1234 	unsigned long start_gfn;
1235 	dma_addr_t dma_addr;
1236 	int i, ret;
1237 
1238 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1239 
1240 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1241 
1242 	start_gfn = ops->get_pfn(se);
1243 
1244 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1245 	ops->set_64k_splited(&entry);
1246 
1247 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1248 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1249 					start_gfn + i, PAGE_SIZE, &dma_addr);
1250 		if (ret)
1251 			return ret;
1252 
1253 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1254 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1255 	}
1256 	return 0;
1257 }
1258 
1259 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1260 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1261 	struct intel_gvt_gtt_entry *ge)
1262 {
1263 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1264 	struct intel_gvt_gtt_entry se = *ge;
1265 	unsigned long gfn, page_size = PAGE_SIZE;
1266 	dma_addr_t dma_addr;
1267 	int ret;
1268 
1269 	if (!pte_ops->test_present(ge))
1270 		return 0;
1271 
1272 	gfn = pte_ops->get_pfn(ge);
1273 
1274 	switch (ge->type) {
1275 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1276 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1277 		break;
1278 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1279 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1280 		/*
1281 		 * The layout of 64K page is special, the page size is
1282 		 * controlled by uper PDE. To be simple, we always split
1283 		 * 64K page to smaller 4K pages in shadow PT.
1284 		 */
1285 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1286 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1287 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1288 		ret = is_2MB_gtt_possible(vgpu, ge);
1289 		if (ret == 0)
1290 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1291 		else if (ret < 0)
1292 			return ret;
1293 		page_size = I915_GTT_PAGE_SIZE_2M;
1294 		break;
1295 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1296 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1297 		return -EINVAL;
1298 	default:
1299 		GEM_BUG_ON(1);
1300 	}
1301 
1302 	/* direct shadow */
1303 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1304 						      &dma_addr);
1305 	if (ret)
1306 		return -ENXIO;
1307 
1308 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1309 	ppgtt_set_shadow_entry(spt, &se, index);
1310 	return 0;
1311 }
1312 
1313 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1314 {
1315 	struct intel_vgpu *vgpu = spt->vgpu;
1316 	struct intel_gvt *gvt = vgpu->gvt;
1317 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1318 	struct intel_vgpu_ppgtt_spt *s;
1319 	struct intel_gvt_gtt_entry se, ge;
1320 	unsigned long gfn, i;
1321 	int ret;
1322 
1323 	trace_spt_change(spt->vgpu->id, "born", spt,
1324 			 spt->guest_page.gfn, spt->shadow_page.type);
1325 
1326 	for_each_present_guest_entry(spt, &ge, i) {
1327 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1328 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1329 			if (IS_ERR(s)) {
1330 				ret = PTR_ERR(s);
1331 				goto fail;
1332 			}
1333 			ppgtt_get_shadow_entry(spt, &se, i);
1334 			ppgtt_generate_shadow_entry(&se, s, &ge);
1335 			ppgtt_set_shadow_entry(spt, &se, i);
1336 		} else {
1337 			gfn = ops->get_pfn(&ge);
1338 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1339 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1340 				ppgtt_set_shadow_entry(spt, &se, i);
1341 				continue;
1342 			}
1343 
1344 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1345 			if (ret)
1346 				goto fail;
1347 		}
1348 	}
1349 	return 0;
1350 fail:
1351 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1352 			spt, ge.val64, ge.type);
1353 	return ret;
1354 }
1355 
1356 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1357 		struct intel_gvt_gtt_entry *se, unsigned long index)
1358 {
1359 	struct intel_vgpu *vgpu = spt->vgpu;
1360 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1361 	int ret;
1362 
1363 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1364 			       spt->shadow_page.type, se->val64, index);
1365 
1366 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1367 		    se->type, index, se->val64);
1368 
1369 	if (!ops->test_present(se))
1370 		return 0;
1371 
1372 	if (ops->get_pfn(se) ==
1373 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1374 		return 0;
1375 
1376 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1377 		struct intel_vgpu_ppgtt_spt *s =
1378 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1379 		if (!s) {
1380 			gvt_vgpu_err("fail to find guest page\n");
1381 			ret = -ENXIO;
1382 			goto fail;
1383 		}
1384 		ret = ppgtt_invalidate_spt(s);
1385 		if (ret)
1386 			goto fail;
1387 	} else {
1388 		/* We don't setup 64K shadow entry so far. */
1389 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1390 		     "suspicious 64K entry\n");
1391 		ppgtt_invalidate_pte(spt, se);
1392 	}
1393 
1394 	return 0;
1395 fail:
1396 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1397 			spt, se->val64, se->type);
1398 	return ret;
1399 }
1400 
1401 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1402 		struct intel_gvt_gtt_entry *we, unsigned long index)
1403 {
1404 	struct intel_vgpu *vgpu = spt->vgpu;
1405 	struct intel_gvt_gtt_entry m;
1406 	struct intel_vgpu_ppgtt_spt *s;
1407 	int ret;
1408 
1409 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1410 			       we->val64, index);
1411 
1412 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1413 		    we->type, index, we->val64);
1414 
1415 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1416 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1417 		if (IS_ERR(s)) {
1418 			ret = PTR_ERR(s);
1419 			goto fail;
1420 		}
1421 		ppgtt_get_shadow_entry(spt, &m, index);
1422 		ppgtt_generate_shadow_entry(&m, s, we);
1423 		ppgtt_set_shadow_entry(spt, &m, index);
1424 	} else {
