xref: /openbmc/linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43 
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53 				addr, size);
54 		return false;
55 	}
56 	return true;
57 }
58 
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 		 "invalid guest gmadr %llx\n", g_addr))
64 		return -EACCES;
65 
66 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
68 			  + (g_addr - vgpu_aperture_offset(vgpu));
69 	else
70 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
71 			  + (g_addr - vgpu_hidden_offset(vgpu));
72 	return 0;
73 }
74 
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 		 "invalid host gmadr %llx\n", h_addr))
80 		return -EACCES;
81 
82 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
84 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 	else
86 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
87 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 	return 0;
89 }
90 
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 			     unsigned long *h_index)
93 {
94 	u64 h_addr;
95 	int ret;
96 
97 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
98 				       &h_addr);
99 	if (ret)
100 		return ret;
101 
102 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
103 	return 0;
104 }
105 
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 			     unsigned long *g_index)
108 {
109 	u64 g_addr;
110 	int ret;
111 
112 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
113 				       &g_addr);
114 	if (ret)
115 		return ret;
116 
117 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
118 	return 0;
119 }
120 
121 #define gtt_type_is_entry(type) \
122 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125 
126 #define gtt_type_is_pt(type) \
127 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128 
129 #define gtt_type_is_pte_pt(type) \
130 	(type == GTT_TYPE_PPGTT_PTE_PT)
131 
132 #define gtt_type_is_root_pointer(type) \
133 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134 
135 #define gtt_init_entry(e, t, p, v) do { \
136 	(e)->type = t; \
137 	(e)->pdev = p; \
138 	memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140 
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156 
157 struct gtt_type_table_entry {
158 	int entry_type;
159 	int pt_type;
160 	int next_pt_type;
161 	int pse_entry_type;
162 };
163 
164 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
165 	[type] = { \
166 		.entry_type = e_type, \
167 		.pt_type = cpt_type, \
168 		.next_pt_type = npt_type, \
169 		.pse_entry_type = pse_type, \
170 	}
171 
172 static struct gtt_type_table_entry gtt_type_table[] = {
173 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
174 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
175 			GTT_TYPE_INVALID,
176 			GTT_TYPE_PPGTT_PML4_PT,
177 			GTT_TYPE_INVALID),
178 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
179 			GTT_TYPE_PPGTT_PML4_ENTRY,
180 			GTT_TYPE_PPGTT_PML4_PT,
181 			GTT_TYPE_PPGTT_PDP_PT,
182 			GTT_TYPE_INVALID),
183 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
184 			GTT_TYPE_PPGTT_PML4_ENTRY,
185 			GTT_TYPE_PPGTT_PML4_PT,
186 			GTT_TYPE_PPGTT_PDP_PT,
187 			GTT_TYPE_INVALID),
188 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
189 			GTT_TYPE_PPGTT_PDP_ENTRY,
190 			GTT_TYPE_PPGTT_PDP_PT,
191 			GTT_TYPE_PPGTT_PDE_PT,
192 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
193 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
194 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
195 			GTT_TYPE_INVALID,
196 			GTT_TYPE_PPGTT_PDE_PT,
197 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
198 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
199 			GTT_TYPE_PPGTT_PDP_ENTRY,
200 			GTT_TYPE_PPGTT_PDP_PT,
201 			GTT_TYPE_PPGTT_PDE_PT,
202 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
203 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
204 			GTT_TYPE_PPGTT_PDE_ENTRY,
205 			GTT_TYPE_PPGTT_PDE_PT,
206 			GTT_TYPE_PPGTT_PTE_PT,
207 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
208 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
209 			GTT_TYPE_PPGTT_PDE_ENTRY,
210 			GTT_TYPE_PPGTT_PDE_PT,
211 			GTT_TYPE_PPGTT_PTE_PT,
212 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
213 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
214 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
215 			GTT_TYPE_PPGTT_PTE_PT,
216 			GTT_TYPE_INVALID,
217 			GTT_TYPE_INVALID),
218 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
219 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
220 			GTT_TYPE_PPGTT_PTE_PT,
221 			GTT_TYPE_INVALID,
222 			GTT_TYPE_INVALID),
223 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
224 			GTT_TYPE_PPGTT_PDE_ENTRY,
225 			GTT_TYPE_PPGTT_PDE_PT,
226 			GTT_TYPE_INVALID,
227 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
228 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
229 			GTT_TYPE_PPGTT_PDP_ENTRY,
230 			GTT_TYPE_PPGTT_PDP_PT,
231 			GTT_TYPE_INVALID,
232 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
233 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
234 			GTT_TYPE_GGTT_PTE,
235 			GTT_TYPE_INVALID,
236 			GTT_TYPE_INVALID,
237 			GTT_TYPE_INVALID),
238 };
239 
240 static inline int get_next_pt_type(int type)
241 {
242 	return gtt_type_table[type].next_pt_type;
243 }
244 
245 static inline int get_pt_type(int type)
246 {
247 	return gtt_type_table[type].pt_type;
248 }
249 
250 static inline int get_entry_type(int type)
251 {
252 	return gtt_type_table[type].entry_type;
253 }
254 
255 static inline int get_pse_type(int type)
256 {
257 	return gtt_type_table[type].pse_entry_type;
258 }
259 
260 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
261 {
262 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
263 
264 	return readq(addr);
265 }
266 
267 static void gtt_invalidate(struct drm_i915_private *dev_priv)
268 {
269 	mmio_hw_access_pre(dev_priv);
270 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
271 	mmio_hw_access_post(dev_priv);
272 }
273 
274 static void write_pte64(struct drm_i915_private *dev_priv,
275 		unsigned long index, u64 pte)
276 {
277 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
278 
279 	writeq(pte, addr);
280 }
281 
282 static inline int gtt_get_entry64(void *pt,
283 		struct intel_gvt_gtt_entry *e,
284 		unsigned long index, bool hypervisor_access, unsigned long gpa,
285 		struct intel_vgpu *vgpu)
286 {
287 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
288 	int ret;
289 
290 	if (WARN_ON(info->gtt_entry_size != 8))
291 		return -EINVAL;
292 
293 	if (hypervisor_access) {
294 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
295 				(index << info->gtt_entry_size_shift),
296 				&e->val64, 8);
297 		if (WARN_ON(ret))
298 			return ret;
299 	} else if (!pt) {
300 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
301 	} else {
302 		e->val64 = *((u64 *)pt + index);
303 	}
304 	return 0;
305 }
306 
307 static inline int gtt_set_entry64(void *pt,
308 		struct intel_gvt_gtt_entry *e,
309 		unsigned long index, bool hypervisor_access, unsigned long gpa,
310 		struct intel_vgpu *vgpu)
311 {
312 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
313 	int ret;
314 
315 	if (WARN_ON(info->gtt_entry_size != 8))
316 		return -EINVAL;
317 
318 	if (hypervisor_access) {
319 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
320 				(index << info->gtt_entry_size_shift),
321 				&e->val64, 8);
322 		if (WARN_ON(ret))
323 			return ret;
324 	} else if (!pt) {
325 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
326 	} else {
327 		*((u64 *)pt + index) = e->val64;
328 	}
329 	return 0;
330 }
331 
332 #define GTT_HAW 46
333 
334 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30)) - 1) << 30)
335 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21)) - 1) << 21)
336 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12)) - 1) << 12)
337 
338 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
339 {
340 	unsigned long pfn;
341 
342 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
343 		pfn = (e->val64 & ADDR_1G_MASK) >> 12;
344 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
345 		pfn = (e->val64 & ADDR_2M_MASK) >> 12;
346 	else
347 		pfn = (e->val64 & ADDR_4K_MASK) >> 12;
348 	return pfn;
349 }
350 
351 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
352 {
353 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
354 		e->val64 &= ~ADDR_1G_MASK;
355 		pfn &= (ADDR_1G_MASK >> 12);
356 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
357 		e->val64 &= ~ADDR_2M_MASK;
358 		pfn &= (ADDR_2M_MASK >> 12);
359 	} else {
360 		e->val64 &= ~ADDR_4K_MASK;
361 		pfn &= (ADDR_4K_MASK >> 12);
362 	}
363 
364 	e->val64 |= (pfn << 12);
365 }
366 
367 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
368 {
369 	/* Entry doesn't have PSE bit. */
370 	if (get_pse_type(e->type) == GTT_TYPE_INVALID)
371 		return false;
372 
373 	e->type = get_entry_type(e->type);
374 	if (!(e->val64 & BIT(7)))
375 		return false;
376 
377 	e->type = get_pse_type(e->type);
378 	return true;
379 }
380 
381 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
382 {
383 	/*
384 	 * i915 writes PDP root pointer registers without present bit,
385 	 * it also works, so we need to treat root pointer entry
386 	 * specifically.
