1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #include "gt/intel_gt_regs.h" 42 43 #if defined(VERBOSE_DEBUG) 44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 45 #else 46 #define gvt_vdbg_mm(fmt, args...) 47 #endif 48 49 static bool enable_out_of_sync = false; 50 static int preallocated_oos_pages = 8192; 51 52 /* 53 * validate a gm address and related range size, 54 * translate it to host gm address 55 */ 56 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 57 { 58 if (size == 0) 59 return vgpu_gmadr_is_valid(vgpu, addr); 60 61 if (vgpu_gmadr_is_aperture(vgpu, addr) && 62 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 63 return true; 64 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 65 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 66 return true; 67 68 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 69 addr, size); 70 return false; 71 } 72 73 /* translate a guest gmadr to host gmadr */ 74 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 75 { 76 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 77 78 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr), 79 "invalid guest gmadr %llx\n", g_addr)) 80 return -EACCES; 81 82 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 83 *h_addr = vgpu_aperture_gmadr_base(vgpu) 84 + (g_addr - vgpu_aperture_offset(vgpu)); 85 else 86 *h_addr = vgpu_hidden_gmadr_base(vgpu) 87 + (g_addr - vgpu_hidden_offset(vgpu)); 88 return 0; 89 } 90 91 /* translate a host gmadr to guest gmadr */ 92 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 93 { 94 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 95 96 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr), 97 "invalid host gmadr %llx\n", h_addr)) 98 return -EACCES; 99 100 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 101 *g_addr = vgpu_aperture_gmadr_base(vgpu) 102 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 103 else 104 *g_addr = vgpu_hidden_gmadr_base(vgpu) 105 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 106 return 0; 107 } 108 109 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 110 unsigned long *h_index) 111 { 112 u64 h_addr; 113 int ret; 114 115 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 116 &h_addr); 117 if (ret) 118 return ret; 119 120 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 121 return 0; 122 } 123 124 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 125 unsigned long *g_index) 126 { 127 u64 g_addr; 128 int ret; 129 130 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 131 &g_addr); 132 if (ret) 133 return ret; 134 135 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 136 return 0; 137 } 138 139 #define gtt_type_is_entry(type) \ 140 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 141 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 142 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 143 144 #define gtt_type_is_pt(type) \ 145 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 146 147 #define gtt_type_is_pte_pt(type) \ 148 (type == GTT_TYPE_PPGTT_PTE_PT) 149 150 #define gtt_type_is_root_pointer(type) \ 151 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 152 153 #define gtt_init_entry(e, t, p, v) do { \ 154 (e)->type = t; \ 155 (e)->pdev = p; \ 156 memcpy(&(e)->val64, &v, sizeof(v)); \ 157 } while (0) 158 159 /* 160 * Mappings between GTT_TYPE* enumerations. 161 * Following information can be found according to the given type: 162 * - type of next level page table 163 * - type of entry inside this level page table 164 * - type of entry with PSE set 165 * 166 * If the given type doesn't have such a kind of information, 167 * e.g. give a l4 root entry type, then request to get its PSE type, 168 * give a PTE page table type, then request to get its next level page 169 * table type, as we know l4 root entry doesn't have a PSE bit, 170 * and a PTE page table doesn't have a next level page table type, 171 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 172 * page table. 173 */ 174 175 struct gtt_type_table_entry { 176 int entry_type; 177 int pt_type; 178 int next_pt_type; 179 int pse_entry_type; 180 }; 181 182 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 183 [type] = { \ 184 .entry_type = e_type, \ 185 .pt_type = cpt_type, \ 186 .next_pt_type = npt_type, \ 187 .pse_entry_type = pse_type, \ 188 } 189 190 static const struct gtt_type_table_entry gtt_type_table[] = { 191 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 192 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 193 GTT_TYPE_INVALID, 194 GTT_TYPE_PPGTT_PML4_PT, 195 GTT_TYPE_INVALID), 196 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 197 GTT_TYPE_PPGTT_PML4_ENTRY, 198 GTT_TYPE_PPGTT_PML4_PT, 199 GTT_TYPE_PPGTT_PDP_PT, 200 GTT_TYPE_INVALID), 201 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 202 GTT_TYPE_PPGTT_PML4_ENTRY, 203 GTT_TYPE_PPGTT_PML4_PT, 204 GTT_TYPE_PPGTT_PDP_PT, 205 GTT_TYPE_INVALID), 206 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 207 GTT_TYPE_PPGTT_PDP_ENTRY, 208 GTT_TYPE_PPGTT_PDP_PT, 209 GTT_TYPE_PPGTT_PDE_PT, 210 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 211 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 212 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 213 GTT_TYPE_INVALID, 214 GTT_TYPE_PPGTT_PDE_PT, 215 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 216 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 217 GTT_TYPE_PPGTT_PDP_ENTRY, 218 GTT_TYPE_PPGTT_PDP_PT, 219 GTT_TYPE_PPGTT_PDE_PT, 220 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 221 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 222 GTT_TYPE_PPGTT_PDE_ENTRY, 223 GTT_TYPE_PPGTT_PDE_PT, 224 GTT_TYPE_PPGTT_PTE_PT, 225 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 226 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 227 GTT_TYPE_PPGTT_PDE_ENTRY, 228 GTT_TYPE_PPGTT_PDE_PT, 229 GTT_TYPE_PPGTT_PTE_PT, 230 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 231 /* We take IPS bit as 'PSE' for PTE level. */ 232 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 233 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 234 GTT_TYPE_PPGTT_PTE_PT, 235 GTT_TYPE_INVALID, 236 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 237 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 238 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 239 GTT_TYPE_PPGTT_PTE_PT, 240 GTT_TYPE_INVALID, 241 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 242 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 243 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 244 GTT_TYPE_PPGTT_PTE_PT, 245 GTT_TYPE_INVALID, 246 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 247 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 248 GTT_TYPE_PPGTT_PDE_ENTRY, 249 GTT_TYPE_PPGTT_PDE_PT, 250 GTT_TYPE_INVALID, 251 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 252 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 253 GTT_TYPE_PPGTT_PDP_ENTRY, 254 GTT_TYPE_PPGTT_PDP_PT, 255 GTT_TYPE_INVALID, 256 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 257 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 258 GTT_TYPE_GGTT_PTE, 259 GTT_TYPE_INVALID, 260 GTT_TYPE_INVALID, 261 GTT_TYPE_INVALID), 262 }; 263 264 static inline int get_next_pt_type(int type) 265 { 266 return gtt_type_table[type].next_pt_type; 267 } 268 269 static inline int get_pt_type(int type) 270 { 271 return gtt_type_table[type].pt_type; 272 } 273 274 static inline int get_entry_type(int type) 275 { 276 return gtt_type_table[type].entry_type; 277 } 278 279 static inline int get_pse_type(int type) 280 { 281 return gtt_type_table[type].pse_entry_type; 282 } 283 284 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index) 285 { 286 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 287 288 return readq(addr); 289 } 290 291 static void ggtt_invalidate(struct intel_gt *gt) 292 { 293 mmio_hw_access_pre(gt); 294 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 295 mmio_hw_access_post(gt); 296 } 297 298 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte) 299 { 300 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 301 302 writeq(pte, addr); 303 } 304 305 static inline int gtt_get_entry64(void *pt, 306 struct intel_gvt_gtt_entry *e, 307 unsigned long index, bool hypervisor_access, unsigned long gpa, 308 struct intel_vgpu *vgpu) 309 { 310 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 311 int ret; 312 313 if (WARN_ON(info->gtt_entry_size != 8)) 314 return -EINVAL; 315 316 if (hypervisor_access) { 317 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 318 (index << info->gtt_entry_size_shift), 319 &e->val64, 8); 320 if (WARN_ON(ret)) 321 return ret; 322 } else if (!pt) { 323 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index); 324 } else { 325 e->val64 = *((u64 *)pt + index); 326 } 327 return 0; 328 } 329 330 static inline int gtt_set_entry64(void *pt, 331 struct intel_gvt_gtt_entry *e, 332 unsigned long index, bool hypervisor_access, unsigned long gpa, 333 struct intel_vgpu *vgpu) 334 { 335 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 336 int ret; 337 338 if (WARN_ON(info->gtt_entry_size != 8)) 339 return -EINVAL; 340 341 if (hypervisor_access) { 342 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 343 (index << info->gtt_entry_size_shift), 344 &e->val64, 8); 345 if (WARN_ON(ret)) 346 return ret; 347 } else if (!pt) { 348 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64); 349 } else { 350 *((u64 *)pt + index) = e->val64; 351 } 352 return 0; 353 } 354 355 #define GTT_HAW 46 356 357 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 358 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 359 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 360 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 361 362 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 363 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 364 365 #define GTT_64K_PTE_STRIDE 16 366 367 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 368 { 369 unsigned long pfn; 370 371 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 372 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 373 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 374 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 375 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 376 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 377 else 378 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 379 return pfn; 380 } 381 382 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 383 { 384 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 385 e->val64 &= ~ADDR_1G_MASK; 386 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 387 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 388 e->val64 &= ~ADDR_2M_MASK; 389 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 390 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 391 e->val64 &= ~ADDR_64K_MASK; 392 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 393 } else { 394 e->val64 &= ~ADDR_4K_MASK; 395 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 396 } 397 398 e->val64 |= (pfn << PAGE_SHIFT); 399 } 400 401 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 402 { 403 return !!