1425 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1426 		if (ret)
1427 			goto fail;
1428 	}
1429 	return 0;
1430 fail:
1431 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1432 		spt, we->val64, we->type);
1433 	return ret;
1434 }
1435 
1436 static int sync_oos_page(struct intel_vgpu *vgpu,
1437 		struct intel_vgpu_oos_page *oos_page)
1438 {
1439 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1440 	struct intel_gvt *gvt = vgpu->gvt;
1441 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1442 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1443 	struct intel_gvt_gtt_entry old, new;
1444 	int index;
1445 	int ret;
1446 
1447 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1448 			 spt, spt->guest_page.type);
1449 
1450 	old.type = new.type = get_entry_type(spt->guest_page.type);
1451 	old.val64 = new.val64 = 0;
1452 
1453 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1454 				info->gtt_entry_size_shift); index++) {
1455 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1456 		ops->get_entry(NULL, &new, index, true,
1457 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1458 
1459 		if (old.val64 == new.val64
1460 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1461 			continue;
1462 
1463 		trace_oos_sync(vgpu->id, oos_page->id,
1464 				spt, spt->guest_page.type,
1465 				new.val64, index);
1466 
1467 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1468 		if (ret)
1469 			return ret;
1470 
1471 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1472 	}
1473 
1474 	spt->guest_page.write_cnt = 0;
1475 	list_del_init(&spt->post_shadow_list);
1476 	return 0;
1477 }
1478 
1479 static int detach_oos_page(struct intel_vgpu *vgpu,
1480 		struct intel_vgpu_oos_page *oos_page)
1481 {
1482 	struct intel_gvt *gvt = vgpu->gvt;
1483 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1484 
1485 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1486 			 spt, spt->guest_page.type);
1487 
1488 	spt->guest_page.write_cnt = 0;
1489 	spt->guest_page.oos_page = NULL;
1490 	oos_page->spt = NULL;
1491 
1492 	list_del_init(&oos_page->vm_list);
1493 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1494 
1495 	return 0;
1496 }
1497 
1498 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1499 		struct intel_vgpu_ppgtt_spt *spt)
1500 {
1501 	struct intel_gvt *gvt = spt->vgpu->gvt;
1502 	int ret;
1503 
1504 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1505 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1506 			oos_page->mem, I915_GTT_PAGE_SIZE);
1507 	if (ret)
1508 		return ret;
1509 
1510 	oos_page->spt = spt;
1511 	spt->guest_page.oos_page = oos_page;
1512 
1513 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1514 
1515 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1516 			 spt, spt->guest_page.type);
1517 	return 0;
1518 }
1519 
1520 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1521 {
1522 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1523 	int ret;
1524 
1525 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1526 	if (ret)
1527 		return ret;
1528 
1529 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1530 			 spt, spt->guest_page.type);
1531 
1532 	list_del_init(&oos_page->vm_list);
1533 	return sync_oos_page(spt->vgpu, oos_page);
1534 }
1535 
1536 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1537 {
1538 	struct intel_gvt *gvt = spt->vgpu->gvt;
1539 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1540 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1541 	int ret;
1542 
1543 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1544 
1545 	if (list_empty(&gtt->oos_page_free_list_head)) {
1546 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1547 			struct intel_vgpu_oos_page, list);
1548 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1549 		if (ret)
1550 			return ret;
1551 		ret = detach_oos_page(spt->vgpu, oos_page);
1552 		if (ret)
1553 			return ret;
1554 	} else
1555 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1556 			struct intel_vgpu_oos_page, list);
1557 	return attach_oos_page(oos_page, spt);
1558 }
1559 
1560 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1561 {
1562 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1563 
1564 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1565 		return -EINVAL;
1566 
1567 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1568 			 spt, spt->guest_page.type);
1569 
1570 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1571 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1572 }
1573 
1574 /**
1575  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1576  * @vgpu: a vGPU
1577  *
1578  * This function is called before submitting a guest workload to host,
1579  * to sync all the out-of-synced shadow for vGPU
1580  *
1581  * Returns:
1582  * Zero on success, negative error code if failed.
1583  */
1584 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1585 {
1586 	struct list_head *pos, *n;
1587 	struct intel_vgpu_oos_page *oos_page;
1588 	int ret;
1589 
1590 	if (!enable_out_of_sync)
1591 		return 0;
1592 
1593 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1594 		oos_page = container_of(pos,
1595 				struct intel_vgpu_oos_page, vm_list);
1596 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1597 		if (ret)
1598 			return ret;
1599 	}
1600 	return 0;
1601 }
1602 
1603 /*
1604  * The heart of PPGTT shadow page table.
1605  */
1606 static int ppgtt_handle_guest_write_page_table(
1607 		struct intel_vgpu_ppgtt_spt *spt,
1608 		struct intel_gvt_gtt_entry *we, unsigned long index)
1609 {
1610 	struct intel_vgpu *vgpu = spt->vgpu;
1611 	int type = spt->shadow_page.type;
1612 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1613 	struct intel_gvt_gtt_entry old_se;
1614 	int new_present;
1615 	int i, ret;
1616 
1617 	new_present = ops->test_present(we);
1618 
1619 	/*
1620 	 * Adding the new entry first and then removing the old one, that can
1621 	 * guarantee the ppgtt table is validated during the window between
1622 	 * adding and removal.
