xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision a36954f5)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43 
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53 				addr, size);
54 		return false;
55 	}
56 	return true;
57 }
58 
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 		 "invalid guest gmadr %llx\n", g_addr))
64 		return -EACCES;
65 
66 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
68 			  + (g_addr - vgpu_aperture_offset(vgpu));
69 	else
70 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
71 			  + (g_addr - vgpu_hidden_offset(vgpu));
72 	return 0;
73 }
74 
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 		 "invalid host gmadr %llx\n", h_addr))
80 		return -EACCES;
81 
82 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
84 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 	else
86 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
87 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 	return 0;
89 }
90 
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 			     unsigned long *h_index)
93 {
94 	u64 h_addr;
95 	int ret;
96 
97 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98 				       &h_addr);
99 	if (ret)
100 		return ret;
101 
102 	*h_index = h_addr >> GTT_PAGE_SHIFT;
103 	return 0;
104 }
105 
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 			     unsigned long *g_index)
108 {
109 	u64 g_addr;
110 	int ret;
111 
112 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113 				       &g_addr);
114 	if (ret)
115 		return ret;
116 
117 	*g_index = g_addr >> GTT_PAGE_SHIFT;
118 	return 0;
119 }
120 
121 #define gtt_type_is_entry(type) \
122 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125 
126 #define gtt_type_is_pt(type) \
127 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128 
129 #define gtt_type_is_pte_pt(type) \
130 	(type == GTT_TYPE_PPGTT_PTE_PT)
131 
132 #define gtt_type_is_root_pointer(type) \
133 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134 
135 #define gtt_init_entry(e, t, p, v) do { \
136 	(e)->type = t; \
137 	(e)->pdev = p; \
138 	memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140 
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156 
157 struct gtt_type_table_entry {
158 	int entry_type;
159 	int next_pt_type;
160 	int pse_entry_type;
161 };
162 
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164 	[type] = { \
165 		.entry_type = e_type, \
166 		.next_pt_type = npt_type, \
167 		.pse_entry_type = pse_type, \
168 	}
169 
170 static struct gtt_type_table_entry gtt_type_table[] = {
171 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173 			GTT_TYPE_PPGTT_PML4_PT,
174 			GTT_TYPE_INVALID),
175 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176 			GTT_TYPE_PPGTT_PML4_ENTRY,
177 			GTT_TYPE_PPGTT_PDP_PT,
178 			GTT_TYPE_INVALID),
179 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180 			GTT_TYPE_PPGTT_PML4_ENTRY,
181 			GTT_TYPE_PPGTT_PDP_PT,
182 			GTT_TYPE_INVALID),
183 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184 			GTT_TYPE_PPGTT_PDP_ENTRY,
185 			GTT_TYPE_PPGTT_PDE_PT,
186 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189 			GTT_TYPE_PPGTT_PDE_PT,
190 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192 			GTT_TYPE_PPGTT_PDP_ENTRY,
193 			GTT_TYPE_PPGTT_PDE_PT,
194 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196 			GTT_TYPE_PPGTT_PDE_ENTRY,
197 			GTT_TYPE_PPGTT_PTE_PT,
198 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200 			GTT_TYPE_PPGTT_PDE_ENTRY,
201 			GTT_TYPE_PPGTT_PTE_PT,
202 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205 			GTT_TYPE_INVALID,
206 			GTT_TYPE_INVALID),
207 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209 			GTT_TYPE_INVALID,
210 			GTT_TYPE_INVALID),
211 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212 			GTT_TYPE_PPGTT_PDE_ENTRY,
213 			GTT_TYPE_INVALID,
214 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216 			GTT_TYPE_PPGTT_PDP_ENTRY,
217 			GTT_TYPE_INVALID,
218 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220 			GTT_TYPE_GGTT_PTE,
221 			GTT_TYPE_INVALID,
222 			GTT_TYPE_INVALID),
223 };
224 
225 static inline int get_next_pt_type(int type)
226 {
227 	return gtt_type_table[type].next_pt_type;
228 }
229 
230 static inline int get_entry_type(int type)
231 {
232 	return gtt_type_table[type].entry_type;
233 }
234 
235 static inline int get_pse_type(int type)
236 {
237 	return gtt_type_table[type].pse_entry_type;
238 }
239 
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243 
244 	return readq(addr);
245 }
246 
247 static void write_pte64(struct drm_i915_private *dev_priv,
248 		unsigned long index, u64 pte)
249 {
250 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
251 
252 	writeq(pte, addr);
253 
254 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
255 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
256 }
257 
258 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
259 		struct intel_gvt_gtt_entry *e,
260 		unsigned long index, bool hypervisor_access, unsigned long gpa,
261 		struct intel_vgpu *vgpu)
262 {
263 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
264 	int ret;
265 
266 	if (WARN_ON(info->gtt_entry_size != 8))
267 		return e;
268 
269 	if (hypervisor_access) {
270 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
271 				(index << info->gtt_entry_size_shift),
272 				&e->val64, 8);
273 		WARN_ON(ret);
274 	} else if (!pt) {
275 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
276 	} else {
277 		e->val64 = *((u64 *)pt + index);
278 	}
279 	return e;
280 }
281 
282 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
283 		struct intel_gvt_gtt_entry *e,
284 		unsigned long index, bool hypervisor_access, unsigned long gpa,
285 		struct intel_vgpu *vgpu)
286 {
287 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
288 	int ret;
289 
290 	if (WARN_ON(info->gtt_entry_size != 8))
291 		return e;
292 
293 	if (hypervisor_access) {
294 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
295 				(index << info->gtt_entry_size_shift),
296 				&e->val64, 8);
297 		WARN_ON(ret);
298 	} else if (!pt) {
299 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
300 	} else {
301 		*((u64 *)pt + index) = e->val64;
302 	}
303 	return e;
304 }
305 
306 #define GTT_HAW 46
307 
308 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
309 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
310 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
311 
312 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
313 {
314 	unsigned long pfn;
315 
316 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
317 		pfn = (e->val64 & ADDR_1G_MASK) >> 12;
318 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
319 		pfn = (e->val64 & ADDR_2M_MASK) >> 12;
320 	else
321 		pfn = (e->val64 & ADDR_4K_MASK) >> 12;
322 	return pfn;
323 }
324 
325 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
326 {
327 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
328 		e->val64 &= ~ADDR_1G_MASK;
329 		pfn &= (ADDR_1G_MASK >> 12);
330 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
331 		e->val64 &= ~ADDR_2M_MASK;
332 		pfn &= (ADDR_2M_MASK >> 12);
333 	} else {
334 		e->val64 &= ~ADDR_4K_MASK;
335 		pfn &= (ADDR_4K_MASK >> 12);
336 	}
337 
338 	e->val64 |= (pfn << 12);
339 }
340 
341 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
342 {
343 	/* Entry doesn't have PSE bit. */
344 	if (get_pse_type(e->type) == GTT_TYPE_INVALID)
345 		return false;
346 
347 	e->type = get_entry_type(e->type);
348 	if (!(e->val64 & (1 << 7)))
349 		return false;
350 
351 	e->type = get_pse_type(e->type);
352 	return true;
353 }
354 
355 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
356 {
357 	/*
358 	 * i915 writes PDP root pointer registers without present bit,
359 	 * it also works, so we need to treat root pointer entry
360 	 * specifically.
361 	 */
362 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
363 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
364 		return (e->val64 != 0);
365 	else
366 		return (e->val64 & (1 << 0));
367 }
368 
369 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
370 {
371 	e->val64 &= ~(1 << 0);
372 }
373 
374 /*
375  * Per-platform GMA routines.