(e->val64 & _PAGE_PSE); 404 } 405 406 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 407 { 408 if (gen8_gtt_test_pse(e)) { 409 switch (e->type) { 410 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 411 e->val64 &= ~_PAGE_PSE; 412 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 413 break; 414 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 415 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 416 e->val64 &= ~_PAGE_PSE; 417 break; 418 default: 419 WARN_ON(1); 420 } 421 } 422 } 423 424 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 425 { 426 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 427 return false; 428 429 return !!(e->val64 & GEN8_PDE_IPS_64K); 430 } 431 432 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 433 { 434 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 435 return; 436 437 e->val64 &= ~GEN8_PDE_IPS_64K; 438 } 439 440 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 441 { 442 /* 443 * i915 writes PDP root pointer registers without present bit, 444 * it also works, so we need to treat root pointer entry 445 * specifically. 446 */ 447 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 448 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 449 return (e->val64 != 0); 450 else 451 return (e->val64 & GEN8_PAGE_PRESENT); 452 } 453 454 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 455 { 456 e->val64 &= ~GEN8_PAGE_PRESENT; 457 } 458 459 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 460 { 461 e->val64 |= GEN8_PAGE_PRESENT; 462 } 463 464 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 465 { 466 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 467 } 468 469 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 470 { 471 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 472 } 473 474 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 475 { 476 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 477 } 478 479 /* 480 * Per-platform GMA routines. 481 */ 482 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 483 { 484 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 485 486 trace_gma_index(__func__, gma, x); 487 return x; 488 } 489 490 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 491 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 492 { \ 493 unsigned long x = (exp); \ 494 trace_gma_index(__func__, gma, x); \ 495 return x; \ 496 } 497 498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 501 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 502 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 503 504 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 505 .get_entry = gtt_get_entry64, 506 .set_entry = gtt_set_entry64, 507 .clear_present = gtt_entry_clear_present, 508 .set_present = gtt_entry_set_present, 509 .test_present = gen8_gtt_test_present, 510 .test_pse = gen8_gtt_test_pse, 511 .clear_pse = gen8_gtt_clear_pse, 512 .clear_ips = gen8_gtt_clear_ips, 513 .test_ips = gen8_gtt_test_ips, 514 .clear_64k_splited = gen8_gtt_clear_64k_splited, 515 .set_64k_splited = gen8_gtt_set_64k_splited, 516 .test_64k_splited = gen8_gtt_test_64k_splited, 517 .get_pfn = gen8_gtt_get_pfn, 518 .set_pfn = gen8_gtt_set_pfn, 519 }; 520 521 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 522 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 523 .gma_to_pte_index = gen8_gma_to_pte_index, 524 .gma_to_pde_index = gen8_gma_to_pde_index, 525 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 526 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 527 .gma_to_pml4_index = gen8_gma_to_pml4_index, 528 }; 529 530 /* Update entry type per pse and ips bit. */ 531 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops, 532 struct intel_gvt_gtt_entry *entry, bool ips) 533 { 534 switch (entry->type) { 535 case GTT_TYPE_PPGTT_PDE_ENTRY: 536 case GTT_TYPE_PPGTT_PDP_ENTRY: 537 if (pte_ops->test_pse(entry)) 538 entry->type = get_pse_type(entry->type); 539 break; 540 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 541 if (ips) 542 entry->type = get_pse_type(entry->type); 543 break; 544 default: 545 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 546 } 547 548 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 549 } 550 551 /* 552 * MM helpers. 553 */ 554 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 555 struct intel_gvt_gtt_entry *entry, unsigned long index, 556 bool guest) 557 { 558 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 559 560 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 561 562 entry->type = mm->ppgtt_mm.root_entry_type; 563 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 564 mm->ppgtt_mm.shadow_pdps, 565 entry, index, false, 0, mm->vgpu); 566 update_entry_type_for_real(pte_ops, entry, false); 567 } 568 569 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 570 struct intel_gvt_gtt_entry *entry, unsigned long index) 571 { 572 _ppgtt_get_root_entry(mm, entry, index, true); 573 } 574 575 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 576 struct intel_gvt_gtt_entry *entry, unsigned long index) 577 { 578 _ppgtt_get_root_entry(mm, entry, index, false); 579 } 580 581 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 582 struct intel_gvt_gtt_entry *entry, unsigned long index, 583 bool guest) 584 { 585 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 586 587 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 588 mm->ppgtt_mm.shadow_pdps, 589 entry, index, false, 0, mm->vgpu); 590 } 591 592 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 593 struct intel_gvt_gtt_entry *entry, unsigned long index) 594 { 595 _ppgtt_set_root_entry(mm, entry, index, false); 596 } 597 598 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 599 struct intel_gvt_gtt_entry *entry, unsigned long index) 600 { 601 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 602 603 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 604 605 entry->type = GTT_TYPE_GGTT_PTE; 606 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 607 false, 0, mm->vgpu); 608 } 609 610 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 611 struct intel_gvt_gtt_entry *entry, unsigned long index) 612 { 613 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 614 615 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 616 617 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 618 false, 0, mm->vgpu); 619 } 620 621 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 622 struct intel_gvt_gtt_entry *entry, unsigned long index) 623 { 624 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 625 626 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 627 628 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 629 } 630 631 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 632 struct intel_gvt_gtt_entry *entry, unsigned long index) 633 { 634 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 635 unsigned long offset = index; 636 637 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 638 639 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 640 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 641 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64; 642 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) { 643 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT); 644 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64; 645 } 646 647 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 648 } 649 650 /* 651 * PPGTT shadow page table helpers. 652 */ 653 static inline int ppgtt_spt_get_entry( 654 struct intel_vgpu_ppgtt_spt *spt, 655 void *page_table, int type, 656 struct intel_gvt_gtt_entry *e, unsigned long index, 657 bool guest) 658 { 659 struct intel_gvt *gvt = spt->vgpu->gvt; 660 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 661 int ret; 662 663 e->type = get_entry_type(type); 664 665 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 666 return -EINVAL; 667 668 ret = ops->get_entry(page_table, e, index, guest, 669 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 670 spt->vgpu); 671 if (ret) 672 return ret; 673 674 update_entry_type_for_real(ops, e, guest ? 675 spt->guest_page.pde_ips : false); 676 677 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 678 type, e->type, index, e->val64); 679 return 0; 680 } 681 682 static inline int ppgtt_spt_set_entry( 683 struct intel_vgpu_ppgtt_spt *spt, 684 void *page_table, int type, 685 struct intel_gvt_gtt_entry *e, unsigned long index, 686 bool guest) 687 { 688 struct intel_gvt *gvt = spt->vgpu->gvt; 689 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 690 691 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 692 return -EINVAL; 693 694 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 695 type, e->type, index, e->val64); 696 697 return ops->set_entry(page_table, e, index, guest, 698 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 699 spt->vgpu); 700 } 701 702 #define ppgtt_get_guest_entry(spt, e, index) \ 703 ppgtt_spt_get_entry(spt, NULL, \ 704 spt->guest_page.type, e, index, true) 705 706 #define ppgtt_set_guest_entry(spt, e, index) \ 707 ppgtt_spt_set_entry(spt, NULL, \ 708 spt->guest_page.type, e, index, true) 709 710 #define ppgtt_get_shadow_entry(spt, e, index) \ 711 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 712 spt->shadow_page.type, e, index, false) 713 714 #define ppgtt_set_shadow_entry(spt, e, index) \ 715 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 716 spt->shadow_page.type, e, index, false) 717 718 static void *alloc_spt(gfp_t gfp_mask) 719 { 720 struct intel_vgpu_ppgtt_spt *spt; 721 722 spt = kzalloc(sizeof(*spt), gfp_mask); 723 if (!spt) 724 return NULL; 725 726 spt->shadow_page.page = alloc_page(gfp_mask); 727 if (!spt->shadow_page.page) { 728 kfree(spt); 729 return NULL; 730 } 731 return spt; 732 } 733 734 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 735 { 736 __free_page(spt->shadow_page.page); 737 kfree(spt); 738 } 739 740 static int detach_oos_page(struct intel_vgpu *vgpu, 741 struct intel_vgpu_oos_page *oos_page); 742 743 