1623 	 */
1624 	ppgtt_get_shadow_entry(spt, &old_se, index);
1625 
1626 	if (new_present) {
1627 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1628 		if (ret)
1629 			goto fail;
1630 	}
1631 
1632 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1633 	if (ret)
1634 		goto fail;
1635 
1636 	if (!new_present) {
1637 		/* For 64KB splited entries, we need clear them all. */
1638 		if (ops->test_64k_splited(&old_se) &&
1639 		    !(index % GTT_64K_PTE_STRIDE)) {
1640 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1641 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1642 				ops->clear_64k_splited(&old_se);
1643 				ops->set_pfn(&old_se,
1644 					vgpu->gtt.scratch_pt[type].page_mfn);
1645 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1646 			}
1647 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1648 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1649 			ops->clear_pse(&old_se);
1650 			ops->set_pfn(&old_se,
1651 				     vgpu->gtt.scratch_pt[type].page_mfn);
1652 			ppgtt_set_shadow_entry(spt, &old_se, index);
1653 		} else {
1654 			ops->set_pfn(&old_se,
1655 				     vgpu->gtt.scratch_pt[type].page_mfn);
1656 			ppgtt_set_shadow_entry(spt, &old_se, index);
1657 		}
1658 	}
1659 
1660 	return 0;
1661 fail:
1662 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1663 			spt, we->val64, we->type);
1664 	return ret;
1665 }
1666 
1667 
1668 
1669 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1670 {
1671 	return enable_out_of_sync
1672 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1673 		&& spt->guest_page.write_cnt >= 2;
1674 }
1675 
1676 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1677 		unsigned long index)
1678 {
1679 	set_bit(index, spt->post_shadow_bitmap);
1680 	if (!list_empty(&spt->post_shadow_list))
1681 		return;
1682 
1683 	list_add_tail(&spt->post_shadow_list,
1684 			&spt->vgpu->gtt.post_shadow_list_head);
1685 }
1686 
1687 /**
1688  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1689  * @vgpu: a vGPU
1690  *
1691  * This function is called before submitting a guest workload to host,
1692  * to flush all the post shadows for a vGPU.
1693  *
1694  * Returns:
1695  * Zero on success, negative error code if failed.
1696  */
1697 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1698 {
1699 	struct list_head *pos, *n;
1700 	struct intel_vgpu_ppgtt_spt *spt;
1701 	struct intel_gvt_gtt_entry ge;
1702 	unsigned long index;
1703 	int ret;
1704 
1705 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1706 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1707 				post_shadow_list);
1708 
1709 		for_each_set_bit(index, spt->post_shadow_bitmap,
1710 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1711 			ppgtt_get_guest_entry(spt, &ge, index);
1712 
1713 			ret = ppgtt_handle_guest_write_page_table(spt,
1714 							&ge, index);
1715 			if (ret)
1716 				return ret;
1717 			clear_bit(index, spt->post_shadow_bitmap);
1718 		}
1719 		list_del_init(&spt->post_shadow_list);
1720 	}
1721 	return 0;
1722 }
1723 
1724 static int ppgtt_handle_guest_write_page_table_bytes(
1725 		struct intel_vgpu_ppgtt_spt *spt,
1726 		u64 pa, void *p_data, int bytes)
1727 {
1728 	struct intel_vgpu *vgpu = spt->vgpu;
1729 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1730 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1731 	struct intel_gvt_gtt_entry we, se;
1732 	unsigned long index;
1733 	int ret;
1734 
1735 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1736 
1737 	ppgtt_get_guest_entry(spt, &we, index);
1738 
1739 	/*
1740 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1741 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1742 	 * ignored.
1743 	 */
1744 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1745 	    (index % GTT_64K_PTE_STRIDE)) {
1746 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1747 			    index);
1748 		return 0;
1749 	}
1750 
1751 	if (bytes == info->gtt_entry_size) {
1752 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1753 		if (ret)
1754 			return ret;
1755 	} else {
1756 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1757 			int type = spt->shadow_page.type;
1758 
1759 			ppgtt_get_shadow_entry(spt, &se, index);
1760 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1761 			if (ret)
1762 				return ret;
1763 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1764 			ppgtt_set_shadow_entry(spt, &se, index);
1765 		}
1766 		ppgtt_set_post_shadow(spt, index);
1767 	}
1768 
1769 	if (!enable_out_of_sync)
1770 		return 0;
1771 
1772 	spt->guest_page.write_cnt++;
1773 
1774 	if (spt->guest_page.oos_page)
1775 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1776 				false, 0, vgpu);
1777 
1778 	if (can_do_out_of_sync(spt)) {
1779 		if (!spt->guest_page.oos_page)
1780 			ppgtt_allocate_oos_page(spt);
1781 
1782 		ret = ppgtt_set_guest_page_oos(spt);
1783 		if (ret < 0)
1784 			return ret;
1785 	}
1786 	return 0;
1787 }
1788 
1789 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1790 {
1791 	struct intel_vgpu *vgpu = mm->vgpu;
1792 	struct intel_gvt *gvt = vgpu->gvt;
1793 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1794 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1795 	struct intel_gvt_gtt_entry se;
1796 	int index;
1797 
1798 	if (!mm->ppgtt_mm.shadowed)
1799 		return;
1800 
1801 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1802 		ppgtt_get_shadow_root_entry(mm, &se, index);
1803 
1804 		if (!ops->test_present(&se))
1805 			continue;
1806 
1807 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1808 		se.val64 = 0;
1809 		ppgtt_set_shadow_root_entry(mm, &se, index);
1810 
1811 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1812 				       NULL, se.type, se.val64, index);
1813 	}
1814 
1815 	mm->ppgtt_mm.shadowed = false;
1816 }
1817 
1818 
1819 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1820 {
1821 	struct intel_vgpu *vgpu = mm->vgpu;
1822 	struct intel_gvt *gvt = vgpu->gvt;
1823 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1824 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1825 	struct intel_vgpu_ppgtt_spt *spt;
1826 	struct intel_gvt_gtt_entry ge, se;
1827 	int index, ret;
1828 
1829 	if (mm->ppgtt_mm.shadowed)
1830 		return 0;
1831 
1832 	mm->ppgtt_mm.shadowed = true;
1833 
1834 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1835 		ppgtt_get_guest_root_entry(mm, &ge, index);
1836 
1837 		if (!ops->test_present(&ge))
1838 			continue;
1839 
1840 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1841 				       ge.type, ge.val64, index);
1842 
1843 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1844 		if (IS_ERR(spt)) {
1845 			gvt_vgpu_err("fail to populate guest root pointer\n");
1846 			ret = PTR_ERR(spt);
1847 			goto fail;
1848 		}
1849 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1850 		ppgtt_set_shadow_root_entry(mm, &se, index);
1851 
1852 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1853 				       NULL, se.type, se.val64, index);
1854 	}
1855 
1856 	return 0;
1857 fail:
1858 	invalidate_ppgtt_mm(mm);
1859 	return ret;
1860 }
1861 
1862 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1863 {
1864 	struct intel_vgpu_mm *mm;
1865 
1866 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1867 	if (!mm)
1868 		return NULL;
1869 
1870 	mm->vgpu = vgpu;
1871 	kref_init(&mm->ref);
1872 	atomic_set(&mm->pincount, 0);
1873 
1874 	return mm;
1875 }
1876 
1877 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1878 {
1879 	kfree(mm);
1880 }
1881 
1882 /**
1883  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1884  * @vgpu: a vGPU
1885  * @root_entry_type: ppgtt root entry type
1886  * @pdps: guest pdps.