387 	 */
388 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
389 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
390 		return (e->val64 != 0);
391 	else
392 		return (e->val64 & BIT(0));
393 }
394 
395 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
396 {
397 	e->val64 &= ~BIT(0);
398 }
399 
400 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
401 {
402 	e->val64 |= BIT(0);
403 }
404 
405 /*
406  * Per-platform GMA routines.
407  */
408 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
409 {
410 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
411 
412 	trace_gma_index(__func__, gma, x);
413 	return x;
414 }
415 
416 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
417 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
418 { \
419 	unsigned long x = (exp); \
420 	trace_gma_index(__func__, gma, x); \
421 	return x; \
422 }
423 
424 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
425 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
426 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
427 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
428 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
429 
430 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
431 	.get_entry = gtt_get_entry64,
432 	.set_entry = gtt_set_entry64,
433 	.clear_present = gtt_entry_clear_present,
434 	.set_present = gtt_entry_set_present,
435 	.test_present = gen8_gtt_test_present,
436 	.test_pse = gen8_gtt_test_pse,
437 	.get_pfn = gen8_gtt_get_pfn,
438 	.set_pfn = gen8_gtt_set_pfn,
439 };
440 
441 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
442 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
443 	.gma_to_pte_index = gen8_gma_to_pte_index,
444 	.gma_to_pde_index = gen8_gma_to_pde_index,
445 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
446 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
447 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
448 };
449 
450 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
451 		struct intel_gvt_gtt_entry *m)
452 {
453 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
454 	unsigned long gfn, mfn;
455 
456 	*m = *p;
457 
458 	if (!ops->test_present(p))
459 		return 0;
460 
461 	gfn = ops->get_pfn(p);
462 
463 	mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
464 	if (mfn == INTEL_GVT_INVALID_ADDR) {
465 		gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
466 		return -ENXIO;
467 	}
468 
469 	ops->set_pfn(m, mfn);
470 	return 0;
471 }
472 
473 /*
474  * MM helpers.
475  */
476 int intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
477 		void *page_table, struct intel_gvt_gtt_entry *e,
478 		unsigned long index)
479 {
480 	struct intel_gvt *gvt = mm->vgpu->gvt;
481 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
482 	int ret;
483 
484 	e->type = mm->page_table_entry_type;
485 
486 	ret = ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
487 	if (ret)
488 		return ret;
489 
490 	ops->test_pse(e);
491 	return 0;
492 }
493 
494 int intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
495 		void *page_table, struct intel_gvt_gtt_entry *e,
496 		unsigned long index)
497 {
498 	struct intel_gvt *gvt = mm->vgpu->gvt;
499 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
500 
501 	return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
502 }
503 
504 /*
505  * PPGTT shadow page table helpers.
506  */
507 static inline int ppgtt_spt_get_entry(
508 		struct intel_vgpu_ppgtt_spt *spt,
509 		void *page_table, int type,
510 		struct intel_gvt_gtt_entry *e, unsigned long index,
511 		bool guest)
512 {
513 	struct intel_gvt *gvt = spt->vgpu->gvt;
514 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
515 	int ret;
516 
517 	e->type = get_entry_type(type);
518 
519 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
520 		return -EINVAL;
521 
522 	ret = ops->get_entry(page_table, e, index, guest,
523 			spt->guest_page.track.gfn << I915_GTT_PAGE_SHIFT,
524 			spt->vgpu);
525 	if (ret)
526 		return ret;
527 
528 	ops->test_pse(e);
529 	return 0;
530 }
531 
532 static inline int ppgtt_spt_set_entry(
533 		struct intel_vgpu_ppgtt_spt *spt,
534 		void *page_table, int type,
535 		struct intel_gvt_gtt_entry *e, unsigned long index,
536 		bool guest)
537 {
538 	struct intel_gvt *gvt = spt->vgpu->gvt;
539 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
540 
541 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
542 		return -EINVAL;
543 
544 	return ops->set_entry(page_table, e, index, guest,
545 			spt->guest_page.track.gfn << I915_GTT_PAGE_SHIFT,
546 			spt->vgpu);
547 }
548 
549 #define ppgtt_get_guest_entry(spt, e, index) \
550 	ppgtt_spt_get_entry(spt, NULL, \
551 		spt->guest_page_type, e, index, true)
552 
553 #define ppgtt_set_guest_entry(spt, e, index) \
554 	ppgtt_spt_set_entry(spt, NULL, \
555 		spt->guest_page_type, e, index, true)
556 
557 #define ppgtt_get_shadow_entry(spt, e, index) \
558 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
559 		spt->shadow_page.type, e, index, false)
560 
561 #define ppgtt_set_shadow_entry(spt, e, index) \
562 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
563 		spt->shadow_page.type, e, index, false)
564 
565 /**
566  * intel_vgpu_init_page_track - init a page track data structure
567  * @vgpu: a vGPU
568  * @t: a page track data structure
569  * @gfn: guest memory page frame number
570  * @handler: the function will be called when target guest memory page has
571  * been modified.
572  *
573  * This function is called when a user wants to prepare a page track data
574  * structure to track a guest memory page.
575  *
576  * Returns:
577  * Zero on success, negative error code if failed.
578  */
579 int intel_vgpu_init_page_track(struct intel_vgpu *vgpu,
580 		struct intel_vgpu_page_track *t,
581 		unsigned long gfn,
582 		int (*handler)(void *, u64, void *, int),
583 		void *data)
584 {
585 	INIT_HLIST_NODE(&t->node);
586 
587 	t->tracked = false;
588 	t->gfn = gfn;
589 	t->handler = handler;
590 	t->data = data;
591 
592 	hash_add(vgpu->gtt.tracked_guest_page_hash_table, &t->node, t->gfn);
593 	return 0;
594 }
595 
596 /**
597  * intel_vgpu_clean_page_track - release a page track data structure
598  * @vgpu: a vGPU
599  * @t: a page track data structure
600  *
601  * This function is called before a user frees a page track data structure.
602  */
603 void intel_vgpu_clean_page_track(struct intel_vgpu *vgpu,
604 		struct intel_vgpu_page_track *t)
605 {
606 	if (!hlist_unhashed(&t->node))
607 		hash_del(&t->node);
608 
609 	if (t->tracked)
610 		intel_gvt_hypervisor_disable_page_track(vgpu, t);
611 }
612 
613 /**
614  * intel_vgpu_find_tracked_page - find a tracked guest page
615  * @vgpu: a vGPU
616  * @gfn: guest memory page frame number
617  *
618  * This function is called when the emulation layer wants to figure out if a
619  * trapped GFN is a tracked guest page.
620  *
621  * Returns:
622  * Pointer to page track data structure, NULL if not found.