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 744 { 745 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev; 746 747 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 748 749 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 750 DMA_BIDIRECTIONAL); 751 752 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 753 754 if (spt->guest_page.gfn) { 755 if (spt->guest_page.oos_page) 756 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 757 758 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 759 } 760 761 list_del_init(&spt->post_shadow_list); 762 free_spt(spt); 763 } 764 765 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 766 { 767 struct intel_vgpu_ppgtt_spt *spt, *spn; 768 struct radix_tree_iter iter; 769 LIST_HEAD(all_spt); 770 void __rcu **slot; 771 772 rcu_read_lock(); 773 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 774 spt = radix_tree_deref_slot(slot); 775 list_move(&spt->post_shadow_list, &all_spt); 776 } 777 rcu_read_unlock(); 778 779 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 780 ppgtt_free_spt(spt); 781 } 782 783 static int ppgtt_handle_guest_write_page_table_bytes( 784 struct intel_vgpu_ppgtt_spt *spt, 785 u64 pa, void *p_data, int bytes); 786 787 static int ppgtt_write_protection_handler( 788 struct intel_vgpu_page_track *page_track, 789 u64 gpa, void *data, int bytes) 790 { 791 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 792 793 int ret; 794 795 if (bytes != 4 && bytes != 8) 796 return -EINVAL; 797 798 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 799 if (ret) 800 return ret; 801 return ret; 802 } 803 804 /* Find a spt by guest gfn. */ 805 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 806 struct intel_vgpu *vgpu, unsigned long gfn) 807 { 808 struct intel_vgpu_page_track *track; 809 810 track = intel_vgpu_find_page_track(vgpu, gfn); 811 if (track && track->handler == ppgtt_write_protection_handler) 812 return track->priv_data; 813 814 return NULL; 815 } 816 817 /* Find the spt by shadow page mfn. */ 818 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 819 struct intel_vgpu *vgpu, unsigned long mfn) 820 { 821 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 822 } 823 824 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 825 826 /* Allocate shadow page table without guest page. */ 827 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 828 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 829 { 830 struct device *kdev = vgpu->gvt->gt->i915->drm.dev; 831 struct intel_vgpu_ppgtt_spt *spt = NULL; 832 dma_addr_t daddr; 833 int ret; 834 835 retry: 836 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 837 if (!spt) { 838 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 839 goto retry; 840 841 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 842 return ERR_PTR(-ENOMEM); 843 } 844 845 spt->vgpu = vgpu; 846 atomic_set(&spt->refcount, 1); 847 INIT_LIST_HEAD(&spt->post_shadow_list); 848 849 /* 850 * Init shadow_page. 851 */ 852 spt->shadow_page.type = type; 853 daddr = dma_map_page(kdev, spt->shadow_page.page, 854 0, 4096, DMA_BIDIRECTIONAL); 855 if (dma_mapping_error(kdev, daddr)) { 856 gvt_vgpu_err("fail to map dma addr\n"); 857 ret = -EINVAL; 858 goto err_free_spt; 859 } 860 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 861 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 862 863 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 864 if (ret) 865 goto err_unmap_dma; 866 867 return spt; 868 869 err_unmap_dma: 870 dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL); 871 err_free_spt: 872 free_spt(spt); 873 return ERR_PTR(ret); 874 } 875 876 /* Allocate shadow page table associated with specific gfn. */ 877 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 878 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 879 unsigned long gfn, bool guest_pde_ips) 880 { 881 struct intel_vgpu_ppgtt_spt *spt; 882 int ret; 883 884 spt = ppgtt_alloc_spt(vgpu, type); 885 if (IS_ERR(spt)) 886 return spt; 887 888 /* 889 * Init guest_page. 890 */ 891 ret = intel_vgpu_register_page_track(vgpu, gfn, 892 ppgtt_write_protection_handler, spt); 893 if (ret) { 894 ppgtt_free_spt(spt); 895 return ERR_PTR(ret); 896 } 897 898 spt->guest_page.type = type; 899 spt->guest_page.gfn = gfn; 900 spt->guest_page.pde_ips = guest_pde_ips; 901 902 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 903 904 return spt; 905 } 906 907 #define pt_entry_size_shift(spt) \ 908 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 909 910 #define pt_entries(spt) \ 911 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 912 913 #define for_each_present_guest_entry(spt, e, i) \ 914 for (i = 0; i < pt_entries(spt); \ 915 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 916 if (!ppgtt_get_guest_entry(spt, e, i) && \ 917 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 918 919 #define for_each_present_shadow_entry(spt, e, i) \ 920 for (i = 0; i < pt_entries(spt); \ 921 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 922 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 923 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 924 925 #define for_each_shadow_entry(spt, e, i) \ 926 for (i = 0; i < pt_entries(spt); \ 927 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 928 if (!ppgtt_get_shadow_entry(spt, e, i)) 929 930 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 931 { 932 int v = atomic_read(&spt->refcount); 933 934 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 935 atomic_inc(&spt->refcount); 936 } 937 938 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 939 { 940 int v = atomic_read(&spt->refcount); 941 942 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 943 return atomic_dec_return(&spt->refcount); 944 } 945 946 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 947 948 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 949 struct intel_gvt_gtt_entry *e) 950 { 951 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 952 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 953 struct intel_vgpu_ppgtt_spt *s; 954 enum intel_gvt_gtt_type cur_pt_type; 955 956 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 957 958 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 959 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 960 cur_pt_type = get_next_pt_type(e->type); 961 962 if (!gtt_type_is_pt(cur_pt_type) || 963 !gtt_type_is_pt(cur_pt_type + 1)) { 964 drm_WARN(&i915->drm, 1, 965 "Invalid page table type, cur_pt_type is: %d\n", 966 cur_pt_type); 967 return -EINVAL; 968 } 969 970 cur_pt_type += 1; 971 972 if (ops->get_pfn(e) == 973 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 974 return 0; 975 } 976 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 977 if (!s) { 978 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 979 ops->get_pfn(e)); 980 return -ENXIO; 981 } 982 return ppgtt_invalidate_spt(s); 983 } 984 985 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 986 struct intel_gvt_gtt_entry *entry) 987 { 988 struct intel_vgpu *vgpu = spt->vgpu; 989 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 990 unsigned long pfn; 991 int type; 992 993 pfn = ops->get_pfn(entry); 994 type = spt->shadow_page.type; 995 996 /* Uninitialized spte or unshadowed spte. */ 997 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 998 return; 999 1000 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 1001 } 1002 1003 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 1004 { 1005 struct intel_vgpu *vgpu = spt->vgpu; 1006 struct intel_gvt_gtt_entry e; 1007 unsigned long index; 1008 int ret; 1009 1010 trace_spt_change(spt->vgpu->id, "die", spt, 1011 spt->guest_page.gfn, spt->shadow_page.type); 1012 1013 if (ppgtt_put_spt(spt) > 0) 1014 return 0; 1015 1016 for_each_present_shadow_entry(spt, &e, index) { 1017 switch (e.type) { 1018 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1019 gvt_vdbg_mm("invalidate 4K entry\n"); 1020 ppgtt_invalidate_pte(spt, &e); 1021 break; 1022 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1023 /* We don't setup 64K shadow entry so far. */ 1024 WARN(1, "suspicious 64K gtt entry\n"); 1025 continue; 1026 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1027 gvt_vdbg_mm("invalidate 2M entry\n"); 1028 continue; 1029 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1030 WARN(1, "GVT doesn't support 1GB page\n"); 1031 continue; 1032 case GTT_TYPE_PPGTT_PML4_ENTRY: 1033 case GTT_TYPE_PPGTT_PDP_ENTRY: 1034 case GTT_TYPE_PPGTT_PDE_ENTRY: 1035 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1036 ret = ppgtt_invalidate_spt_by_shadow_entry( 1037 spt->vgpu, &e); 1038 if (ret) 1039 goto fail; 1040 break; 1041 default: 1042 GEM_BUG_ON(1); 1043 } 1044 } 1045 1046 trace_spt_change(spt->vgpu->id, "release", spt, 1047 spt->guest_page.gfn, spt->shadow_page.type); 1048 ppgtt_free_spt(spt); 1049 return 0; 1050 fail: 1051 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1052 spt, e.val64, e.type); 1053 return ret; 1054 } 1055 1056 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1057 { 1058 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1059 1060 if (GRAPHICS_VER(dev_priv) == 9) { 1061 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1062 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1063 1064 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1065 } else if (GRAPHICS_VER(dev_priv) >= 11) { 1066 /* 64K paging only controlled by IPS bit in PTE now. */ 1067 return true; 1068 } else 1069 return false; 1070 } 1071 1072 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1073 1074 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1075 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1076 { 1077 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1078 struct intel_vgpu_ppgtt_spt *spt = NULL; 1079 bool ips = false; 1080 int ret; 1081 1082 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1083 1084 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1085 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1086 1087 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1088 if (spt) { 1089 ppgtt_get_spt(spt); 1090 1091 if (ips != spt->guest_page.pde_ips) { 1092 spt->guest_page.pde_ips = ips; 1093 1094 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1095 clear_page(spt->shadow_page.vaddr); 1096 ret = ppgtt_populate_spt(spt); 1097 if (ret) { 1098 ppgtt_put_spt(spt); 1099 goto err; 1100 } 1101 } 1102 } else { 1103 int type = get_next_pt_type(we->type); 1104 1105 if (!gtt_type_is_pt(type)) { 1106 ret = -EINVAL; 1107 goto err; 1108 } 1109 1110 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1111 