1887  *
1888  * This function is used to create a ppgtt mm object for a vGPU.
1889  *
1890  * Returns:
1891  * Zero on success, negative error code in pointer if failed.
1892  */
1893 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1894 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1895 {
1896 	struct intel_gvt *gvt = vgpu->gvt;
1897 	struct intel_vgpu_mm *mm;
1898 	int ret;
1899 
1900 	mm = vgpu_alloc_mm(vgpu);
1901 	if (!mm)
1902 		return ERR_PTR(-ENOMEM);
1903 
1904 	mm->type = INTEL_GVT_MM_PPGTT;
1905 
1906 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1907 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1908 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1909 
1910 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1911 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1912 	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1913 
1914 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1915 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1916 	else
1917 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1918 		       sizeof(mm->ppgtt_mm.guest_pdps));
1919 
1920 	ret = shadow_ppgtt_mm(mm);
1921 	if (ret) {
1922 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1923 		vgpu_free_mm(mm);
1924 		return ERR_PTR(ret);
1925 	}
1926 
1927 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1928 
1929 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1930 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1931 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1932 
1933 	return mm;
1934 }
1935 
1936 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1937 {
1938 	struct intel_vgpu_mm *mm;
1939 	unsigned long nr_entries;
1940 
1941 	mm = vgpu_alloc_mm(vgpu);
1942 	if (!mm)
1943 		return ERR_PTR(-ENOMEM);
1944 
1945 	mm->type = INTEL_GVT_MM_GGTT;
1946 
1947 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1948 	mm->ggtt_mm.virtual_ggtt =
1949 		vzalloc(array_size(nr_entries,
1950 				   vgpu->gvt->device_info.gtt_entry_size));
1951 	if (!mm->ggtt_mm.virtual_ggtt) {
1952 		vgpu_free_mm(mm);
1953 		return ERR_PTR(-ENOMEM);
1954 	}
1955 
1956 	mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1957 	if (!mm->ggtt_mm.host_ggtt_aperture) {
1958 		vfree(mm->ggtt_mm.virtual_ggtt);
1959 		vgpu_free_mm(mm);
1960 		return ERR_PTR(-ENOMEM);
1961 	}
1962 
1963 	mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1964 	if (!mm->ggtt_mm.host_ggtt_hidden) {
1965 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1966 		vfree(mm->ggtt_mm.virtual_ggtt);
1967 		vgpu_free_mm(mm);
1968 		return ERR_PTR(-ENOMEM);
1969 	}
1970 
1971 	return mm;
1972 }
1973 
1974 /**
1975  * _intel_vgpu_mm_release - destroy a mm object
1976  * @mm_ref: a kref object
1977  *
1978  * This function is used to destroy a mm object for vGPU
1979  *
1980  */
1981 void _intel_vgpu_mm_release(struct kref *mm_ref)
1982 {
1983 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1984 
1985 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1986 		gvt_err("vgpu mm pin count bug detected\n");
1987 
1988 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1989 		list_del(&mm->ppgtt_mm.list);
1990 
1991 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1992 		list_del(&mm->ppgtt_mm.lru_list);
1993 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1994 
1995 		invalidate_ppgtt_mm(mm);
1996 	} else {
1997 		vfree(mm->ggtt_mm.virtual_ggtt);
1998 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1999 		vfree(mm->ggtt_mm.host_ggtt_hidden);
2000 	}
2001 
2002 	vgpu_free_mm(mm);
2003 }
2004 
2005 /**
2006  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2007  * @mm: a vGPU mm object
2008  *
2009  * This function is called when user doesn't want to use a vGPU mm object
2010  */
2011 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2012 {
2013 	atomic_dec_if_positive(&mm->pincount);
2014 }
2015 
2016 /**
2017  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2018  * @mm: target vgpu mm
2019  *
2020  * This function is called when user wants to use a vGPU mm object. If this
2021  * mm object hasn't been shadowed yet, the shadow will be populated at this
2022  * time.
2023  *
2024  * Returns:
2025  * Zero on success, negative error code if failed.