623  */
624 struct intel_vgpu_page_track *intel_vgpu_find_tracked_page(
625 		struct intel_vgpu *vgpu, unsigned long gfn)
626 {
627 	struct intel_vgpu_page_track *t;
628 
629 	hash_for_each_possible(vgpu->gtt.tracked_guest_page_hash_table,
630 			t, node, gfn) {
631 		if (t->gfn == gfn)
632 			return t;
633 	}
634 	return NULL;
635 }
636 
637 static int init_guest_page(struct intel_vgpu *vgpu,
638 		struct intel_vgpu_guest_page *p,
639 		unsigned long gfn,
640 		int (*handler)(void *, u64, void *, int),
641 		void *data)
642 {
643 	p->oos_page = NULL;
644 	p->write_cnt = 0;
645 
646 	return intel_vgpu_init_page_track(vgpu, &p->track, gfn, handler, data);
647 }
648 
649 static int detach_oos_page(struct intel_vgpu *vgpu,
650 		struct intel_vgpu_oos_page *oos_page);
651 
652 static void clean_guest_page(struct intel_vgpu *vgpu,
653 		struct intel_vgpu_guest_page *p)
654 {
655 	if (p->oos_page)
656 		detach_oos_page(vgpu, p->oos_page);
657 
658 	intel_vgpu_clean_page_track(vgpu, &p->track);
659 }
660 
661 static inline int init_shadow_page(struct intel_vgpu *vgpu,
662 		struct intel_vgpu_shadow_page *p, int type, bool hash)
663 {
664 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
665 	dma_addr_t daddr;
666 
667 	daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
668 	if (dma_mapping_error(kdev, daddr)) {
669 		gvt_vgpu_err("fail to map dma addr\n");
670 		return -EINVAL;
671 	}
672 
673 	p->vaddr = page_address(p->page);
674 	p->type = type;
675 
676 	INIT_HLIST_NODE(&p->node);
677 
678 	p->mfn = daddr >> I915_GTT_PAGE_SHIFT;
679 	if (hash)
680 		hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
681 	return 0;
682 }
683 
684 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
685 		struct intel_vgpu_shadow_page *p)
686 {
687 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
688 
689 	dma_unmap_page(kdev, p->mfn << I915_GTT_PAGE_SHIFT, 4096,
690 			PCI_DMA_BIDIRECTIONAL);
691 
692 	if (!hlist_unhashed(&p->node))
693 		hash_del(&p->node);
694 }
695 
696 static inline struct intel_vgpu_shadow_page *find_shadow_page(
697 		struct intel_vgpu *vgpu, unsigned long mfn)
698 {
699 	struct intel_vgpu_shadow_page *p;
700 
701 	hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
702 		p, node, mfn) {
703 		if (p->mfn == mfn)
704 			return p;
705 	}
706 	return NULL;
707 }
708 
709 #define page_track_to_guest_page(ptr) \
710 	container_of(ptr, struct intel_vgpu_guest_page, track)
711 
712 #define guest_page_to_ppgtt_spt(ptr) \
713 	container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
714 
715 #define shadow_page_to_ppgtt_spt(ptr) \
716 	container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
717 
718 static void *alloc_spt(gfp_t gfp_mask)
719 {
720 	struct intel_vgpu_ppgtt_spt *spt;
721 
722 	spt = kzalloc(sizeof(*spt), gfp_mask);
723 	if (!spt)
724 		return NULL;
725 
726 	spt->shadow_page.page = alloc_page(gfp_mask);
727 	if (!spt->shadow_page.page) {
728 		kfree(spt);
729 		return NULL;
730 	}
731 	return spt;
732 }
733 
734 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
735 {
736 	__free_page(spt->shadow_page.page);
737 	kfree(spt);
738 }
739 
740 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
741 {
742 	trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
743 
744 	clean_shadow_page(spt->vgpu, &spt->shadow_page);
745 	clean_guest_page(spt->vgpu, &spt->guest_page);
746 	list_del_init(&spt->post_shadow_list);
747 
748 	free_spt(spt);
749 }
750 
751 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
752 {
753 	struct hlist_node *n;
754 	struct intel_vgpu_shadow_page *sp;
755 	int i;
756 
757 	hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
758 		ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
759 }
760 
761 static int ppgtt_handle_guest_write_page_table_bytes(
762 		struct intel_vgpu_guest_page *gpt,
763 		u64 pa, void *p_data, int bytes);
764 
765 static int ppgtt_write_protection_handler(void *data, u64 pa,
766 		void *p_data, int bytes)
767 {
768 	struct intel_vgpu_page_track *t = data;
769 	struct intel_vgpu_guest_page *p = page_track_to_guest_page(t);
770 	int ret;
771 
772 	if (bytes != 4 && bytes != 8)
773 		return -EINVAL;
774 
775 	if (!t->tracked)
776 		return -EINVAL;
777 
778 	ret = ppgtt_handle_guest_write_page_table_bytes(p,
779 		pa, p_data, bytes);
780 	if (ret)
781 		return ret;
782 	return ret;
783 }
784 
785 static int reclaim_one_mm(struct intel_gvt *gvt);
786 
787 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
788 		struct intel_vgpu *vgpu, int type, unsigned long gfn)
789 {
790 	struct intel_vgpu_ppgtt_spt *spt = NULL;
791 	int ret;
792 
793 retry:
794 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
795 	if (!spt) {
796 		if (reclaim_one_mm(vgpu->gvt))
797 			goto retry;
798 
799 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
800 		return ERR_PTR(-ENOMEM);
801 	}
802 
803 	spt->vgpu = vgpu;
804 	spt->guest_page_type = type;
805 	atomic_set(&spt->refcount, 1);
806 	INIT_LIST_HEAD(&spt->post_shadow_list);
807 
808 	/*
809 	 * TODO: guest page type may be different with shadow page type,
810 	 *	 when we support PSE page in future.
811 	 */
812 	ret = init_shadow_page(vgpu, &spt->shadow_page, type, true);
813 	if (ret) {
814 		gvt_vgpu_err("fail to initialize shadow page for spt\n");
815 		goto err;
816 	}
817 
818 	ret = init_guest_page(vgpu, &spt->guest_page,
819 			gfn, ppgtt_write_protection_handler, NULL);
820 	if (ret) {
821 		gvt_vgpu_err("fail to initialize guest page for spt\n");
822 		goto err;
823 	}
824 
825 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
826 	return spt;
827 err:
828 	ppgtt_free_shadow_page(spt);
829 	return ERR_PTR(ret);
830 }
831 
832 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
833 		struct intel_vgpu *vgpu, unsigned long mfn)
834 {
835 	struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
836 
837 	if (p)
838 		return shadow_page_to_ppgtt_spt(p);
839 
840 	gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
841 	return NULL;
842 }
843 
844 #define pt_entry_size_shift(spt) \
845 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
846 
847 #define pt_entries(spt) \
848 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
849 
850 #define for_each_present_guest_entry(spt, e, i) \
851 	for (i = 0; i < pt_entries(spt); i++) \
852 		if (!ppgtt_get_guest_entry(spt, e, i) && \
853 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
854 
855 #define for_each_present_shadow_entry(spt, e, i) \
856 	for (i = 0; i < pt_entries(spt); i++) \
857 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
858 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
859 
860 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
861 {
862 	int v = atomic_read(&spt->refcount);
863 
864 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
865 
866 	atomic_inc(&spt->refcount);
867 }
868 
869 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
870 
871 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
872 		struct intel_gvt_gtt_entry *e)
873 {
874 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
875 	struct intel_vgpu_ppgtt_spt *s;
876 	intel_gvt_gtt_type_t cur_pt_type;
877 
878 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
879 		return -EINVAL;
880 
881 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
882 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
883 		cur_pt_type = get_next_pt_type(e->type) + 1;
884 		if (ops->get_pfn(e) ==
885 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
886 			return 0;
887 	}
888 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
889 	if (!s) {
890 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
891 				ops->get_pfn(e));
892 		return -ENXIO;
893 	}
894 	return ppgtt_invalidate_shadow_page(s);
895 }
896 
897 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
898 {
899 	struct intel_vgpu *vgpu = spt->vgpu;
900 	struct intel_gvt_gtt_entry e;
901 	unsigned long index;
902 	int ret;
903 	int v = atomic_read(&spt->refcount);
904 
905 	trace_spt_change(spt->vgpu->id, "die", spt,
906 			spt->guest_page.track.gfn, spt->shadow_page.type);
907 
908 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
909 
910 	if (atomic_dec_return(&spt->refcount) > 0)
911 		return 0;
912 
913 	if (gtt_type_is_pte_pt(spt->shadow_page.type))
914 		goto release;
915 
916 	for_each_present_shadow_entry(spt, &e, index) {
917 		if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
918 			gvt_vgpu_err("GVT doesn't support pse bit for now\n");
919 			return -EINVAL;
920 		}
921 		ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
922 				spt->vgpu, &e);
923 		if (ret)
924 			goto fail;
925 	}
926 release:
927 	trace_spt_change(spt->vgpu->id, "release", spt,
928 			spt->guest_page.track.gfn, spt->shadow_page.type);
929 	ppgtt_free_shadow_page(spt);
930 	return 0;
931 fail:
932 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
933 			spt, e.val64, e.type);
934 	return ret;
935 }
936 
937 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
938 
939 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
940 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
941 {
942 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
943 	struct intel_vgpu_ppgtt_spt *s = NULL;
944 	struct intel_vgpu_guest_page *g;
945 	struct intel_vgpu_page_track *t;
946 	int ret;
947 
948 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
949 		ret = -EINVAL;
950 		goto fail;
951 	}
952 
953 	t = intel_vgpu_find_tracked_page(vgpu, ops->get_pfn(we));
954 	if (t) {
955 		g = page_track_to_guest_page(t);
956 		s = guest_page_to_ppgtt_spt(g);
957 		ppgtt_get_shadow_page(s);
958 	} else {
959 		int type = get_next_pt_type(we->type);