if (IS_ERR(spt)) { 1112 ret = PTR_ERR(spt); 1113 goto err; 1114 } 1115 1116 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1117 if (ret) 1118 goto err_free_spt; 1119 1120 ret = ppgtt_populate_spt(spt); 1121 if (ret) 1122 goto err_free_spt; 1123 1124 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1125 spt->shadow_page.type); 1126 } 1127 return spt; 1128 1129 err_free_spt: 1130 ppgtt_free_spt(spt); 1131 spt = NULL; 1132 err: 1133 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1134 spt, we->val64, we->type); 1135 return ERR_PTR(ret); 1136 } 1137 1138 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1139 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1140 { 1141 const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1142 1143 se->type = ge->type; 1144 se->val64 = ge->val64; 1145 1146 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1147 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1148 ops->clear_ips(se); 1149 1150 ops->set_pfn(se, s->shadow_page.mfn); 1151 } 1152 1153 /* 1154 * Check if can do 2M page 1155 * @vgpu: target vgpu 1156 * @entry: target pfn's gtt entry 1157 * 1158 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition, 1159 * negative if found err. 1160 */ 1161 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1162 struct intel_gvt_gtt_entry *entry) 1163 { 1164 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1165 unsigned long pfn; 1166 1167 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M)) 1168 return 0; 1169 1170 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); 1171 if (pfn == INTEL_GVT_INVALID_ADDR) 1172 return -EINVAL; 1173 1174 return PageTransHuge(pfn_to_page(pfn)); 1175 } 1176 1177 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1178 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1179 struct intel_gvt_gtt_entry *se) 1180 { 1181 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1182 struct intel_vgpu_ppgtt_spt *sub_spt; 1183 struct intel_gvt_gtt_entry sub_se; 1184 unsigned long start_gfn; 1185 dma_addr_t dma_addr; 1186 unsigned long sub_index; 1187 int ret; 1188 1189 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1190 1191 start_gfn = ops->get_pfn(se); 1192 1193 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1194 if (IS_ERR(sub_spt)) 1195 return PTR_ERR(sub_spt); 1196 1197 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1198 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1199 start_gfn + sub_index, PAGE_SIZE, &dma_addr); 1200 if (ret) { 1201 ppgtt_invalidate_spt(spt); 1202 return ret; 1203 } 1204 sub_se.val64 = se->val64; 1205 1206 /* Copy the PAT field from PDE. */ 1207 sub_se.val64 &= ~_PAGE_PAT; 1208 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1209 1210 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1211 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1212 } 1213 1214 /* Clear dirty field. */ 1215 se->val64 &= ~_PAGE_DIRTY; 1216 1217 ops->clear_pse(se); 1218 ops->clear_ips(se); 1219 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1220 ppgtt_set_shadow_entry(spt, se, index); 1221 return 0; 1222 } 1223 1224 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1225 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1226 struct intel_gvt_gtt_entry *se) 1227 { 1228 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1229 struct intel_gvt_gtt_entry entry = *se; 1230 unsigned long start_gfn; 1231 dma_addr_t dma_addr; 1232 int i, ret; 1233 1234 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1235 1236 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1237 1238 start_gfn = ops->get_pfn(se); 1239 1240 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1241 ops->set_64k_splited(&entry); 1242 1243 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1244 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1245 start_gfn + i, PAGE_SIZE, &dma_addr); 1246 if (ret) 1247 return ret; 1248 1249 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1250 ppgtt_set_shadow_entry(spt, &entry, index + i); 1251 } 1252 return 0; 1253 } 1254 1255 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1256 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1257 struct intel_gvt_gtt_entry *ge) 1258 { 1259 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1260 struct intel_gvt_gtt_entry se = *ge; 1261 unsigned long gfn, page_size = PAGE_SIZE; 1262 dma_addr_t dma_addr; 1263 int ret; 1264 1265 if (!pte_ops->test_present(ge)) 1266 return 0; 1267 1268 gfn = pte_ops->get_pfn(ge); 1269 1270 switch (ge->type) { 1271 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1272 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1273 break; 1274 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1275 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1276 /* 1277 * The layout of 64K page is special, the page size is 1278 * controlled by uper PDE. To be simple, we always split 1279 * 64K page to smaller 4K pages in shadow PT. 1280 */ 1281 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1282 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1283 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1284 ret = is_2MB_gtt_possible(vgpu, ge); 1285 if (ret == 0) 1286 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1287 else if (ret < 0) 1288 return ret; 1289 page_size = I915_GTT_PAGE_SIZE_2M; 1290 break; 1291 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1292 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1293 return -EINVAL; 1294 default: 1295 GEM_BUG_ON(1); 1296 } 1297 1298 /* direct shadow */ 1299 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, 1300 &dma_addr); 1301 if (ret) 1302 return -ENXIO; 1303 1304 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1305 ppgtt_set_shadow_entry(spt, &se, index); 1306 return 0; 1307 } 1308 1309 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1310 { 1311 struct intel_vgpu *vgpu = spt->vgpu; 1312 struct intel_gvt *gvt = vgpu->gvt; 1313 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1314 struct intel_vgpu_ppgtt_spt *s; 1315 struct intel_gvt_gtt_entry se, ge; 1316 unsigned long gfn, i; 1317 int ret; 1318 1319 trace_spt_change(spt->vgpu->id, "born", spt, 1320 spt->guest_page.gfn, spt->shadow_page.type); 1321 1322 for_each_present_guest_entry(spt, &ge, i) { 1323 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1324 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1325 if (IS_ERR(s)) { 1326 ret = PTR_ERR(s); 1327 goto fail; 1328 } 1329 ppgtt_get_shadow_entry(spt, &se, i); 1330 ppgtt_generate_shadow_entry(&se, s, &ge); 1331 ppgtt_set_shadow_entry(spt, &se, i); 1332 } else { 1333 gfn = ops->get_pfn(&ge); 1334 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 1335 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1336 ppgtt_set_shadow_entry(spt, &se, i); 1337 continue; 1338 } 1339 1340 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1341 if (ret) 1342 goto fail; 1343 } 1344 } 1345 return 0; 1346 fail: 1347 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1348 spt, ge.val64, ge.type); 1349 return ret; 1350 } 1351 1352 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1353 struct intel_gvt_gtt_entry *se, unsigned long index) 1354 { 1355 struct intel_vgpu *vgpu = spt->vgpu; 1356 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1357 int ret; 1358 1359 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1360 spt->shadow_page.type, se->val64, index); 1361 1362 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1363 se->type, index, se->val64); 1364 1365 if (!ops->test_present(se)) 1366 return 0; 1367 1368 if (ops->get_pfn(se) == 1369 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1370 return 0; 1371 1372 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1373 struct intel_vgpu_ppgtt_spt *s = 1374 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1375 if (!s) { 1376 gvt_vgpu_err("fail to find guest page\n"); 1377 ret = -ENXIO; 1378 goto fail; 1379 } 1380 ret = ppgtt_invalidate_spt(s); 1381 if (ret) 1382 goto fail; 1383 } else { 1384 /* We don't setup 64K shadow entry so far. */ 1385 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1386 "suspicious 64K entry\n"); 1387 ppgtt_invalidate_pte(spt, se); 1388 } 1389 1390 return 0; 1391 fail: 1392 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1393 spt, se->val64, se->type); 1394 return ret; 1395 } 1396 1397 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1398 struct intel_gvt_gtt_entry *we, unsigned long index) 1399 { 1400 struct intel_vgpu *vgpu = spt->vgpu; 1401 struct intel_gvt_gtt_entry m; 1402 struct intel_vgpu_ppgtt_spt *s; 1403 int ret; 1404 1405 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1406 we->val64, index); 1407 1408 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1409 we->type, index, we->val64); 1410 1411 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1412 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1413 if (IS_ERR(s)) { 1414 ret = PTR_ERR(s); 1415 goto fail; 1416 } 1417 ppgtt_get_shadow_entry(spt, &m, index); 1418 ppgtt_generate_shadow_entry(&m, s, we); 1419 ppgtt_set_shadow_entry(spt, &m, index); 1420 } else { 1421 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1422 if (ret) 1423 goto fail; 1424 } 1425 return 0; 1426 fail: 1427 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1428 spt, we->val64, we->type); 1429 return ret; 1430 } 1431 1432 static int sync_oos_page(struct intel_vgpu *vgpu, 1433 struct intel_vgpu_oos_page *oos_page) 1434 { 1435 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1436 struct intel_gvt *gvt = vgpu->gvt; 1437 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1438 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1439 struct intel_gvt_gtt_entry old, new; 1440 int index; 1441 int ret; 1442 1443 trace_oos_change(vgpu->id, "sync", oos_page->id, 1444 spt, spt->guest_page.type); 1445 1446 old.type = new.type = get_entry_type(spt->guest_page.type); 1447 old.val64 = new.val64 = 0; 1448 1449 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1450 info->gtt_entry_size_shift); index++) { 1451 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1452 ops->get_entry(NULL, &new, index, true, 1453 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1454 1455 if (old.val64 == new.val64 1456 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1457 continue; 1458 1459 trace_oos_sync(vgpu->id, oos_page->id, 1460 spt, spt->guest_page.type, 1461 new.val64, index); 1462 1463 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1464 if (ret) 1465 return ret; 1466 1467 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1468 } 1469 1470 