376  */
377 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
378 {
379 	unsigned long x = (gma >> GTT_PAGE_SHIFT);
380 
381 	trace_gma_index(__func__, gma, x);
382 	return x;
383 }
384 
385 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
386 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
387 { \
388 	unsigned long x = (exp); \
389 	trace_gma_index(__func__, gma, x); \
390 	return x; \
391 }
392 
393 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
394 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
395 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
396 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
397 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
398 
399 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
400 	.get_entry = gtt_get_entry64,
401 	.set_entry = gtt_set_entry64,
402 	.clear_present = gtt_entry_clear_present,
403 	.test_present = gen8_gtt_test_present,
404 	.test_pse = gen8_gtt_test_pse,
405 	.get_pfn = gen8_gtt_get_pfn,
406 	.set_pfn = gen8_gtt_set_pfn,
407 };
408 
409 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
410 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
411 	.gma_to_pte_index = gen8_gma_to_pte_index,
412 	.gma_to_pde_index = gen8_gma_to_pde_index,
413 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
414 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
415 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
416 };
417 
418 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
419 		struct intel_gvt_gtt_entry *m)
420 {
421 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
422 	unsigned long gfn, mfn;
423 
424 	*m = *p;
425 
426 	if (!ops->test_present(p))
427 		return 0;
428 
429 	gfn = ops->get_pfn(p);
430 
431 	mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
432 	if (mfn == INTEL_GVT_INVALID_ADDR) {
433 		gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
434 		return -ENXIO;
435 	}
436 
437 	ops->set_pfn(m, mfn);
438 	return 0;
439 }
440 
441 /*
442  * MM helpers.
443  */
444 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
445 		void *page_table, struct intel_gvt_gtt_entry *e,
446 		unsigned long index)
447 {
448 	struct intel_gvt *gvt = mm->vgpu->gvt;
449 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
450 
451 	e->type = mm->page_table_entry_type;
452 
453 	ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
454 	ops->test_pse(e);
455 	return e;
456 }
457 
458 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
459 		void *page_table, struct intel_gvt_gtt_entry *e,
460 		unsigned long index)
461 {
462 	struct intel_gvt *gvt = mm->vgpu->gvt;
463 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
464 
465 	return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
466 }
467 
468 /*
469  * PPGTT shadow page table helpers.
470  */
471 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
472 		struct intel_vgpu_ppgtt_spt *spt,
473 		void *page_table, int type,
474 		struct intel_gvt_gtt_entry *e, unsigned long index,
475 		bool guest)
476 {
477 	struct intel_gvt *gvt = spt->vgpu->gvt;
478 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
479 
480 	e->type = get_entry_type(type);
481 
482 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
483 		return e;
484 
485 	ops->get_entry(page_table, e, index, guest,
486 			spt->guest_page.gfn << GTT_PAGE_SHIFT,
487 			spt->vgpu);
488 	ops->test_pse(e);
489 	return e;
490 }
491 
492 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
493 		struct intel_vgpu_ppgtt_spt *spt,
494 		void *page_table, int type,
495 		struct intel_gvt_gtt_entry *e, unsigned long index,
496 		bool guest)
497 {
498 	struct intel_gvt *gvt = spt->vgpu->gvt;
499 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
500 
501 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
502 		return e;
503 
504 	return ops->set_entry(page_table, e, index, guest,
505 			spt->guest_page.gfn << GTT_PAGE_SHIFT,
506 			spt->vgpu);
507 }
508 
509 #define ppgtt_get_guest_entry(spt, e, index) \
510 	ppgtt_spt_get_entry(spt, NULL, \
511 		spt->guest_page_type, e, index, true)
512 
513 #define ppgtt_set_guest_entry(spt, e, index) \
514 	ppgtt_spt_set_entry(spt, NULL, \
515 		spt->guest_page_type, e, index, true)
516 
517 #define ppgtt_get_shadow_entry(spt, e, index) \
518 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
519 		spt->shadow_page.type, e, index, false)
520 
521 #define ppgtt_set_shadow_entry(spt, e, index) \
522 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
523 		spt->shadow_page.type, e, index, false)
524 
525 /**
526  * intel_vgpu_init_guest_page - init a guest page data structure
527  * @vgpu: a vGPU
528  * @p: a guest page data structure
529  * @gfn: guest memory page frame number
530  * @handler: function will be called when target guest memory page has
531  * been modified.
532  *
533  * This function is called when user wants to track a guest memory page.
534  *
535  * Returns:
536  * Zero on success, negative error code if failed.
537  */
538 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
539 		struct intel_vgpu_guest_page *p,
540 		unsigned long gfn,
541 		int (*handler)(void *, u64, void *, int),
542 		void *data)
543 {
544 	INIT_HLIST_NODE(&p->node);
545 
546 	p->writeprotection = false;
547 	p->gfn = gfn;
548 	p->handler = handler;
549 	p->data = data;
550 	p->oos_page = NULL;
551 	p->write_cnt = 0;
552 
553 	hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
554 	return 0;
555 }
556 
557 static int detach_oos_page(struct intel_vgpu *vgpu,
558 		struct intel_vgpu_oos_page *oos_page);
559 
560 /**
561  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
562  * structure
563  * @vgpu: a vGPU
564  * @p: a tracked guest page
565  *
566  * This function is called when user tries to stop tracking a guest memory
567  * page.
568  */
569 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
570 		struct intel_vgpu_guest_page *p)
571 {
572 	if (!hlist_unhashed(&p->node))
573 		hash_del(&p->node);
574 
575 	if (p->oos_page)
576 		detach_oos_page(vgpu, p->oos_page);
577 
578 	if (p->writeprotection)
579 		intel_gvt_hypervisor_unset_wp_page(vgpu, p);
580 }
581 
582 /**
583  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
584  * @vgpu: a vGPU
585  * @gfn: guest memory page frame number
586  *
587  * This function is called when emulation logic wants to know if a trapped GFN
588  * is a tracked guest page.
589  *
590  * Returns:
591  * Pointer to guest page data structure, NULL if failed.
592  */
593 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
594 		struct intel_vgpu *vgpu, unsigned long gfn)
595 {
596 	struct intel_vgpu_guest_page *p;
597 
598 	hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
599 		p, node, gfn) {
600 		if (p->gfn == gfn)
601 			return p;
602 	}
603 	return NULL;
604 }
605 
606 static inline int init_shadow_page(struct intel_vgpu *vgpu,
607 		struct intel_vgpu_shadow_page *p, int type)
608 {
609 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
610 	dma_addr_t daddr;
611 
612 	daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
613 	if (dma_mapping_error(kdev, daddr)) {
614 		gvt_vgpu_err("fail to map dma addr\n");
615 		return -EINVAL;
616 	}
617 
618 	p->vaddr = page_address(p->page);
619 	p->type = type;
620 
621 	INIT_HLIST_NODE(&p->node);
622 
623 	p->mfn = daddr >> GTT_PAGE_SHIFT;
624 	hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
625 	return 0;
626 }
627 
628 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
629 		struct intel_vgpu_shadow_page *p)
630 {
631 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
632 
633 	dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
634 			PCI_DMA_BIDIRECTIONAL);
635 
636 	if (!hlist_unhashed(&p->node))
637 		hash_del(&p->node);
638 }
639 
640 static inline struct intel_vgpu_shadow_page *find_shadow_page(
641 		struct intel_vgpu *vgpu, unsigned long mfn)
642 {
643 	struct intel_vgpu_shadow_page *p;
644 
645 	hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
646 		p, node, mfn) {
647 		if (p->mfn == mfn)
648 			return p;
649 	}
650 	return NULL;
651 }
652 
653 #define guest_page_to_ppgtt_spt(ptr) \
654 	container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
655 
656 #define shadow_page_to_ppgtt_spt(ptr) \
657 	container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
658 
659 static void *alloc_spt(gfp_t gfp_mask)
660 {
661 	struct intel_vgpu_ppgtt_spt *spt;
662 
663 	spt = kzalloc(sizeof(*spt), gfp_mask);
664 	if (!spt)
665 		return NULL;
666 
667 	spt->shadow_page.page = alloc_page(gfp_mask);
668 	if (!spt->shadow_page.page) {
669 		kfree(spt);
670 		return NULL;
671 	}
672 	return spt;
673 }
674 
675 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
676 {
677 	__free_page(spt->shadow_page.page);
678 	kfree(spt);
679 }
680 
681 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
682 {
683 	trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
684 
685 	clean_shadow_page(spt->vgpu, &spt->shadow_page);
686 	intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
687 	list_del_init(&spt->post_shadow_list);
688 
689 	free_spt(spt);
690 }
691 
692 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
693 {
694 	struct hlist_node *n;
695 	struct intel_vgpu_shadow_page *sp;
696 	int i;
697 
698 	hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
699 		ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
700 }
701 
702 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
703 		u64 pa, void *p_data, int bytes);
704 
705 static int ppgtt_write_protection_handler(void *gp, u64 pa,
706 		void *p_data, int bytes)
707 {
708 	struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
709 	int ret;
710 
711 	if (bytes != 4 && bytes != 8)
712 		return -EINVAL;
713 
714 	if (!gpt->writeprotection)
715 		return -EINVAL;
716 
717 	ret = ppgtt_handle_guest_write_page_table_bytes(gp,
718 		pa, p_data, bytes);
719 	if (ret)
720 		return ret;
721 	return ret;
722 }
723 
724 static int reclaim_one_mm(struct intel_gvt *gvt);
725 
726 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
727 		struct intel_vgpu *vgpu, int type, unsigned long gfn)
728 {
729 	struct intel_vgpu_ppgtt_spt *spt = NULL;
730 	int ret;
731 
732 retry:
733 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
734 	if (!spt) {
735 		if (reclaim_one_mm(vgpu->gvt))
736 			goto retry;
737 
738 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
739 		return ERR_PTR(-ENOMEM);
740 	}
741 
742 	spt->vgpu = vgpu;
743 	spt->guest_page_type = type;
744 	atomic_set(&spt->refcount, 1);
745 	INIT_LIST_HEAD(&spt->post_shadow_list);
746 
747 	/*
748 	 * TODO: guest page type may be different with shadow page type,
749 	 *	 when we support PSE page in future.