2026  */
2027 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2028 {
2029 	int ret;
2030 
2031 	atomic_inc(&mm->pincount);
2032 
2033 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2034 		ret = shadow_ppgtt_mm(mm);
2035 		if (ret)
2036 			return ret;
2037 
2038 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2039 		list_move_tail(&mm->ppgtt_mm.lru_list,
2040 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2041 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2042 	}
2043 
2044 	return 0;
2045 }
2046 
2047 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2048 {
2049 	struct intel_vgpu_mm *mm;
2050 	struct list_head *pos, *n;
2051 
2052 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2053 
2054 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2055 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2056 
2057 		if (atomic_read(&mm->pincount))
2058 			continue;
2059 
2060 		list_del_init(&mm->ppgtt_mm.lru_list);
2061 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2062 		invalidate_ppgtt_mm(mm);
2063 		return 1;
2064 	}
2065 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2066 	return 0;
2067 }
2068 
2069 /*
2070  * GMA translation APIs.
2071  */
2072 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2073 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2074 {
2075 	struct intel_vgpu *vgpu = mm->vgpu;
2076 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2077 	struct intel_vgpu_ppgtt_spt *s;
2078 
2079 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2080 	if (!s)
2081 		return -ENXIO;
2082 
2083 	if (!guest)
2084 		ppgtt_get_shadow_entry(s, e, index);
2085 	else
2086 		ppgtt_get_guest_entry(s, e, index);
2087 	return 0;
2088 }
2089 
2090 /**
2091  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2092  * @mm: mm object. could be a PPGTT or GGTT mm object
2093  * @gma: graphics memory address in this mm object
2094  *
2095  * This function is used to translate a graphics memory address in specific
2096  * graphics memory space to guest physical address.
2097  *
2098  * Returns:
2099  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2100  */
2101 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2102 {
2103 	struct intel_vgpu *vgpu = mm->vgpu;
2104 	struct intel_gvt *gvt = vgpu->gvt;
2105 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2106 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2107 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2108 	unsigned long gma_index[4];
2109 	struct intel_gvt_gtt_entry e;
2110 	int i, levels = 0;
2111 	int ret;
2112 
2113 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2114 		   mm->type != INTEL_GVT_MM_PPGTT);
2115 
2116 	if (mm->type == INTEL_GVT_MM_GGTT) {
2117 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2118 			goto err;
2119 
2120 		ggtt_get_guest_entry(mm, &e,
2121 			gma_ops->gma_to_ggtt_pte_index(gma));
2122 
2123 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2124 			+ (gma & ~I915_GTT_PAGE_MASK);
2125 
2126 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2127 	} else {
2128 		switch (mm->ppgtt_mm.root_entry_type) {
2129 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2130 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2131 
2132 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2133 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2134 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2135 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2136 			levels = 4;
2137 			break;
2138 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2139 			ppgtt_get_shadow_root_entry(mm, &e,
2140 					gma_ops->gma_to_l3_pdp_index(gma));
2141 
2142 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2143 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2144 			levels = 2;
2145 			break;
2146 		default:
2147 			GEM_BUG_ON(1);
2148 		}
2149 
2150 		/* walk the shadow page table and get gpa from guest entry */
2151 		for (i = 0; i < levels; i++) {
2152 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2153 				(i == levels - 1));
2154 			if (ret)
2155 				goto err;
2156 
2157 			if (!pte_ops->test_present(&e)) {
2158 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2159 				goto err;
2160 			}
2161 		}
2162 
2163 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2164 					(gma & ~I915_GTT_PAGE_MASK);
2165 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2166 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2167 	}
2168 
2169 	return gpa;
2170 err:
2171 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2172 	return INTEL_GVT_INVALID_ADDR;
2173 }
2174 
2175 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2176 	unsigned int off, void *p_data, unsigned int bytes)
2177 {
2178 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2179 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2180 	unsigned long index = off >> info->gtt_entry_size_shift;
2181 	unsigned long gma;
2182 	struct intel_gvt_gtt_entry e;
2183 
2184 	if (bytes != 4 && bytes != 8)
2185 		return -EINVAL;
2186 
2187 	gma = index << I915_GTT_PAGE_SHIFT;
2188 	if (!intel_gvt_ggtt_validate_range(vgpu,
2189 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2190 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2191 		memset(p_data, 0, bytes);
2192 		return 0;
2193 	}
2194 
2195 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2196 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2197 			bytes);
2198 	return 0;
2199 }
2200 
2201 /**
2202  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2203  * @vgpu: a vGPU
2204  * @off: register offset
2205  * @p_data: data will be returned to guest
2206  * @bytes: data length
2207  *
2208  * This function is used to emulate the GTT MMIO register read
2209  *
2210  * Returns:
2211  * Zero on success, error code if failed.