960 
961 		s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
962 		if (IS_ERR(s)) {
963 			ret = PTR_ERR(s);
964 			goto fail;
965 		}
966 
967 		ret = intel_gvt_hypervisor_enable_page_track(vgpu,
968 				&s->guest_page.track);
969 		if (ret)
970 			goto fail;
971 
972 		ret = ppgtt_populate_shadow_page(s);
973 		if (ret)
974 			goto fail;
975 
976 		trace_spt_change(vgpu->id, "new", s, s->guest_page.track.gfn,
977 			s->shadow_page.type);
978 	}
979 	return s;
980 fail:
981 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
982 			s, we->val64, we->type);
983 	return ERR_PTR(ret);
984 }
985 
986 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
987 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
988 {
989 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
990 
991 	se->type = ge->type;
992 	se->val64 = ge->val64;
993 
994 	ops->set_pfn(se, s->shadow_page.mfn);
995 }
996 
997 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
998 {
999 	struct intel_vgpu *vgpu = spt->vgpu;
1000 	struct intel_gvt *gvt = vgpu->gvt;
1001 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1002 	struct intel_vgpu_ppgtt_spt *s;
1003 	struct intel_gvt_gtt_entry se, ge;
1004 	unsigned long gfn, i;
1005 	int ret;
1006 
1007 	trace_spt_change(spt->vgpu->id, "born", spt,
1008 			spt->guest_page.track.gfn, spt->shadow_page.type);
1009 
1010 	if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
1011 		for_each_present_guest_entry(spt, &ge, i) {
1012 			gfn = ops->get_pfn(&ge);
1013 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn) ||
1014 				gtt_entry_p2m(vgpu, &ge, &se))
1015 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1016 			ppgtt_set_shadow_entry(spt, &se, i);
1017 		}
1018 		return 0;
1019 	}
1020 
1021 	for_each_present_guest_entry(spt, &ge, i) {
1022 		if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
1023 			gvt_vgpu_err("GVT doesn't support pse bit now\n");
1024 			ret = -EINVAL;
1025 			goto fail;
1026 		}
1027 
1028 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1029 		if (IS_ERR(s)) {
1030 			ret = PTR_ERR(s);
1031 			goto fail;
1032 		}
1033 		ppgtt_get_shadow_entry(spt, &se, i);
1034 		ppgtt_generate_shadow_entry(&se, s, &ge);
1035 		ppgtt_set_shadow_entry(spt, &se, i);
1036 	}
1037 	return 0;
1038 fail:
1039 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1040 			spt, ge.val64, ge.type);
1041 	return ret;
1042 }
1043 
1044 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
1045 		struct intel_gvt_gtt_entry *se, unsigned long index)
1046 {
1047 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1048 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1049 	struct intel_vgpu *vgpu = spt->vgpu;
1050 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1051 	int ret;
1052 
1053 	trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, se->val64,
1054 			 index);
1055 
1056 	if (!ops->test_present(se))
1057 		return 0;
1058 
1059 	if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1060 		return 0;
1061 
1062 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1063 		struct intel_vgpu_ppgtt_spt *s =
1064 			ppgtt_find_shadow_page(vgpu, ops->get_pfn(se));
1065 		if (!s) {
1066 			gvt_vgpu_err("fail to find guest page\n");
1067 			ret = -ENXIO;
1068 			goto fail;
1069 		}
1070 		ret = ppgtt_invalidate_shadow_page(s);
1071 		if (ret)
1072 			goto fail;
1073 	}
1074 	return 0;
1075 fail:
1076 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1077 			spt, se->val64, se->type);
1078 	return ret;
1079 }
1080 
1081 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1082 		struct intel_gvt_gtt_entry *we, unsigned long index)
1083 {
1084 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1085 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1086 	struct intel_vgpu *vgpu = spt->vgpu;
1087 	struct intel_gvt_gtt_entry m;
1088 	struct intel_vgpu_ppgtt_spt *s;
1089 	int ret;
1090 
1091 	trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1092 		we->val64, index);
1093 
1094 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1095 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1096 		if (IS_ERR(s)) {
1097 			ret = PTR_ERR(s);
1098 			goto fail;
1099 		}
1100 		ppgtt_get_shadow_entry(spt, &m, index);
1101 		ppgtt_generate_shadow_entry(&m, s, we);
1102 		ppgtt_set_shadow_entry(spt, &m, index);
1103 	} else {
1104 		ret = gtt_entry_p2m(vgpu, we, &m);
1105 		if (ret)
1106 			goto fail;
1107 		ppgtt_set_shadow_entry(spt, &m, index);
1108 	}
1109 	return 0;
1110 fail:
1111 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1112 		spt, we->val64, we->type);
1113 	return ret;
1114 }
1115 
1116 static int sync_oos_page(struct intel_vgpu *vgpu,
1117 		struct intel_vgpu_oos_page *oos_page)
1118 {
1119 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1120 	struct intel_gvt *gvt = vgpu->gvt;
1121 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1122 	struct intel_vgpu_ppgtt_spt *spt =
1123 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1124 	struct intel_gvt_gtt_entry old, new, m;
1125 	int index;
1126 	int ret;
1127 
1128 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1129 			oos_page->guest_page, spt->guest_page_type);
1130 
1131 	old.type = new.type = get_entry_type(spt->guest_page_type);
1132 	old.val64 = new.val64 = 0;
1133 
1134 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1135 				info->gtt_entry_size_shift); index++) {
1136 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1137 		ops->get_entry(NULL, &new, index, true,
1138 			oos_page->guest_page->track.gfn << PAGE_SHIFT, vgpu);
1139 
1140 		if (old.val64 == new.val64
1141 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1142 			continue;
1143 
1144 		trace_oos_sync(vgpu->id, oos_page->id,
1145 				oos_page->guest_page, spt->guest_page_type,
1146 				new.val64, index);
1147 
1148 		ret = gtt_entry_p2m(vgpu, &new, &m);
1149 		if (ret)
1150 			return ret;
1151 
1152 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1153 		ppgtt_set_shadow_entry(spt, &m, index);
1154 	}
1155 
1156 	oos_page->guest_page->write_cnt = 0;
1157 	list_del_init(&spt->post_shadow_list);
1158 	return 0;
1159 }
1160 
1161 static int detach_oos_page(struct intel_vgpu *vgpu,
1162 		struct intel_vgpu_oos_page *oos_page)
1163 {
1164 	struct intel_gvt *gvt = vgpu->gvt;
1165 	struct intel_vgpu_ppgtt_spt *spt =
1166 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1167 
1168 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1169 			oos_page->guest_page, spt->guest_page_type);
1170 
1171 	oos_page->guest_page->write_cnt = 0;
1172 	oos_page->guest_page->oos_page = NULL;
1173 	oos_page->guest_page = NULL;
1174 
1175 	list_del_init(&oos_page->vm_list);
1176 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1177 
1178 	return 0;
1179 }
1180 
1181 static int attach_oos_page(struct intel_vgpu *vgpu,
1182 		struct intel_vgpu_oos_page *oos_page,
1183 		struct intel_vgpu_guest_page *gpt)
1184 {
1185 	struct intel_gvt *gvt = vgpu->gvt;
1186 	int ret;
1187 
1188 	ret = intel_gvt_hypervisor_read_gpa(vgpu,
1189 			gpt->track.gfn << I915_GTT_PAGE_SHIFT,
1190 			oos_page->mem, I915_GTT_PAGE_SIZE);
1191 	if (ret)
1192 		return ret;
1193 
1194 	oos_page->guest_page = gpt;
1195 	gpt->oos_page = oos_page;
1196 
1197 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1198 
1199 	trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1200 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1201 	return 0;
1202 }
1203 
1204 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1205 		struct intel_vgpu_guest_page *gpt)
1206 {
1207 	int ret;
1208 
1209 	ret = intel_gvt_hypervisor_enable_page_track(vgpu, &gpt->track);
1210 	if (ret)
1211 		return ret;
1212 
1213 	trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1214 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1215 
1216 	list_del_init(&gpt->oos_page->vm_list);
1217 	return sync_oos_page(vgpu, gpt->oos_page);
1218 }
1219 
1220 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1221 		struct intel_vgpu_guest_page *gpt)
1222 {
1223 	struct intel_gvt *gvt = vgpu->gvt;
1224 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1225 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1226 	int ret;
1227 
1228 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1229 
1230 	if (list_empty(&gtt->oos_page_free_list_head)) {
1231 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1232 			struct intel_vgpu_oos_page, list);
1233 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1234 		if (ret)
1235 			return ret;
1236 		ret = detach_oos_page(vgpu, oos_page);
1237 		if (ret)
1238 			return ret;
1239 	} else
1240 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1241 			struct intel_vgpu_oos_page, list);
1242 	return attach_oos_page(vgpu, oos_page, gpt);
1243 }
1244 
1245 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1246 		struct intel_vgpu_guest_page *gpt)
1247 {
1248 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1249 
1250 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1251 		return -EINVAL;
1252 
1253 	trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1254 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1255 
1256 	list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1257 	return intel_gvt_hypervisor_disable_page_track(vgpu, &gpt->track);
1258 }
1259 
1260 /**
1261  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1262  * @vgpu: a vGPU
1263  *
1264  * This function is called before submitting a guest workload to host,
1265  * to sync all the out-of-synced shadow for vGPU
1266  *
1267  * Returns:
1268  * Zero on success, negative error code if failed.