750 	 */
751 	ret = init_shadow_page(vgpu, &spt->shadow_page, type);
752 	if (ret) {
753 		gvt_vgpu_err("fail to initialize shadow page for spt\n");
754 		goto err;
755 	}
756 
757 	ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
758 			gfn, ppgtt_write_protection_handler, NULL);
759 	if (ret) {
760 		gvt_vgpu_err("fail to initialize guest page for spt\n");
761 		goto err;
762 	}
763 
764 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
765 	return spt;
766 err:
767 	ppgtt_free_shadow_page(spt);
768 	return ERR_PTR(ret);
769 }
770 
771 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
772 		struct intel_vgpu *vgpu, unsigned long mfn)
773 {
774 	struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
775 
776 	if (p)
777 		return shadow_page_to_ppgtt_spt(p);
778 
779 	gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
780 	return NULL;
781 }
782 
783 #define pt_entry_size_shift(spt) \
784 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
785 
786 #define pt_entries(spt) \
787 	(GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
788 
789 #define for_each_present_guest_entry(spt, e, i) \
790 	for (i = 0; i < pt_entries(spt); i++) \
791 	if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
792 		ppgtt_get_guest_entry(spt, e, i)))
793 
794 #define for_each_present_shadow_entry(spt, e, i) \
795 	for (i = 0; i < pt_entries(spt); i++) \
796 	if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
797 		ppgtt_get_shadow_entry(spt, e, i)))
798 
799 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
800 {
801 	int v = atomic_read(&spt->refcount);
802 
803 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
804 
805 	atomic_inc(&spt->refcount);
806 }
807 
808 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
809 
810 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
811 		struct intel_gvt_gtt_entry *e)
812 {
813 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
814 	struct intel_vgpu_ppgtt_spt *s;
815 	intel_gvt_gtt_type_t cur_pt_type;
816 
817 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
818 		return -EINVAL;
819 
820 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
821 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
822 		cur_pt_type = get_next_pt_type(e->type) + 1;
823 		if (ops->get_pfn(e) ==
824 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
825 			return 0;
826 	}
827 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
828 	if (!s) {
829 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
830 				ops->get_pfn(e));
831 		return -ENXIO;
832 	}
833 	return ppgtt_invalidate_shadow_page(s);
834 }
835 
836 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
837 {
838 	struct intel_vgpu *vgpu = spt->vgpu;
839 	struct intel_gvt_gtt_entry e;
840 	unsigned long index;
841 	int ret;
842 	int v = atomic_read(&spt->refcount);
843 
844 	trace_spt_change(spt->vgpu->id, "die", spt,
845 			spt->guest_page.gfn, spt->shadow_page.type);
846 
847 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
848 
849 	if (atomic_dec_return(&spt->refcount) > 0)
850 		return 0;
851 
852 	if (gtt_type_is_pte_pt(spt->shadow_page.type))
853 		goto release;
854 
855 	for_each_present_shadow_entry(spt, &e, index) {
856 		if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
857 			gvt_vgpu_err("GVT doesn't support pse bit for now\n");
858 			return -EINVAL;
859 		}
860 		ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
861 				spt->vgpu, &e);
862 		if (ret)
863 			goto fail;
864 	}
865 release:
866 	trace_spt_change(spt->vgpu->id, "release", spt,
867 			spt->guest_page.gfn, spt->shadow_page.type);
868 	ppgtt_free_shadow_page(spt);
869 	return 0;
870 fail:
871 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
872 			spt, e.val64, e.type);
873 	return ret;
874 }
875 
876 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
877 
878 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
879 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
880 {
881 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
882 	struct intel_vgpu_ppgtt_spt *s = NULL;
883 	struct intel_vgpu_guest_page *g;
884 	int ret;
885 
886 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
887 		ret = -EINVAL;
888 		goto fail;
889 	}
890 
891 	g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
892 	if (g) {
893 		s = guest_page_to_ppgtt_spt(g);
894 		ppgtt_get_shadow_page(s);
895 	} else {
896 		int type = get_next_pt_type(we->type);
897 
898 		s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
899 		if (IS_ERR(s)) {
900 			ret = PTR_ERR(s);
901 			goto fail;
902 		}
903 
904 		ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
905 		if (ret)
906 			goto fail;
907 
908 		ret = ppgtt_populate_shadow_page(s);
909 		if (ret)
910 			goto fail;
911 
912 		trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
913 			s->shadow_page.type);
914 	}
915 	return s;
916 fail:
917 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
918 			s, we->val64, we->type);
919 	return ERR_PTR(ret);
920 }
921 
922 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
923 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
924 {
925 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
926 
927 	se->type = ge->type;
928 	se->val64 = ge->val64;
929 
930 	ops->set_pfn(se, s->shadow_page.mfn);
931 }
932 
933 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
934 {
935 	struct intel_vgpu *vgpu = spt->vgpu;
936 	struct intel_vgpu_ppgtt_spt *s;
937 	struct intel_gvt_gtt_entry se, ge;
938 	unsigned long i;
939 	int ret;
940 
941 	trace_spt_change(spt->vgpu->id, "born", spt,
942 			spt->guest_page.gfn, spt->shadow_page.type);
943 
944 	if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
945 		for_each_present_guest_entry(spt, &ge, i) {
946 			ret = gtt_entry_p2m(vgpu, &ge, &se);
947 			if (ret)
948 				goto fail;
949 			ppgtt_set_shadow_entry(spt, &se, i);
950 		}
951 		return 0;
952 	}
953 
954 	for_each_present_guest_entry(spt, &ge, i) {
955 		if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
956 			gvt_vgpu_err("GVT doesn't support pse bit now\n");
957 			ret = -EINVAL;
958 			goto fail;
959 		}
960 
961 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
962 		if (IS_ERR(s)) {
963 			ret = PTR_ERR(s);
964 			goto fail;
965 		}
966 		ppgtt_get_shadow_entry(spt, &se, i);
967 		ppgtt_generate_shadow_entry(&se, s, &ge);
968 		ppgtt_set_shadow_entry(spt, &se, i);
969 	}
970 	return 0;
971 fail:
972 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
973 			spt, ge.val64, ge.type);
974 	return ret;
975 }
976 
977 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
978 		unsigned long index)
979 {
980 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
981 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
982 	struct intel_vgpu *vgpu = spt->vgpu;
983 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
984 	struct intel_gvt_gtt_entry e;
985 	int ret;
986 
987 	ppgtt_get_shadow_entry(spt, &e, index);
988 
989 	trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
990 			 index);
991 
992 	if (!ops->test_present(&e))
993 		return 0;
994 
995 	if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
996 		return 0;
997 