spt->guest_page.write_cnt = 0; 1471 list_del_init(&spt->post_shadow_list); 1472 return 0; 1473 } 1474 1475 static int detach_oos_page(struct intel_vgpu *vgpu, 1476 struct intel_vgpu_oos_page *oos_page) 1477 { 1478 struct intel_gvt *gvt = vgpu->gvt; 1479 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1480 1481 trace_oos_change(vgpu->id, "detach", oos_page->id, 1482 spt, spt->guest_page.type); 1483 1484 spt->guest_page.write_cnt = 0; 1485 spt->guest_page.oos_page = NULL; 1486 oos_page->spt = NULL; 1487 1488 list_del_init(&oos_page->vm_list); 1489 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1490 1491 return 0; 1492 } 1493 1494 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1495 struct intel_vgpu_ppgtt_spt *spt) 1496 { 1497 struct intel_gvt *gvt = spt->vgpu->gvt; 1498 int ret; 1499 1500 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, 1501 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1502 oos_page->mem, I915_GTT_PAGE_SIZE); 1503 if (ret) 1504 return ret; 1505 1506 oos_page->spt = spt; 1507 spt->guest_page.oos_page = oos_page; 1508 1509 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1510 1511 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1512 spt, spt->guest_page.type); 1513 return 0; 1514 } 1515 1516 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1517 { 1518 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1519 int ret; 1520 1521 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1522 if (ret) 1523 return ret; 1524 1525 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1526 spt, spt->guest_page.type); 1527 1528 list_del_init(&oos_page->vm_list); 1529 return sync_oos_page(spt->vgpu, oos_page); 1530 } 1531 1532 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1533 { 1534 struct intel_gvt *gvt = spt->vgpu->gvt; 1535 struct intel_gvt_gtt *gtt = &gvt->gtt; 1536 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1537 int ret; 1538 1539 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1540 1541 if (list_empty(>t->oos_page_free_list_head)) { 1542 oos_page = container_of(gtt->oos_page_use_list_head.next, 1543 struct intel_vgpu_oos_page, list); 1544 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1545 if (ret) 1546 return ret; 1547 ret = detach_oos_page(spt->vgpu, oos_page); 1548 if (ret) 1549 return ret; 1550 } else 1551 oos_page = container_of(gtt->oos_page_free_list_head.next, 1552 struct intel_vgpu_oos_page, list); 1553 return attach_oos_page(oos_page, spt); 1554 } 1555 1556 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1557 { 1558 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1559 1560 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1561 return -EINVAL; 1562 1563 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1564 spt, spt->guest_page.type); 1565 1566 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1567 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1568 } 1569 1570 /** 1571 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1572 * @vgpu: a vGPU 1573 * 1574 * This function is called before submitting a guest workload to host, 1575 * to sync all the out-of-synced shadow for vGPU 1576 * 1577 * Returns: 1578 * Zero on success, negative error code if failed. 1579 */ 1580 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1581 { 1582 struct list_head *pos, *n; 1583 struct intel_vgpu_oos_page *oos_page; 1584 int ret; 1585 1586 if (!enable_out_of_sync) 1587 return 0; 1588 1589 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1590 oos_page = container_of(pos, 1591 struct intel_vgpu_oos_page, vm_list); 1592 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1593 if (ret) 1594 return ret; 1595 } 1596 return 0; 1597 } 1598 1599 /* 1600 * The heart of PPGTT shadow page table. 1601 */ 1602 static int ppgtt_handle_guest_write_page_table( 1603 struct intel_vgpu_ppgtt_spt *spt, 1604 struct intel_gvt_gtt_entry *we, unsigned long index) 1605 { 1606 struct intel_vgpu *vgpu = spt->vgpu; 1607 int type = spt->shadow_page.type; 1608 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1609 struct intel_gvt_gtt_entry old_se; 1610 int new_present; 1611 int i, ret; 1612 1613 new_present = ops->test_present(we); 1614 1615 /* 1616 * Adding the new entry first and then removing the old one, that can 1617 * guarantee the ppgtt table is validated during the window between 1618 * adding and removal. 1619 */ 1620 ppgtt_get_shadow_entry(spt, &old_se, index); 1621 1622 if (new_present) { 1623 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1624 if (ret) 1625 goto fail; 1626 } 1627 1628 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1629 if (ret) 1630 goto fail; 1631 1632 if (!new_present) { 1633 /* For 64KB splited entries, we need clear them all. */ 1634 if (ops->test_64k_splited(&old_se) && 1635 !(index % GTT_64K_PTE_STRIDE)) { 1636 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1637 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1638 ops->clear_64k_splited(&old_se); 1639 ops->set_pfn(&old_se, 1640 vgpu->gtt.scratch_pt[type].page_mfn); 1641 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1642 } 1643 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1644 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1645 ops->clear_pse(&old_se); 1646 ops->set_pfn(&old_se, 1647 vgpu->gtt.scratch_pt[type].page_mfn); 1648 ppgtt_set_shadow_entry(spt, &old_se, index); 1649 } else { 1650 ops->set_pfn(&old_se, 1651 vgpu->gtt.scratch_pt[type].page_mfn); 1652 ppgtt_set_shadow_entry(spt, &old_se, index); 1653 } 1654 } 1655 1656 return 0; 1657 fail: 1658 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1659 spt, we->val64, we->type); 1660 return ret; 1661 } 1662 1663 1664 1665 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1666 { 1667 return enable_out_of_sync 1668 && gtt_type_is_pte_pt(spt->guest_page.type) 1669 && spt->guest_page.write_cnt >= 2; 1670 } 1671 1672 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1673 unsigned long index) 1674 { 1675 set_bit(index, spt->post_shadow_bitmap); 1676 if (!list_empty(&spt->post_shadow_list)) 1677 return; 1678 1679 list_add_tail(&spt->post_shadow_list, 1680 &spt->vgpu->gtt.post_shadow_list_head); 1681 } 1682 1683 /** 1684 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1685 * @vgpu: a vGPU 1686 * 1687 * This function is called before submitting a guest workload to host, 1688 * to flush all the post shadows for a vGPU. 1689 * 1690 * Returns: 1691 * Zero on success, negative error code if failed. 1692 */ 1693 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1694 { 1695 struct list_head *pos, *n; 1696 struct intel_vgpu_ppgtt_spt *spt; 1697 struct intel_gvt_gtt_entry ge; 1698 unsigned long index; 1699 int ret; 1700 1701 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1702 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1703 post_shadow_list); 1704 1705 for_each_set_bit(index, spt->post_shadow_bitmap, 1706 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1707 ppgtt_get_guest_entry(spt, &ge, index); 1708 1709 ret = ppgtt_handle_guest_write_page_table(spt, 1710 &ge, index); 1711 if (ret) 1712 return ret; 1713 clear_bit(index, spt->post_shadow_bitmap); 1714 } 1715 list_del_init(&spt->post_shadow_list); 1716 } 1717 return 0; 1718 } 1719 1720 static int ppgtt_handle_guest_write_page_table_bytes( 1721 struct intel_vgpu_ppgtt_spt *spt, 1722 u64 pa, void *p_data, int bytes) 1723 { 1724 struct intel_vgpu *vgpu = spt->vgpu; 1725 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1726 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1727 struct intel_gvt_gtt_entry we, se; 1728 unsigned long index; 1729 int ret; 1730 1731 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1732 1733 ppgtt_get_guest_entry(spt, &we, index); 1734 1735 /* 1736 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1737 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1738 * ignored. 1739 */ 1740 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1741 (index % GTT_64K_PTE_STRIDE)) { 1742 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1743 index); 1744 return 0; 1745 } 1746 1747 if (bytes == info->gtt_entry_size) { 1748 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1749 if (ret) 1750 return ret; 1751 } else { 1752 if (!test_bit(index, spt->post_shadow_bitmap)) { 1753 int type = spt->shadow_page.type; 1754 1755 ppgtt_get_shadow_entry(spt, &se, index); 1756 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1757 if (ret) 1758 return ret; 1759 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1760 ppgtt_set_shadow_entry(spt, &se, index); 1761 } 1762 ppgtt_set_post_shadow(spt, index); 1763 } 1764 1765 if (!enable_out_of_sync) 1766 return 0; 1767 1768 spt->guest_page.write_cnt++; 1769 1770 if (spt->guest_page.oos_page) 1771 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1772 false, 0, vgpu); 1773 1774 if (can_do_out_of_sync(spt)) { 1775 if (!spt->guest_page.oos_page) 1776 ppgtt_allocate_oos_page(spt); 1777 1778 ret = ppgtt_set_guest_page_oos(spt); 1779 if (ret < 0) 1780 return ret; 1781 } 1782 return 0; 1783 } 1784 1785 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1786 { 1787 struct intel_vgpu *vgpu = mm->vgpu; 1788 struct intel_gvt *gvt = vgpu->gvt; 1789 struct intel_gvt_gtt *gtt = &gvt->gtt; 1790 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1791 struct intel_gvt_gtt_entry se; 1792 int index; 1793 1794 if (!mm->ppgtt_mm.shadowed) 1795 return; 1796 1797 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1798 ppgtt_get_shadow_root_entry(mm, &se, index); 1799 1800 if (!ops->test_present(&se)) 1801 continue; 1802 1803 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1804 se.val64 = 0; 1805 ppgtt_set_shadow_root_entry(mm, &se, index); 1806 1807 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1808 NULL, se.type, se.val64, index); 1809 } 1810 1811 mm->ppgtt_mm.shadowed = false; 1812 } 1813 1814 1815 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1816 { 1817 struct intel_vgpu *vgpu = mm->vgpu; 1818 struct intel_gvt *gvt = vgpu->gvt; 1819 struct intel_gvt_gtt *gtt = &gvt->gtt; 1820 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1821 struct intel_vgpu_ppgtt_spt *spt; 1822 struct intel_gvt_gtt_entry ge, se; 1823 int index, ret; 1824 1825 if (mm->ppgtt_mm.shadowed) 1826 return 0; 1827 1828 mm->ppgtt_mm.shadowed = true; 1829 1830 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1831 ppgtt_get_guest_root_entry(mm, &ge, index); 1832 1833 if (!ops->test_present(&ge)) 1834 continue; 1835 1836 trace_spt_guest_change(vgpu->id, __func__, NULL, 1837 ge.type, ge.val64, index); 1838 1839 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1840 if (IS_ERR(spt)) { 1841 gvt_vgpu_err("fail to populate guest root pointer\n"); 1842 ret = PTR_ERR(spt); 1843 goto fail; 1844 } 1845 ppgtt_generate_shadow_entry(&se, spt, &ge); 1846 ppgtt_set_shadow_root_entry(mm, &se, index); 1847 1848 trace_spt_guest_change(vgpu->id, "populate root pointer", 1849 NULL, se.type, se.val64, index); 1850 } 1851 1852 return 0; 1853 fail: 1854 invalidate_ppgtt_mm(mm); 1855 return ret; 1856 } 1857 1858 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1859 { 1860 struct intel_vgpu_mm *mm; 1861 1862 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1863 if (!mm) 1864 return NULL; 1865 1866 mm->vgpu = vgpu; 1867 kref_init(&mm->ref); 1868 atomic_set(&mm->pincount, 0); 1869 1870 return mm; 1871 } 1872 1873 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1874 { 1875 kfree(mm); 1876 } 1877 1878 /** 1879 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1880 * @vgpu: a vGPU 1881 * @root_entry_type: ppgtt root entry type 1882 * @pdps: guest pdps. 1883 * 1884 * This function is used to create a ppgtt mm object for a vGPU. 1885 * 1886 * Returns: 1887 * Zero on success, negative error code in pointer if failed. 