1269  */
1270 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1271 {
1272 	struct list_head *pos, *n;
1273 	struct intel_vgpu_oos_page *oos_page;
1274 	int ret;
1275 
1276 	if (!enable_out_of_sync)
1277 		return 0;
1278 
1279 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1280 		oos_page = container_of(pos,
1281 				struct intel_vgpu_oos_page, vm_list);
1282 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1283 		if (ret)
1284 			return ret;
1285 	}
1286 	return 0;
1287 }
1288 
1289 /*
1290  * The heart of PPGTT shadow page table.
1291  */
1292 static int ppgtt_handle_guest_write_page_table(
1293 		struct intel_vgpu_guest_page *gpt,
1294 		struct intel_gvt_gtt_entry *we, unsigned long index)
1295 {
1296 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1297 	struct intel_vgpu *vgpu = spt->vgpu;
1298 	int type = spt->shadow_page.type;
1299 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1300 	struct intel_gvt_gtt_entry se;
1301 
1302 	int ret;
1303 	int new_present;
1304 
1305 	new_present = ops->test_present(we);
1306 
1307 	/*
1308 	 * Adding the new entry first and then removing the old one, that can
1309 	 * guarantee the ppgtt table is validated during the window between
1310 	 * adding and removal.
1311 	 */
1312 	ppgtt_get_shadow_entry(spt, &se, index);
1313 
1314 	if (new_present) {
1315 		ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1316 		if (ret)
1317 			goto fail;
1318 	}
1319 
1320 	ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1321 	if (ret)
1322 		goto fail;
1323 
1324 	if (!new_present) {
1325 		ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1326 		ppgtt_set_shadow_entry(spt, &se, index);
1327 	}
1328 
1329 	return 0;
1330 fail:
1331 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1332 			spt, we->val64, we->type);
1333 	return ret;
1334 }
1335 
1336 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1337 {
1338 	return enable_out_of_sync
1339 		&& gtt_type_is_pte_pt(
1340 			guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1341 		&& gpt->write_cnt >= 2;
1342 }
1343 
1344 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1345 		unsigned long index)
1346 {
1347 	set_bit(index, spt->post_shadow_bitmap);
1348 	if (!list_empty(&spt->post_shadow_list))
1349 		return;
1350 
1351 	list_add_tail(&spt->post_shadow_list,
1352 			&spt->vgpu->gtt.post_shadow_list_head);
1353 }
1354 
1355 /**
1356  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1357  * @vgpu: a vGPU
1358  *
1359  * This function is called before submitting a guest workload to host,
1360  * to flush all the post shadows for a vGPU.
1361  *
1362  * Returns:
1363  * Zero on success, negative error code if failed.
1364  */
1365 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1366 {
1367 	struct list_head *pos, *n;
1368 	struct intel_vgpu_ppgtt_spt *spt;
1369 	struct intel_gvt_gtt_entry ge;
1370 	unsigned long index;
1371 	int ret;
1372 
1373 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1374 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1375 				post_shadow_list);
1376 
1377 		for_each_set_bit(index, spt->post_shadow_bitmap,
1378 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1379 			ppgtt_get_guest_entry(spt, &ge, index);
1380 
1381 			ret = ppgtt_handle_guest_write_page_table(
1382 					&spt->guest_page, &ge, index);
1383 			if (ret)
1384 				return ret;
1385 			clear_bit(index, spt->post_shadow_bitmap);
1386 		}
1387 		list_del_init(&spt->post_shadow_list);
1388 	}
1389 	return 0;
1390 }
1391 
1392 static int ppgtt_handle_guest_write_page_table_bytes(
1393 		struct intel_vgpu_guest_page *gpt,
1394 		u64 pa, void *p_data, int bytes)
1395 {
1396 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1397 	struct intel_vgpu *vgpu = spt->vgpu;
1398 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1399 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1400 	struct intel_gvt_gtt_entry we, se;
1401 	unsigned long index;
1402 	int ret;
1403 
1404 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1405 
1406 	ppgtt_get_guest_entry(spt, &we, index);
1407 
1408 	ops->test_pse(&we);
1409 
1410 	if (bytes == info->gtt_entry_size) {
1411 		ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1412 		if (ret)
1413 			return ret;
1414 	} else {
1415 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1416 			int type = spt->shadow_page.type;
1417 
1418 			ppgtt_get_shadow_entry(spt, &se, index);
1419 			ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1420 			if (ret)
1421 				return ret;
1422 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1423 			ppgtt_set_shadow_entry(spt, &se, index);
1424 		}
1425 		ppgtt_set_post_shadow(spt, index);
1426 	}
1427 
1428 	if (!enable_out_of_sync)
1429 		return 0;
1430 
1431 	gpt->write_cnt++;
1432 
1433 	if (gpt->oos_page)
1434 		ops->set_entry(gpt->oos_page->mem, &we, index,
1435 				false, 0, vgpu);
1436 
1437 	if (can_do_out_of_sync(gpt)) {
1438 		if (!gpt->oos_page)
1439 			ppgtt_allocate_oos_page(vgpu, gpt);
1440 
1441 		ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1442 		if (ret < 0)
1443 			return ret;
1444 	}
1445 	return 0;
1446 }
1447 
1448 /*
1449  * mm page table allocation policy for bdw+
1450  *  - for ggtt, only virtual page table will be allocated.
1451  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1452  */
1453 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1454 {
1455 	struct intel_vgpu *vgpu = mm->vgpu;
1456 	struct intel_gvt *gvt = vgpu->gvt;
1457 	const struct intel_gvt_device_info *info = &gvt->device_info;
1458 	void *mem;
1459 
1460 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1461 		mm->page_table_entry_cnt = 4;
1462 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1463 			info->gtt_entry_size;
1464 		mem = kzalloc(mm->has_shadow_page_table ?
1465 			mm->page_table_entry_size * 2
1466 				: mm->page_table_entry_size, GFP_KERNEL);
1467 		if (!mem)
1468 			return -ENOMEM;
1469 		mm->virtual_page_table = mem;
1470 		if (!mm->has_shadow_page_table)
1471 			return 0;
1472 		mm->shadow_page_table = mem + mm->page_table_entry_size;
1473 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1474 		mm->page_table_entry_cnt =
1475 			(gvt_ggtt_gm_sz(gvt) >> I915_GTT_PAGE_SHIFT);
1476 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1477 			info->gtt_entry_size;
1478 		mem = vzalloc(mm->page_table_entry_size);
1479 		if (!mem)
1480 			return -ENOMEM;
1481 		mm->virtual_page_table = mem;
1482 	}
1483 	return 0;
1484 }
1485 
1486 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1487 {
1488 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1489 		kfree(mm->virtual_page_table);
1490 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1491 		if (mm->virtual_page_table)
1492 			vfree(mm->virtual_page_table);
1493 	}
1494 	mm->virtual_page_table = mm->shadow_page_table = NULL;
1495 }
1496 
1497 static void invalidate_mm(struct intel_vgpu_mm *mm)
1498 {
1499 	struct intel_vgpu *vgpu = mm->vgpu;
1500 	struct intel_gvt *gvt = vgpu->gvt;
1501 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1502 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1503 	struct intel_gvt_gtt_entry se;
1504 	int i;
1505 
1506 	if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1507 		return;
1508 
1509 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1510 		ppgtt_get_shadow_root_entry(mm, &se, i);
1511 		if (!ops->test_present(&se))
1512 			continue;
1513 		ppgtt_invalidate_shadow_page_by_shadow_entry(
1514 				vgpu, &se);
1515 		se.val64 = 0;
1516 		ppgtt_set_shadow_root_entry(mm, &se, i);
1517 
1518 		trace_gpt_change(vgpu->id, "destroy root pointer",
1519 				NULL, se.type, se.val64, i);
1520 	}
1521 	mm->shadowed = false;
1522 }
1523 
1524 /**
1525  * intel_vgpu_destroy_mm - destroy a mm object
1526  * @mm: a kref object
1527  *
1528  * This function is used to destroy a mm object for vGPU
1529  *
1530  */
1531 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1532 {
1533 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1534 	struct intel_vgpu *vgpu = mm->vgpu;
1535 	struct intel_gvt *gvt = vgpu->gvt;
1536 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1537 
1538 	if (!mm->initialized)
1539 		goto out;
1540 
1541 	list_del(&mm->list);
1542 	list_del(&mm->lru_list);
1543 
1544 	if (mm->has_shadow_page_table)
1545 		invalidate_mm(mm);
1546 
1547 	gtt->mm_free_page_table(mm);
1548 out:
1549 	kfree(mm);
1550 }
1551 
1552 static int shadow_mm(struct intel_vgpu_mm *mm)
1553 {
1554 	struct intel_vgpu *vgpu = mm->vgpu;
1555 	struct intel_gvt *gvt = vgpu->gvt;
1556 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1557 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1558 	struct intel_vgpu_ppgtt_spt *spt;
1559 	struct intel_gvt_gtt_entry ge, se;
1560 	int i;
1561 	int ret;
1562 
1563 	if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1564 		return 0;
1565 
1566 	mm->shadowed = true;
1567 
1568 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1569 		ppgtt_get_guest_root_entry(mm, &ge, i);
1570 		if (!ops->test_present(&ge))
1571 			continue;
1572 
1573 		trace_gpt_change(vgpu->id, __func__, NULL,
1574 				ge.type, ge.val64, i);
1575 
1576 		spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1577 		if (IS_ERR(spt)) {
1578 			gvt_vgpu_err("fail to populate guest root pointer\n");
1579 			ret = PTR_ERR(spt);
1580 			goto fail;
1581 		}
1582 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1583 		ppgtt_set_shadow_root_entry(mm, &se, i);
1584 
1585 		trace_gpt_change(vgpu->id, "populate root pointer",
1586 				NULL, se.type, se.val64, i);
1587 	}
1588 	return 0;
1589 fail:
1590 	invalidate_mm(mm);
1591 	return ret;
1592 }
1593 
1594 /**
1595  * intel_vgpu_create_mm - create a mm object for a vGPU
1596  * @vgpu: a vGPU
1597  * @mm_type: mm object type, should be PPGTT or GGTT
1598  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1599  *	to populate shadow later.