998 	if (gtt_type_is_pt(get_next_pt_type(e.type))) {
999 		struct intel_vgpu_ppgtt_spt *s =
1000 			ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
1001 		if (!s) {
1002 			gvt_vgpu_err("fail to find guest page\n");
1003 			ret = -ENXIO;
1004 			goto fail;
1005 		}
1006 		ret = ppgtt_invalidate_shadow_page(s);
1007 		if (ret)
1008 			goto fail;
1009 	}
1010 	ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
1011 	ppgtt_set_shadow_entry(spt, &e, index);
1012 	return 0;
1013 fail:
1014 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1015 			spt, e.val64, e.type);
1016 	return ret;
1017 }
1018 
1019 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1020 		struct intel_gvt_gtt_entry *we, unsigned long index)
1021 {
1022 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1023 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1024 	struct intel_vgpu *vgpu = spt->vgpu;
1025 	struct intel_gvt_gtt_entry m;
1026 	struct intel_vgpu_ppgtt_spt *s;
1027 	int ret;
1028 
1029 	trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1030 		we->val64, index);
1031 
1032 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1033 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1034 		if (IS_ERR(s)) {
1035 			ret = PTR_ERR(s);
1036 			goto fail;
1037 		}
1038 		ppgtt_get_shadow_entry(spt, &m, index);
1039 		ppgtt_generate_shadow_entry(&m, s, we);
1040 		ppgtt_set_shadow_entry(spt, &m, index);
1041 	} else {
1042 		ret = gtt_entry_p2m(vgpu, we, &m);
1043 		if (ret)
1044 			goto fail;
1045 		ppgtt_set_shadow_entry(spt, &m, index);
1046 	}
1047 	return 0;
1048 fail:
1049 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1050 		spt, we->val64, we->type);
1051 	return ret;
1052 }
1053 
1054 static int sync_oos_page(struct intel_vgpu *vgpu,
1055 		struct intel_vgpu_oos_page *oos_page)
1056 {
1057 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1058 	struct intel_gvt *gvt = vgpu->gvt;
1059 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1060 	struct intel_vgpu_ppgtt_spt *spt =
1061 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1062 	struct intel_gvt_gtt_entry old, new, m;
1063 	int index;
1064 	int ret;
1065 
1066 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1067 			oos_page->guest_page, spt->guest_page_type);
1068 
1069 	old.type = new.type = get_entry_type(spt->guest_page_type);
1070 	old.val64 = new.val64 = 0;
1071 
1072 	for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1073 		index++) {
1074 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1075 		ops->get_entry(NULL, &new, index, true,
1076 			oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1077 
1078 		if (old.val64 == new.val64
1079 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1080 			continue;
1081 
1082 		trace_oos_sync(vgpu->id, oos_page->id,
1083 				oos_page->guest_page, spt->guest_page_type,
1084 				new.val64, index);
1085 
1086 		ret = gtt_entry_p2m(vgpu, &new, &m);
1087 		if (ret)
1088 			return ret;
1089 
1090 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1091 		ppgtt_set_shadow_entry(spt, &m, index);
1092 	}
1093 
1094 	oos_page->guest_page->write_cnt = 0;
1095 	list_del_init(&spt->post_shadow_list);
1096 	return 0;
1097 }
1098 
1099 static int detach_oos_page(struct intel_vgpu *vgpu,
1100 		struct intel_vgpu_oos_page *oos_page)
1101 {
1102 	struct intel_gvt *gvt = vgpu->gvt;
1103 	struct intel_vgpu_ppgtt_spt *spt =
1104 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1105 
1106 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1107 			oos_page->guest_page, spt->guest_page_type);
1108 
1109 	oos_page->guest_page->write_cnt = 0;
1110 	oos_page->guest_page->oos_page = NULL;
1111 	oos_page->guest_page = NULL;
1112 
1113 	list_del_init(&oos_page->vm_list);
1114 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1115 
1116 	return 0;
1117 }
1118 
1119 static int attach_oos_page(struct intel_vgpu *vgpu,
1120 		struct intel_vgpu_oos_page *oos_page,
1121 		struct intel_vgpu_guest_page *gpt)
1122 {
1123 	struct intel_gvt *gvt = vgpu->gvt;
1124 	int ret;
1125 
1126 	ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1127 		oos_page->mem, GTT_PAGE_SIZE);
1128 	if (ret)
1129 		return ret;
1130 
1131 	oos_page->guest_page = gpt;
1132 	gpt->oos_page = oos_page;
1133 
1134 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1135 
1136 	trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1137 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1138 	return 0;
1139 }
1140 
1141 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1142 		struct intel_vgpu_guest_page *gpt)
1143 {
1144 	int ret;
1145 
1146 	ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1147 	if (ret)
1148 		return ret;
1149 
1150 	trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1151 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1152 
1153 	list_del_init(&gpt->oos_page->vm_list);
1154 	return sync_oos_page(vgpu, gpt->oos_page);
1155 }
1156 
1157 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1158 		struct intel_vgpu_guest_page *gpt)
1159 {
1160 	struct intel_gvt *gvt = vgpu->gvt;
1161 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1162 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1163 	int ret;
1164 
1165 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1166 
1167 	if (list_empty(&gtt->oos_page_free_list_head)) {
1168 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1169 			struct intel_vgpu_oos_page, list);
1170 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1171 		if (ret)
1172 			return ret;
1173 		ret = detach_oos_page(vgpu, oos_page);
1174 		if (ret)
1175 			return ret;
1176 	} else
1177 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1178 			struct intel_vgpu_oos_page, list);
1179 	return attach_oos_page(vgpu, oos_page, gpt);
1180 }
1181 
1182 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1183 		struct intel_vgpu_guest_page *gpt)
1184 {
1185 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1186 
1187 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1188 		return -EINVAL;
1189 
1190 	trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1191 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1192 
1193 	list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1194 	return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1195 }
1196 
1197 /**
1198  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1199  * @vgpu: a vGPU
1200  *
1201  * This function is called before submitting a guest workload to host,
1202  * to sync all the out-of-synced shadow for vGPU
1203  *
1204  * Returns:
1205  * Zero on success, negative error code if failed.
1206  */
1207 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1208 {
1209 	struct list_head *pos, *n;
1210 	struct intel_vgpu_oos_page *oos_page;
1211 	int ret;
1212 
1213 	if (!enable_out_of_sync)
1214 		return 0;
1215 
1216 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1217 		oos_page = container_of(pos,
1218 				struct intel_vgpu_oos_page, vm_list);
1219 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1220 		if (ret)
1221 			return ret;
1222 	}
1223 	return 0;
1224 }
1225 
1226 /*
1227  * The heart of PPGTT shadow page table.