1888 */ 1889 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1890 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1891 { 1892 struct intel_gvt *gvt = vgpu->gvt; 1893 struct intel_vgpu_mm *mm; 1894 int ret; 1895 1896 mm = vgpu_alloc_mm(vgpu); 1897 if (!mm) 1898 return ERR_PTR(-ENOMEM); 1899 1900 mm->type = INTEL_GVT_MM_PPGTT; 1901 1902 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1903 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1904 mm->ppgtt_mm.root_entry_type = root_entry_type; 1905 1906 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1907 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1908 INIT_LIST_HEAD(&mm->ppgtt_mm.link); 1909 1910 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1911 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1912 else 1913 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1914 sizeof(mm->ppgtt_mm.guest_pdps)); 1915 1916 ret = shadow_ppgtt_mm(mm); 1917 if (ret) { 1918 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1919 vgpu_free_mm(mm); 1920 return ERR_PTR(ret); 1921 } 1922 1923 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1924 1925 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1926 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1927 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1928 1929 return mm; 1930 } 1931 1932 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1933 { 1934 struct intel_vgpu_mm *mm; 1935 unsigned long nr_entries; 1936 1937 mm = vgpu_alloc_mm(vgpu); 1938 if (!mm) 1939 return ERR_PTR(-ENOMEM); 1940 1941 mm->type = INTEL_GVT_MM_GGTT; 1942 1943 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1944 mm->ggtt_mm.virtual_ggtt = 1945 vzalloc(array_size(nr_entries, 1946 vgpu->gvt->device_info.gtt_entry_size)); 1947 if (!mm->ggtt_mm.virtual_ggtt) { 1948 vgpu_free_mm(mm); 1949 return ERR_PTR(-ENOMEM); 1950 } 1951 1952 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1953 if (!mm->ggtt_mm.host_ggtt_aperture) { 1954 vfree(mm->ggtt_mm.virtual_ggtt); 1955 vgpu_free_mm(mm); 1956 return ERR_PTR(-ENOMEM); 1957 } 1958 1959 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64)); 1960 if (!mm->ggtt_mm.host_ggtt_hidden) { 1961 vfree(mm->ggtt_mm.host_ggtt_aperture); 1962 vfree(mm->ggtt_mm.virtual_ggtt); 1963 vgpu_free_mm(mm); 1964 return ERR_PTR(-ENOMEM); 1965 } 1966 1967 return mm; 1968 } 1969 1970 /** 1971 * _intel_vgpu_mm_release - destroy a mm object 1972 * @mm_ref: a kref object 1973 * 1974 * This function is used to destroy a mm object for vGPU 1975 * 1976 */ 1977 void _intel_vgpu_mm_release(struct kref *mm_ref) 1978 { 1979 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1980 1981 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1982 gvt_err("vgpu mm pin count bug detected\n"); 1983 1984 if (mm->type == INTEL_GVT_MM_PPGTT) { 1985 list_del(&mm->ppgtt_mm.list); 1986 1987 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1988 list_del(&mm->ppgtt_mm.lru_list); 1989 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1990 1991 invalidate_ppgtt_mm(mm); 1992 } else { 1993 vfree(mm->ggtt_mm.virtual_ggtt); 1994 vfree(mm->ggtt_mm.host_ggtt_aperture); 1995 vfree(mm->ggtt_mm.host_ggtt_hidden); 1996 } 1997 1998 vgpu_free_mm(mm); 1999 } 2000 2001 /** 2002 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 2003 * @mm: a vGPU mm object 2004 * 2005 * This function is called when user doesn't want to use a vGPU mm object 2006 */ 2007 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 2008 { 2009 atomic_dec_if_positive(&mm->pincount); 2010 } 2011 2012 /** 2013 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 2014 * @mm: target vgpu mm 2015 * 2016 * This function is called when user wants to use a vGPU mm object. If this 2017 * mm object hasn't been shadowed yet, the shadow will be populated at this 2018 * time. 2019 * 2020 * Returns: 2021 * Zero on success, negative error code if failed. 2022 */ 2023 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 2024 { 2025 int ret; 2026 2027 atomic_inc(&mm->pincount); 2028 2029 if (mm->type == INTEL_GVT_MM_PPGTT) { 2030 ret = shadow_ppgtt_mm(mm); 2031 if (ret) 2032 return ret; 2033 2034 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2035 list_move_tail(&mm->ppgtt_mm.lru_list, 2036 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2037 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2038 } 2039 2040 return 0; 2041 } 2042 2043 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2044 { 2045 struct intel_vgpu_mm *mm; 2046 struct list_head *pos, *n; 2047 2048 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2049 2050 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2051 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2052 2053 if (atomic_read(&mm->pincount)) 2054 continue; 2055 2056 list_del_init(&mm->ppgtt_mm.lru_list); 2057 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2058 invalidate_ppgtt_mm(mm); 2059 return 1; 2060 } 2061 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2062 return 0; 2063 } 2064 2065 /* 2066 * GMA translation APIs. 2067 */ 2068 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2069 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2070 { 2071 struct intel_vgpu *vgpu = mm->vgpu; 2072 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2073 struct intel_vgpu_ppgtt_spt *s; 2074 2075 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2076 if (!s) 2077 return -ENXIO; 2078 2079 if (!guest) 2080 ppgtt_get_shadow_entry(s, e, index); 2081 else 2082 ppgtt_get_guest_entry(s, e, index); 2083 return 0; 2084 } 2085 2086 /** 2087 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2088 * @mm: mm object. could be a PPGTT or GGTT mm object 2089 * @gma: graphics memory address in this mm object 2090 * 2091 * This function is used to translate a graphics memory address in specific 2092 * graphics memory space to guest physical address. 2093 * 2094 * Returns: 2095 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2096 */ 2097 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2098 { 2099 struct intel_vgpu *vgpu = mm->vgpu; 2100 struct intel_gvt *gvt = vgpu->gvt; 2101 const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2102 const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2103 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2104 unsigned long gma_index[4]; 2105 struct intel_gvt_gtt_entry e; 2106 int i, levels = 0; 2107 int ret; 2108 2109 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2110 mm->type != INTEL_GVT_MM_PPGTT); 2111 2112 if (mm->type == INTEL_GVT_MM_GGTT) { 2113 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2114 goto err; 2115 2116 ggtt_get_guest_entry(mm, &e, 2117 gma_ops->gma_to_ggtt_pte_index(gma)); 2118 2119 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2120 + (gma & ~I915_GTT_PAGE_MASK); 2121 2122 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2123 } else { 2124 switch (mm->ppgtt_mm.root_entry_type) { 2125 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2126 ppgtt_get_shadow_root_entry(mm, &e, 0); 2127 2128 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2129 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2130 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2131 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2132 levels = 4; 2133 break; 2134 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2135 ppgtt_get_shadow_root_entry(mm, &e, 2136 gma_ops->gma_to_l3_pdp_index(gma)); 2137 2138 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2139 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2140 levels = 2; 2141 break; 2142 default: 2143 GEM_BUG_ON(1); 2144 } 2145 2146 /* walk the shadow page table and get gpa from guest entry */ 2147 for (i = 0; i < levels; i++) { 2148 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2149 (i == levels - 1)); 2150 if (ret) 2151 goto err; 2152 2153 if (!pte_ops->test_present(&e)) { 2154 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2155 goto err; 2156 } 2157 } 2158 2159 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2160 (gma & ~I915_GTT_PAGE_MASK); 2161 trace_gma_translate(vgpu->id, "ppgtt", 0, 2162 mm->ppgtt_mm.root_entry_type, gma, gpa); 2163 } 2164 2165 return gpa; 2166 err: 2167 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2168 return INTEL_GVT_INVALID_ADDR; 2169 } 2170 2171 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2172 unsigned int off, void *p_data, unsigned int bytes) 2173 { 2174 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2175 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2176 unsigned long index = off >> info->gtt_entry_size_shift; 2177 unsigned long gma; 2178 struct intel_gvt_gtt_entry e; 2179 2180 if (bytes != 4 && bytes != 8) 2181 return -EINVAL; 2182 2183 gma = index << I915_GTT_PAGE_SHIFT; 2184 if (!intel_gvt_ggtt_validate_range(vgpu, 2185 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2186 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2187 memset(p_data, 0, bytes); 2188 return 0; 2189 } 2190 2191 ggtt_get_guest_entry(ggtt_mm, &e, index); 2192 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2193 bytes); 2194 return 0; 2195 } 2196 2197 /** 2198 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read 2199 * @vgpu: a vGPU 2200 * @off: register offset 2201 * @p_data: data will be returned to guest 2202 * @bytes: data length 2203 * 2204 * This function is used to emulate the GTT MMIO register read 2205 * 2206 * Returns: 2207 * Zero on success, error code if failed. 