1600  * @page_table_level: describe the page table level of the mm object
1601  * @pde_base_index: pde root pointer base in GGTT MMIO.
1602  *
1603  * This function is used to create a mm object for a vGPU.
1604  *
1605  * Returns:
1606  * Zero on success, negative error code in pointer if failed.
1607  */
1608 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1609 		int mm_type, void *virtual_page_table, int page_table_level,
1610 		u32 pde_base_index)
1611 {
1612 	struct intel_gvt *gvt = vgpu->gvt;
1613 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1614 	struct intel_vgpu_mm *mm;
1615 	int ret;
1616 
1617 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1618 	if (!mm) {
1619 		ret = -ENOMEM;
1620 		goto fail;
1621 	}
1622 
1623 	mm->type = mm_type;
1624 
1625 	if (page_table_level == 1)
1626 		mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1627 	else if (page_table_level == 3)
1628 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1629 	else if (page_table_level == 4)
1630 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1631 	else {
1632 		WARN_ON(1);
1633 		ret = -EINVAL;
1634 		goto fail;
1635 	}
1636 
1637 	mm->page_table_level = page_table_level;
1638 	mm->pde_base_index = pde_base_index;
1639 
1640 	mm->vgpu = vgpu;
1641 	mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1642 
1643 	kref_init(&mm->ref);
1644 	atomic_set(&mm->pincount, 0);
1645 	INIT_LIST_HEAD(&mm->list);
1646 	INIT_LIST_HEAD(&mm->lru_list);
1647 	list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1648 
1649 	ret = gtt->mm_alloc_page_table(mm);
1650 	if (ret) {
1651 		gvt_vgpu_err("fail to allocate page table for mm\n");
1652 		goto fail;
1653 	}
1654 
1655 	mm->initialized = true;
1656 
1657 	if (virtual_page_table)
1658 		memcpy(mm->virtual_page_table, virtual_page_table,
1659 				mm->page_table_entry_size);
1660 
1661 	if (mm->has_shadow_page_table) {
1662 		ret = shadow_mm(mm);
1663 		if (ret)
1664 			goto fail;
1665 		list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1666 	}
1667 	return mm;
1668 fail:
1669 	gvt_vgpu_err("fail to create mm\n");
1670 	if (mm)
1671 		intel_gvt_mm_unreference(mm);
1672 	return ERR_PTR(ret);
1673 }
1674 
1675 /**
1676  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1677  * @mm: a vGPU mm object
1678  *
1679  * This function is called when user doesn't want to use a vGPU mm object
1680  */
1681 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1682 {
1683 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1684 		return;
1685 
1686 	atomic_dec(&mm->pincount);
1687 }
1688 
1689 /**
1690  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1691  * @vgpu: a vGPU
1692  *
1693  * This function is called when user wants to use a vGPU mm object. If this
1694  * mm object hasn't been shadowed yet, the shadow will be populated at this
1695  * time.
1696  *
1697  * Returns:
1698  * Zero on success, negative error code if failed.
1699  */
1700 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1701 {
1702 	int ret;
1703 
1704 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1705 		return 0;
1706 
1707 	if (!mm->shadowed) {
1708 		ret = shadow_mm(mm);
1709 		if (ret)
1710 			return ret;
1711 	}
1712 
1713 	atomic_inc(&mm->pincount);
1714 	list_del_init(&mm->lru_list);
1715 	list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1716 	return 0;
1717 }
1718 
1719 static int reclaim_one_mm(struct intel_gvt *gvt)
1720 {
1721 	struct intel_vgpu_mm *mm;
1722 	struct list_head *pos, *n;
1723 
1724 	list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1725 		mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1726 
1727 		if (mm->type != INTEL_GVT_MM_PPGTT)
1728 			continue;
1729 		if (atomic_read(&mm->pincount))
1730 			continue;
1731 
1732 		list_del_init(&mm->lru_list);
1733 		invalidate_mm(mm);
1734 		return 1;
1735 	}
1736 	return 0;
1737 }
1738 
1739 /*
1740  * GMA translation APIs.
1741  */
1742 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1743 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1744 {
1745 	struct intel_vgpu *vgpu = mm->vgpu;
1746 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1747 	struct intel_vgpu_ppgtt_spt *s;
1748 
1749 	if (WARN_ON(!mm->has_shadow_page_table))
1750 		return -EINVAL;
1751 
1752 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1753 	if (!s)
1754 		return -ENXIO;
1755 
1756 	if (!guest)
1757 		ppgtt_get_shadow_entry(s, e, index);
1758 	else
1759 		ppgtt_get_guest_entry(s, e, index);
1760 	return 0;
1761 }
1762 
1763 /**
1764  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1765  * @mm: mm object. could be a PPGTT or GGTT mm object
1766  * @gma: graphics memory address in this mm object
1767  *
1768  * This function is used to translate a graphics memory address in specific
1769  * graphics memory space to guest physical address.
1770  *
1771  * Returns:
1772  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1773  */
1774 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1775 {
1776 	struct intel_vgpu *vgpu = mm->vgpu;
1777 	struct intel_gvt *gvt = vgpu->gvt;
1778 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1779 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1780 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1781 	unsigned long gma_index[4];
1782 	struct intel_gvt_gtt_entry e;
1783 	int i, index;
1784 	int ret;
1785 
1786 	if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1787 		return INTEL_GVT_INVALID_ADDR;
1788 
1789 	if (mm->type == INTEL_GVT_MM_GGTT) {
1790 		if (!vgpu_gmadr_is_valid(vgpu, gma))
1791 			goto err;
1792 
1793 		ret = ggtt_get_guest_entry(mm, &e,
1794 				gma_ops->gma_to_ggtt_pte_index(gma));
1795 		if (ret)
1796 			goto err;
1797 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1798 			+ (gma & ~I915_GTT_PAGE_MASK);
1799 
1800 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1801 		return gpa;
1802 	}
1803 
1804 	switch (mm->page_table_level) {
1805 	case 4:
1806 		ret = ppgtt_get_shadow_root_entry(mm, &e, 0);
1807 		if (ret)
1808 			goto err;
1809 		gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1810 		gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1811 		gma_index[2] = gma_ops->gma_to_pde_index(gma);
1812 		gma_index[3] = gma_ops->gma_to_pte_index(gma);
1813 		index = 4;
1814 		break;
1815 	case 3:
1816 		ret = ppgtt_get_shadow_root_entry(mm, &e,
1817 				gma_ops->gma_to_l3_pdp_index(gma));
1818 		if (ret)
1819 			goto err;
1820 		gma_index[0] = gma_ops->gma_to_pde_index(gma);
1821 		gma_index[1] = gma_ops->gma_to_pte_index(gma);
1822 		index = 2;
1823 		break;
1824 	case 2:
1825 		ret = ppgtt_get_shadow_root_entry(mm, &e,
1826 				gma_ops->gma_to_pde_index(gma));
1827 		if (ret)
1828 			goto err;
1829 		gma_index[0] = gma_ops->gma_to_pte_index(gma);
1830 		index = 1;
1831 		break;
1832 	default:
1833 		WARN_ON(1);
1834 		goto err;
1835 	}
1836 
1837 	/* walk into the shadow page table and get gpa from guest entry */
1838 	for (i = 0; i < index; i++) {
1839 		ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1840 			(i == index - 1));
1841 		if (ret)
1842 			goto err;
1843 
1844 		if (!pte_ops->test_present(&e)) {
1845 			gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1846 			goto err;
1847 		}
1848 	}
1849 
1850 	gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1851 		+ (gma & ~I915_GTT_PAGE_MASK);
1852 
1853 	trace_gma_translate(vgpu->id, "ppgtt", 0,
1854 			mm->page_table_level, gma, gpa);
1855 	return gpa;
1856 err:
1857 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1858 	return INTEL_GVT_INVALID_ADDR;
1859 }
1860 
1861 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1862 	unsigned int off, void *p_data, unsigned int bytes)
1863 {
1864 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1865 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1866 	unsigned long index = off >> info->gtt_entry_size_shift;
1867 	struct intel_gvt_gtt_entry e;
1868 
1869 	if (bytes != 4 && bytes != 8)
1870 		return -EINVAL;
1871 
1872 	ggtt_get_guest_entry(ggtt_mm, &e, index);
1873 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1874 			bytes);
1875 	return 0;
1876 }
1877 
1878 /**
1879  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1880  * @vgpu: a vGPU
1881  * @off: register offset
1882  * @p_data: data will be returned to guest
1883  * @bytes: data length
1884  *
1885  * This function is used to emulate the GTT MMIO register read
1886  *
1887  * Returns:
1888  * Zero on success, error code if failed.