2212  */
2213 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2214 	void *p_data, unsigned int bytes)
2215 {
2216 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2217 	int ret;
2218 
2219 	if (bytes != 4 && bytes != 8)
2220 		return -EINVAL;
2221 
2222 	off -= info->gtt_start_offset;
2223 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2224 	return ret;
2225 }
2226 
2227 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2228 		struct intel_gvt_gtt_entry *entry)
2229 {
2230 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2231 	unsigned long pfn;
2232 
2233 	pfn = pte_ops->get_pfn(entry);
2234 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2235 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2236 						pfn << PAGE_SHIFT);
2237 }
2238 
2239 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2240 	void *p_data, unsigned int bytes)
2241 {
2242 	struct intel_gvt *gvt = vgpu->gvt;
2243 	const struct intel_gvt_device_info *info = &gvt->device_info;
2244 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2245 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2246 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2247 	unsigned long gma, gfn;
2248 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2249 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2250 	dma_addr_t dma_addr;
2251 	int ret;
2252 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2253 	bool partial_update = false;
2254 
2255 	if (bytes != 4 && bytes != 8)
2256 		return -EINVAL;
2257 
2258 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2259 
2260 	/* the VM may configure the whole GM space when ballooning is used */
2261 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2262 		return 0;
2263 
2264 	e.type = GTT_TYPE_GGTT_PTE;
2265 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2266 			bytes);
2267 
2268 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2269 	 * write, save the first 4 bytes in a list and update virtual
2270 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2271 	 */
2272 	if (bytes < info->gtt_entry_size) {
2273 		bool found = false;
2274 
2275 		list_for_each_entry_safe(pos, n,
2276 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2277 			if (g_gtt_index == pos->offset >>
2278 					info->gtt_entry_size_shift) {
2279 				if (off != pos->offset) {
2280 					/* the second partial part*/
2281 					int last_off = pos->offset &
2282 						(info->gtt_entry_size - 1);
2283 
2284 					memcpy((void *)&e.val64 + last_off,
2285 						(void *)&pos->data + last_off,
2286 						bytes);
2287 
2288 					list_del(&pos->list);
2289 					kfree(pos);
2290 					found = true;
2291 					break;
2292 				}
2293 
2294 				/* update of the first partial part */
2295 				pos->data = e.val64;
2296 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2297 				return 0;
2298 			}
2299 		}
2300 
2301 		if (!found) {
2302 			/* the first partial part */
2303 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2304 			if (!partial_pte)
2305 				return -ENOMEM;
2306 			partial_pte->offset = off;
2307 			partial_pte->data = e.val64;
2308 			list_add_tail(&partial_pte->list,
2309 				&ggtt_mm->ggtt_mm.partial_pte_list);
2310 			partial_update = true;
2311 		}
2312 	}
2313 
2314 	if (!partial_update && (ops->test_present(&e))) {
2315 		gfn = ops->get_pfn(&e);
2316 		m.val64 = e.val64;
2317 		m.type = e.type;
2318 
2319 		/* one PTE update may be issued in multiple writes and the
2320 		 * first write may not construct a valid gfn
2321 		 */
2322 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2323 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2324 			goto out;
2325 		}
2326 
2327 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2328 							PAGE_SIZE, &dma_addr);
2329 		if (ret) {
2330 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2331 			/* guest driver may read/write the entry when partial
2332 			 * update the entry in this situation p2m will fail
2333 			 * settting the shadow entry to point to a scratch page
2334 			 */
2335 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2336 		} else
2337 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2338 	} else {
2339 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2340 		ops->clear_present(&m);
2341 	}
2342 
2343 out:
2344 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2345 
2346 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2347 	ggtt_invalidate_pte(vgpu, &e);
2348 
2349 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2350 	ggtt_invalidate(gvt->gt);
2351 	return 0;
2352 }
2353 
2354 /*
2355  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2356  * @vgpu: a vGPU
2357  * @off: register offset
2358  * @p_data: data from guest write
2359  * @bytes: data length
2360  *
2361  * This function is used to emulate the GTT MMIO register write
2362  *
2363  * Returns:
2364  * Zero on success, error code if failed.
2365  */
2366 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2367 		unsigned int off, void *p_data, unsigned int bytes)
2368 {
2369 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2370 	int ret;
2371 	struct intel_vgpu_submission *s = &vgpu->submission;
2372 	struct intel_engine_cs *engine;
2373 	int i;
2374 
2375 	if (bytes != 4 && bytes != 8)
2376 		return -EINVAL;
2377 
2378 	off -= info->gtt_start_offset;
2379 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2380 
2381 	/* if ggtt of last submitted context is written,
2382 	 * that context is probably got unpinned.
2383 	 * Set last shadowed ctx to invalid.
2384 	 */
2385 	for_each_engine(engine, vgpu->gvt->gt, i) {
2386 		if (!s->last_ctx[i].valid)
2387 			continue;
2388 
2389 		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2390 			s->last_ctx[i].valid = false;
2391 	}
2392 	return ret;
2393 }
2394 
2395 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2396 		enum intel_gvt_gtt_type type)
2397 {
2398 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2399 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2400 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2401 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2402 				vgpu->gvt->device_info.gtt_entry_size_shift;
2403 	void *scratch_pt;
2404 	int i;
2405 	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2406 	dma_addr_t daddr;
2407 
2408 	if (drm_WARN_ON(&i915->drm,
2409 			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2410 		return -EINVAL;
2411 
2412 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2413 	if (!scratch_pt) {
2414 		gvt_vgpu_err("fail to allocate scratch page\n");
2415 		return -ENOMEM;
2416 	}
2417 
2418 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2419 			4096, PCI_DMA_BIDIRECTIONAL);
2420 	if (dma_mapping_error(dev, daddr)) {
2421 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2422 		__free_page(virt_to_page(scratch_pt));
2423 		return -ENOMEM;
2424 	}
2425 	gtt->scratch_pt[type].page_mfn =
2426 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2427 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2428 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2429 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2430 
2431 	/* Build the tree by full filled the scratch pt with the entries which
2432 	 * point to the next level scratch pt or scratch page. The
2433 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2434 	 * 'type' pt.
2435 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2436 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2437 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2438 	 */
2439 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2440 		struct intel_gvt_gtt_entry se;
2441 
2442 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2443 		se.type = get_entry_type(type - 1);
2444 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2445 
2446 		/* The entry parameters like present/writeable/cache type
2447 		 * set to the same as i915's scratch page tree.