2208 */ 2209 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2210 void *p_data, unsigned int bytes) 2211 { 2212 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2213 int ret; 2214 2215 if (bytes != 4 && bytes != 8) 2216 return -EINVAL; 2217 2218 off -= info->gtt_start_offset; 2219 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2220 return ret; 2221 } 2222 2223 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2224 struct intel_gvt_gtt_entry *entry) 2225 { 2226 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2227 unsigned long pfn; 2228 2229 pfn = pte_ops->get_pfn(entry); 2230 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2231 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, 2232 pfn << PAGE_SHIFT); 2233 } 2234 2235 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2236 void *p_data, unsigned int bytes) 2237 { 2238 struct intel_gvt *gvt = vgpu->gvt; 2239 const struct intel_gvt_device_info *info = &gvt->device_info; 2240 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2241 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2242 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2243 unsigned long gma, gfn; 2244 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2245 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2246 dma_addr_t dma_addr; 2247 int ret; 2248 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2249 bool partial_update = false; 2250 2251 if (bytes != 4 && bytes != 8) 2252 return -EINVAL; 2253 2254 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2255 2256 /* the VM may configure the whole GM space when ballooning is used */ 2257 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2258 return 0; 2259 2260 e.type = GTT_TYPE_GGTT_PTE; 2261 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2262 bytes); 2263 2264 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2265 * write, save the first 4 bytes in a list and update virtual 2266 * PTE. Only update shadow PTE when the second 4 bytes comes. 2267 */ 2268 if (bytes < info->gtt_entry_size) { 2269 bool found = false; 2270 2271 list_for_each_entry_safe(pos, n, 2272 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2273 if (g_gtt_index == pos->offset >> 2274 info->gtt_entry_size_shift) { 2275 if (off != pos->offset) { 2276 /* the second partial part*/ 2277 int last_off = pos->offset & 2278 (info->gtt_entry_size - 1); 2279 2280 memcpy((void *)&e.val64 + last_off, 2281 (void *)&pos->data + last_off, 2282 bytes); 2283 2284 list_del(&pos->list); 2285 kfree(pos); 2286 found = true; 2287 break; 2288 } 2289 2290 /* update of the first partial part */ 2291 pos->data = e.val64; 2292 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2293 return 0; 2294 } 2295 } 2296 2297 if (!found) { 2298 /* the first partial part */ 2299 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2300 if (!partial_pte) 2301 return -ENOMEM; 2302 partial_pte->offset = off; 2303 partial_pte->data = e.val64; 2304 list_add_tail(&partial_pte->list, 2305 &ggtt_mm->ggtt_mm.partial_pte_list); 2306 partial_update = true; 2307 } 2308 } 2309 2310 if (!partial_update && (ops->test_present(&e))) { 2311 gfn = ops->get_pfn(&e); 2312 m.val64 = e.val64; 2313 m.type = e.type; 2314 2315 /* one PTE update may be issued in multiple writes and the 2316 * first write may not construct a valid gfn 2317 */ 2318 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 2319 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2320 goto out; 2321 } 2322 2323 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, 2324 PAGE_SIZE, &dma_addr); 2325 if (ret) { 2326 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2327 /* guest driver may read/write the entry when partial 2328 * update the entry in this situation p2m will fail 2329 * settting the shadow entry to point to a scratch page 2330 */ 2331 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2332 } else 2333 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2334 } else { 2335 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2336 ops->clear_present(&m); 2337 } 2338 2339 out: 2340 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2341 2342 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2343 ggtt_invalidate_pte(vgpu, &e); 2344 2345 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2346 ggtt_invalidate(gvt->gt); 2347 return 0; 2348 } 2349 2350 /* 2351 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2352 * @vgpu: a vGPU 2353 * @off: register offset 2354 * @p_data: data from guest write 2355 * @bytes: data length 2356 * 2357 * This function is used to emulate the GTT MMIO register write 2358 * 2359 * Returns: 2360 * Zero on success, error code if failed. 2361 */ 2362 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2363 unsigned int off, void *p_data, unsigned int bytes) 2364 { 2365 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2366 int ret; 2367 struct intel_vgpu_submission *s = &vgpu->submission; 2368 struct intel_engine_cs *engine; 2369 int i; 2370 2371 if (bytes != 4 && bytes != 8) 2372 return -EINVAL; 2373 2374 off -= info->gtt_start_offset; 2375 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2376 2377 /* if ggtt of last submitted context is written, 2378 * that context is probably got unpinned. 2379 * Set last shadowed ctx to invalid. 2380 */ 2381 for_each_engine(engine, vgpu->gvt->gt, i) { 2382 if (!s->last_ctx[i].valid) 2383 continue; 2384 2385 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift)) 2386 s->last_ctx[i].valid = false; 2387 } 2388 return ret; 2389 } 2390 2391 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2392 enum intel_gvt_gtt_type type) 2393 { 2394 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 2395 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2396 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2397 int page_entry_num = I915_GTT_PAGE_SIZE >> 2398 vgpu->gvt->device_info.gtt_entry_size_shift; 2399 void *scratch_pt; 2400 int i; 2401 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2402 dma_addr_t daddr; 2403 2404 if (drm_WARN_ON(&i915->drm, 2405 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2406 return -EINVAL; 2407 2408 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2409 if (!scratch_pt) { 2410 gvt_vgpu_err("fail to allocate scratch page\n"); 2411 return -ENOMEM; 2412 } 2413 2414 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL); 2415 if (dma_mapping_error(dev, daddr)) { 2416 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2417 __free_page(virt_to_page(scratch_pt)); 2418 return -ENOMEM; 2419 } 2420 gtt->scratch_pt[type].page_mfn = 2421 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2422 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2423 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2424 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2425 2426 /* Build the tree by full filled the scratch pt with the entries which 2427 * point to the next level scratch pt or scratch page. The 2428 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2429 * 'type' pt. 2430 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2431 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2432 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2433 */ 2434 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2435 struct intel_gvt_gtt_entry se; 2436 2437 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2438 se.type = get_entry_type(type - 1); 2439 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2440 2441 /* The entry parameters like present/writeable/cache type 2442 * set to the same as i915's scratch page tree. 2443 */ 2444 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW; 2445 if (type == GTT_TYPE_PPGTT_PDE_PT) 2446 se.val64 |= PPAT_CACHED; 2447 2448 for (i = 0; i < page_entry_num; i++) 2449 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2450 } 2451 2452 return 0; 2453 } 2454 2455 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2456 { 2457 int i; 2458 struct device *dev = vgpu->gvt->gt->i915->drm.dev; 2459 dma_addr_t daddr; 2460 2461 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2462 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2463 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2464 I915_GTT_PAGE_SHIFT); 2465 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2466 __free_page(vgpu->gtt.scratch_pt[i].page); 2467 vgpu->gtt.scratch_pt[i].page = NULL; 2468 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2469 } 2470 } 2471 2472 return 0; 2473 } 2474 2475 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2476 { 2477 int i, ret; 2478 2479 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2480 ret = alloc_scratch_pages(vgpu, i); 2481 if (ret) 2482 goto err; 2483 } 2484 2485 return 0; 2486 2487 err: 2488 release_scratch_page_tree(vgpu); 2489 return ret; 2490 } 2491 2492 /** 2493 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2494 * @vgpu: a vGPU 2495 * 2496 * This function is used to initialize per-vGPU graphics memory virtualization 2497 * components. 2498 * 2499 * Returns: 2500 * Zero on success, error code if failed. 2501 */ 2502 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2503 { 2504 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2505 2506 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2507 2508 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2509 INIT_LIST_HEAD(>t->oos_page_list_head); 2510 INIT_LIST_HEAD(>t->post_shadow_list_head); 2511 2512 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2513 if (IS_ERR(gtt->ggtt_mm)) { 2514 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2515 return PTR_ERR(gtt->ggtt_mm); 2516 } 2517 2518 intel_vgpu_reset_ggtt(vgpu, false); 2519 2520 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2521 2522 return create_scratch_page_tree(vgpu); 2523 } 2524 2525 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2526 { 2527 struct list_head *pos, *n; 2528 struct intel_vgpu_mm *mm; 2529 2530 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2531 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2532 intel_vgpu_destroy_mm(mm); 2533 } 2534 2535 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2536 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2537 2538 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2539 gvt_err("Why we still has spt not freed?