1228  */
1229 static int ppgtt_handle_guest_write_page_table(
1230 		struct intel_vgpu_guest_page *gpt,
1231 		struct intel_gvt_gtt_entry *we, unsigned long index)
1232 {
1233 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1234 	struct intel_vgpu *vgpu = spt->vgpu;
1235 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1236 
1237 	int ret;
1238 	int new_present;
1239 
1240 	new_present = ops->test_present(we);
1241 
1242 	ret = ppgtt_handle_guest_entry_removal(gpt, index);
1243 	if (ret)
1244 		goto fail;
1245 
1246 	if (new_present) {
1247 		ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1248 		if (ret)
1249 			goto fail;
1250 	}
1251 	return 0;
1252 fail:
1253 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1254 			spt, we->val64, we->type);
1255 	return ret;
1256 }
1257 
1258 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1259 {
1260 	return enable_out_of_sync
1261 		&& gtt_type_is_pte_pt(
1262 			guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1263 		&& gpt->write_cnt >= 2;
1264 }
1265 
1266 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1267 		unsigned long index)
1268 {
1269 	set_bit(index, spt->post_shadow_bitmap);
1270 	if (!list_empty(&spt->post_shadow_list))
1271 		return;
1272 
1273 	list_add_tail(&spt->post_shadow_list,
1274 			&spt->vgpu->gtt.post_shadow_list_head);
1275 }
1276 
1277 /**
1278  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1279  * @vgpu: a vGPU
1280  *
1281  * This function is called before submitting a guest workload to host,
1282  * to flush all the post shadows for a vGPU.
1283  *
1284  * Returns:
1285  * Zero on success, negative error code if failed.
1286  */
1287 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1288 {
1289 	struct list_head *pos, *n;
1290 	struct intel_vgpu_ppgtt_spt *spt;
1291 	struct intel_gvt_gtt_entry ge;
1292 	unsigned long index;
1293 	int ret;
1294 
1295 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1296 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1297 				post_shadow_list);
1298 
1299 		for_each_set_bit(index, spt->post_shadow_bitmap,
1300 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1301 			ppgtt_get_guest_entry(spt, &ge, index);
1302 
1303 			ret = ppgtt_handle_guest_write_page_table(
1304 					&spt->guest_page, &ge, index);
1305 			if (ret)
1306 				return ret;
1307 			clear_bit(index, spt->post_shadow_bitmap);
1308 		}
1309 		list_del_init(&spt->post_shadow_list);
1310 	}
1311 	return 0;
1312 }
1313 
1314 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1315 		u64 pa, void *p_data, int bytes)
1316 {
1317 	struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1318 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1319 	struct intel_vgpu *vgpu = spt->vgpu;
1320 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1321 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1322 	struct intel_gvt_gtt_entry we;
1323 	unsigned long index;
1324 	int ret;
1325 
1326 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1327 
1328 	ppgtt_get_guest_entry(spt, &we, index);
1329 
1330 	ops->test_pse(&we);
1331 
1332 	if (bytes == info->gtt_entry_size) {
1333 		ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1334 		if (ret)
1335 			return ret;
1336 	} else {
1337 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1338 			ret = ppgtt_handle_guest_entry_removal(gpt, index);
1339 			if (ret)
1340 				return ret;
1341 		}
1342 
1343 		ppgtt_set_post_shadow(spt, index);
1344 	}
1345 
1346 	if (!enable_out_of_sync)
1347 		return 0;
1348 
1349 	gpt->write_cnt++;
1350 
1351 	if (gpt->oos_page)
1352 		ops->set_entry(gpt->oos_page->mem, &we, index,
1353 				false, 0, vgpu);
1354 
1355 	if (can_do_out_of_sync(gpt)) {
1356 		if (!gpt->oos_page)
1357 			ppgtt_allocate_oos_page(vgpu, gpt);
1358 
1359 		ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1360 		if (ret < 0)
1361 			return ret;
1362 	}
1363 	return 0;
1364 }
1365 
1366 /*
1367  * mm page table allocation policy for bdw+
1368  *  - for ggtt, only virtual page table will be allocated.
1369  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1370  */
1371 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1372 {
1373 	struct intel_vgpu *vgpu = mm->vgpu;
1374 	struct intel_gvt *gvt = vgpu->gvt;
1375 	const struct intel_gvt_device_info *info = &gvt->device_info;
1376 	void *mem;
1377 
1378 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1379 		mm->page_table_entry_cnt = 4;
1380 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1381 			info->gtt_entry_size;
1382 		mem = kzalloc(mm->has_shadow_page_table ?
1383 			mm->page_table_entry_size * 2
1384 				: mm->page_table_entry_size, GFP_KERNEL);
1385 		if (!mem)
1386 			return -ENOMEM;
1387 		mm->virtual_page_table = mem;
1388 		if (!mm->has_shadow_page_table)
1389 			return 0;
1390 		mm->shadow_page_table = mem + mm->page_table_entry_size;
1391 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1392 		mm->page_table_entry_cnt =
1393 			(gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1394 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1395 			info->gtt_entry_size;
1396 		mem = vzalloc(mm->page_table_entry_size);
1397 		if (!mem)
1398 			return -ENOMEM;
1399 		mm->virtual_page_table = mem;
1400 	}
1401 	return 0;
1402 }
1403 
1404 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1405 {
1406 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1407 		kfree(mm->virtual_page_table);
1408 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1409 		if (mm->virtual_page_table)
1410 			vfree(mm->virtual_page_table);
1411 	}
1412 	mm->virtual_page_table = mm->shadow_page_table = NULL;
1413 }
1414 
1415 static void invalidate_mm(struct intel_vgpu_mm *mm)
1416 {
1417 	struct intel_vgpu *vgpu = mm->vgpu;
1418 	struct intel_gvt *gvt = vgpu->gvt;
1419 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1420 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1421 	struct intel_gvt_gtt_entry se;
1422 	int i;
1423 
1424 	if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1425 		return;
1426 
1427 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1428 		ppgtt_get_shadow_root_entry(mm, &se, i);
1429 		if (!ops->test_present(&se))
1430 			continue;
1431 		ppgtt_invalidate_shadow_page_by_shadow_entry(
1432 				vgpu, &se);
1433 		se.val64 = 0;
1434 		ppgtt_set_shadow_root_entry(mm, &se, i);
1435 
1436 		trace_gpt_change(vgpu->id, "destroy root pointer",
1437 				NULL, se.type, se.val64, i);
1438 	}
1439 	mm->shadowed = false;
1440 }
1441 
1442 /**
1443  * intel_vgpu_destroy_mm - destroy a mm object
1444  * @mm: a kref object
1445  *
1446  * This function is used to destroy a mm object for vGPU
1447  *
1448  */
1449 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1450 {
1451 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1452 	struct intel_vgpu *vgpu = mm->vgpu;
1453 	struct intel_gvt *gvt = vgpu->gvt;
1454 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1455 
1456 	if (!mm->initialized)
1457 		goto out;
1458 
1459 	list_del(&mm->list);
1460 	list_del(&mm->lru_list);
1461 
1462 	if (mm->has_shadow_page_table)
1463 		invalidate_mm(mm);
1464 
1465 	gtt->mm_free_page_table(mm);
1466 out:
1467 	kfree(mm);
1468 }
1469 
1470 static int shadow_mm(struct intel_vgpu_mm *mm)
1471 {
1472 	struct intel_vgpu *vgpu = mm->vgpu;
1473 	struct intel_gvt *gvt = vgpu->gvt;
1474 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1475 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1476 	struct intel_vgpu_ppgtt_spt *spt;
1477 	struct intel_gvt_gtt_entry ge, se;
1478 	int i;
1479 	int ret;
1480 
1481 	if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1482 		return 0;
1483 
1484 	mm->shadowed = true;
1485 
1486 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1487 		ppgtt_get_guest_root_entry(mm, &ge, i);
1488 		if (!ops->test_present(&ge))
1489 			continue;
1490 
1491 		trace_gpt_change(vgpu->id, __func__, NULL,
1492 				ge.type, ge.val64, i);
1493 
1494 		spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1495 		if (IS_ERR(spt)) {
1496 			gvt_vgpu_err("fail to populate guest root pointer\n");
1497 			ret = PTR_ERR(spt);
1498 			goto fail;
1499 		}
1500 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1501 		ppgtt_set_shadow_root_entry(mm, &se, i);
1502 
1503 		trace_gpt_change(vgpu->id, "populate root pointer",
1504 				NULL, se.type, se.val64, i);
1505 	}
1506 	return 0;
1507 fail:
1508 	invalidate_mm(mm);
1509 	return ret;
1510 }
1511 
1512 /**
1513  * intel_vgpu_create_mm - create a mm object for a vGPU
1514  * @vgpu: a vGPU
1515  * @mm_type: mm object type, should be PPGTT or GGTT
1516  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1517  *	to populate shadow later.