2448 		 */
2449 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2450 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2451 			se.val64 |= PPAT_CACHED;
2452 
2453 		for (i = 0; i < page_entry_num; i++)
2454 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2461 {
2462 	int i;
2463 	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2464 	dma_addr_t daddr;
2465 
2466 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2467 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2468 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2469 					I915_GTT_PAGE_SHIFT);
2470 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2471 			__free_page(vgpu->gtt.scratch_pt[i].page);
2472 			vgpu->gtt.scratch_pt[i].page = NULL;
2473 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2474 		}
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2481 {
2482 	int i, ret;
2483 
2484 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2485 		ret = alloc_scratch_pages(vgpu, i);
2486 		if (ret)
2487 			goto err;
2488 	}
2489 
2490 	return 0;
2491 
2492 err:
2493 	release_scratch_page_tree(vgpu);
2494 	return ret;
2495 }
2496 
2497 /**
2498  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2499  * @vgpu: a vGPU
2500  *
2501  * This function is used to initialize per-vGPU graphics memory virtualization
2502  * components.
2503  *
2504  * Returns:
2505  * Zero on success, error code if failed.
2506  */
2507 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2508 {
2509 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2510 
2511 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2512 
2513 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2514 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2515 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2516 
2517 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2518 	if (IS_ERR(gtt->ggtt_mm)) {
2519 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2520 		return PTR_ERR(gtt->ggtt_mm);
2521 	}
2522 
2523 	intel_vgpu_reset_ggtt(vgpu, false);
2524 
2525 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2526 
2527 	return create_scratch_page_tree(vgpu);
2528 }
2529 
2530 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2531 {
2532 	struct list_head *pos, *n;
2533 	struct intel_vgpu_mm *mm;
2534 
2535 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2536 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2537 		intel_vgpu_destroy_mm(mm);
2538 	}
2539 
2540 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2541 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2542 
2543 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2544 		gvt_err("Why we still has spt not freed?\n");
2545 		ppgtt_free_all_spt(vgpu);
2546 	}
2547 }
2548 
2549 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2550 {
2551 	struct intel_gvt_partial_pte *pos, *next;
2552 
2553 	list_for_each_entry_safe(pos, next,
2554 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2555 				 list) {
2556 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2557 			pos->offset, pos->data);
2558 		kfree(pos);
2559 	}
2560 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2561 	vgpu->gtt.ggtt_mm = NULL;
2562 }
2563 
2564 /**
2565  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2566  * @vgpu: a vGPU
2567  *
2568  * This function is used to clean up per-vGPU graphics memory virtualization
2569  * components.
2570  *
2571  * Returns:
2572  * Zero on success, error code if failed.
2573  */
2574 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2575 {
2576 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2577 	intel_vgpu_destroy_ggtt_mm(vgpu);
2578 	release_scratch_page_tree(vgpu);
2579 }
2580 
2581 static void clean_spt_oos(struct intel_gvt *gvt)
2582 {
2583 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2584 	struct list_head *pos, *n;
2585 	struct intel_vgpu_oos_page *oos_page;
2586 
2587 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2588 		"someone is still using oos page\n");
2589 
2590 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2591 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2592 		list_del(&oos_page->list);
2593 		free_page((unsigned long)oos_page->mem);
2594 		kfree(oos_page);
2595 	}
2596 }
2597 
2598 static int setup_spt_oos(struct intel_gvt *gvt)
2599 {
2600 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2601 	struct intel_vgpu_oos_page *oos_page;
2602 	int i;
2603 	int ret;
2604 
2605 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2606 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2607 
2608 	for (i = 0; i < preallocated_oos_pages; i++) {
2609 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2610 		if (!oos_page) {
2611 			ret = -ENOMEM;
2612 			goto fail;
2613 		}
2614 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2615 		if (!oos_page->mem) {
2616 			ret = -ENOMEM;
2617 			kfree(oos_page);
2618 			goto fail;
2619 		}
2620 
2621 		INIT_LIST_HEAD(&oos_page->list);
2622 		INIT_LIST_HEAD(&oos_page->vm_list);
2623 		oos_page->id = i;
2624 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2625 	}
2626 
2627 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2628 
2629 	return 0;
2630 fail:
2631 	clean_spt_oos(gvt);
2632 	return ret;
2633 }
2634 
2635 /**
2636  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2637  * @vgpu: a vGPU
2638  * @pdps: pdp root array
2639  *
2640  * This function is used to find a PPGTT mm object from mm object pool
2641  *
2642  * Returns:
2643  * pointer to mm object on success, NULL if failed.
2644  */
2645 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2646 		u64 pdps[])
2647 {
2648 	struct intel_vgpu_mm *mm;
2649 	struct list_head *pos;
2650 
2651 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2652 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2653 
2654 		switch (mm->ppgtt_mm.root_entry_type) {
2655 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2656 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2657 				return mm;
2658 			break;
2659 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2660 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2661 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2662 				return mm;
2663 			break;
2664 		default:
2665 			GEM_BUG_ON(1);
2666 		}
2667 	}
2668 	return NULL;
2669 }
2670 
2671 /**
2672  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2673  * @vgpu: a vGPU
2674  * @root_entry_type: ppgtt root entry type
2675  * @pdps: guest pdps
2676  *
2677  * This function is used to find or create a PPGTT mm object from a guest.
2678  *
2679  * Returns:
2680  * Zero on success, negative error code if failed.
2681  */
2682 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2683 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2684 {
2685 	struct intel_vgpu_mm *mm;
2686 
2687 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2688 	if (mm) {
2689 		intel_vgpu_mm_get(mm);
2690 	} else {
2691 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2692 		if (IS_ERR(mm))
2693 			gvt_vgpu_err("fail to create mm\n");
2694 	}
2695 	return mm;
2696 }
2697 
2698 /**
2699  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2700  * @vgpu: a vGPU
2701  * @pdps: guest pdps
2702  *
2703  * This function is used to find a PPGTT mm object from a guest and destroy it.
2704  *
2705  * Returns:
2706  * Zero on success, negative error code if failed.