1889  */
1890 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1891 	void *p_data, unsigned int bytes)
1892 {
1893 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1894 	int ret;
1895 
1896 	if (bytes != 4 && bytes != 8)
1897 		return -EINVAL;
1898 
1899 	off -= info->gtt_start_offset;
1900 	ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1901 	return ret;
1902 }
1903 
1904 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1905 	void *p_data, unsigned int bytes)
1906 {
1907 	struct intel_gvt *gvt = vgpu->gvt;
1908 	const struct intel_gvt_device_info *info = &gvt->device_info;
1909 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1910 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1911 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1912 	unsigned long gma, gfn;
1913 	struct intel_gvt_gtt_entry e, m;
1914 	int ret;
1915 
1916 	if (bytes != 4 && bytes != 8)
1917 		return -EINVAL;
1918 
1919 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1920 
1921 	/* the VM may configure the whole GM space when ballooning is used */
1922 	if (!vgpu_gmadr_is_valid(vgpu, gma))
1923 		return 0;
1924 
1925 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1926 
1927 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1928 			bytes);
1929 
1930 	if (ops->test_present(&e)) {
1931 		gfn = ops->get_pfn(&e);
1932 
1933 		/* one PTE update may be issued in multiple writes and the
1934 		 * first write may not construct a valid gfn
1935 		 */
1936 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1937 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1938 			goto out;
1939 		}
1940 
1941 		ret = gtt_entry_p2m(vgpu, &e, &m);
1942 		if (ret) {
1943 			gvt_vgpu_err("fail to translate guest gtt entry\n");
1944 			/* guest driver may read/write the entry when partial
1945 			 * update the entry in this situation p2m will fail
1946 			 * settting the shadow entry to point to a scratch page
1947 			 */
1948 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1949 		}
1950 	} else {
1951 		m = e;
1952 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1953 	}
1954 
1955 out:
1956 	ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1957 	gtt_invalidate(gvt->dev_priv);
1958 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1959 	return 0;
1960 }
1961 
1962 /*
1963  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1964  * @vgpu: a vGPU
1965  * @off: register offset
1966  * @p_data: data from guest write
1967  * @bytes: data length
1968  *
1969  * This function is used to emulate the GTT MMIO register write
1970  *
1971  * Returns:
1972  * Zero on success, error code if failed.
1973  */
1974 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1975 	void *p_data, unsigned int bytes)
1976 {
1977 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1978 	int ret;
1979 
1980 	if (bytes != 4 && bytes != 8)
1981 		return -EINVAL;
1982 
1983 	off -= info->gtt_start_offset;
1984 	ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1985 	return ret;
1986 }
1987 
1988 int intel_vgpu_write_protect_handler(struct intel_vgpu *vgpu, u64 pa,
1989 				     void *p_data, unsigned int bytes)
1990 {
1991 	struct intel_gvt *gvt = vgpu->gvt;
1992 	int ret = 0;
1993 
1994 	if (atomic_read(&vgpu->gtt.n_tracked_guest_page)) {
1995 		struct intel_vgpu_page_track *t;
1996 
1997 		mutex_lock(&gvt->lock);
1998 
1999 		t = intel_vgpu_find_tracked_page(vgpu, pa >> PAGE_SHIFT);
2000 		if (t) {
2001 			if (unlikely(vgpu->failsafe)) {
2002 				/* remove write protection to prevent furture traps */
2003 				intel_vgpu_clean_page_track(vgpu, t);
2004 			} else {
2005 				ret = t->handler(t, pa, p_data, bytes);
2006 				if (ret) {
2007 					gvt_err("guest page write error %d, "
2008 						"gfn 0x%lx, pa 0x%llx, "
2009 						"var 0x%x, len %d\n",
2010 						ret, t->gfn, pa,
2011 						*(u32 *)p_data, bytes);
2012 				}
2013 			}
2014 		}
2015 		mutex_unlock(&gvt->lock);
2016 	}
2017 	return ret;
2018 }
2019 
2020 
2021 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2022 		intel_gvt_gtt_type_t type)
2023 {
2024 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2025 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2026 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2027 				vgpu->gvt->device_info.gtt_entry_size_shift;
2028 	void *scratch_pt;
2029 	int i;
2030 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2031 	dma_addr_t daddr;
2032 
2033 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2034 		return -EINVAL;
2035 
2036 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2037 	if (!scratch_pt) {
2038 		gvt_vgpu_err("fail to allocate scratch page\n");
2039 		return -ENOMEM;
2040 	}
2041 
2042 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2043 			4096, PCI_DMA_BIDIRECTIONAL);
2044 	if (dma_mapping_error(dev, daddr)) {
2045 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2046 		__free_page(virt_to_page(scratch_pt));
2047 		return -ENOMEM;
2048 	}
2049 	gtt->scratch_pt[type].page_mfn =
2050 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2051 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2052 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2053 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2054 
2055 	/* Build the tree by full filled the scratch pt with the entries which
2056 	 * point to the next level scratch pt or scratch page. The
2057 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2058 	 * 'type' pt.
2059 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2060 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2061 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2062 	 */
2063 	if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
2064 		struct intel_gvt_gtt_entry se;
2065 
2066 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2067 		se.type = get_entry_type(type - 1);
2068 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2069 
2070 		/* The entry parameters like present/writeable/cache type
2071 		 * set to the same as i915's scratch page tree.
2072 		 */
2073 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2074 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2075 			se.val64 |= PPAT_CACHED;
2076 
2077 		for (i = 0; i < page_entry_num; i++)
2078 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2079 	}
2080 
2081 	return 0;
2082 }
2083 
2084 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2085 {
2086 	int i;
2087 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2088 	dma_addr_t daddr;
2089 
2090 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2091 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2092 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2093 					I915_GTT_PAGE_SHIFT);
2094 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2095 			__free_page(vgpu->gtt.scratch_pt[i].page);
2096 			vgpu->gtt.scratch_pt[i].page = NULL;
2097 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2098 		}
2099 	}
2100 
2101 	return 0;
2102 }
2103 
2104 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2105 {
2106 	int i, ret;
2107 
2108 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2109 		ret = alloc_scratch_pages(vgpu, i);
2110 		if (ret)
2111 			goto err;
2112 	}
2113 
2114 	return 0;
2115 
2116 err:
2117 	release_scratch_page_tree(vgpu);
2118 	return ret;
2119 }
2120 
2121 /**
2122  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2123  * @vgpu: a vGPU
2124  *
2125  * This function is used to initialize per-vGPU graphics memory virtualization
2126  * components.
2127  *
2128  * Returns:
2129  * Zero on success, error code if failed.
2130  */
2131 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2132 {
2133 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2134 	struct intel_vgpu_mm *ggtt_mm;
2135 
2136 	hash_init(gtt->tracked_guest_page_hash_table);
2137 	hash_init(gtt->shadow_page_hash_table);
2138 
2139 	INIT_LIST_HEAD(&gtt->mm_list_head);
2140 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2141 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2142 
2143 	intel_vgpu_reset_ggtt(vgpu);
2144 
2145 	ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2146 			NULL, 1, 0);
2147 	if (IS_ERR(ggtt_mm)) {
2148 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2149 		return PTR_ERR(ggtt_mm);
2150 	}
2151 
2152 	gtt->ggtt_mm = ggtt_mm;
2153 
2154 	return create_scratch_page_tree(vgpu);
2155 }
2156 
2157 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2158 {
2159 	struct list_head *pos, *n;
2160 	struct intel_vgpu_mm *mm;
2161 
2162 	list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2163 		mm = container_of(pos, struct intel_vgpu_mm, list);
2164 		if (mm->type == type) {
2165 			vgpu->gvt->gtt.mm_free_page_table(mm);
2166 			list_del(&mm->list);
2167 			list_del(&mm->lru_list);
2168 			kfree(mm);
2169 		}
2170 	}
2171 }
2172 
2173 /**
2174  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2175  * @vgpu: a vGPU
2176  *
2177  * This function is used to clean up per-vGPU graphics memory virtualization
2178  * components.