1518  * @page_table_level: describe the page table level of the mm object
1519  * @pde_base_index: pde root pointer base in GGTT MMIO.
1520  *
1521  * This function is used to create a mm object for a vGPU.
1522  *
1523  * Returns:
1524  * Zero on success, negative error code in pointer if failed.
1525  */
1526 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1527 		int mm_type, void *virtual_page_table, int page_table_level,
1528 		u32 pde_base_index)
1529 {
1530 	struct intel_gvt *gvt = vgpu->gvt;
1531 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1532 	struct intel_vgpu_mm *mm;
1533 	int ret;
1534 
1535 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1536 	if (!mm) {
1537 		ret = -ENOMEM;
1538 		goto fail;
1539 	}
1540 
1541 	mm->type = mm_type;
1542 
1543 	if (page_table_level == 1)
1544 		mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1545 	else if (page_table_level == 3)
1546 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1547 	else if (page_table_level == 4)
1548 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1549 	else {
1550 		WARN_ON(1);
1551 		ret = -EINVAL;
1552 		goto fail;
1553 	}
1554 
1555 	mm->page_table_level = page_table_level;
1556 	mm->pde_base_index = pde_base_index;
1557 
1558 	mm->vgpu = vgpu;
1559 	mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1560 
1561 	kref_init(&mm->ref);
1562 	atomic_set(&mm->pincount, 0);
1563 	INIT_LIST_HEAD(&mm->list);
1564 	INIT_LIST_HEAD(&mm->lru_list);
1565 	list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1566 
1567 	ret = gtt->mm_alloc_page_table(mm);
1568 	if (ret) {
1569 		gvt_vgpu_err("fail to allocate page table for mm\n");
1570 		goto fail;
1571 	}
1572 
1573 	mm->initialized = true;
1574 
1575 	if (virtual_page_table)
1576 		memcpy(mm->virtual_page_table, virtual_page_table,
1577 				mm->page_table_entry_size);
1578 
1579 	if (mm->has_shadow_page_table) {
1580 		ret = shadow_mm(mm);
1581 		if (ret)
1582 			goto fail;
1583 		list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1584 	}
1585 	return mm;
1586 fail:
1587 	gvt_vgpu_err("fail to create mm\n");
1588 	if (mm)
1589 		intel_gvt_mm_unreference(mm);
1590 	return ERR_PTR(ret);
1591 }
1592 
1593 /**
1594  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1595  * @mm: a vGPU mm object
1596  *
1597  * This function is called when user doesn't want to use a vGPU mm object
1598  */
1599 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1600 {
1601 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1602 		return;
1603 
1604 	atomic_dec(&mm->pincount);
1605 }
1606 
1607 /**
1608  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1609  * @vgpu: a vGPU
1610  *
1611  * This function is called when user wants to use a vGPU mm object. If this
1612  * mm object hasn't been shadowed yet, the shadow will be populated at this
1613  * time.
1614  *
1615  * Returns:
1616  * Zero on success, negative error code if failed.
1617  */
1618 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1619 {
1620 	int ret;
1621 
1622 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1623 		return 0;
1624 
1625 	atomic_inc(&mm->pincount);
1626 
1627 	if (!mm->shadowed) {
1628 		ret = shadow_mm(mm);
1629 		if (ret)
1630 			return ret;
1631 	}
1632 
1633 	list_del_init(&mm->lru_list);
1634 	list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1635 	return 0;
1636 }
1637 
1638 static int reclaim_one_mm(struct intel_gvt *gvt)
1639 {
1640 	struct intel_vgpu_mm *mm;
1641 	struct list_head *pos, *n;
1642 
1643 	list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1644 		mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1645 
1646 		if (mm->type != INTEL_GVT_MM_PPGTT)
1647 			continue;
1648 		if (atomic_read(&mm->pincount))
1649 			continue;
1650 
1651 		list_del_init(&mm->lru_list);
1652 		invalidate_mm(mm);
1653 		return 1;
1654 	}
1655 	return 0;
1656 }
1657 
1658 /*
1659  * GMA translation APIs.
1660  */
1661 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1662 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1663 {
1664 	struct intel_vgpu *vgpu = mm->vgpu;
1665 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1666 	struct intel_vgpu_ppgtt_spt *s;
1667 
1668 	if (WARN_ON(!mm->has_shadow_page_table))
1669 		return -EINVAL;
1670 
1671 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1672 	if (!s)
1673 		return -ENXIO;
1674 
1675 	if (!guest)
1676 		ppgtt_get_shadow_entry(s, e, index);
1677 	else
1678 		ppgtt_get_guest_entry(s, e, index);
1679 	return 0;
1680 }
1681 
1682 /**
1683  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1684  * @mm: mm object. could be a PPGTT or GGTT mm object
1685  * @gma: graphics memory address in this mm object
1686  *
1687  * This function is used to translate a graphics memory address in specific
1688  * graphics memory space to guest physical address.
1689  *
1690  * Returns:
1691  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1692  */
1693 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1694 {
1695 	struct intel_vgpu *vgpu = mm->vgpu;
1696 	struct intel_gvt *gvt = vgpu->gvt;
1697 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1698 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1699 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1700 	unsigned long gma_index[4];
1701 	struct intel_gvt_gtt_entry e;
1702 	int i, index;
1703 	int ret;
1704 
1705 	if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1706 		return INTEL_GVT_INVALID_ADDR;
1707 
1708 	if (mm->type == INTEL_GVT_MM_GGTT) {
1709 		if (!vgpu_gmadr_is_valid(vgpu, gma))
1710 			goto err;
1711 
1712 		ggtt_get_guest_entry(mm, &e,
1713 			gma_ops->gma_to_ggtt_pte_index(gma));
1714 		gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1715 			+ (gma & ~GTT_PAGE_MASK);
1716 
1717 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1718 		return gpa;
1719 	}
1720 
1721 	switch (mm->page_table_level) {
1722 	case 4:
1723 		ppgtt_get_shadow_root_entry(mm, &e, 0);
1724 		gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1725 		gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1726 		gma_index[2] = gma_ops->gma_to_pde_index(gma);
1727 		gma_index[3] = gma_ops->gma_to_pte_index(gma);
1728 		index = 4;
1729 		break;
1730 	case 3:
1731 		ppgtt_get_shadow_root_entry(mm, &e,
1732 				gma_ops->gma_to_l3_pdp_index(gma));
1733 		gma_index[0] = gma_ops->gma_to_pde_index(gma);
1734 		gma_index[1] = gma_ops->gma_to_pte_index(gma);
1735 		index = 2;
1736 		break;
1737 	case 2:
1738 		ppgtt_get_shadow_root_entry(mm, &e,
1739 				gma_ops->gma_to_pde_index(gma));
1740 		gma_index[0] = gma_ops->gma_to_pte_index(gma);
1741 		index = 1;
1742 		break;
1743 	default:
1744 		WARN_ON(1);
1745 		goto err;
1746 	}
1747 
1748 	/* walk into the shadow page table and get gpa from guest entry */
1749 	for (i = 0; i < index; i++) {
1750 		ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1751 			(i == index - 1));
1752 		if (ret)
1753 			goto err;
1754 	}
1755 
1756 	gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1757 		+ (gma & ~GTT_PAGE_MASK);
1758 
1759 	trace_gma_translate(vgpu->id, "ppgtt", 0,
1760 			mm->page_table_level, gma, gpa);
1761 	return gpa;
1762 err:
1763 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1764 	return INTEL_GVT_INVALID_ADDR;
1765 }
1766 
1767 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1768 	unsigned int off, void *p_data, unsigned int bytes)
1769 {
1770 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1771 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1772 	unsigned long index = off >> info->gtt_entry_size_shift;
1773 	struct intel_gvt_gtt_entry e;
1774 
1775 	if (bytes != 4 && bytes != 8)
1776 		return -EINVAL;
1777 
1778 	ggtt_get_guest_entry(ggtt_mm, &e, index);
1779 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1780 			bytes);
1781 	return 0;
1782 }
1783 
1784 /**
1785  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1786  * @vgpu: a vGPU
1787  * @off: register offset
1788  * @p_data: data will be returned to guest
1789  * @bytes: data length
1790  *
1791  * This function is used to emulate the GTT MMIO register read
1792  *
1793  * Returns:
1794  * Zero on success, error code if failed.