2707  */
2708 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2709 {
2710 	struct intel_vgpu_mm *mm;
2711 
2712 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2713 	if (!mm) {
2714 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2715 		return -EINVAL;
2716 	}
2717 	intel_vgpu_mm_put(mm);
2718 	return 0;
2719 }
2720 
2721 /**
2722  * intel_gvt_init_gtt - initialize mm components of a GVT device
2723  * @gvt: GVT device
2724  *
2725  * This function is called at the initialization stage, to initialize
2726  * the mm components of a GVT device.
2727  *
2728  * Returns:
2729  * zero on success, negative error code if failed.
2730  */
2731 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2732 {
2733 	int ret;
2734 	void *page;
2735 	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2736 	dma_addr_t daddr;
2737 
2738 	gvt_dbg_core("init gtt\n");
2739 
2740 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2741 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2742 
2743 	page = (void *)get_zeroed_page(GFP_KERNEL);
2744 	if (!page) {
2745 		gvt_err("fail to allocate scratch ggtt page\n");
2746 		return -ENOMEM;
2747 	}
2748 
2749 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2750 			4096, PCI_DMA_BIDIRECTIONAL);
2751 	if (dma_mapping_error(dev, daddr)) {
2752 		gvt_err("fail to dmamap scratch ggtt page\n");
2753 		__free_page(virt_to_page(page));
2754 		return -ENOMEM;
2755 	}
2756 
2757 	gvt->gtt.scratch_page = virt_to_page(page);
2758 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2759 
2760 	if (enable_out_of_sync) {
2761 		ret = setup_spt_oos(gvt);
2762 		if (ret) {
2763 			gvt_err("fail to initialize SPT oos\n");
2764 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2765 			__free_page(gvt->gtt.scratch_page);
2766 			return ret;
2767 		}
2768 	}
2769 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2770 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2771 	return 0;
2772 }
2773 
2774 /**
2775  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2776  * @gvt: GVT device
2777  *
2778  * This function is called at the driver unloading stage, to clean up the
2779  * the mm components of a GVT device.
2780  *
2781  */
2782 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2783 {
2784 	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2785 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2786 					I915_GTT_PAGE_SHIFT);
2787 
2788 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2789 
2790 	__free_page(gvt->gtt.scratch_page);
2791 
2792 	if (enable_out_of_sync)
2793 		clean_spt_oos(gvt);
2794 }
2795 
2796 /**
2797  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2798  * @vgpu: a vGPU
2799  *
2800  * This function is called when invalidate all PPGTT instances of a vGPU.
2801  *
2802  */
2803 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2804 {
2805 	struct list_head *pos, *n;
2806 	struct intel_vgpu_mm *mm;
2807 
2808 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2809 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2810 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2811 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2812 			list_del_init(&mm->ppgtt_mm.lru_list);
2813 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2814 			if (mm->ppgtt_mm.shadowed)
2815 				invalidate_ppgtt_mm(mm);
2816 		}
2817 	}
2818 }
2819 
2820 /**
2821  * intel_vgpu_reset_ggtt - reset the GGTT entry
2822  * @vgpu: a vGPU
2823  * @invalidate_old: invalidate old entries
2824  *
2825  * This function is called at the vGPU create stage
2826  * to reset all the GGTT entries.
2827  *
2828  */
2829 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2830 {
2831 	struct intel_gvt *gvt = vgpu->gvt;
2832 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2833 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2834 	struct intel_gvt_gtt_entry old_entry;
2835 	u32 index;
2836 	u32 num_entries;
2837 
2838 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2839 	pte_ops->set_present(&entry);
2840 
2841 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2842 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2843 	while (num_entries--) {
2844 		if (invalidate_old) {
2845 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2846 			ggtt_invalidate_pte(vgpu, &old_entry);
2847 		}
2848 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2849 	}
2850 
2851 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2852 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2853 	while (num_entries--) {
2854 		if (invalidate_old) {
2855 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2856 			ggtt_invalidate_pte(vgpu, &old_entry);
2857 		}
2858 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2859 	}
2860 
2861 	ggtt_invalidate(gvt->gt);
2862 }
2863 
2864 /**
2865  * intel_vgpu_reset_gtt - reset the all GTT related status
2866  * @vgpu: a vGPU
2867  *
2868  * This function is called from vfio core to reset reset all
2869  * GTT related status, including GGTT, PPGTT, scratch page.
2870  *
2871  */
2872 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2873 {
2874 	/* Shadow pages are only created when there is no page
2875 	 * table tracking data, so remove page tracking data after
2876 	 * removing the shadow pages.
2877 	 */
2878 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2879 	intel_vgpu_reset_ggtt(vgpu, true);
2880 }
2881 
2882 /**
2883  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2884  * @gvt: intel gvt device
2885  *
2886  * This function is called at driver resume stage to restore
2887  * GGTT entries of every vGPU.
2888  *
2889  */
2890 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2891 {
2892 	struct intel_vgpu *vgpu;
2893 	struct intel_vgpu_mm *mm;
2894 	int id;
2895 	gen8_pte_t pte;
2896 	u32 idx, num_low, num_hi, offset;
2897 
2898 	/* Restore dirty host ggtt for all vGPUs */
2899 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2900 		mm = vgpu->gtt.ggtt_mm;
2901 
2902 		num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2903 		offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2904 		for (idx = 0; idx < num_low; idx++) {
2905 			pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2906 			if (pte & _PAGE_PRESENT)
2907 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2908 		}
2909 
2910 		num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2911 		offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2912 		for (idx = 0; idx < num_hi; idx++) {
2913 			pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2914 			if (pte & _PAGE_PRESENT)
2915 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2916 		}
2917 	}
2918 }
2919