2179  *
2180  * Returns:
2181  * Zero on success, error code if failed.
2182  */
2183 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2184 {
2185 	ppgtt_free_all_shadow_page(vgpu);
2186 	release_scratch_page_tree(vgpu);
2187 
2188 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2189 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2190 }
2191 
2192 static void clean_spt_oos(struct intel_gvt *gvt)
2193 {
2194 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2195 	struct list_head *pos, *n;
2196 	struct intel_vgpu_oos_page *oos_page;
2197 
2198 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2199 		"someone is still using oos page\n");
2200 
2201 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2202 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2203 		list_del(&oos_page->list);
2204 		kfree(oos_page);
2205 	}
2206 }
2207 
2208 static int setup_spt_oos(struct intel_gvt *gvt)
2209 {
2210 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2211 	struct intel_vgpu_oos_page *oos_page;
2212 	int i;
2213 	int ret;
2214 
2215 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2216 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2217 
2218 	for (i = 0; i < preallocated_oos_pages; i++) {
2219 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2220 		if (!oos_page) {
2221 			ret = -ENOMEM;
2222 			goto fail;
2223 		}
2224 
2225 		INIT_LIST_HEAD(&oos_page->list);
2226 		INIT_LIST_HEAD(&oos_page->vm_list);
2227 		oos_page->id = i;
2228 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2229 	}
2230 
2231 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2232 
2233 	return 0;
2234 fail:
2235 	clean_spt_oos(gvt);
2236 	return ret;
2237 }
2238 
2239 /**
2240  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2241  * @vgpu: a vGPU
2242  * @page_table_level: PPGTT page table level
2243  * @root_entry: PPGTT page table root pointers
2244  *
2245  * This function is used to find a PPGTT mm object from mm object pool
2246  *
2247  * Returns:
2248  * pointer to mm object on success, NULL if failed.
2249  */
2250 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2251 		int page_table_level, void *root_entry)
2252 {
2253 	struct list_head *pos;
2254 	struct intel_vgpu_mm *mm;
2255 	u64 *src, *dst;
2256 
2257 	list_for_each(pos, &vgpu->gtt.mm_list_head) {
2258 		mm = container_of(pos, struct intel_vgpu_mm, list);
2259 		if (mm->type != INTEL_GVT_MM_PPGTT)
2260 			continue;
2261 
2262 		if (mm->page_table_level != page_table_level)
2263 			continue;
2264 
2265 		src = root_entry;
2266 		dst = mm->virtual_page_table;
2267 
2268 		if (page_table_level == 3) {
2269 			if (src[0] == dst[0]
2270 					&& src[1] == dst[1]
2271 					&& src[2] == dst[2]
2272 					&& src[3] == dst[3])
2273 				return mm;
2274 		} else {
2275 			if (src[0] == dst[0])
2276 				return mm;
2277 		}
2278 	}
2279 	return NULL;
2280 }
2281 
2282 /**
2283  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2284  * g2v notification
2285  * @vgpu: a vGPU
2286  * @page_table_level: PPGTT page table level
2287  *
2288  * This function is used to create a PPGTT mm object from a guest to GVT-g
2289  * notification.
2290  *
2291  * Returns:
2292  * Zero on success, negative error code if failed.
2293  */
2294 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2295 		int page_table_level)
2296 {
2297 	u64 *pdp = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
2298 	struct intel_vgpu_mm *mm;
2299 
2300 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2301 		return -EINVAL;
2302 
2303 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2304 	if (mm) {
2305 		intel_gvt_mm_reference(mm);
2306 	} else {
2307 		mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2308 				pdp, page_table_level, 0);
2309 		if (IS_ERR(mm)) {
2310 			gvt_vgpu_err("fail to create mm\n");
2311 			return PTR_ERR(mm);
2312 		}
2313 	}
2314 	return 0;
2315 }
2316 
2317 /**
2318  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2319  * g2v notification
2320  * @vgpu: a vGPU
2321  * @page_table_level: PPGTT page table level
2322  *
2323  * This function is used to create a PPGTT mm object from a guest to GVT-g
2324  * notification.
2325  *
2326  * Returns:
2327  * Zero on success, negative error code if failed.
2328  */
2329 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2330 		int page_table_level)
2331 {
2332 	u64 *pdp = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
2333 	struct intel_vgpu_mm *mm;
2334 
2335 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2336 		return -EINVAL;
2337 
2338 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2339 	if (!mm) {
2340 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2341 		return -EINVAL;
2342 	}
2343 	intel_gvt_mm_unreference(mm);
2344 	return 0;
2345 }
2346 
2347 /**
2348  * intel_gvt_init_gtt - initialize mm components of a GVT device
2349  * @gvt: GVT device
2350  *
2351  * This function is called at the initialization stage, to initialize
2352  * the mm components of a GVT device.
2353  *
2354  * Returns:
2355  * zero on success, negative error code if failed.
2356  */
2357 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2358 {
2359 	int ret;
2360 	void *page;
2361 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2362 	dma_addr_t daddr;
2363 
2364 	gvt_dbg_core("init gtt\n");
2365 
2366 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2367 		|| IS_KABYLAKE(gvt->dev_priv)) {
2368 		gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2369 		gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2370 		gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2371 		gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2372 	} else {
2373 		return -ENODEV;
2374 	}
2375 
2376 	page = (void *)get_zeroed_page(GFP_KERNEL);
2377 	if (!page) {
2378 		gvt_err("fail to allocate scratch ggtt page\n");
2379 		return -ENOMEM;
2380 	}
2381 
2382 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2383 			4096, PCI_DMA_BIDIRECTIONAL);
2384 	if (dma_mapping_error(dev, daddr)) {
2385 		gvt_err("fail to dmamap scratch ggtt page\n");
2386 		__free_page(virt_to_page(page));
2387 		return -ENOMEM;
2388 	}
2389 
2390 	gvt->gtt.scratch_page = virt_to_page(page);
2391 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2392 
2393 	if (enable_out_of_sync) {
2394 		ret = setup_spt_oos(gvt);
2395 		if (ret) {
2396 			gvt_err("fail to initialize SPT oos\n");
2397 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2398 			__free_page(gvt->gtt.scratch_page);
2399 			return ret;
2400 		}
2401 	}
2402 	INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2403 	return 0;
2404 }
2405 
2406 /**
2407  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2408  * @gvt: GVT device
2409  *
2410  * This function is called at the driver unloading stage, to clean up the
2411  * the mm components of a GVT device.
2412  *
2413  */
2414 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2415 {
2416 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2417 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2418 					I915_GTT_PAGE_SHIFT);
2419 
2420 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2421 
2422 	__free_page(gvt->gtt.scratch_page);
2423 
2424 	if (enable_out_of_sync)
2425 		clean_spt_oos(gvt);
2426 }
2427 
2428 /**
2429  * intel_vgpu_reset_ggtt - reset the GGTT entry
2430  * @vgpu: a vGPU
2431  *
2432  * This function is called at the vGPU create stage
2433  * to reset all the GGTT entries.
2434  *
2435  */
2436 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2437 {
2438 	struct intel_gvt *gvt = vgpu->gvt;
2439 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2440 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2441 	u32 index;
2442 	u32 offset;
2443 	u32 num_entries;
2444 	struct intel_gvt_gtt_entry e;
2445 
2446 	memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2447 	e.type = GTT_TYPE_GGTT_PTE;
2448 	ops->set_pfn(&e, gvt->gtt.scratch_mfn);
2449 	e.val64 |= _PAGE_PRESENT;
2450 
2451 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2452 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2453 	for (offset = 0; offset < num_entries; offset++)
2454 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2455 
2456 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2457 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2458 	for (offset = 0; offset < num_entries; offset++)
2459 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2460 
2461 	gtt_invalidate(dev_priv);
2462 }
2463 
2464 /**
2465  * intel_vgpu_reset_gtt - reset the all GTT related status
2466  * @vgpu: a vGPU
2467  *
2468  * This function is called from vfio core to reset reset all
2469  * GTT related status, including GGTT, PPGTT, scratch page.
2470  *
2471  */
2472 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2473 {
2474 	ppgtt_free_all_shadow_page(vgpu);
2475 
2476 	/* Shadow pages are only created when there is no page
2477 	 * table tracking data, so remove page tracking data after
2478 	 * removing the shadow pages.
2479 	 */
2480 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2481 
2482 	intel_vgpu_reset_ggtt(vgpu);
2483 }
2484