1795  */
1796 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1797 	void *p_data, unsigned int bytes)
1798 {
1799 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1800 	int ret;
1801 
1802 	if (bytes != 4 && bytes != 8)
1803 		return -EINVAL;
1804 
1805 	off -= info->gtt_start_offset;
1806 	ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1807 	return ret;
1808 }
1809 
1810 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1811 	void *p_data, unsigned int bytes)
1812 {
1813 	struct intel_gvt *gvt = vgpu->gvt;
1814 	const struct intel_gvt_device_info *info = &gvt->device_info;
1815 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1816 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1817 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1818 	unsigned long gma;
1819 	struct intel_gvt_gtt_entry e, m;
1820 	int ret;
1821 
1822 	if (bytes != 4 && bytes != 8)
1823 		return -EINVAL;
1824 
1825 	gma = g_gtt_index << GTT_PAGE_SHIFT;
1826 
1827 	/* the VM may configure the whole GM space when ballooning is used */
1828 	if (!vgpu_gmadr_is_valid(vgpu, gma))
1829 		return 0;
1830 
1831 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1832 
1833 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1834 			bytes);
1835 
1836 	if (ops->test_present(&e)) {
1837 		ret = gtt_entry_p2m(vgpu, &e, &m);
1838 		if (ret) {
1839 			gvt_vgpu_err("fail to translate guest gtt entry\n");
1840 			/* guest driver may read/write the entry when partial
1841 			 * update the entry in this situation p2m will fail
1842 			 * settting the shadow entry to point to a scratch page
1843 			 */
1844 			ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1845 		}
1846 	} else {
1847 		m = e;
1848 		ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1849 	}
1850 
1851 	ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1852 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1853 	return 0;
1854 }
1855 
1856 /*
1857  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1858  * @vgpu: a vGPU
1859  * @off: register offset
1860  * @p_data: data from guest write
1861  * @bytes: data length
1862  *
1863  * This function is used to emulate the GTT MMIO register write
1864  *
1865  * Returns:
1866  * Zero on success, error code if failed.
1867  */
1868 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1869 	void *p_data, unsigned int bytes)
1870 {
1871 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1872 	int ret;
1873 
1874 	if (bytes != 4 && bytes != 8)
1875 		return -EINVAL;
1876 
1877 	off -= info->gtt_start_offset;
1878 	ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1879 	return ret;
1880 }
1881 
1882 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1883 		intel_gvt_gtt_type_t type)
1884 {
1885 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1886 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1887 	int page_entry_num = GTT_PAGE_SIZE >>
1888 				vgpu->gvt->device_info.gtt_entry_size_shift;
1889 	void *scratch_pt;
1890 	int i;
1891 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1892 	dma_addr_t daddr;
1893 
1894 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1895 		return -EINVAL;
1896 
1897 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1898 	if (!scratch_pt) {
1899 		gvt_vgpu_err("fail to allocate scratch page\n");
1900 		return -ENOMEM;
1901 	}
1902 
1903 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1904 			4096, PCI_DMA_BIDIRECTIONAL);
1905 	if (dma_mapping_error(dev, daddr)) {
1906 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
1907 		__free_page(virt_to_page(scratch_pt));
1908 		return -ENOMEM;
1909 	}
1910 	gtt->scratch_pt[type].page_mfn =
1911 		(unsigned long)(daddr >> GTT_PAGE_SHIFT);
1912 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1913 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1914 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1915 
1916 	/* Build the tree by full filled the scratch pt with the entries which
1917 	 * point to the next level scratch pt or scratch page. The
1918 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
1919 	 * 'type' pt.
1920 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1921 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1922 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1923 	 */
1924 	if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1925 		struct intel_gvt_gtt_entry se;
1926 
1927 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1928 		se.type = get_entry_type(type - 1);
1929 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1930 
1931 		/* The entry parameters like present/writeable/cache type
1932 		 * set to the same as i915's scratch page tree.
1933 		 */
1934 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1935 		if (type == GTT_TYPE_PPGTT_PDE_PT)
1936 			se.val64 |= PPAT_CACHED_INDEX;
1937 
1938 		for (i = 0; i < page_entry_num; i++)
1939 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1946 {
1947 	int i;
1948 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1949 	dma_addr_t daddr;
1950 
1951 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1952 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
1953 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1954 					GTT_PAGE_SHIFT);
1955 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1956 			__free_page(vgpu->gtt.scratch_pt[i].page);
1957 			vgpu->gtt.scratch_pt[i].page = NULL;
1958 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
1959 		}
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1966 {
1967 	int i, ret;
1968 
1969 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1970 		ret = alloc_scratch_pages(vgpu, i);
1971 		if (ret)
1972 			goto err;
1973 	}
1974 
1975 	return 0;
1976 
1977 err:
1978 	release_scratch_page_tree(vgpu);
1979 	return ret;
1980 }
1981 
1982 /**
1983  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1984  * @vgpu: a vGPU
1985  *
1986  * This function is used to initialize per-vGPU graphics memory virtualization
1987  * components.
1988  *
1989  * Returns:
1990  * Zero on success, error code if failed.
1991  */
1992 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1993 {
1994 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1995 	struct intel_vgpu_mm *ggtt_mm;
1996 
1997 	hash_init(gtt->guest_page_hash_table);
1998 	hash_init(gtt->shadow_page_hash_table);
1999 
2000 	INIT_LIST_HEAD(&gtt->mm_list_head);
2001 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2002 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2003 
2004 	intel_vgpu_reset_ggtt(vgpu);
2005 
2006 	ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2007 			NULL, 1, 0);
2008 	if (IS_ERR(ggtt_mm)) {
2009 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2010 		return PTR_ERR(ggtt_mm);
2011 	}
2012 
2013 	gtt->ggtt_mm = ggtt_mm;
2014 
2015 	return create_scratch_page_tree(vgpu);
2016 }
2017 
2018 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2019 {
2020 	struct list_head *pos, *n;
2021 	struct intel_vgpu_mm *mm;
2022 
2023 	list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2024 		mm = container_of(pos, struct intel_vgpu_mm, list);
2025 		if (mm->type == type) {
2026 			vgpu->gvt->gtt.mm_free_page_table(mm);
2027 			list_del(&mm->list);
2028 			list_del(&mm->lru_list);
2029 			kfree(mm);
2030 		}
2031 	}
2032 }
2033 
2034 /**
2035  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2036  * @vgpu: a vGPU
2037  *
2038  * This function is used to clean up per-vGPU graphics memory virtualization
2039  * components.
2040  *
2041  * Returns:
2042  * Zero on success, error code if failed.