\n"); 2540 ppgtt_free_all_spt(vgpu); 2541 } 2542 } 2543 2544 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2545 { 2546 struct intel_gvt_partial_pte *pos, *next; 2547 2548 list_for_each_entry_safe(pos, next, 2549 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2550 list) { 2551 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2552 pos->offset, pos->data); 2553 kfree(pos); 2554 } 2555 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2556 vgpu->gtt.ggtt_mm = NULL; 2557 } 2558 2559 /** 2560 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2561 * @vgpu: a vGPU 2562 * 2563 * This function is used to clean up per-vGPU graphics memory virtualization 2564 * components. 2565 * 2566 * Returns: 2567 * Zero on success, error code if failed. 2568 */ 2569 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2570 { 2571 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2572 intel_vgpu_destroy_ggtt_mm(vgpu); 2573 release_scratch_page_tree(vgpu); 2574 } 2575 2576 static void clean_spt_oos(struct intel_gvt *gvt) 2577 { 2578 struct intel_gvt_gtt *gtt = &gvt->gtt; 2579 struct list_head *pos, *n; 2580 struct intel_vgpu_oos_page *oos_page; 2581 2582 WARN(!list_empty(>t->oos_page_use_list_head), 2583 "someone is still using oos page\n"); 2584 2585 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2586 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2587 list_del(&oos_page->list); 2588 free_page((unsigned long)oos_page->mem); 2589 kfree(oos_page); 2590 } 2591 } 2592 2593 static int setup_spt_oos(struct intel_gvt *gvt) 2594 { 2595 struct intel_gvt_gtt *gtt = &gvt->gtt; 2596 struct intel_vgpu_oos_page *oos_page; 2597 int i; 2598 int ret; 2599 2600 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2601 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2602 2603 for (i = 0; i < preallocated_oos_pages; i++) { 2604 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2605 if (!oos_page) { 2606 ret = -ENOMEM; 2607 goto fail; 2608 } 2609 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2610 if (!oos_page->mem) { 2611 ret = -ENOMEM; 2612 kfree(oos_page); 2613 goto fail; 2614 } 2615 2616 INIT_LIST_HEAD(&oos_page->list); 2617 INIT_LIST_HEAD(&oos_page->vm_list); 2618 oos_page->id = i; 2619 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2620 } 2621 2622 gvt_dbg_mm("%d oos pages preallocated\n", i); 2623 2624 return 0; 2625 fail: 2626 clean_spt_oos(gvt); 2627 return ret; 2628 } 2629 2630 /** 2631 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2632 * @vgpu: a vGPU 2633 * @pdps: pdp root array 2634 * 2635 * This function is used to find a PPGTT mm object from mm object pool 2636 * 2637 * Returns: 2638 * pointer to mm object on success, NULL if failed. 2639 */ 2640 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2641 u64 pdps[]) 2642 { 2643 struct intel_vgpu_mm *mm; 2644 struct list_head *pos; 2645 2646 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2647 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2648 2649 switch (mm->ppgtt_mm.root_entry_type) { 2650 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2651 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2652 return mm; 2653 break; 2654 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2655 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2656 sizeof(mm->ppgtt_mm.guest_pdps))) 2657 return mm; 2658 break; 2659 default: 2660 GEM_BUG_ON(1); 2661 } 2662 } 2663 return NULL; 2664 } 2665 2666 /** 2667 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2668 * @vgpu: a vGPU 2669 * @root_entry_type: ppgtt root entry type 2670 * @pdps: guest pdps 2671 * 2672 * This function is used to find or create a PPGTT mm object from a guest. 2673 * 2674 * Returns: 2675 * Zero on success, negative error code if failed. 2676 */ 2677 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2678 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2679 { 2680 struct intel_vgpu_mm *mm; 2681 2682 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2683 if (mm) { 2684 intel_vgpu_mm_get(mm); 2685 } else { 2686 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2687 if (IS_ERR(mm)) 2688 gvt_vgpu_err("fail to create mm\n"); 2689 } 2690 return mm; 2691 } 2692 2693 /** 2694 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2695 * @vgpu: a vGPU 2696 * @pdps: guest pdps 2697 * 2698 * This function is used to find a PPGTT mm object from a guest and destroy it. 2699 * 2700 * Returns: 2701 * Zero on success, negative error code if failed. 2702 */ 2703 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2704 { 2705 struct intel_vgpu_mm *mm; 2706 2707 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2708 if (!mm) { 2709 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2710 return -EINVAL; 2711 } 2712 intel_vgpu_mm_put(mm); 2713 return 0; 2714 } 2715 2716 /** 2717 * intel_gvt_init_gtt - initialize mm components of a GVT device 2718 * @gvt: GVT device 2719 * 2720 * This function is called at the initialization stage, to initialize 2721 * the mm components of a GVT device. 2722 * 2723 * Returns: 2724 * zero on success, negative error code if failed. 2725 */ 2726 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2727 { 2728 int ret; 2729 void *page; 2730 struct device *dev = gvt->gt->i915->drm.dev; 2731 dma_addr_t daddr; 2732 2733 gvt_dbg_core("init gtt\n"); 2734 2735 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2736 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2737 2738 page = (void *)get_zeroed_page(GFP_KERNEL); 2739 if (!page) { 2740 gvt_err("fail to allocate scratch ggtt page\n"); 2741 return -ENOMEM; 2742 } 2743 2744 daddr = dma_map_page(dev, virt_to_page(page), 0, 2745 4096, DMA_BIDIRECTIONAL); 2746 if (dma_mapping_error(dev, daddr)) { 2747 gvt_err("fail to dmamap scratch ggtt page\n"); 2748 __free_page(virt_to_page(page)); 2749 return -ENOMEM; 2750 } 2751 2752 gvt->gtt.scratch_page = virt_to_page(page); 2753 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2754 2755 if (enable_out_of_sync) { 2756 ret = setup_spt_oos(gvt); 2757 if (ret) { 2758 gvt_err("fail to initialize SPT oos\n"); 2759 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2760 __free_page(gvt->gtt.scratch_page); 2761 return ret; 2762 } 2763 } 2764 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2765 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2766 return 0; 2767 } 2768 2769 /** 2770 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2771 * @gvt: GVT device 2772 * 2773 * This function is called at the driver unloading stage, to clean up the 2774 * the mm components of a GVT device. 2775 * 2776 */ 2777 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2778 { 2779 struct device *dev = gvt->gt->i915->drm.dev; 2780 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2781 I915_GTT_PAGE_SHIFT); 2782 2783 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL); 2784 2785 __free_page(gvt->gtt.scratch_page); 2786 2787 if (enable_out_of_sync) 2788 clean_spt_oos(gvt); 2789 } 2790 2791 /** 2792 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2793 * @vgpu: a vGPU 2794 * 2795 * This function is called when invalidate all PPGTT instances of a vGPU. 2796 * 2797 */ 2798 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2799 { 2800 struct list_head *pos, *n; 2801 struct intel_vgpu_mm *mm; 2802 2803 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2804 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2805 if (mm->type == INTEL_GVT_MM_PPGTT) { 2806 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2807 list_del_init(&mm->ppgtt_mm.lru_list); 2808 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2809 if (mm->ppgtt_mm.shadowed) 2810 invalidate_ppgtt_mm(mm); 2811 } 2812 } 2813 } 2814 2815 /** 2816 * intel_vgpu_reset_ggtt - reset the GGTT entry 2817 * @vgpu: a vGPU 2818 * @invalidate_old: invalidate old entries 2819 * 2820 * This function is called at the vGPU create stage 2821 * to reset all the GGTT entries. 2822 * 2823 */ 2824 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2825 { 2826 struct intel_gvt *gvt = vgpu->gvt; 2827 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2828 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2829 struct intel_gvt_gtt_entry old_entry; 2830 u32 index; 2831 u32 num_entries; 2832 2833 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2834 pte_ops->set_present(&entry); 2835 2836 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2837 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2838 while (num_entries--) { 2839 if (invalidate_old) { 2840 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2841 ggtt_invalidate_pte(vgpu, &old_entry); 2842 } 2843 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2844 } 2845 2846 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2847 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2848 while (num_entries--) { 2849 if (invalidate_old) { 2850 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2851 ggtt_invalidate_pte(vgpu, &old_entry); 2852 } 2853 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2854 } 2855 2856 ggtt_invalidate(gvt->gt); 2857 } 2858 2859 /** 2860 * intel_vgpu_reset_gtt - reset the all GTT related status 2861 * @vgpu: a vGPU 2862 * 2863 * This function is called from vfio core to reset reset all 2864 * GTT related status, including GGTT, PPGTT, scratch page. 2865 * 2866 */ 2867 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2868 { 2869 /* Shadow pages are only created when there is no page 2870 * table tracking data, so remove page tracking data after 2871 * removing the shadow pages. 2872 */ 2873 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2874 intel_vgpu_reset_ggtt(vgpu, true); 2875 } 2876 2877 /** 2878 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries 2879 * @gvt: intel gvt device 2880 * 2881 * This function is called at driver resume stage to restore 2882 * GGTT entries of every vGPU. 2883 * 2884 */ 2885 void intel_gvt_restore_ggtt(struct intel_gvt *gvt) 2886 { 2887 struct intel_vgpu *vgpu; 2888 struct intel_vgpu_mm *mm; 2889 int id; 2890 gen8_pte_t pte; 2891 u32 idx, num_low, num_hi, offset; 2892 2893 /* Restore dirty host ggtt for all vGPUs */ 2894 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { 2895 mm = vgpu->gtt.ggtt_mm; 2896 2897 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2898 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2899 for (idx = 0; idx < num_low; idx++) { 2900 pte = mm->ggtt_mm.host_ggtt_aperture[idx]; 2901 if (pte & GEN8_PAGE_PRESENT) 2902 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2903 } 2904 2905 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2906 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2907 for (idx = 0; idx < num_hi; idx++) { 2908 pte = mm->ggtt_mm.host_ggtt_hidden[idx]; 2909 if (pte & GEN8_PAGE_PRESENT) 2910 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte); 2911 } 2912 } 2913 } 2914