2043  */
2044 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2045 {
2046 	ppgtt_free_all_shadow_page(vgpu);
2047 	release_scratch_page_tree(vgpu);
2048 
2049 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2050 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2051 }
2052 
2053 static void clean_spt_oos(struct intel_gvt *gvt)
2054 {
2055 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2056 	struct list_head *pos, *n;
2057 	struct intel_vgpu_oos_page *oos_page;
2058 
2059 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2060 		"someone is still using oos page\n");
2061 
2062 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2063 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2064 		list_del(&oos_page->list);
2065 		kfree(oos_page);
2066 	}
2067 }
2068 
2069 static int setup_spt_oos(struct intel_gvt *gvt)
2070 {
2071 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2072 	struct intel_vgpu_oos_page *oos_page;
2073 	int i;
2074 	int ret;
2075 
2076 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2077 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2078 
2079 	for (i = 0; i < preallocated_oos_pages; i++) {
2080 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2081 		if (!oos_page) {
2082 			ret = -ENOMEM;
2083 			goto fail;
2084 		}
2085 
2086 		INIT_LIST_HEAD(&oos_page->list);
2087 		INIT_LIST_HEAD(&oos_page->vm_list);
2088 		oos_page->id = i;
2089 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2090 	}
2091 
2092 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2093 
2094 	return 0;
2095 fail:
2096 	clean_spt_oos(gvt);
2097 	return ret;
2098 }
2099 
2100 /**
2101  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2102  * @vgpu: a vGPU
2103  * @page_table_level: PPGTT page table level
2104  * @root_entry: PPGTT page table root pointers
2105  *
2106  * This function is used to find a PPGTT mm object from mm object pool
2107  *
2108  * Returns:
2109  * pointer to mm object on success, NULL if failed.
2110  */
2111 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2112 		int page_table_level, void *root_entry)
2113 {
2114 	struct list_head *pos;
2115 	struct intel_vgpu_mm *mm;
2116 	u64 *src, *dst;
2117 
2118 	list_for_each(pos, &vgpu->gtt.mm_list_head) {
2119 		mm = container_of(pos, struct intel_vgpu_mm, list);
2120 		if (mm->type != INTEL_GVT_MM_PPGTT)
2121 			continue;
2122 
2123 		if (mm->page_table_level != page_table_level)
2124 			continue;
2125 
2126 		src = root_entry;
2127 		dst = mm->virtual_page_table;
2128 
2129 		if (page_table_level == 3) {
2130 			if (src[0] == dst[0]
2131 					&& src[1] == dst[1]
2132 					&& src[2] == dst[2]
2133 					&& src[3] == dst[3])
2134 				return mm;
2135 		} else {
2136 			if (src[0] == dst[0])
2137 				return mm;
2138 		}
2139 	}
2140 	return NULL;
2141 }
2142 
2143 /**
2144  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2145  * g2v notification
2146  * @vgpu: a vGPU
2147  * @page_table_level: PPGTT page table level
2148  *
2149  * This function is used to create a PPGTT mm object from a guest to GVT-g
2150  * notification.
2151  *
2152  * Returns:
2153  * Zero on success, negative error code if failed.
2154  */
2155 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2156 		int page_table_level)
2157 {
2158 	u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2159 	struct intel_vgpu_mm *mm;
2160 
2161 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2162 		return -EINVAL;
2163 
2164 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2165 	if (mm) {
2166 		intel_gvt_mm_reference(mm);
2167 	} else {
2168 		mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2169 				pdp, page_table_level, 0);
2170 		if (IS_ERR(mm)) {
2171 			gvt_vgpu_err("fail to create mm\n");
2172 			return PTR_ERR(mm);
2173 		}
2174 	}
2175 	return 0;
2176 }
2177 
2178 /**
2179  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2180  * g2v notification
2181  * @vgpu: a vGPU
2182  * @page_table_level: PPGTT page table level
2183  *
2184  * This function is used to create a PPGTT mm object from a guest to GVT-g
2185  * notification.
2186  *
2187  * Returns:
2188  * Zero on success, negative error code if failed.
2189  */
2190 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2191 		int page_table_level)
2192 {
2193 	u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2194 	struct intel_vgpu_mm *mm;
2195 
2196 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2197 		return -EINVAL;
2198 
2199 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2200 	if (!mm) {
2201 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2202 		return -EINVAL;
2203 	}
2204 	intel_gvt_mm_unreference(mm);
2205 	return 0;
2206 }
2207 
2208 /**
2209  * intel_gvt_init_gtt - initialize mm components of a GVT device
2210  * @gvt: GVT device
2211  *
2212  * This function is called at the initialization stage, to initialize
2213  * the mm components of a GVT device.
2214  *
2215  * Returns:
2216  * zero on success, negative error code if failed.
2217  */
2218 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2219 {
2220 	int ret;
2221 	void *page;
2222 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2223 	dma_addr_t daddr;
2224 
2225 	gvt_dbg_core("init gtt\n");
2226 
2227 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2228 		|| IS_KABYLAKE(gvt->dev_priv)) {
2229 		gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2230 		gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2231 		gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2232 		gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2233 	} else {
2234 		return -ENODEV;
2235 	}
2236 
2237 	page = (void *)get_zeroed_page(GFP_KERNEL);
2238 	if (!page) {
2239 		gvt_err("fail to allocate scratch ggtt page\n");
2240 		return -ENOMEM;
2241 	}
2242 
2243 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2244 			4096, PCI_DMA_BIDIRECTIONAL);
2245 	if (dma_mapping_error(dev, daddr)) {
2246 		gvt_err("fail to dmamap scratch ggtt page\n");
2247 		__free_page(virt_to_page(page));
2248 		return -ENOMEM;
2249 	}
2250 	gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2251 	gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2252 
2253 	if (enable_out_of_sync) {
2254 		ret = setup_spt_oos(gvt);
2255 		if (ret) {
2256 			gvt_err("fail to initialize SPT oos\n");
2257 			return ret;
2258 		}
2259 	}
2260 	INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2261 	return 0;
2262 }
2263 
2264 /**
2265  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2266  * @gvt: GVT device
2267  *
2268  * This function is called at the driver unloading stage, to clean up the
2269  * the mm components of a GVT device.
2270  *
2271  */
2272 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2273 {
2274 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2275 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2276 					GTT_PAGE_SHIFT);
2277 
2278 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2279 
2280 	__free_page(gvt->gtt.scratch_ggtt_page);
2281 
2282 	if (enable_out_of_sync)
2283 		clean_spt_oos(gvt);
2284 }
2285 
2286 /**
2287  * intel_vgpu_reset_ggtt - reset the GGTT entry
2288  * @vgpu: a vGPU
2289  *
2290  * This function is called at the vGPU create stage
2291  * to reset all the GGTT entries.
2292  *
2293  */
2294 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2295 {
2296 	struct intel_gvt *gvt = vgpu->gvt;
2297 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2298 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2299 	u32 index;
2300 	u32 offset;
2301 	u32 num_entries;
2302 	struct intel_gvt_gtt_entry e;
2303 
2304 	intel_runtime_pm_get(dev_priv);
2305 
2306 	memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2307 	e.type = GTT_TYPE_GGTT_PTE;
2308 	ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2309 	e.val64 |= _PAGE_PRESENT;
2310 
2311 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2312 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2313 	for (offset = 0; offset < num_entries; offset++)
2314 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2315 
2316 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2317 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2318 	for (offset = 0; offset < num_entries; offset++)
2319 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2320 
2321 	intel_runtime_pm_put(dev_priv);
2322 }
2323 
2324 /**
2325  * intel_vgpu_reset_gtt - reset the all GTT related status
2326  * @vgpu: a vGPU
2327  * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset
2328  *
2329  * This function is called from vfio core to reset reset all
2330  * GTT related status, including GGTT, PPGTT, scratch page.
2331  *
2332  */
2333 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr)
2334 {
2335 	int i;
2336 
2337 	ppgtt_free_all_shadow_page(vgpu);
2338 
2339 	/* Shadow pages are only created when there is no page
2340 	 * table tracking data, so remove page tracking data after
2341 	 * removing the shadow pages.
2342 	 */
2343 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2344 
2345 	if (!dmlr)
2346 		return;
2347 
2348 	intel_vgpu_reset_ggtt(vgpu);
2349 
2350 	/* clear scratch page for security */
2351 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2352 		if (vgpu->gtt.scratch_pt[i].page != NULL)
2353 			memset(page_address(vgpu->gtt.scratch_pt[i].page),
2354 				0, PAGE_SIZE);
2355 	}
2356 }
2357